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SUMMARY 

CEL-III is a hemolytic lectin, which has two -trefoil domains (domains 1 and 2) and a 

-sheet-rich domain (domain 3). In domain 3 (residues 284-432), there is a hydrophobic 

region containing two helices (H8 and H9, residues 317-357) and a loop between 

them, in which alternate hydrophobic residues, especially Val residues, are present. To 

elucidate the role of the helix region in the hemolytic process, peptides 

corresponding to different parts of this region were synthesized and characterized. The 

peptides containing the sequence that corresponded to the loop and second helix (H9) 

showed the strongest antibacterial activity for Staphylococcus aureus and Bacillus 

subtilis through a marked permeabilization of the bacterial cell membrane. The 

recombinant glutathione S-transferase (GST)-fusion proteins containing domain 3 or the 

helix region peptide formed self-oligomers, whereas mutations in the alternate Val 

residues in the –helix region lead to decreased oligomerization ability of the fusion 

proteins. These results suggest that the -helix region, particularly its alternate Val 

residues are important for oligomerization of CEL-III in target cell membranes, which is 

also required for a subsequent hemolytic action.  
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Abbreviations: CD, circular dichroism; SAXS, small-angle X-ray scattering; GST, 

glutathione S-transferase; TBS, Tris-buffered saline; TSB, tryptic soy broth; PBS, 

phosphate-buffered saline. 
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CEL-III is one of the Ca2+-dependent, Gal/GalNAc-specific lectins isolated from the sea 

cucumber Cucumaria echinata (1). CEL-III exhibits strong hemolytic and cytotoxic 

activity through formation of oligomeric ion-permeable pores in the cell membrane, 

after binding to cell surface carbohydrate chains (2-4). From X-ray crystallographic 

analysis (5), CEL-III was found to consist of three domains (Fig. 1). Domains 1 and 2 

are ricin-type (R-type) lectin domains (6), also known as trefoil domains, having 

carbohydrate-binding activity, while domain 3 has a novel structure composed of 

extended sheets and two helices positioned nearly perpendicular to the strands. 

Limited digestion of CEL-III with trypsin resulted in cleavage between these domains, 

followed by self-oligomerization of domain 3 fragments (7). This result suggested that 

domain 3 plays an important role in association of CEL-III molecules through 

interaction between its hydrophobic region, once separated from other domains. It 

seems that a conformational change induced by binding to carbohydrate chains on the 

target cell surface may lead to exposure of the hydrophobic surface of domain 3 of 

CEL-III. 

    We have previously revealed that some 20-mer synthetic peptides corresponding to 

the helix region that spans -helices H8 and H9 (residues 320-354) of CEL-III (Fig. 

1) exhibited antibacterial activity toward two Gram-positive bacteria Staphylococcus 

aureus and Bacillus subtilis (8). This activity was assumed to be due to perturbation of 
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cell membranes caused by these peptides, since there was a marked increase in 

permeability of natural as well as synthetic lipid membranes to small molecules. The 

helix region of CEL-III is the most hydrophobic region of the molecule (9) and 

contains characteristic alternate hydrophobic sequences including two clusters of Val 

residues (residues 322-326 and 341-345). Such alternate sequences of hydrophobic and 

hydrophilic residues are often found in -hairpin regions of pore-forming bacterial 

toxins that can be inserted into target cell membranes to form membrane-penetrating 

barrel structures (10). Therefore, it seems possible that the helix region of CEL-III 

could also play a similar role in the formation of pores in the target cell membrane.  

    In the present study, we have investigated properties of the helix region in 

domain 3 to elucidate its role in the oligomerization and hemolytic action of CEL-III. 

Results from synthetic peptides and GST-fusion proteins suggest that the helix region, 

especially its alternate hydrophobic residues, is important in self-oligomerization of 

domain 3, probably through a large structural transition from helix to sheet.  

 

MATERIALS AND METHODS 

Peptide Synthesis—Peptides corresponding to the -helix region sequences (HLH, 

HL, LH, and P332) were synthesized by the solid-phase method using Fmoc-amino 

acids and 4-(2’,4’-dimethoxyphenylaminomethyl)phenoxy resin (TGR resin) (11). 
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Protecting groups and resin were removed with TFA in the presence of m-cresol (2%) 

and thioanisole (12%) at room temperature for 60 min. Crude peptides were precipitated 

with diethylether on ice, and then purified by reverse-phase HPLC on a Wakosil 5C4 

column (Wako, Osaka, Japan). Amino acid sequences of the resulting peptides were 

confirmed with a PPSQ-21 protein sequencer (Shimadzu, Kyoto, Japan). 

Circular dichroism (CD) spectroscopy—Far-UV CD spectra of peptides were 

recorded using a J-720 spectropolarimeter (JASCO, Tokyo, Japan). Spectra were 

measured using a quartz cell with a 1-mm path length at 20°C at a peptide concentration 

was 0.1 mM. 

Measurement of Peptide Antibacterial Activity—Antibacterial activity was 

measured by the serial solution dilution method as previously described (12), using two 

Gram-positive bacteria (Staphylococcus aureus IFO 12732 and Bacillus subtilis IFO 

3134). Each cell suspension was diluted to 104 cells/ml with tryptic soy broth (TSB) 

medium (pH 7.4). Various concentrations of each peptide solution (10 l) were placed 

in a 96-well microplate and 90 l aliquots of the cell suspension in TSB were added. 

After incubation for 6 h at 37°C, growth of the bacteria was expressed as turbidity as 

measured by absorbance at 620 nm using a microplate reader.  

Measurement of Inner Membrane Permeabilization—The inner membrane 

permeability of bacterial cells was determined using 
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o-nitrophenyl--D-galactopyranoside (ONPG) (13). Bacteria grown to logarithmic 

phase were adjusted to A600 = 0.5 with TSB and mixed with two volumes of 10 mM 

sodium phosphate buffer, pH 7.4. To this solution (0.8 ml), 0.1 ml of peptides (0.2 mM) 

and 0.1 ml of ONPG (25 mM) in phosphate-buffered saline (PBS) were added. The 

inner membrane permeability was monitored as the production of o-nitrophenol, as 

measured by absorbance at 420 nm.  

Preparation of Liposomes—Egg phosphatidylcholine (5 mol) was dissolved in 

CHCl3/CH3OH (2:1 (v/v), 0.4 ml), and then dried under a stream of N2 gas. Dried lipid 

was hydrated in 10 mM Tris-HCl (pH 7.5) containing 0.15 M NaCl (TBS) using a 

bath-type sonicator. The suspension was sonicated for 10 min at 50°C using a probe 

sonicator. Liposomes were allowed to stand for 30 min at 25°C before measurements 

were made. Lipid concentration was 1 mM. Vesicles containing carboxyfluorescein 

were similarly prepared by hydrating dried lipid in TBS containing 0.1 M 

carboxyfluorescein. Vesicles containing carboxyfluorescein were separated from free 

dye by gel filtration using Sephadex G-75 (1  22 cm) in TBS. 

Measurement of Carboxyfluorescein-Leakage from Liposomes—Liposome solution 

was diluted to 990 l with TBS and placed in a quartz cuvette kept at 25°C. Peptide 

solution (10 l) in the same buffer was added to this solution and, after mixing, solution 

was excited at 490 nm and fluorescence intensity was immediately recorded at 518 nm 
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for an appropriate period using a Hitachi F-3010 Fluorescence Spectrophotometer. For 

100% leakage of carboxyfluorescein, Triton X-100 was added to a final concentration of 

0.1% (v/v) and fluorescence intensity was measured.  

Expression of GST-Fusion Proteins Containing the Entire Domain 3 and the 

-Helix Region—Two sets of forward and reverse primers for PCR (Table 1) were used 

to amplify the DNA corresponding to the entire domain 3 (D3, residues 284-432) and 

the -helix region (HLH, residues 317-357) as shown in Fig. 2. Resulting DNA 

fragments were cloned into E. coli JM109 using the pGEM-T vector (Promega), and 

their nucleotide sequences were confirmed with a Hitachi DNA Sequencer SQ5500E. 

Inserted DNA fragments were digested with BamHI, and ligated with the pGEX-4T-1 

vector (GE Healthcare) previously digested with the same enzyme. The resulting 

plasmids containing genes corresponding to the -helix region and domain 3 were used 

for transformation of E. coli BL21. These cells were grown in LB broth containing 100 

g/ml ampicillin. After A600 reached 0.6, IPTG (final concentration of 0.4 mM) was 

added to induce the protein. The cells were incubated at 30℃ for an additional 5 h, and 

harvested by centrifugation. The cell pellet was resuspended in TBS and cells were 

lysed thoroughly by sonication and PMSF was added to a final concentration of 1 mM 

to inhibit protease activity. The mixture was shaken for 30 min at room temperature and 

centrifuged at 10,000 rpm for 10 min. The supernatant containing the fusion protein was 
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applied directly onto a glutathione-Sepharose 4B column (1  1 cm) and the column was 

washed with TBS. Bound GST fused with the -helix region (GST-HLH) and the entire 

domain 3 (GST-D3) were eluted with 50 mM Tris-HCl, pH 8.0, containing 10 mM 

reduced glutathione. The resulting GST-fusion proteins were further purified by gel 

filtration using a Sephacryl S-200 column (2.5  60 cm). 

Expression and Purification of GST-HLH Mutant Proteins—Amplification of genes 

coding for the mutant -helix region, HLH-VA1, HLH-VA2, and HLH-VA3, was done 

by PCR using the following combination of the oligonucleotides, HLH-VA-F/HLH-R, 

HLH-F/HLH-VA-R, and HLH-VA-F/HLH-VA-R (Table 1 and Fig. 2). Amplified DNA 

fragments were cloned using pGEM-T vector in E. coli JM109. The resulting DNA 

fragments were digested with BamHI, and then ligated with the pGEX-4T-1 vector. 

Plasmids containing the genes for GST-HLH mutants (GST-HLH-VA1, GST-HLH-VA2, 

GST-HLH-VA3) were used for transformation of E. coli BL21. Expression and 

purification of the mutant proteins was done by the same method as for GST-HLH.  

Small-Angle X-Ray Scattering (SAXS) —SAXS measurements were carried out 

using the optics and detector system installed at beamline BL-10C of the 2.5 

GeV-storage ring at the Photon Factory (Tsukuba, Japan). The circulating electron 

current in the storage ring was 300 to 400 mA. A wavelength (� of 1.488 Å was used 

and the specimen-to-detector distance was about 90 cm. All measurements were carried 
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out at 25°C using a temperature-controlled cell holder. The time for SAXS analysis of 

GST-D3 solutions (concentration 0.5 to 2 mg/ml) was 1800 s for each measurement, 

and scattering data from multiple measurements were accumulated for up to 3900 s to 

improve the signal to noise ratio. Scattering data in different solutions were corrected 

for attenuation of the incident synchrotron X-ray flux by monitoring the beam with an 

ionization chamber placed in front of the temperature-controlled specimen chamber. A 

detailed description of SAXS measurements is provided elsewhere (14). 

The net scattering intensities were obtained by subtracting the values for the blank 

buffer. The radius of gyration, Rg,z, and forward scattered intensity were normalized 

with respect to the protein concentration. J(0)/C, was determined using Guinier’s 

approximation (15), log J(Q) vs. Q*Q. The weight average molecular weight, Mw,w, 

was determined by referring to J(0)/C of bovine serum albumin and bovine thyroid 

thyroglobulin. 

 

RESULTS 

Structure and Properties of Synthetic Peptides—We have previously found that 

20-mer peptides derived from the amino acid sequence of the -helix region in CEL-III, 

especially peptide P332 (residues 332-351) (Fig. 3), exhibited strong antibacterial 

activity due to ion-channels formed by the peptides in the cell membrane (8). This 
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suggests that the helix region plays an important role in the hemolytic action by 

facilitating the interaction of CEL-III with the target cell membrane. To further 

characterize this helix region, we have synthesized three additional peptides, HLH 

(residues 317-357), HL (residues 317-336), and LH (residues 328-357). As shown in 

Fig. 3, these peptides span different portions of the two -helices (H8 and H9) and the 

loop region (L) between these two -helices. To examine the secondary structure of 

these peptides, their far-UV CD spectra were measured. As shown in Fig. 4A, HL 

showed a definite sheet structure spectrum with a broad negative peak around 216 

nm in TBS, while LH and HLH showed spectra with smaller negative peaks around 210 

– 220 nm. However, after addition of the liposomes composed of neutral lipids (egg 

phosphatidylcholine), negative peaks of LH and HLH increased, indicating that the 

interaction with lipid membrane promoted -sheet formation of these peptides (Fig. 4B). 

On the contrary, the negative HL peak around 216 nm slightly decreased after addition 

of liposomes. This indicates that HL has the strongest tendency to form -sheet among 

these peptides in solution, which cannot be promoted by the interaction with lipid 

membrane.  

    In order to examine the effect of the synthetic peptides on bacterial cell membranes, 

they were incubated with bacterial cells at 37°C for 6 h and turbidity of the solution was 

measured as an indication of bacterial growth. As shown in Table 2, of the examined 
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peptides, HLH exhibited the highest antibacterial activity against the Gram-positive 

bacteria S. aureus, and B. subtilis, which was comparable to peptide P332. This was 

followed by LH, whereas little inhibition of bacterial growth was observed with HL. 

The membrane permeabilizing ability of these peptides was examined using ONPG, a 

chromogenic substrate for cytosolic -galactosidase. Hydrolysis of internalized ONPG 

was detected by measuring the absorbance at 420 nm, which reflects the 

permeabilization of the inner cell membrane (13). As shown in Fig. 5, HLH, P332, and 

LH exhibited effective permeabilization of the bacterial membrane in this order, while 

HL induced only a small increase in membrane permeabilization. Ion channel formation 

in artificial lipid membranes by these peptides was confirmed by the carboxyfluorescein 

(CF)-leakage assay using CF-trapping liposomes. Figure 6 shows the effect of the 

peptides on egg phosphatidylcholine-liposomes containing CF. When liposomes were 

incubated with the peptides, higher CF-leakage was observed with HLH, P332, and LH, 

whereas HL exhibited CF-leakage to a much lesser extent. These results confirmed that 

helix region peptides, especially those containing the loop and H9 regions, have the 

ability to form ion channels in the membrane. The formation of these ion channels in the 

membrane has an obvious relationship with antibacterial activity.  

Expression of GST-Fusion Proteins Containing the Entire Domain 3 of CEL-III 

and the Helix Region Peptides—Domain 3 has been shown to have a tendency to 
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oligomerize spontaneously, once cleaved from the intact protein by limited digestion 

with proteases, such as trypsin and chymotrypsin (7); strongly suggesting that domain 3 

is primarily responsible for self-oligomerization of CEL-III in the target cell membranes. 

To characterize the oligomerizing ability of domain 3, focusing on the involvement of 

the helix region, GST-fusion proteins that contained the HLH peptide (GST-HLH) or 

the entire domain 3 (GST-D3) were expressed in Escherichia coli cells. Expressed 

proteins were obtained in soluble form after disruption of the cells, and further purified 

using glutathione-Sepharose 4B and gel filtration columns. As shown in the elution 

profile of the gel filtration on the Sephacryl S-200 column (Fig. 7), while GST, which 

spontaneously formed dimer (53.5 kDa) (16), was eluted at 88 min (A), the fusion 

proteins GST-D3 (B) and GST-HLH (C) were eluted around 60 min, which was much 

earlier than expected from their molecular masses (GST-D3 dimer, 84.8 kDa; GST-HLH 

dimer, 61.8 kDa). This result indicated that domain 3 of CEL-III, especially its helix 

region, has a strong tendency to self-associate leading to formation of oligomers, even 

when fused to the unrelated protein. 

SAXS Measurement of the GST-D3 Oligomer—In order to determine the size of the 

GST-D3 oligomer, SAXS measurements were carried out using synchrotron radiation 

and the obtained values are summarized in Table 3. The measurements were done using 

a range of 0.5 to 2.0 mg/ml of protein to confirm the effect of protein concentration. The 
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concentration dependency of Rg,z due to inter-particle interaction was negligible (data 

not shown). The Rg,z and Dmax value of GST-D3 was 98.2 and 250 Å, respectively. The 

Mw,w value of GST-D3 was 1,050 kDa, which corresponds to a 24-mer of GST-D3.  

Expression of GST-HLH Mutants—The -helix region of CEL-III contains 

alternate hydrophobic and hydrophilic amino acid residues and resembles the 

membrane-associating -strand region of several pore-forming bacterial toxins, such as 

-hemolysin from Staphylococcus aureus (Fig. 8) (10). Interestingly, there are two 

characteristic Val clusters in the -helix region of CEL-III, in which three Val residues 

are aligned at every second position (Fig. 8A). Therefore, focusing on the role of these 

Val residues, we prepared three mutants of GST-HLH, in which these different Val 

residues were replaced by Ala (GST-HLH-VA1, GST-HLH-VA2, and GST-HLH-VA3) 

(Fig. 9). The elution profiles of these mutants on the Sephacryl S-200 column are shown 

in Fig. 10. Although GST-HLH that contained the wild-type sequence mostly formed 

oligomers, replacement of Val to Ala resulted in decreased oligomerization of fusion 

proteins. These results suggest that the alternate hydrophobic residues, like Val clusters, 

may have an important role in oligomerization of proteins. In addition, the decrease in 

oligomerization was more prominent in GST-HLH-VA2 than in GST-HLH-VA1, 

suggesting that Val residues at positions 341-345 are more important for 

oligomerization than in positions 322-326.  



 15

DISCUSSION 

In the current study, three peptides corresponding to different portions of the -helix 

region were made in addition to P332, and significant antibacterial and membrane 

permeabilizing activities were observed with HLH, LH, and P332, but not with HL. 

Although -sheet contents of the peptides HLH and LH were relatively low in aqueous 

solution, they increased upon addition of lipid vesicles, suggesting that interaction with 

lipid membrane induced -sheet formation in the membrane. In contrast, the peptide HL, 

which showed the highest -sheet content in solution, slightly decreased its -sheet 

content in the presence of lipid vesicles. Taking these facts into account, it appears that 

the increase in -sheets of the peptides upon binding with lipid membrane may be 

closely related to their antibacterial and membrane permeabilizing activities. One of the 

possibilities is that after binding to the membrane HLH and LH may associate to form 

ion channels composed of -sheet structure. Similar observation has also been reported 

for cationic -helical peptides; higher antibacterial activity was observed for the 

peptides, which increased -helix content upon interaction with lipid membranes, 

whereas those having strong -helicity in solution exhibited rather low activity (17).  

    In general, a number of naturally occurring antibacterial peptides exhibit their 

activity through membrane perturbation by the formation of amphiphilic helices in 

target cell membranes (18). These peptides often contain amino acid sequences with 
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periodically occurring hydrophobic and hydrophilic residues at every third or fourth 

position to form amphiphilic -helices (19). In contrast, the helix region of CEL-III 

has hydrophobic residues at every second position. This suggests that when the helix 

region of CEL-III adopts a -sheet structure, it forms an amphiphilic sheet with 

hydrophobic and hydrophilic faces on opposite sides, leading to self-oligomerization 

through hydrophobic interactions. 

    The importance of the -helix region in self-oligomerization of CEL-III was 

confirmed by the finding that GST-D3 and GST-HLH tend to form self-oligomers in 

solution, as seen in the elution profile of gel filtration on a Sephacryl S-200 column (Fig. 

7). The actual size of these oligomers could not be determined by gel filtration, since 

they eluted at the void volume of the column. However, SAXS measurements of 

GST-D3 revealed that it has a molecular mass of 1,050 kDa, which corresponds to a 

24-mer of the monomer protein. Since the molecular mass of the CEL-III oligomer 

induced after binding of lactose has previously been estimated to be 1,019 kDa by 

SAXS, corresponding to a 21-mer (20), it seems that GST-D3 also associates in a 

similar manner as intact CEL-III through their domain 3 regions.  

One of the characteristic features of the helix region in domain 3 is the presence 

of two Val clusters, in which three consecutive Val residues appear at every second 

position (residues 322-326 and 341-345). Replacement of these Val residues to Ala 
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residues resulted in a marked decrease of oligomer proteins, as seen in the elution 

profiles on the Sephacryl S-200 column (Fig. 10). This strongly suggests that Val 

clusters are important in the self-oligomerization of these proteins.  

Amino acid sequences with alternate hydrophobic and hydrophilic residues have 

also been found in the membrane-inserting strand region of several pore-forming 

toxins (10). They associate in target membranes, forming -barrels. In such 

membrane-penetrating barrels, hydrophobic and hydrophilic residues of the sheet 

face the lipid bilayer and lumen of the pore, respectively, as demonstrated in case of the 

heptamer structure of hemolysin of Staphylococcus aureus (21). Alternate 

hydrophobic and hydrophilic residues in the helix region of CEL-III suggest that the 

hemolysis mechanism is similar for CEL-III and bacterial toxins. To form such a 

barrel in the membrane, the helix region of CEL-III must undergo drastic 

conformational changes from helices to strands. Conformational transitions of 

proteins from helix to strand has been attracting much attention, because of its 

possible involvement in conformational diseases such as Alzheimer’s disease, 

Parkinson’s disease, and spongiform encephalopathies. Elucidation of the 

conformational alteration of CEL-III in the course of its hemolytic action would also 

provide valuable insights into the mechanisms of such conformational diseases. 

 



 18

Acknowledgements 

The authors thank Dr Yuzuru Hiragi (Kansai Medical University) for his instruction and 

help during SAXS measurements. This study was performed under the approval of the 

Photon Factory Advisory Committee (Proposal number: 2005G298 and 2006G203). 



 19

REFERENCES 

1. Hatakeyama, T., Kohzaki, H., Nagatomo, H. and Yamasaki, N. (1994) Purification 

and characterization of four Ca2+-dependent lectins from the marine invertebrate, 

Cucumaria echinata. J. Biochem. 116, 209-214  

2. Oda, T., Tsuru, M., Hatakeyama, T., Nagatomo, H., Muramatsu, T. and Yamasaki, N. 

(1997) Temperature- and pH-dependent cytotoxic effect of the hemolytic lectin 

CEL-III from the marine invertebrate Cucumaria echinata on various cell lines. J. 

Biochem. 121, 560-567  

3. Hatakeyama, T., Furukawa, M., Nagatomo, H., Yamasaki, N. and Mori, T. (1996) 

Oligomerization of the hemolytic lectin CEL-III from the marine invertebrate 

Cucumaria echinata induced by the binding of carbohydrate ligands. J. Biol. Chem. 

271, 16915-16920  

4. Hatakeyama, T., Nagatomo, H. and Yamasaki, N. (1995) Interaction of the 

hemolytic lectin CEL-III from the marine invertebrate Cucumaria echinata with the 

erythrocyte membrane. J. Biol. Chem. 270, 3560-3564  

5. Uchida, T., Yamasaki, T., Eto, S., Sugawara, H., Kurisu, G., Nakagawa, A., 

Kusunoki, M. and Hatakeyama, T. (2004) Crystal structure of the hemolytic lectin 

CEL-III isolated from the marine invertebrate Cucumaria echinata: implications of 

domain structure for its membrane pore-formation mechanism. J. Biol. Chem. 279, 



 20

37133-37141  

6. Rutenber, E. and Robertus, J.D. (1991) Structure of ricin B-chain at 2.5 Å 

resolution. Proteins 10, 260-269  

7. Kouzuma, Y., Suzuki, Y., Nakano, M., Matsuyama, K., Tojo, S., Kimura, M., 

Yamasaki, T., Aoyagi, H. and Hatakeyama, T. (2003) Characterization of functional 

domains of the hemolytic lectin CEL-III from the marine invertebrate Cucumaria 

echinata. J. Biochem. 134, 395-402  

8. Hatakeyama, T., Suenaga, T., Eto, S., Niidome, T. and Aoyagi, H. (2004) 

Antibacterial activity of peptides derived from the C-terminal region of a hemolytic 

lectin, CEL-III, from the marine invertebrate Cucumaria echinata. J. Biochem. 135, 

65-70  

9. Nakano, M., Tabata, S., Sugihara, K., Kouzuma, Y., Kimura, M. and Yamasaki, N. 

(1999) Primary structure of hemolytic lectin CEL-III from marine invertebrate 

Cucumaria echinata and its cDNA: structural similarity to the B-chain from plant 

lectin, ricin. Biochim. Biophys. Acta 1435, 167-176  

10. Leppla S. (2006) Bacillus anthracis toxins in The comprehensive sourcebook of 

bacterial protein toxins (Alouf, J. and Popoff, M., eds.) 3rd ed, pp 323-347, 

Academic Press, New York   

11. Fields, G.B. and Noble, R.L. (1990) Solid phase peptide synthesis utilizing 



 21

9-fluorenylmethoxycarbonyl amino acids. Int. J. Pept. Protein Res. 35, 161-214  

12. Yoshida, K., Mukai, Y., Niidome, T., Takashi, C., Tokunaga, Y., Hatakeyama, T. and 

Aoyagi, H. (2001) Interaction of pleurocidin and its analogs with phospholipid 

membrane and their antibacterial activity. J. Pept. Res. 57, 119-126  

13. Pellegrini, A., Dettling, C., Thomas, U. and Hunziker, P. (2001) Isolation and 

characterization of four bactericidal domains in the bovine -lactoglobulin. Biochim. 

Biophys. Acta 1526, 131-140  

14. Hiragi, Y., Seki, Y., Ichimura, K. and Soda, K. (2002) Direct detection of the 

protein quaternary structure and denatured entity by small-angle scattering: 

guanidine hydrochloride denaturation of chaperonin protein GroEL. J. Appl. Cryst. 

35, 1-7  

15. Guinier, A. and Fournet, G. (1955) Small-angle Scattering of X-Rays, Chapman & 

Hall, New York.   

16. Lim, K., Ho, J.X., Keeling, K., Gilliland, G.L., Ji, X., Ruker, F. and Carter, D.C. 

(1994) Three-dimensional structure of Schistosoma japonicum glutathione 

S-transferase fused with a six-amino acid conserved neutralizing epitope of gp41 

from HIV. Protein. Sci. 3, 2233-2244  

17. Ohmori, N., Niidome, T., Hatakeyama, T., Mihara, H., and Aoyagi, H. (1998) 

Interaction of -helical peptides with phospholipid membrane: effects of chain 



 22

length and hydrophobicity of peptides. J. Peptide Res. 51, 103-109 

18. Tossi, A., Sandri, L. and Giangaspero, A. (2000) Amphipathic, -helical 

antimicrobial peptides. Biopolymers 55, 4-30  

19. Saberwal, G. and Nagaraj, R. (1994) Cell-lytic and antibacterial peptides that act by 

perturbing the barrier function of membranes: facets of their conformational 

features, structure-function correlations and membrane-perturbing abilities. 

Biochim. Biophy.s Acta. 1197, 109-131  

20. Fujisawa, T., Kuwahara, H., Hiromasa, Y., Niidome, T., Aoyagi, H. and Hatakeyama, 

T. (1997) Small-angle X-ray scattering study on CEL-III, a hemolytic lectin from 

Holothuroidea Cucumaria echinata, and its oligomer induced by the binding of 

specific carbohydrate. FEBS Lett. 414, 79-83  

21. Song, L., Hobaugh, M.R., Shustak, C., Cheley, S., Bayley, H. and Gouaux, J.E. 

(1996) Structure of staphylococcal -hemolysin, a heptameric transmembrane pore. 

Science 274, 1859-1866  

22. Kajiwara K. and Hiragi Y. (1996) Structure Analysis by Small-angle X-ray 

Scattering in Applications of Synchrotron Radiation to Material Analysis (Saisho, H. 

and Goshi, Y., eds.), Elsevier Science, Amsterdam   



 23

Table 1. PCR primers for DNA fragment amplification corresponding to domain 3, 

the -helix region, and its mutants. 

 

Amplified 

region 
Primer Nucleotide sequence 

Domain 3 D3-F 5’-GGATCCTCTTCCACGGTGACAGCGG 

GAGTG-3’ 

D3-R 5’-GGATCCTCATGTTCCTGATTGGCTA 

TTGGTCCA-3’  

-helix region HLH-F 5’-GGATCCTCAAATGTCCGTGCAGAAG 

TGCA-3’ 

HLH-R 5’-GGATCCTCAAATGTCCGTGCAGAAA 

G-3’ 

Mutants of 

-helix region 

(HLH-VA1, 

HLH-VA2, and 

HLH-VA3) 

 

HLH-VA-F 5’-ATTTTTGCCAAAGCGGAAGCGGGCG 

CGAAAGCGTCAGCCTCGTTGTCTAA 

AGCATGGACCAATAGCCAATCAGGA 

ACATGAGGATCC-3 

 

HLH-VA-R 5’-GGATCCTCATGTTCCTGATTGGCTA 

TTGGTCCATGCTTTAGACAACGAGG 

CTGACGCTTTCGCGCCCGCTTCCGC 

TTTGGCAAAAAT-3’ 
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Table 2. Antibacterial activity of peptides corresponding to the helix region of 

CEL-III. 

 

Peptide 
Minimum inhibitory concentration to 

inhibit bacterial growth (M) 

 S. aureus B. subtilis 

HL > 50 > 50 

LH 12 12 

HLH 3 6 

P332 3 6 
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Table 3. Structural parameters of GST-D3 and CEL-III oligomer determined by 

SAXS. The radius of gyration, Rg,z, which is given by the least squares fit of the linear 

region of a Guinier plot (15), reflects the molecular shape and size. Forward scattering 

intensity, J(0), normalized to the protein concentration C, J(0)/C, is proportional to the 

weight average molecular weight Mw,w (22), while Dmax obtained from the p(r) 

function, which is the Hankel transform of the scattering curve, gives the maximum 

particle dimension (Dmax). 

 

Protein Rg,z (Å) Dmax(Å) Mw,w(kDa) Mw of monomer (kDa) 

GST-D3 98.2±1.8 250 1050 43 

CEL-IIIa 101.4±1.0 290 1019 47 

a Values previously reported in (19). 
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Figure Legends 

Fig. 1. Three-dimensional structure of CEL-III determined by X-ray 

crystallographic analysis (5) (PDB code, 1VCL). Two -helices in domain 3 are 

indicated as “H8” and “H9”. 

 

Fig. 2. The positions of PCR primers for amplification of different portions of 

domain 3 and the -helix region. The 5’ to 3’ direction of primers is indicated by 

arrows. 

 

Fig. 3. Sequences of the peptides HLH, HL, LH, and P332, corresponding to 

different parts of the -helix region. Hydrophobic amino acids are enclosed in 

boxes. Secondary structures are indicated by horizontal bars with their designations. 

 

Fig. 4. Far-UV CD spectra of peptides. Spectra of the synthetic peptides HLH, HL, 

and LH were measured in TBS (A) or in TBS containing 1 mM egg phosphatidylcholine 

liposomes (B). 

 

Fig. 5. Permeabilization of the inner membrane of S. aureus induced by the 

synthetic peptides. Bacterial cells were incubated with peptides (0.5 mM) and ONPG 
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(2.5 mM) at 37°C and the production of o-nitrophenol due to the increasing 

permeability of the inner cell membrane was monitored by the absorbance at 420 nm. 

 

Fig. 6. CF-leakage assay of the synthetic peptides using egg phosphatidylcholine 

liposomes. Peptides were incubated with the liposomes trapping 0.1 M 

carboxyfluorescein in TBS, and the increase in fluorescence intensity at 518 nm arising 

from the leakage of carboxyfluorescein was measured with an excitation wavelength of 

490 nm. The fluorescence intensity after the addition of 0.1% Triton X-100 was taken as 

a 100% leakage. 

 

Fig. 7. Gel filtration of GST (A) and GST-fusion proteins containing the entire 

domain 3 (GST-D3) (B) or the -helix-region peptide (GST-HLH) (C). The proteins 

were applied on a column of Sephacryl S-200 (2.5  60 cm) in TBS. Elution positions of 

E. coli -galactosidase (116 kDa), bovine serum albumin (66 kDa) and bovine 

cytochrome c (12 kDa) were measured under the same conditions for comparison. 

 

Fig. 8. Amino acid sequence of the helix region of CEL-III (A) compared to the 

membrane binding region of hemolysin from Staphylococcus aureus (B). 

Hydrophobic amino acid residues are enclosed in circles, of which three consecutive Val 
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residues at every second position (residues 322-326 and 341-345) are indicated by 

shading. Amino acid residues composing the two -helices (H8 and H9) are indicated 

by dotted boxes. 

 

Fig. 9. Amino acid sequence of GST-HLH and its Val-substituted mutants 

(GST-HLH-VA1, GST-HLH-VA2, and GST-HLH-VA3). The residues substituted 

from Val to Ala are enclosed in circles.   

 

Fig. 10. Gel filtration of GST-HLH and its mutants. GST-HLH (A) and its 

Val-substituted mutants, GST-HLH-VA1 (B), GST-HLH-VA2 (C), and GST-HLH-VA3 

(D), were applied on a column of Sephacryl S-200 (2.5  60 cm) in TBS. Elution profile 

of GST-HLH (A) is the same as that in Fig. 7B. 

  



Domain 1 Domain 2

Domain 3

Ca2+

Ca2+

Ca2+

Ca2+

Ca2+

Mg2+

Mg2+

H9

H8
C

N

α-helix region

Fig. 1



α-helix region

284                                                                                              432

HLH-F
HLH-VA-F

HLH-VA-R

HLH-R

D3-F

D3-R

Fig. 2

Domain 3



317 T V T A G V A V E V S S T I E K G V I F A K A S V S V K V T A S L S K A W T N S Q 357

H8 loop H9

HLH

317 T V T A G V A V E V S S T I E K G V I F A K A S V S V K V T 336HL

328 S T I E K G V I F A K A S V S V K V T A S L S K A W T N S Q 357LH

332 K G V I F A K A S V S V K V T A S L S K 351P332

Fig. 3



Fig. 4

[θ
]

(d
eg
・

cm
2 ・

dm
ol

-1
)

Wavelength (nm)

15000

10000

5000

0

-15000

-5000

-10000

210 220 230 240 250200
Wavelength (nm)

210 220 230 240 250200

A B

LH

HLH HL LH

HLH

HL



0.00

0.05

0.10

0.15

0 2 4 6 8 10

Time (min)

A
42
0

Fig. 5

LH

HLH

HL

P332



0

10

20

30

40

50

60

70

0 2 4 6 8 10 12

Fig. 6

Peptide concentration (mM)

C
F
-
le
ak
ag
e
 (
%
)

LH

HLH

HL

P332



0       20      40       60      80      100     120     140     160     180     200

Elution time (min)

GST-HLH

0.1

A
28
0

C 116 kDa       66 kDa    12 kDa

0.1

GST-D3

A
28
0

B 116 kDa       66 kDa    12 kDa

GST(dimer)

A
28
0

0.1

A
116 kDa       66 kDa    12 kDa

Fig. 7



T   T   G   A   E   S   T   E   G   I
F

A
S   T   A   S   S   T   K   S   S   K

    Q   N   W   K   L   A   V   V   V   A

H8

H9

317

357

A

V   A   V   V   V   S   I   K   V

 T  K   Y   S   L   Y   F   G   V   G   
E   M   T   T   G   N   N   T   D  D

T
K   T   G   S   N   G   L   G   K  G

 V  Y   L   H   I   V   A   I   G   I

109

149

B

Fig. 8



F

A
S   T   A   S   S   T   K   S   S   K

    Q   N   W   K   L   A   V   V   V   A

317

357

V   A   V   V   V   S   I   K   V

T   T   G   A   E   S   T   E   G   I
F

A
S   T   A   S   S   T   K   S   S   K

    Q   N   W   K   L   A   V   V   V   A

317

357

V   A   A   A   A   S   I   K   V

T   T   G   A   E   S   T   E   G   I
F

A
S   T   A   S   S   T   K   S   S   K

    Q   N   W   K   L   A   A   A   A   A

317

357

V   A   V   V   V   S   I   K   V

T   T   G   A   E   S   T   E   G   I
F

A
S   T   A   S   S   T   K   S   S   K

    Q   N   W   K   L   A   A   A   A   A

317

357

V   A   A   A   A   S   I   K   V

GST-HLH

GST-HLH-VA1

GST-HLH-VA2

GST-HLH-VA3

T   T   G   A   E   S   T   E   G   I

Fig. 9



Oligomer

0       20     40      60     80      100    120    140     160    180    200

0.1

Elution time (min)

C

B

D

0.1

0.1

A
2
8
0

A

0.1

Oligomer

Dimer

Fig. 10

116 kDa       66 kDa   12 kDa


