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SUMMARY 

This discussion consists of two parts. The first part raises a few comments and questions 

on the method presented in the above paper. The second part proposes a measure for 

identifying resonant accelerograms in a set of earthquake records without the need for 

pre-processing of the records or inclusion of the structure dynamic analysis. 
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1. COMMENTS AND QUESTIONS 

The above paper offers a useful application for identifying resonant accelerograms 

among a set of records. The following comments and questions are raised: 

1. The use of nonlinear dynamic analysis in selecting most unfavourable accelerograms 

as design inputs for structures is highly computational. This is true when a large set of 

records is involved. I quote the following from the above paper “It is a very 

complicated process to select the most unfavourable real seismic design ground 

motions from a large number of ground motion records”. Additionally, the application 

of the method to nonlinear multi-degree-of-freedom systems posses more questions. 

2. The proposed method, even with the high computations involved, is capable of 

identifying unfavourable records for the selected structures only. The discretizations 

considered in the paper for the middle- and the short-period ranges are coarse. 

Consider a narrow-band record with its energy concentrated at 2.25 Hz which is 

common for a stiff soil site. The proposed method will not identify this record since a 

structure with a natural frequency of 2.25 Hz is not included in the short-period range. 

The same comment applies to records with dominant frequencies of 2.70, 3.60, and 

4.50 Hz. Furthermore, the method identifies a single resonant accelerogram for each 

period range which is questionable. How can we average resonant signals ? 

3. It is mentioned that the method is based on the critical excitation approach proposed 

by Drenick in 1973. Actually, the concept was introduced in 1970 [1-3]. Additionally, 

it is not clear how the method is based on Drenick’s approach. 
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4. The use of Park and Ang damage index (DPA) in selecting the most unfavourable 

records is mentioned several times in the paper. However, it is not explained how DPA 

is used. Even the expression for DPA is not provided in the paper. 

5. The measure adopted for finding the most unfavourable accelerograms is taken as 

the plastic hysteretic energy per unit mass mEV pp /2 . Normalizing pE with 

the yield energy yyy ufE   is more appropriate since two structures may have the 

same mass but different yield characteristics. A robust measure would be the damage 

index (
uyy

H

u
PA uf

E
D







 max ) since it accounts for damage due to maximum 

ductility and hysteretic cumulative energy produced by the earthquake. 

6. The basis of grouping the available records into two sets is not clear. In fact, this 

adds more computations to the process of finding most unfavourable records. 

7. Scaling the ground motions using peak ground acceleration is not appropriate. Arias 

intensity measure is more appropriate for this purpose [4]. 

8. The verification of the method by comparing the structure maximum responses is not 

robust. The fact that structures are damaged by stress reversals and not only due to 

maximum response is ignored. A robust measure would be the damage index. 

The question that can be asked here is “can we identify unfavourable accelerograms 

without using the structure and thus eliminating nonlinear dynamic analysis?”. In other 

words “Is there a practical way for finding the most unfavourable accelerograms at a 

site?”. We propose a simple and practical method to extract resonant accelerations here. 

The method does not require pre-classification of the records. More importantly, it does 

not require dynamic analysis and is capable of identifying all peculiar records. 

Before we outline the method, we consider the four time histories shown in figure (1). 

The first three time histories represent samples from a narrow-band model, a band 

limited model, and Kanai-Tajimi model [5]. The fourth time history is the 1940 Elcentro 

NS component. Table 1 lists the mathematical expressions and numerical parameters 

adopted for these models. The envelope function for the first three models is taken as 

)]()[exp()( 210 tαextαAte  . The parameters 210 ,, ααA are calculated such that they 

match the transient trend of the Elcentro record. All accelerograms are normalized such 

that the Arias intensity of )(txg  (i.e. dttxg


0

2)]([  ) is set to unity [4]). Simple remarks 

can be made from figure 1. For instance, all accelerations are rich in frequency content 



 3

except of that from the narrow-band model. However, the frequency contents cannot be 

extracted from the time histories. 

The power spectral density (PSD) functions for the four acceleration models are shown 

in figure 2. This figure reveals that the first model is highly resonant at a single 

frequency of 2.5 Hz (see table 1). In other words, the energy of the ground acceleration 

is located at a single frequency. Clearly this ground acceleration is unfavourable (more 

precisely ‘critical’ or ‘resonant’) for structures with fundamental frequency close to 2.5 

Hz. It is also seen that the other three models are rich in frequency content. However, 

the band-limited model is not a realistic model for actual ground motions. Furthermore, 

the Kanai-Tajimi model and the actual record possess similar features and have a 

dominant frequency of about 2.5 Hz. 

The most important observation that can be made from figure 2 is that the center of 

mass of the PSD function for the narrow-band model is located exactly at the central 

frequency cω . Such acceleration among a set of records can be expected to produce the 

maximum damage to structures with fundamental frequency close to 2.5 Hz. Also, the 

center of mass for the Kanai-Tajimi model and for the actual record are located away 
from cω . This property was recognized earlier as the measure of ‘disorder’ in recorded 

earthquakes within the context of critical excitations method [6-9]. This measure is 

called the ‘entropy’ and was introduced by this author as an explicit constraint in 

developing critical earthquakes [7-9]. We define this measure below. 

 

2. IDENTIFYING RESONANT GROUND MOTIONS USING ENTROPY 

PRINCIPLE 

The entropy principle offers a useful tool for quantifying uncertainty in random 

processes [10, 11]. As shown above, the PSD function for the narrow-band model is 

resonant or ordered. Such an ordered signal cannot serve as a realistic earthquake model. 

However, with the high uncertainty involved in the earthquake phenomenon, actual 

records show this resonance nature. We thus use the entropy to measure the resonance in 

accelerograms. The entropy for a stationary Gaussian process is defined as [11]: 




uω

ω
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u
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ωω
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 )(log
)(2

1
2log

0

                (1) 

where ),( 0 uωω defines the frequency range of the PSD function ).(ωS  Equation (1) 

can be used to calculate the entropy from samples of Gaussian random processes. For 

mathematical convenience, we measure the entropy with reference to an ideal white 
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noise process )(tζ g
 of intensity 0s . Thus, under the assumption that )(tug  is 

independent of )(tζ g
 , the increase in entropy when )(tug  is added to )(tζ g

  is [7,8]: 
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The use of equation (2) to estimate the entropy for the first three models is 

straightforward since the PSD functions for the stationary components are known. To 

compute the entropy for the Elcentro acceleration, we first estimate the PSD function 

for the stationary part. Thus, the Elcentro acceleration is represented as: 

  )( )]exp()exp()( )()( 210 tutαtαAtutetx ggg                (3) 

The parameters 210 ,, ααA  are calculated such that they match the transient trend of 

)(txg . The sample of the stationary acceleration )(tug  is then obtained by dividing 

)(txg  by )(te . This is followed by the estimation of the PSD function of )(tug . 

The numerical results on the entropy for the four earthquake models of table 1 

( 02.00 s ) are found to be 0.0299, 0.8670, 0.6271 and 0.5745 for the narrow-band, the 

band-limited, the Kanai-Tajimi and the Elcentro earthquake, respectively. Thus, the 

narrow-band model possesses the lowest entropy and the band-limited signal possesses 

the highest entropy. The entropy of the actual earthquake and for the Kanai-Tajimi 

model are significantly similar and are bounded by the ideal narrow-band and the 

band-limited signals. Thus the entropy successfully predicts resonant accelerations. 

We now examine the applicability of this measure to a broader spectrum of earthquake 

records. Figure 3 shows the first horizontal acceleration for four recorded ground 

motions, namely, 1986 Dharmsala (India), 1995 Kobe (Japan), 1999 Chichi (Taiwan), 

and 1999 Izmit (Turkey) earthquakes. The Kobe and Chichi earthquakes represent long 

duration earthquakes. The Dharmsala earthquake represents an acceleration that is rich 

in frequency content. These records are normalized to the same Arias intensity. The 

entropy of these records from a narrow-band white noise process are computed and 

listed in figure 3. The highest value is 0.62 for the Dharmsala earthquake while the 

lowest is 0.33 for the Kobe earthquake. These results, again, confirms that the entropy 

successfully identifies resonant ground accelerations (see figure 3). 

To summarize, the method proposed by the authors requires nonlinear dynamic analysis 
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of all available records for several single-degrees-of-freedom systems [12]. The 

construction of two groups of records requires significant effort. A practical application 

for identifying resonant accelerograms, at a site, without the recourse to the structure or 

to nonlinear dynamic analysis is proposed. The method is based on the entropy principle 

that quantifies the effective frequency range of recorded ground motions. The proposed 

methodology is simple, practical, and promising since it avoids including the structure 

and does not require pre-processing of the set of available records. 
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Figure 1: Sample accelerations of (a) Narrow-band model (b) Band-limited 

model (c) Kanai-Tajimi model (d) Actual earthquake acceleration. 
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Figure 2: PSD function for (a) Narrow-band acceleration (b) Band-limited 

acceleration (c) Kanai-Tajimi acceleration (d) Actual earthquake acceleration. 
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Figure 3: Time history and PSD function for recorded ground motions. 
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Table 1: Mathematical expressions and numerical values for the acceleration models 

Acceleration model Mathematical model Numerical parameters Entropy 

Narrow-band (Figure 1-a) 

Kanai-Tajimi (Figure 1-c) 

Elcentro record (Figure 1-d) 

Band-limited (Figure 1-b) 

)()( 0 cωωδsωS   

22
2

2

22

0

4)1(

41
)(

gg
g

gg

ωζ
ω

ω

ωζ
sωS




  

actual recorded ground motion 

0)( sωS   

rad/s 5 πωc   

60.0 rad/s, 5  gg ζπω  

- 

rad/s )25,0(2),( 0 πωω u   

0.0299 

0.6271 

0.5745 

0.8670 

 


