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The electric currents on the upper, lower and side surfaces of the finite patch
conductor of a circular microstrip antenna are calculated by using the method
of moment in the spectral domain. The electric current on the lower surface
is much bigger than that on the upper surface and the input impedance of
microstrip antenna depends on the electric current on the lower surface.

1. Introduction

The thickness of the patch conductor of mi-

crostrip antenna (MSA) is finite. There-

fore, the electric currents exist on the upper,

lower and side surfaces of the patch conduc-

tor. However, in the analysis of MSA by the

method of moment in the spectral domain

(SD-MoM)[1, 2], the patch conductor is as-

sumed to be infinitely thin and the total cur-

rent on the upper and lower surfaces of the

patch conductor is derived.

Authors have derived the electric currents

on the upper and lower surfaces of the patch

conductor of a circular MSA separately by us-

ing SD-MoM [3]. In reference [3], since the

current on the side surface has been neglected,

the continuity of the currents on the upper,

lower and side surfaces of the patch conduc-

tor hasn’t been considered.

In this paper, the electric currents on the

upper, lower and side surfaces of the patch

conductor of a circular MSA are derived by

using SD-MoM. The integral equations are de-

rived from the boundary condition that the

tangential component of the total electric field

due to the electric currents on the upper,

lower and side surfaces of the patch conductor

vanishes on the upper, lower and side surfaces

of the patch conductor. The electric fields

on the upper, lower and side surfaces of the

patch conductor are derived by using Green’s

functions in the spectral domain produced by

the vertical and horizontal electric dipoles on

those surfaces.

In order to investigate the effects of the cur-

rents on upper, lower and side surfaces to the

antenna characteristics, the input impedances

due to those currents are calculated.

2. Theory

Fig. 1 shows the geometry of a circular MSA

and its coordinate system. The radius and

thickness of the circular patch conductor are

a0 and δz, respectively. The relative dielectric

constant and thickness of the dielectric sub-

strate are εr and h, respectively. The antenna

is excited at r = d0, φ = 0
◦ by a coaxial feeder

through the dielectric substrate.

Fig. 2 shows an analytical model of the cir-

cular MSA. The electric currents on the up-

per, lower and side surfaces of the patch con-

ductor are denoted by JU , JL and JS, respec-

tively. The currents on the patch conductor

follow closely the behavior of the correspond-

ing eigenmode within the cavity bounded

above and below by the conducting plates and

on the side by the admittance wall [4]. There-

fore, JU , JL and JS are expressed as

Jp =

MX
m=0

NX
n=0

ApmnF
p
rmn(r,φ)ir

+
MX
m=0

NX
n=1

BpmnF
p
φmn(r,φ)iφ (1a)

F prmn = Um

µ
r

a0

¶½
1−

µ
r

a0

¶2¾νp
cos(nφ),

m+ n = even (1b)
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F pφmn = Tm

µ
r

a0

¶½
1−

µ
r

a0

¶2¾νp−1
sin(nφ),

m+ n = odd, (1c)

JS =
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m=0

NX
n=0

ASmnF
S
zmn(φ, z)iz

+
MX
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NX
n=1
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S
φmn(φ, z)iφ (2a)
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µ¯̄̄̄
1− 2z

δz

¯̄̄̄¶½
1−

µ
1− 2z

δz

¶2¾νS
× cos(nφ), m+ n = even (2b)

F Sφmn = Tm

µ¯̄̄̄
1− 2z

δz

¯̄̄̄¶½
1−

µ
1− 2z

δz

¶2¾νS−1
× sin(nφ), m+ n = odd. (2c)

Where, p is U or L and νS is equal to νU

for δz/2 5 z 5 δz and νL for 0 5 z 5 δz/2.

Tn and Un are Chebyshev polynomials of the

first and second kind, respectively. {Apmn}
and {Bpmn} are unknown coefficients. Since
the currents must be continuity at the cen-

ter of the circular patch, the sums of m and n

with respect to the r and φ components of the

currents are even and odd, respectively. The

edge conditions of the currents on the metal-

lic 90◦ corner are used. Therefore, νU is 0.667
and νL is 0.603 for εr = 2.15 [5].

The electric fields on the upper, lower and

side surfaces of the patch conductor produced

by Jp(p = U,L, S) are denoted by EU (Jp),

EL(Jp) and ES(Jp), respectively. The exci-

tation fields due to the feed current Je are

denoted by EU (Je), EL(Je) and ES(Je). The

boundary conditions on the upper, lower and

side surfaces of the patch conductor are ex-

pressed as½ X
p=U,L,S

Eq(Jp) +Eq(Je)

¾
× n = 0

on Sq, q = U,L, S, (3)

where n is the unit normal vector directed

outward from the patch conductor and SU , SL
and SS are the upper, lower and side surfaces

of the patch conductor, respectively.

In the formulation of the electric fields, the

local coordinate system (X,Y, Z) with the ori-

gin located at the point (r0,φ0, 0) is used. Fig.

3 shows the local coordinate system (X,Y,Z).

The positiveX direction is defined by the tan-

gential φ0 direction. Eq(Jp) is expressed by
the vector potentialAq(Jp) and the scalar po-

tential φqe(J
p);

Eq(Jp) = −jωAq(Jp)−∇φqe(Jp) (4)

Aq(Jp)

=

Z
Sp

½
(iXG

XX
A + iZG

ZX
A )iX

+(iYG
Y Y
A + iZG

ZY
A )iY

+(iXG
XZ
A + iYG

Y Z
A + iZG

ZZ
A )iZ

¾
· JpdS0

(5)

φqe(J
p) = − 1

jω

Z
Sp

GU (∇0 · Jp)dS0. (6)

Where GSTA is S component of Green’s func-

tion for the vector potential due to a T - di-

rected electric dipole and GU is Green’s func-

tion for the scalar potential. ∇ and ∇0 are the
derivative operators at the observation and

source points. iX , iY and iZ are unit vec-

tors of the local coordinate system (X,Y,Z).

By substituting eqns. (4)—(6) into eqn. (3),

the integral equations are obtained. {Apmn}
and {Bpmn} are determined by applying the
method of moment to the integral equations.

Green’s functions in the spectral domain

are obtained by applying the solutions of the

wave equations in the spectral domain to

the boundary conditions at the interfaces be-

tween the air, the dielectric and the ground

plane and the radiation condition. Green’s

functions in the spatial domain are derived

by applying the inverse Fourier transform

to Green’s functions in the spectral domain

[1][6].

3. Results and Discussion

Figs. 4(a)—(d) show the calculated JU , JL

and JS at the resonant frequency (6.33GHz).

The intensity of JL is bigger than that of JU

and the phase of JL is nearly equal to that

of JU . Although the intensity of JSz is very

small compared with those of JUr and J
L
r , the

intensity of JSφ is much bigger than those of

JUφ and JLφ .
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Figs. 5(a) and (b) show the calculated in-

put impedances. JU and JS don’t contribute

to the input impedance. This is due to facts

that the intensity of JU is small compared

with that of JL and the thickness of the patch

conductor δz is very small compared with the

radius of the circular patch conductor a0.

4. Conclusion

The electric currents on the upper, lower and

side surfaces of the finite patch conductor

have been calculated by SD-MoM. The inte-

gral equations are derived from the bound-

ary condition on the upper, lower and side

surfaces of the patch conductor. The electric

fields on upper, lower and side surfaces of the

patch conductor are derived by using Green’s

functions in the spectral domain produced by

the vertical and horizontal electric dipoles on

those surfaces. The electric current on the

lower surface is much bigger than that on the

upper surface. The input impedance of the

MSA depends on the electric current on the

lower surface.
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Fig. 1 Circular MSA

Fig. 2 Analytical model (cross section)

Fig. 3 Local coordinate system
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(a) JUr , J
L
r (φ = 0

◦)

(b) JUφ , J
L
φ (φ = 90

◦)

(c) JSz (φ = 0
◦)

(d) JSφ (φ = 90
◦)

Fig. 4 Electric currents distributions

(a0=9.06mm, d0=6.0mm, h=0.764mm,

εr=2.15, δz=0.018mm, M=N=3,

frequency=6.33GHz)

(a) Input resistances

(b) Input reactances

Fig. 5 Input impedances

(a0=9.06mm, d0=6.0mm, h=0.764mm,

εr=2.15, δz=0.018mm, M=N=3)
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