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Abstract A problem of thermally-induced residual stress under plane strain
constraint is considered based on a Body Force Method (BFM). As a numeri-
cal example, a simple problem of limited plasticity due to a uniform strength
of transient line heat source of finite width, which is applied to a surface of a
semi-infinite solid for a short duration of time, was considered. Although the
out-of-plane component of normal stress (σzz) can be simply estimated from
the in-plane normal stress components σxx, σyy and the Poisson’s ratio ν as
σzz = ν(σxx + σyy) for elastic plane strain problems, this relation violated
when plasticity is considered. As a result, the residual stress in the direction
of out-of-plane found to be a major component in the present problem.

Keywords Principle of Superposition · Limited Plasticity · Semi-Analytical
Approach · Body Force Method · Welding

1 Introduction

Most mechanical and structural components are supposed to be used within
an extent of linear elasticity, however, due to a presence of indispensable
stress concentrators, such as key-ways and notches, an occurrence of limited
amount of plasticity have to be tolerated. In the present paper, the word
limited plasticity is used for the situation that the relatively small plastic re-
gion is surrounded by an elastic foundation so that a plastic flow is restricted
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considerably and thereby the magnitude of plastic strain remains in the same
order to that of the elastic strain. In order to evaluate the degree of plastic
deformation and residual stresses precisely, employment of the commercial
codes of finite element (FE) packages that examine full elastic-plastic com-
putation became quite popular in recent years. On the other hand, the use
of elastic-plastic FE code is sometimes inefficient because it can not take
into account the fact that most part of the component would remain in an
elastic state. The other way to evaluate the limited plasticity is often re-
ferred as a semi-analytical approach in which the elastic analysis is carried
out first and then the result is used to estimate the local plasticity by using
the Neuber–Glinka formulas. The latter method is quite successful when the
material flow occurs under deformation plasticity, however, this approach
sometimes brings a considerable error since the real materials often exhibit
the incremental nature of plasticity.

In order to treat problems including limited plasticity effectively, Blomerus
and Hills proposed a dislocation based technique[1]. In their method, edge
dislocations are distributed into the direction of maximum shear in order to
express the occurrence of plastic flow. The magnitude of the Burgers vector at
the each material point where the plastic flow occurred is determined through
the iterative procedure considering the yield criterion. Since the magnitude of
Burgers vector at each material point is determined incrementally, the stress
redistribution due to yielding can be modeled sufficiently. On the other hand,
the dislocation approach sometimes exhibits a convergence problem in which
the direction of maximum shear stress varied frequently due to the fluctu-
ation of the magnitude of Burgers vector. One of the other semi-analytical
approach to treat the limited plasticity was proposed by D.H. Chen and H.
Nisitani. They employed a force doublet embedded in an elastic continuum in
order to express the inelastic strain[2–4]. Although their method is useful for
wide range of limited plasticity, it seems difficult to apply to the problem of
a special type of the plane strain in which the component of residual stress
in the thickness direction becomes the major component. The major diffi-
culty in the analysis of elastic-plastic problem by BFM under plane strain
condition arises from the following facts; (i) the increment of plastic strain
in the out-of-plane direction estimated from the Prandtl-Reuss flow rule has
to be considered even under two-dimensional analysis, and at the same time,
(ii) the total strain in the out-of-plane direction has to be zero due to the
constraint of plane strain. Moreover, usual elastic-plastic analysis requires
one-to-one correspondence between the equivalent stress and the equivalent
plastic strain so that the treatment of non-hardening material is considerably
difficult.

In the present study, in order to propose a semi-analytical technique for
treating the limited plasticity under welding, the method for expressing the
plastic strain which occurs not only in the in-plane but also in the out-of-
plane direction holding a plain strain constraint is mainly discussed. As an
numerical example, limited plastic flow due to over heating by line heater in
a non-hardening material, which can be regarded as a simple model of line
welding, is considered.
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2 A brief introduction of BFM

BFM was originally proposed in 1967 as a boundary type method for elastic
stress analysis[5]. In BFM. any elastic problem is expressed in terms of the
superposition of fundamental solutions of elasticity. As a fundamental solu-
tion, stress field due to an isolated point force acting in an infinite elastic
body (usually referred as Kelvin solution) is preferably employed due to its
simplicity. In fact, based on the principle of the BFM, stress components at
an arbitrary point P , σij(P ), in an elastic medium can be written as,

σij(P ) = σ0
ij(P ) +

∫
Γ

σij(P,Qk)φk(Q)dΓ (Q) (1)

where P ∈ R is an arbitrary point in the reference region R which is sur-
rounded by the imaginary boundary Γ . Q ∈ Γ is a source point which lies
and moves on Γ . σij(P,Qk) is a fundamental stress solution (stress compo-
nent σij at a point P caused by a unit magnitude of point force acting into
k-direction (k = x, y) at a source point Q) and φk(Q) is a density of the
k-component of body force which has to be determined so that the given
boundary conditions are satisfied.

Consider an infinite sheet with a circular hole of diameter 2a, subjected to
external tensile stresses as illustrated in Fig.1. In this example, the reference
region R is an infinite plate excluding a circular disk of radius a, therefore, the
imaginary boundary Γ is a circular ring of diameter 2a. The stress component
at a point P can then be expressed according to Eq.(1) as,

σxx(P ) = σ0
xx +

∫
Γ

{
σxx(P,Qx)φx(Q) + σxx(P,Qy)φy(Q)

}
dΓ (Q) (2)

σyy(P ) = σ0
yy +

∫
Γ

{
σyy(P,Qx)φx(Q) + σyy(P,Qy)φy(Q)

}
dΓ (Q) (3)

σxy(P ) =
∫

Γ

{
σxy(P,Qx)φx(Q) + σxy(P,Qy)φy(Q)

}
dΓ (Q) (4)

2a 2a

σ0
xxσ0

xx

σ0
yyσ0

yy

P

Q

Γ

dFx

dFy

Fig. 1 Analysis of an elastic sheet having a circular hole of diameter 2a, subjected
to external tensile stresses σ0

xx and σ0
yy at infinity
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in which σ0
xx and σ0

yy are the uniform tensile stresses at infinity. φx(Q) and
φy(Q) are the unknown densities of body forces which define the magnitude
of body forces at point Q per unit length of an imaginary boundary as,

dFx(Q) = φx(Q)dΓ, dFy(Q) = φy(Q)dΓ (5)

In numerical analysis, the imaginary boundary Γ is divided into several seg-
ments and the density of body forces at each segment is determined numer-
ically. If the problem is rather simple, the unknown density of body forces
have closed form solution and can be determined theoretically. In fact, the
situation illustrated in Fig.1 is one of a such case.

It is well known that two-dimensional elasticity problem can be expressed
in terms of two complex potentials Ω(z) and ω(z) such that,

σxx + σyy = 2
{
Ω′(z) + Ω′(z)

}
(6)

σyy − σxx + 2iσxy = 2
{
zΩ′′(z) + ω′(z)

}
(7)

where z is a complex variable that represents the reference point z = x + iy,
i is an imaginary unit and the over-bar denotes the complex conjugate. The
Kelvin solution (stress field at a point z due to a point force of magnitudes
Fx and Fy acting at a source point ζ = ξ + iη in an infinite elastic sheet) can
be expressed in terms of complex potentials as,

Ω(z) = − Fx + iFy

2π(κ + 1)
log(z − ζ) (8)

ω(z) =
κ(Fx − iFy)
2π(κ + 1)

log(z − ζ) +
Fx + iFy

2π(κ + 1)
ζ

z − ζ
(9)

where κ is a constant relating to Poisson’s ratio ν as κ = (3− ν)/(1 + ν) for
plane stress and κ = 3−4ν for plane strain. By using the complex potentials,
the elastic fields of Fig.1 can be written as,

Ω(z) =
σ0

xx + σ0
yy

4
z −

∮
Γ

log(z − aeiθ)
φx(θ) + iφy(θ)

2π(κ + 1)
adθ (10)

ω(z) =
σ0

yy − σ0
xx

2
z +

∮
Γ

log(z − aeiθ)
κ {φx(θ) − iφy(θ)}

2π(κ + 1)
adθ

+
∮

Γ

ae−iθ

z − aeiθ

φx(θ) + iφy(θ)
2π(κ + 1)

adθ (11)

since the source point ζ (= Q) lies on the imaginary circle of radius a, which
can be expressed as ζ = aeiθ. In the problem shown in Fig.1, the density
functions φx(θ) and φy(θ) have closed form solution such that;

φx(θ) =
κ + 1

2(κ − 1)
{
κσ0

xx − (κ − 2)σ0
yy

}
cos θ = constant, ρx × cos θ(12)

φy(θ) =
κ + 1

2(κ − 1)
{
κσ0

yy − (κ − 2)σ0
xx

}
sin θ = constant, ρy × sin θ (13)
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In fact, substituting Eqs.(12), (13) into Eqs.(10), (11) and then by examining
the contour integral considering |z| > a using Cauchy’s integral theorem, the
exact expressions of complex potentials of Fig.1 are obtained as,

Ω(z) =
σ0

xx + σ0
yy

4
z +

σ0
xx − σ0

yy

2
a2

z
(14)

ω(z) =
σ0

yy − σ0
xx

2
z −

σ0
xx + σ0

yy

2
a2

z
+

σ0
xx − σ0

yy

2
a4

z3
(15)

It should be noted that Eqs.(14) and (15) are the strict solution of the clas-
sical elasticity problem shown in Fig.1. That is, BFM can be considered not
a mere of numerical method for elastic stress analysis but a solution method
that often has a possibility to bring even a closed form strict solution of the
elastic problems.

It is readily found that the density functions of the body force in Eqs.(12)
and (13) are given by the product of some constant and the components of
unit outward normal (cos θ, sin θ) at a point Q on the imaginary boundary
Γ . Therefore, the expression of boundary integral in Eqs.(10) and (11) can
be transformed into a form of area integral by using the Green’s theorem as,

Ω(z) =
σ0

xx + σ0
yy

4
z +

1
2π(κ + 1)

∫∫
R

ρx − ρy

z − ζ
dξdη (16)

ω(z) =
σ0

yy − σ0
xx

2
z − κ − 1

2π(κ + 1)

∫∫
R

ρx + ρy

z − ζ
dξdη

+
1

2π(κ + 1)

∫∫
R

(ρx − ρy)
ζ

(z − ζ)2
dξdη (17)

in which R is a region inside of the imaginary boundary Γ , which is referred as
an auxiliary region. Equivalence of Eqs.(10), (11) and Eqs.(16), (17) directly
implies that the influence of the body force applied along the imaginary
boundary is equivalent to that of due to embedded force doublets into the
auxiliary region. The physical meaning of the force doublet is an embedded
eigen stress at a point where it is applied. In a problem that includes any of
inelastic strain such as plastic strain, the force doublet is used to express its
influence since the eigen stress directly relates to the eigen strain through the

R: reference region R: auxiliary region

Γ

Fig. 2 The reference and auxiliary regions (distribution of body force along an
imaginary boundary Γ for the problem of Fig.1 can be replaced by the distribution
of uniform force doublets embedded inside of an auxiliary region R)
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Fig. 3 Force doublets used to express a plastic flow

Hooke’s law. Stress fields due to point force doublet can be obtained simply
by differentiating that of due to a point force with respect to coordinate
variables. Fig.3 shows three types of force doublets used to express a plastic
flow. Magnitudes of force doublets of tension types Txx, Tyy and shear type
Txy are defined as follows.

Txx = lim
δ→0

(δ × Fx), Tyy = lim
δ→0

(δ × Fy), Txy = lim
δ→0

δ × (Fx + Fy) (18)

The complex potentials of the force doublet which correspond to the Kelvin
solution can be expressed as follows.

Ωd(z) =
Txx − Tyy

2π(κ + 1)
1

z − ζ
(19)

ωd(z) = − κ − 1
2π(κ + 1)

Txx + Tyy

z − ζ
+

Txx − Tyy + 2iTxy

2π(κ + 1)
ζ

(z − ζ)2
(20)

In the next section, the line weld model and its thermoelastic solution is
discussed. Then the procedure for treating a thermoplastic strain is described
under the assumption that the material follows Prandtl-Reuss flow rule for
an elastic-perfect-plastic body under plain strain condition.

3 A simplified model for line welding

Fig.4 shows simplified welding model. A uniform strength of transient line
heater of width “w” is applied to a surface of a semi-infinite medium for
a short duration of time with a strength chosen so that the total heating
energy delivered from the heater resembles to that of expected under ac-
tual welding of stainless steel. In a physical sense, the problem is essentially
two dimensional which should simplify the analysis, however, an occurrence
of residual stress in the out-of-plane (z) direction becomes significant. The
resulted thermoelastic field such as temperature rise τ(x, y, t) and thermoe-
lastic stress components σij(x, y, t) due to a heating of duration t, can be
written under the assumption of plane strain (εzz = 0) that,

τ(x, y, t) =
Q

2πλ

∫ w
2

−w
2

E1 (S) dξ (21)
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y=0
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weld line

Q

Fig. 4 Schematic illustration of treated problem ( yield stress σY = 800MPa,
heating power Q = 11.2MW/m2, coefficient of linear expansion α = 1.2×10−51/K,
Young’s modulus E = 200.2GPa, mass density ρ = 7833kg/m3, specific heat c =
586J/kgK, Poisson’s ratio ν = 0.3 and thermal conductivity λ = 52W/mK )

σxx(x, y, t)
σ

=
∫ w

2

−w
2

(
2
y2

r2 − 1
)

1 − e−S

S
dξ −

∫ w
2

−w
2

E1 (S) dξ

− 2y

π

∫ ∞

−∞

(x − ξ)2

r4 f(ξ, t)dξ (22)

σyy(x, y, t)
σ

=
∫ w

2

−w
2

(
1 − 2

y2

r2

)
1 − e−S

S
dξ −

∫ w
2

−w
2

E1 (S) dξ

− 2y3

π

∫ ∞

−∞

f(ξ, t)
r4 dξ (23)

σxy(x, y, t)
σ

= 2y

∫ w
2

−w
2

x − ξ

r2

1 − e−S

S
dξ − 2y2

π

∫ ∞

−∞

x − ξ

r4 f(ξ, t)dξ (24)

σzz(x, y, t)
2σ

= −
∫ w

2

−w
2

E1(S)dξ − ν
y

π

∫ ∞

−∞

f(ξ, t)
r2 dξ (25)

where r2 is a square of distance between reference and source points r2 =
(x − ξ)2 + y2, (x, y) is a coordinate of reference point, (ξ, 0) is a coordinate
of source point, σ is a constant defined by σ = αEQ/4πλ(1 − ν) in which
ρ is a mass density, c is a specific heat, λ is a thermal conductivity, α is
a coefficient of linear expansion, E is a Young’s modulus, ν is a Poisson’s
ratio. S is a non-dimensional parameter defined by S = ρcr2/4λt, E1(x) is a
integral exponential function defined as

E1(x) =
∫ ∞

x

e−u

u
du (26)

and f(ξ, t) is a function defined as

f(ξ, t) = 2

√
λt

ρc
×

[
1
p
(1 − e−p2

) + pE1(p2)
]p2

p1

(27)

where p1 =
√

ρc

λt

ξ + w/2
2

and p2 =
√

ρc

λt

ξ − w/2
2

.
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Fig. 5 Thermoelastic fields of welding model at heating time t = 1s (σeq is a
equivalent stress defined by Eq.(33))

In the present sample, the heating width is set w = 10mm and heating
duration t = 1s. In Fig.5, the temperature and the thermoelastic stress dis-
tribution at time t = 1s are shown as an example, which can be evaluated
from Eqs.(21)∼(25).
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Fig. 6 Procedure for the replacement of plastic strain εp
ij by force doublet of

magnitude Tij

4 Expression of the plastic strain by force doublets

The most fundamental concept for the treatment of plastic strain in BFM
is to replace the distribution of plastic strain by continuously embedded
force doublets[4]. Consider an elastic-plastic body whose elasticity constants
are E for Young’s modulus and ν for Poisson’s ratio. The plastic part in
the region is named Ωp which is surrounded by an elastic foundation Ωe

as seen in Fig.6(a). Next, consider an infinitesimally small plastic element ω
which has stress components σij(P ) and strain components εij(P ) = εe

ij(P )+
εp

ij(P ) where P (x1, x2) is a reference point in the infinitesimal element ω,
εe

ij(P ) and εp
ij(P ) are the elastic and plastic components of strain at point

P , respectively. ω can be extracted without affecting the stress field if traction
ti(P ) = σij(P )nj(P ) is applied to the outer surface of ω, and at the same
time, traction −ti is applied to the inner surface of the cavity which is made
by the extraction of ω from Ωp where nj(P ) is a component of unit outward
normal. Then the plastic element ω is transposed to an ideal elastic element
ωe which has the same elastic properties (E, ν) with external elastic region
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Ωe but its yield stress σY is assumed to be infinite so that no yielding takes
place. Owing to this transposition (from state (A) to state (B) in Fig.6(c)),
stress state is unchanged but the strain state is decreased by the amount of
plastic strain εp

ij(P ). Therefore, if ωe is embedded into the cavity of the region
Ωp, some clearances due to shrinkage of the element would be observed. In
order to compensate this strain decrease and to embed an ideal element
without any gap, an additive stress Tij(P ) have to be applied (state (C) in
Fig.6(d)) to ωe. This replacement procedure is continued until all the plastic
element are transposed to an ideal elastic one. After the completion of such
transposition, the stress field at an arbitrary point P can be expressed as
follows.

σij(P ) = σtherm
ij (P ) +

∫∫
Ω

σij(P,Qk`)Tk`(Q)dΩp(Q) − Tij(P ) (28)

where σtherm
ij (P ) is component of thermoelastic stresses at point P which

is shown from Eqs.(22) ∼ (25), Q(ξ1, ξ2) is a source point, σij(P,Qk`) =
∂σij(P,Qk)/∂ξ`. Tij(Q) is a magnitude of force doublet embedded at point
Q, which compensate the strain decrease during the process of transposition
from plastic element ω to elastic one ωe. Because of the incremental nature of
plasticity, not the total stress but an incremental stress is used to evaluated
a present stress state. Then Eq.(28) is replaced by an incremental form as

dσij(P ) = dσtherm
ij (P ) +

∫∫
Ω

σij(P,Qk`)dTk`(Q)dΩp(Q) − dTij(P ) (29)

in which dTij(P ) is an increment of the magnitude of force doublet, which is
related to the increment of plastic strain at point P . The total stress can be
calculated by a sum of stress increments such that

σij(P ) =
∑

dσij(P ) (30)

When Prandtl-Reuss flow rule is employed, each component of plastic
strain increment is assumed to be proportional to a component of devia-
toric stress Sij with unknown proportionality constant dλ. Therefore, the
increment of the magnitude of point force doublet can be expressed as

dTij(Q) = Dijk`dεp
k`(Q) = Dijk`

(
σk`(Q) − δk`

σmm(Q)
3

)
dλ(Q) (31)

where Dijk` is an elastic modulus tensor and δij is Kronecker delta. It should
be noted that the term “−dTij(P )” in Eq.(29) is indispensable with no rela-
tion to the value of σij(P,Qk`). In fact, stress components due to point force
doublet which acts in the z direction σij(P,Qzz) results no influence at any
point P under plane strain condition. However, even when σij(P,Qk`) = 0
for points (P 6= Q), the term −dTij(P ) still yields a non-zero influence at
point P . In a practical analysis, the proportional constant dλ(Q) in Eq.(31) is
the unknown parameter to be determined through numerical analysis. Since
dλ(Q) is not only a function of the position Q but also the function of time
t, it is required to determine the value of dλ(Q) step-wisely, considering the
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Fig. 7 A regular triangular mesh used to determine unknown parameter consid-
ering a symmetry respect to y axis

yield criterion. For example, when Von Mises criterion for elastic-perfect-
plastic body is supposed, the following equation must hold at an arbitrary
point P in the yielded region.

σeq = σY (32)

where σY is a yield stress measured under single axial tensile test and σeq is
a equivalent stress defined by

σeq =

√
1
2

√
(σxx − σyy)2 + (σyy − σzz)2 + (σzz − σxx)2 + 6σ2

xy (33)

5 Numerical procedure and discussion

For the numerical estimation of plastic strain, the time domain is divided
into Nth equally division as t = n∆t, (n = 1, 2, · · · , N) where ∆t is a time
increment. A space domain is also divided into number of triangular areas,
which may be generated by the use of an automated Delaunay tessellation
scheme in general. For the sake of simplicity, the magnitude of plastic strain
(and therefore the magnitude of force doublet) is assumed to be constant over
a triangular element at each time step. In the present analysis, however, by
considering the symmetry of the problem, a regular set of triangular elements
as shown in Fig.7 were employed to evaluate the plastic strain. That is, the
equivalent stress at the centroid of each triangular element is used for the
determination of dλ(Q).

As a result, the total stress component at the reference time t = n∆t,σn
ij(P )

can be evaluated as

σn
ij(P ) = σn−1

ij (P ) + dσtherm
ij (P )

∣∣∣
t=n∆t

+
∫∫

Ω

σij(P,Qk`)dTn
k`(Q)dΩp(Q) − dTn

ij(P ) (34)
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where dTn
ij(P ) is an increment of the magnitude of force doublet at time

t = n∆t. As seen Eq.(31), dTn
ij(P ) is related to the total stress state at

t = n∆t but it could be reasonable to evaluate its value from the value of
total stress at one time step ∆t before. That is, dTn

ij(P ) is approximated such
that

dTn
ij(P ) ≈ Dijk`

(
σn−1

k` (P ) − δk`
σn−1

mm (P )
3

)
dλn(P ) (35)

in which dλn(P ) is unknown parameter yet not determined. Substitution of
Eq.(35) into Eq.(34) leads stress components at arbitrary point P at reference
time t = n∆t, if parameter dλn(P ) is given. In order to determine dλn(P ),
the yield criterion is applied. However, substitution of Eq.(34) into Eq.(32)
through Eq.(33) leads nonlinear simultaneous equations for the determina-
tion of dλn(P ) at each reference point P . These nonlinear simultaneous equa-
tions should be solved carefully under the constraint that dλn(P ) ≥ 0. When
dλn(P ) becomes negative, it means the unloading process during plastic de-
formation so that the value of dλn(P ) should be set at 0. In Figs.8 and 9 the
residual stress distribution along the y and x axes are shown. As seen, the
out-of-plane residual stress component σzz exhibits the largest component
and the usual plane strain relation σzz = ν(σxx + σyy) does not hold.

In the present analysis, the yield stress σY is assumed to be constant at
800MPa irrespective to the temperature. Even after the complete cooling,
severe residual stresses can be found near the heated zone. For example, the
residual stresses at the origin are about σxx = 362MPa and σzz = 917MPa
as seen in Fig.8. It means that the origin is still in the state of yielding since
the equivalent stress σeq is almost equal to σY = 800MPa.

6 Conclusion

A method for a treatment of limited plastic flow in the body force method
was reviewed briefly and a treatment of plastic strain in the direction of
out-of-plane based on the principle of the superposition was discussed. In a
numerical example, a treated material is assumed an elastic-perfect-plastic
body that follows Von Mises yield criterion. It was found that the residual
stress in the out-of-plane direction σzz can be estimated independently of
the in-plane residual stress components σxx and σyy. It was also found that
the proposed method provides effective and efficient scheme for treating a
problem of limited plasticity.
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