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We present a time-saving simulator within the framework of the density functional theory to calculate the
transport properties of electrons through nanostructures suspended between semi-infinite electrodes. By intro-
ducing the Fourier transform and preconditioning conjugate-gradient algorithms into the simulator, a highly
efficient performance can be achieved in determining scattering wave functions and electron-transport proper-
ties of nanostructures suspended between semi-infinite jellium electrodes. To demonstrate the performance of
the present algorithms, we study the conductance of metallic nanowires and the origin of the oscillatory
behavior in the conductance of an Ir nanowire. It is confirmed that the s-dz2 channel of the Ir nanowire exhibits
the transmission oscillation with a period of two-atom length, which is also dominant in the experimentally
obtained conductance trace.
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I. INTRODUCTION

The understanding and control of the transport properties
of electrons through nanostructures are important subjects
for the development of new electronic devices. In this de-
cade, numerous experimental and theoretical investigations
have been performed on the atomic geometries and transport
properties of nanostructures �1�. In the theoretical studies, the
nonequilibrium Green’s function method within the tight-
binding approach �2–4� has been widely employed to de-
scribe the quantum transport in nanoscale devices. While this
method is efficient for investigating the transport properties
of large systems, the completeness of a basis set is always a
concern and the precise description of tunneling transport is
hard work.

To obtain exact theoretical knowledge on electron-
transport properties, Fujimoto and Hirose presented the over-
bridging boundary-matching �OBM� method �5,6�, formu-
lated by the real-space finite-difference �RSFD� approach
�6–11� within the framework of the density functional theory
�12,13�. Since the system is divided into the equally spaced
grid points in the RSFD approach and the wave functions
and potentials are directly defined on the grid points, one can
strictly treat systems with arbitrary boundary conditions and
eliminate difficulties arising from the incompleteness of a
basis set. Therefore, the OBM method enables us to examine
tunneling transport �14� as well as ballistic transport
�5,6,15–29� in nanostructures suspended between semi-
infinite electrodes with a high degree of accuracy. However,
in the OBM method, a large computational cost is required to
calculate the Green’s function necessary for determining the
scattering wave functions. Recently, to avoid this computa-
tional hard work, Kong, Tiago, and Chelikowsky made an
improvement to the OBM method �30�, enabling the scatter-
ing wave functions to be obtained by solving a set of simul-
taneous equations without the need to calculate the Green’s
function. We call this method the improved OBM �IOBM�
method. However, the IOBM method is still inconvenient

when electrodes have a large cross-sectional area in the tran-
sition region or are made of multivalent materials.

In this paper, we propose efficient algorithms to solve the
simultaneous equations arising in the IOBM procedure and
demonstrate electron-transport calculations for nanoscale
junctions. To exemplify the advantages of our algorithms, we
apply them to investigate the electron-transport properties of
a single-row Na nanowire and find that the algorithms can
give reasonable numerical solutions within a short CPU time.
We also examine the electron-transport properties of single-
row Ir and Au monoatomic nanowires and explore why the
even-odd oscillation is dominant in the experimentally ob-
tained conductance traces. The results indicate that the even-
odd oscillation is insensitive to the structural deformation of
the nanowire, while oscillations with a longer period than
two-atom length are easily affected by structural deforma-
tion. This implies that only the even-odd oscillation can sur-
vive and the other oscillation patterns are cancelled out in
experiments.

The remainder of this paper is organized as follows: Sec.
II gives the details of the computational scheme used to de-
velop an efficient IOBM simulator to determine the electron-
transport properties of nanostructures. In Sec. III, the perfor-
mance of our method is demonstrated. Furthermore, in Sec.
IV, we adopt the method to examine the transport properties
of Ir and Au atomic nanowire models and discuss the origin
of the oscillatory behavior of conductance. Finally, our
works are summarized in Sec. V and mathematical details
are described in Appendix.

II. COMPUTATIONAL FORMALISM

We treat a system including a nanostructure suspended
between semi-infinite electrodes as shown in Fig. 1. Here,
the x�y� and z coordinates are chosen to be parallel and per-
pendicular to the electrode surface, respectively, and the case
of incident electrons propagating from the left electrode is
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considered. The system is infinite in the z direction and pe-
riodic in the x and y directions. The transition region is di-
vided by grid points with equal spacing of h�=L� /N� in the
conventional OBM and IOBM methods based on the RSFD
approach �6�, where L� and N� are the length and the num-
ber of grid points in the � direction ��=x, y, and z� of the
transition region, respectively. The second-order derivative
of the wave function � in the Kohn-Sham equation is de-
scribed as

�2

�r2��r� � �
n=−Nf

Nf

�cx,n��xi + nhx,yj,zk� + cy,n��xi,yj + nhy,zk�

+ cz,n��xi,yj,zk + nhz�� , �1�

where Nf represents the parameter determining the order of
the finite-difference approximation and the coefficients c�,n
are described in Ref. �7�. The Kohn-Sham equation is written
in a discretized matrix form as

− Bz
†��zk−1� + �E − H�zk;�	����zk� − Bz��zk+1� = 0

�k = − �, . . . ,− 1,0,1, . . . ,�� �2�

where Bz=− 1
2hz

2 I with I being the Nxy-dimensional unit matrix
�Nxy =Nx�Ny�, H�zk ;�	� denotes the Nxy-dimensional block-
tridiagonal matrix including the potential on the x-y plane at
z=zk, and �	 = ��x ,�y� is the lateral Bloch wave vector within
the first Brillouin zone. Here, ��zk� is the set of values of the
wave function on the x−y plane at z=zk, ���xi ,yj ,zk� : i
=1, . . . ,Nx , j=1, . . . ,Ny�. For simplicity, the central finite-
difference formula �Nf =1� is adopted, and the extension to
the case of a higher-order finite-difference representation is
straightforward. In the transition region �z0�z�zNz+1�, we
rewrite Eq. �2� in a matrix representation as

�E − ĤT�

��z0�
��z1�
]

��zNz
�

��zNz+1�
� = 


Bz
†��z−1�

0

]

0

Bz��zNz+2�
� , �3�

where E is the Kohn-Sham energy and ĤT is the Hamiltonian
of the truncated part of the system sandwiched between the

planes at z=z0 and z=zNz+1. ĤT forms the
Nx�Ny � �Nz+2�-dimensional block-tridiagonal matrix
given by

ĤT =

H�z0;�	� Bz 0

Bz
† H�z1;�	� Bz

� � �

Bz
† H�zNz

;�	� Bz

0 Bz
† H�zNz+1;�	�

� .

�4�

Here and hereafter, the dependence of the Hamiltonian ĤT on
the lateral Bloch wave vector �	 is omitted from the suffix of
variables to avoid complication.

In the original OBM procedure �5,6�, the scattering wave
functions are evaluated by employing the Green’s function

ĜT�E� which is defined as the inverse matrix of �E− ĤT�.
When the �i , j� block-matrix element of ĜT�E� is denoted as
Gi,j, Eq. �3� is rewritten as



��z0�
��z1�
]

��zNz+1� � = 

Bz

†G0,0��z−1� + BzG0,Nz+1��zNz+2�

Bz
†G1,0��z−1� + BzG1,Nz+1��zNz+2�

]

Bz
†GNz+1,0��z−1� + BzGNz+1,Nz+1��zNz+2�

� .

�5�

Note that it is only necessary to work out the 0th and �Nz

+1�th block-column elements of ĜT�E�, Gi,0, and Gi,Nz+1 �i
=0,1 , . . . ,Nz+1�. Since their calculation requires a compu-
tational load proportional to O�Nxy

2 �Nz� with an iterative
method such as the conjugate gradient �CG� method, a large
computational load is required to adopt the OBM method to
large systems.

On the other hand, in the IOBM method �30�, the scatter-
ing wave functions of electrons propagating from the left
electrode are evaluated by solving the following simulta-
neous equations for each incident wave function 	L

in�zk� with
an iterative method:

left

electrode

right

electrode

transition

region

x

zy

FIG. 1. Schematic view of ballistic transport system. The tran-
sition region is suspended between the left and right semi-infinite
electrodes. In the x and y directions, periodic boundary conditions
are imposed. The dashed lines represent the boundaries of the su-
percell employed to determine the Kohn-Sham effective potential
and the transition region employed to calculate the transport prop-
erties. The shaded area represents jellium electrodes.
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�E − ĤT − H̃�

��z0�
��z1�
]

��zNz+1�
� = 


Bz
†	L

in�z−1� − 
L
r �z0�	L

in�z0�
0

]

0
� .

�6�

Equation �6� is obtained from Eq. �3� using the scattering
boundary condition, i.e.,

��zk� = �	L
in�zk� + �

i=1

Nxy

ri	i
ref�zk� �k � 0�

�
i=1

Nxy

ti	i
tra�zk� �k � Nz + 1� ,  �7�

where ri�ti� is the reflection �transmission� coefficient, and
	i

ref�zk��	i
tra�zk�� is the generalized Bloch state in semi-

infinite electrodes for the reflected �transmitted� electrons.
Here,

H̃ = 


L

r �z0� 0 ¯ ¯ 0

0 0 � ]

] � � � ]

] � 0 0

0 ¯ ¯ 0 
R
r �zNz+1�

� . �8�

Note that 
L
r and 
R

r are the retarded self-energy matrices in
the left and right electrodes, respectively, and are evaluated
by


L
r �z0� = Bz

†Qref�z−1��Qref�z0��−1, �9�

and


R
r �zNz+1� = BzQ

tra�zNz+2��Qtra�zNz+1��−1, �10�

where QA�zk� �A=ref and tra� are Nxy-dimensional matrices
consisting of �	i

A�zk��, i.e., QA�zk�= �	1
A�zk� , . . . ,	Nxy

A �zk��
�see Sec. 9.3 in Ref. �6��. The generalized Bloch states inside
the semi-infinite electrodes are constituted by propagating
Bloch waves with real wave vectors and evanescent waves
with complex ones. Because the evanescent waves behave as
exponential functions and decay during their transmission
from deep inside the left electrode, only right-propagating
Bloch waves must be taken into account as incident waves
	L

in. The scattering wave functions for electrons propagating
from the right electrode are also described in a similar man-
ner.

Since the retarded self-energy matrix is an
Nxy-dimensional matrix, the maximum order of the compu-
tational cost of solving Eq. �6� is O�Nin�Nxy

2 � owing to the
multiplications of 
L

r �z0����z0� and 
R
r �zNz+1����zNz+1�,

where Nin is the number of incident waves. Although �E
− ĤT− H̃� is a non-Hermitian matrix, we can save a reason-
able amount of computational time compared with that re-
quired for the original OBM scheme when Nin is much
smaller than Nz. On the other hand, as Nin increases, this
procedure for calculating the scattering wave functions con-
sumes a larger CPU time than the original OBM scheme,

because the convergence of the CG method for a non-
Hermitian matrix is slow. Therefore, this procedure is not
suitable when the system includes electrodes having a large
cross-sectional area or consisting of multivalent materials,
since Nin is proportional to the lengths of sides of the super-
cell and the number of valence electrons within the elec-
trodes.

We now present a novel procedure for efficiently solving
Eq. �6� in the case of jellium electrodes. The jellium-
electrode approximation has been successfully applied to the
interpretation of electron-transport properties with less com-
putational load �15,17,19,20,23,26,29�. The self-energy ma-
trices of jellium electrodes are independent of zk, and those
in the left and right electrodes are the same, i.e., 
L

r �zk�
=
R

r �zk��
r. Thus, the component of the retarded self-
energy matrix 
r for the grid point �r	,� ,r	,��� on the x-y
plane in the case of Nf =1 �the central finite-difference case�
is analytically given by


�,��
r = −

1

2hz
2Nxy

�
G	,�

exp�i�G	,� + �	�

· �r	,� − r	,���� · exp�ikz,�hz� , �11�

where G	,�= �G�x
,G�y

� represents the lateral reciprocal lattice
vector � 2

Lx
�x , 2

Ly
�y� with �x and �y being integers, and kz,� is

the z component of the wave vector in the RSFD scheme
defined as

kz,� = �
cos−1�− ���

hz
for propagating waves ����� � 1�

i cosh−1�− ���
hz

for evanescent waves ����� � 1� 
�12�

with

�� = hz
2E −

hz
2

hx
2 �1 − cos�G�x

+ �x�hx�

−
hz

2

hy
2 �1 − cos�G�y

+ �y�hy� − 1. �13�

In Eq. �12�, the branch of the function cos−1�z��cosh−1�z�� is
so chosen that kz,��−ikz,�� is a positive value. The derivation
of Eqs. �11�–�13� is given in Appendix.

The product of the matrix 
r and the vector ��zk�,
���
�,��

r ��r	,�� ,zk�, is in a convolution form of the two-
dimensional Fourier transform, and it can be most easily cal-
culated in the momentum space. Each matrix element of the

Fourier transformed retarded self-energy matrix, 
̃�,��
r , is

given by


̃�,��
r =

1

Nxy
�
r	,�

�
r	,��

exp�− i�G	,� + �	� · r	,��

�exp�i�G	,�� + �	� · r	,���
�,��
r . �14�

By applying the orthogonality of the plane waves, one ob-
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tains the following expression of the diagonalized self-
energy matrix,


̃�,��
r = −

1

2hz
2���� exp�ikz,�hz� . �15�

The columnar vector �̃�zk� consists of Nxy values of the Fou-
rier transformed wave function of ��zk� as

�̃��zk� =
1

Nxy
�
r	,�

exp�− i�G	,� + �	� · r	,����r	,�,zk� . �16�

Because the number of grid points r	,� corresponds to that of
the reciprocal lattice vectors G	,� and the off-diagonal ele-
ments of the Fourier transformed retarded self-energy matrix


̃r are zero according to Eq. �15�, calculating the product of


̃r and �̃�zk� requires a computational load of O�Nin�Nxy�.
The Fourier transform of ��zk� and the inverse Fourier trans-

form of 
̃r��̃�zk� require O�Nin�Nxy log Nxy� operations
when the fast Fourier transform �FFT� algorithm is em-
ployed. Thus, the overall scaling of the critical part of the
calculations is improved from O�Nin�Nxy

2 � to O�Nin
�Nxy log Nxy�.

Next, we introduce a preconditioning CG �PCG� method
into the solver to accelerate convergence since the total CPU
time is proportional to the number of iterations. If the pre-

conditioner P̂ is similar to �E− ĤT− H̃�−1, the spectral prop-

erty of the matrix P̂� �E− ĤT− H̃� can contribute to rapid
convergence. The incomplete Cholesky preconditioners are
effective at accelerating convergence and are commonly em-
ployed, but they require more computations per iteration and
larger amounts of memory in general because the precondi-
tioners are not sparse. One might consider taking an easily

calculated and/or easily stored matrix P̂ as an approximation

to �E− ĤT− H̃�−1. Although the Jacobi preconditioner, in

which the preconditioner P̂ is chosen to be the diagonal ma-
trix in terms of the reciprocal of the diagonal elements of

�E− ĤT− H̃�, is one of the simplest and most useful forms,
more sophisticated preconditioning is required for faster con-

vergence. Here, we propose a method for improving P̂ using
the Green’s function of the Laplacian operator. We postulate

that the Laplacian of the kinetic operator in �E− ĤT− H̃� is
dominant and use the inverse matrix of the discretized La-
placian in the RSFD approach. Since the Green’s function of
the Laplacian operator is represented by 1

�ri−r j�
, the inverse

matrix of the discretized Laplacian is approximated as 1
�ri−r j�

,
where ri�j� is the position of the i�j�th grid point. To avoid the
numerical difficulties due to this matrix not being sparse and
diverging at ri=r j, we employ the following truncated matrix
as the preconditioner,

P̂��r� = C0��r� + �
r�=��hx,�hy,�hz�

C1��r + r�� , �17�

where � is the residual vector of the CG iteration, and C0 and
C1 are coefficients used in the preconditioning, which are
discussed later. We confirmed that this preconditioning can

successfully reduce the CG iteration count required to solve
the Poisson equation �6�.

III. PERFORMANCE TEST

In order to demonstrate the performance of the IOBM
method incorporated with the FFT and PCG algorithms, the
electron-transport properties of single-row Na nanowire
models suspended between semi-infinite electrodes are ex-
amined �see Fig. 1�. The number of atoms consisting the
nanowire, Natom, is varied between 3 and 8, and the nano-
wires are directly attached to structureless jellium elec-
trodes. The interatomic distance is d �=�3a0 /2�, where
a0�=8.11 a.u.� is the lattice constant of Na bulk. The dis-
tance between the edge atom of the nanowire and the surface
of the jellium electrode is �2a0 /4, so as to correspond to a
�110� Na strand. The Wigner-Seitz radius of the jellium elec-
trodes is taken to be rs=3.99 a.u. The exchange-correlation
effects are treated by the local density approximation �31�
and the interaction between electrons and atomic cores is
described by the norm-conserving pseudopotentials of Troul-
lier and Martins �32,33�. To determine the Kohn-Sham effec-
tive potential, a conventional supercell is employed under a
periodic boundary condition in all directions, which is repre-
sented by a rectangle denoted by dashed lines in Fig. 1; the
lengths of the supercell are Lx�y�=25.66 a.u. in the x�y� di-
rection and Lz= �Natom−1�d+42.12 a.u. in the z direction.
The numbers of grid points in the x�y� and z directions are
set to be Nx�y�=36 and Nz=60+10� �Natom−1�, respectively,
and the number of incident waves, Nin, is 13 at the Fermi
level. In this case, the ratio of the maximum order for the
calculation of 
r���z0�Nz+1�� with the FFT algorithm to that

without adopting the Fourier transform is
Nin�Nxy log Nxy

Nin�Nxy
2

=0.0024. The conductance of the nanowire system at the
limits of zero temperature and zero bias is determined by the
Landauer-Büttiker formula �34�. The numerical examination
is carried out on a workstation with a 3.25 GHz Intel®
Xeon® processor using four different solvers: �a� the original
OBM method, �b� the IOBM method, �c� the IOBM method
with the FFT algorithm, and �d� the IOBM method with the
FFT and PCG algorithms. In solver �d�, we adopt C0=1 and
C1=exp�−�� with � being a positive real number.

CPU time versus Natom for solvers �a�, �b�, and �c� is
displayed in Fig. 2. Note that solver �c� results in faster con-
vergence than the others. To investigate the effect of the
parameter of the PCG algorithm, Fig. 3 shows CPU time
versus Natom for solver �d� with �=3.0, 2.4, and 1.8. The
CPU time of solver �c� is also plotted in Fig. 3 for compari-
son. Table I shows the average number of iterations required
to obtain convergent solutions for incident waves. The aver-
age numbers of iterations for solver �d� with �=3.0, 2.4, and
1.8 are approximately 1.3, 1.7, and 2.3 times smaller than
that for solver �c�, respectively. The combination of the FFT
and PCG algorithms enables us to significantly reduce the
CPU time required for the calculation of the electron-
transport properties of nanostructures with moderate memory
consumption.

Figure 4 shows the conductance of Na nanowires in a unit
of G0 �G0=2e2 /h, where e is the electron charge and h is
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Planck’s constant�. The conductance is �1G0 and exhibits
oscillatory behavior with a period of two-atom length, i.e.,
the well-known even-odd oscillation. In previous theoretical
studies, it was demonstrated that the conductance of a Na
nanowire is not significantly different from 1G0 and that it
oscillates with respect to the nanowire length
�15,17,18,20,27,28�. Our result is in good agreement with
those of previous studies.

IV. APPLICATIONS

In 2003, Smit et al. �21� found, using mechanically con-
trollable break junctions, that the conductance of Ir and Pt
monoatomic nanowires manifests oscillatory behavior with a
period of two-atom length, similarly to Na and Au ones. de la
Vega et al. �4� carried out a tight-binding calculation on the
electron-transport properties of Ir, Pt, and Au nanowires and
reported that additional oscillation patterns with a longer pe-
riod and larger amplitude than those obtained in Ref. �2� can
be observed in the conductance traces of Ir and Pt nanowires.
Although it is intuitively expected that patterns with a large
amplitude are dominant in the conductance traces, no experi-
mental evidence of such oscillation patterns has been mea-
sured up to now. Recently, one of the present authors has
examined the transport properties of a Pt nanowire by first-
principles calculation and claimed that the even-odd oscilla-

tion is due to the low sensitivity of the transmission oscilla-
tion of the s-dz2 channel to the spatial deformation of the
nanowire �29�. On the other hand, in the case of the Ir nano-
wire, the transmission of the s-dz2 channel oscillates with a
longer period than that of the Pt nanowire according to a
tight-binding calculation �4�. It is of interest to explore using
first-principles calculations whether the even-odd oscillation
of the conductance trace of the Ir nanowire is caused by the
s-dz2 channel. In addition, since 5d transition metals have the
multiple valence electrons, Nin for Ir electrodes is larger than
that for Na ones, which causes a significant increase in com-
putational cost. For this reason, we apply the method de-
scribed in the previous section to examine the transport prop-
erties of the Ir nanowire.

We first calculate the electronic structures of infinite
straight Ir and Au wires of equal interatomic distance
d�=af /�2�, where af is the lattice constant of fcc bulk �af
=7.25 and 7.71 a.u. for Ir and Au, respectively�. The grid
spacing h is set to be �3af /34 and a denser grid spacing of
h /3 is employed in the vicinity of nuclei by the augmenta-
tion of the double-grid technique �6,11�. The supercell con-
tains an atom under a periodic boundary condition, and the
size of the supercell is Lx=Ly =46h and Lz=d, where Lx�Ly�
and Lz are the lengths of the supercell in the x�y� directions
perpendicular to the wire and in the z direction parallel to the
wire, respectively. The exchange-correlation effects are
treated by the local density approximation �31� and the inter-
action between electrons and atomic cores is described by
the norm-conserving pseudopotentials of Troullier and Mar-
tins �32,33�. The integration over the Brillouin zone along
the wire-axis direction is performed by the sampling of 80
equidistant k points. We verified that the increase in the num-
bers of grid points and k points did not affect our conclusion.
Figure 5 shows the energy band structures of the infinite Ir

TABLE I. Average CG iteration counts required to calculate
scattering wave functions for incident waves in single-row sodium
nanowires employing the IOBM method with the FFT and PCG
algorithms.

Natom Without PCG �=3.0 �=2.4 �=1.8

3 13936.46 10864.38 8241.92 6107.30

4 13852.77 10738.76 8184.76 6030.84

5 14688.00 11518.92 8918.15 6620.00

6 14058.38 10995.69 8336.00 6326.38

7 14639.15 12036.07 9111.92 6750.23

8 14818.23 11597.76 8794.30 6613.76
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40000 (a) OBM method
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(c) IOBM with FFT

FIG. 2. CPU time required to calculate the conductances of
single-row Na nanowires as a function of the number of atoms
constituting the nanowires, Natom. �a� original OBM method, �b�
IOBM method, and �c� IOBM method with the FFT algorithm.
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FIG. 3. CPU time required to calculate the conductances of
single-row Na nanowires as a function of the number of atoms
constituting the nanowires, Natom, employing the IOBM method
with the FFT and PCG algorithms. �c� and �d� correspond to the
solvers described in the text.
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FIG. 4. Conductance of single-row Na nanowires as a function
of the number of atoms constituting the nanowires, Natom.
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and Au wires. The bands are labeled according to the atomic
orbitals mainly constituting the bands. Only the upper s-dz2

band crosses the Fermi level in the case of the Au wire,
whereas the other d bands also cross the Fermi level in the
case of the Ir wire. These results are consistent with experi-
mental results, in which the maximum conductance of the Au
nanowire is 1G0 while the conductance of the Ir nanowire
exceeds 1G0 �21�. In addition, it is well known that the os-
cillatory behavior of the conductance is led by the quantum-
mechanical wave character of the electrons, and that the pe-
riod of the oscillation is given by  /kz at the intersection
between the band and the Fermi level, where kz is the com-
ponent of the wave vector along the wire axis in the infinite
atomic wire �28�. Since kz for the upper s-dz2 channel is
 /2d for both the Au wire and the Ir one, the transmission of
these channels is expected to exhibit even-odd oscillation.

We next examine the electron-transport properties of Ir
and Au nanowires suspended between semi-infinite elec-
trodes to ensure that the even-odd oscillation is observed in
the transmission of the upper s-dz2 channel. Hereafter, the
superscripts Ir and Au denote the parameters for Ir and Au
nanowires, respectively. The interatomic distances are the
same as those of the infinite wires. The distance between the
edge atom of the nanowire and the surface of the jellium
electrode is 2af /�6. The Wigner-Seitz radii of the jellium
electrodes are taken to be rs

Ir=1.36 a.u. and rs
Au=1.35 a.u.

so that the elements of the electrodes correspond to those of
the nanowires. The grid spacing of d /16 is employed and
Natom is varied between 3 and 8. The lengths of the transition
region in the x and y directions are Lx

Ir=Ly
Ir=15.07 a.u. and

Lx
Au=Ly

Au=15.38 a.u., and that in the z direction is Lz
= �Natom+4�d a.u. The numbers of grid points in the x�y�
direction are set to be Nx�y�

Ir =46 and Nx�y�
Au =48, and that in the

z direction is Nz=16� �Natom+4�. The number of incident
waves, Nin, is 37 for both models. In this case, the ratios of
the maximum order for the calculation of 
r���z0�Nz+1��
with the FFT algorithm to that without the Fourier transform

are
Nin�Nxy

Ir log�Nxy
Ir �

Nin��Nxy
Ir �2 =0.0016 and

Nin�Nxy
Au log�Nxy

Au�
Nin��Nxy

Au�2 =0.0015 for the
Ir and Au nanowires, respectively. The other computational
conditions are the same as those for the infinite wires.

Figure 6 shows the conductance of the Ir and Au nano-
wires in the unit of G0. The conductance trace of the Au
nanowire exhibits even-odd oscillation depending on Natom
with an amplitude of �0.02 G0, while no oscillatory behav-
ior is observed in the conductance trace of the Ir nanowires.

To obtain a deeper understanding of the oscillatory behavior,
the evolution of the channel decomposition of the conduc-
tance trace is shown in Table II, in which the quantum num-
bers of the eigenchannels correspond to those in the case of
infinite wires. The eigenchannels are computed by diagonal-
izing the Hermitian matrix T†T �17�, where T is the trans-
mission matrix. Even-odd oscillation clearly emerges in the
transmission of the upper s-dz2 channel of the Ir nanowire,
and the other d channels exhibit oscillation with a longer
period and a larger amplitude of �0.5G0. According to a
previous theoretical study on Pt nanowires �29�, the contri-
butions of the other d channels become negligible upon be-
ing averaged over thousands of scans in experiments. Thus,
we can conclude that the even-odd oscillation in the conduc-
tance trace of the Ir nanowire observed in the experiment
�21� is attributed to the transmission oscillation of the upper
s-dz2 channel.

V. CONCLUSION

We have presented algorithms for efficiently solving a set
of simultaneous equations described in the IOBM method
proposed by Kong, Tiago, and Chelikowsky �30�. In the case
of structureless jellium electrodes, the self-energy matrices
are analytically given and are diagonal in momentum space.
These spectral properties of the self-energy matrices enable
us to reduce the computational cost required for the multipli-
cation of the self-energy matrices and wave functions. Fur-
thermore, a solver that successfully accelerated the CG algo-
rithm has been developed by introducing a preconditioning
technique. In this way, we developed an extremely efficient
simulator. To demonstrate the performance of the presented
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FIG. 5. Energy band structures of infinite �a� Ir and �b� Au
wires. The zero of energy is chosen to be the Fermi level.
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TABLE II. Channel transmissions of Ir nanowires.

n Upper s-dz2 Lower s-dz2 dxz�yz� dx2−y2�xy�

3 0.854 0.016 0.763 0.016

4 0.973 0.011 0.935 0.497

5 0.727 0.018 0.510 0.019

6 1.000 0.020 0.656 0.010

7 0.838 0.056 0.979 0.048

8 0.975 0.116 0.569 0.206
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algorithms, we applied them to calculate the transport prop-
erties of an Ir nanowire attached to semi-infinite electrodes.
The upper s-dz2 channel of the Ir nanowire mainly contrib-
utes to the electron transport and gives rise to the oscillation
of the transmission with a period of two-atom length. Our
accelerated algorithms are expected to lead to a greater un-
derstanding of the physics underlying electron transport
through nanostructures using large computational models.
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APPENDIX: RETARDED SELF-ENERGY MATRIX
OF A SEMI-INFINITE JELLIUM ELECTRODE

As shown in Eqs. �9� and �10�, the retarded self-energy
matrices 
L

r and 
R
r are obtained by using the generalized

Bloch states Qref�zk� and Qtra�zk�. On the other hand, the
self-energy matrices are also derived from the retarded
Green’s function G�L,R�

r in the semi-infinite electrodes �see p.
160 of Ref. �6�� as


L
r �z0� = Bz

†GL
r �z−1,z−1;E,�	�Bz, �A1�

and


R
r �zNz+1� = BzGR

r �zNz+2,zNz+2;E,�	�Bz
†. �A2�

In this appendix, we introduce the analytical derivation of
the retarded Green’s function in the left-hand semi-infinite
jellium electrode. That in the right-hand one is derived in the
same manner. For simplicity, the lateral Bloch vector �	 is
taken to be zero. We deal with the model of a free electron in
which the discretized space is semi-infinite in the z direction
and periodic in the x and y directions �see Fig. 7�. The grid
points are denoted by rl= �xlx

,yly
,zlz

�= �lxhx , lyhy , lzhz�, where
l�=−N� /2, . . . ,−1 ,0 ,1 , . . . ,N� /2−1, and h� and N� are the

grid spacing and the total number of the grid points in the �
direction ��=x ,y�, respectively. We first assume a finite sys-
tem in the z direction, i.e., lz=−Nz−1,−Nz , . . . ,−1 ,0 and im-
pose the zero boundary condition on the wave function,
�m�z−Nz−1�=�m�z0�=0, and then a semi-infinite system will
be represented by taking the limit of Nz→�. Adopting the
central finite-difference formula for the second-order deriva-
tive, we write the Schrödinger equation for a free electron
according to Eq. �1� as

−
1

2 �
n=−1

1

�cx,n�m�xlx
+ nhx,yly

,zlz
� + cy,n�m�xlx

,yly
+ nhy,zlz

�

+ cz,n�m�xlx
,yly

,zlz
+ nhz�� = Em�m�xlx

,yly
,zlz

� �A3�

with c�,0=−2 /h�
2 and c�,�1=1 /h�

2 ��=x ,y ,z�. In a finite sys-
tem, the Hamiltonian has discrete eigenvalues and therefore
the Green’s function

G�rl,rl�;Z� = �
m

�m�rl��m
� �rl��

Z − Em
�A4�

exhibits only simple poles at the positions of the eigenvalues
in the complex Z plane, where �Em� is the set of the eigen-
values and ��m�r�� is the complete orthonormal set of the
eigenfunctions of the Hamiltonian. In this model, the eigen-
functions and eigenvalues are analytically described as

�m�xlx
,yly

,zlz
� =� 2

Nxy�Nz + 1�

�exp�i�G�x
xlx

+ G�y
yly

��sin ��z
zlz

�A5�

and

Em =
1

hx
2 �1 − cos G�x

hx� +
1

hy
2 �1 − cos G�y

hy�

+
1

hz
2 �1 − cos ��z

hz� , �A6�

respectively, where ��z
= 

�Nz+1�hz
�z and Nxy =Nx�Ny. Thus,

the Green’s function of this finite system is given by

GL�rl,rl�;Z� =
2

Nxy�Nz + 1�

� �
�x=−Nx/2

Nx/2−1

�
�y=−Ny/2

Ny/2−1

exp�iG�x
�xlx

− xlx�
��

�exp�iG�y
�yly

− yly�
��

� �
�z=1

Nz sin ��z
zlz

sin ��z
zlz�

Z − E�

. �A7�

We go on to the derivation of the Green’s function for a
free electron in the semi-infinite discretized space. By carry-
ing out a limiting procedure Nz→� while keeping hz con-
stant in Eq. �A7�, we have

z=zNz+1 zNz+2 zNz+3 zNz+4 zNz+5z=z0z-1z-2z-3z-4

left electrode right electrode

FIG. 7. Schematic view of discretized three-dimensional semi-
infinite systems.
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GL�rl,rl�;Z� =
hz

2

2Nxy
�

�x=−Nx/2

Nx/2−1

�
�y=−Ny/2

Ny/2−1

exp�iG�x
�xlx

− xlx�
��exp�iG�y

�yly
− yly�

��

� �
−

 exp�i��lz − lz��� − exp�i��lz + lz���

hz
2Z − �hz

2

hx
2 �1 − cos G�x

hx� +
hz

2

hy
2 �1 − cos G�y

hy� + �1 − cos ���d� . �A8�

To evaluate the integral in Eq. �A8�, we transform it to an
integral over the complex variable ��=ei�� along the unit
circle as

GL�rl,rl�;Z� =
hz

2

iNxy
�

�x=−Nx/2

Nx/2−1

�
�y=−Ny/2

Ny/2−1

exp�iG�x
�xlx

− xlx�
��

�exp�iG�y
�yly

− yly�
��

��
���=1

��lz−lz�� − ��lz+lz��

�� − �1�Z���� − �2�Z��
d� , �A9�

where

�1�Z� = − ���Z� + ����Z�2 − 1,

�2�Z� = − ���Z� − ����Z�2 − 1,

���Z� = hz
2Z −

hz
2

hx
2 �1 − cos G�x

hx� −
hz

2

hy
2 �1 − cos G�y

hy� − 1.

�A10�

It follows that �1�2=1. Only when the pole �=�1 or �2 in
Eq. �A9� exists inside the unit circle in the � plane, does it
contribute to the integral. In a similar manner as shown in

pp. 149–151 of Ref. �6�, the retarded Green’s function is
derived as

GL
r �rl,rl�;E� =

hz
2

iNxy
�

�x=−Nx/2

Nx/2−1

�
�y=−Ny/2

Ny/2−1

exp�iG�x
�xlx

− xlx�
��

�exp�iG�y
�yly

− yly�
��

1

sin kz,�hz

��exp�ikz,��zlz
− zlz�

�� − exp�ikz,��zlz
+ zlz�

��� ,

�A11�

with kz,� defined by Eq. �12�. Finally, the retarded Green’s
function at the surface of the left-hand semi-infinite electrode
is represented by

GL
r �xlx

,xlx�
,yly

,yly�
,z−1,z−1, ;E�

= −
2hz

2

Nxy
�

�x=−Nx/2

Nx/2−1

�
�y=−Ny/2

Ny/2−1

exp�iG�x
�xlx

− xlx�
��

�exp�iG�y
�yly

− yly�
��exp�ikz,�hz� . �A12�

The above-mentioned derivation of the Green’s function is
straightforwardly extended to the case of a higher-order
finite-difference approximation.
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