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Abstract

Structured tasks, which often involve many interdependent decisions for each example, are the backbone for

many important applications such as natural language processing tasks. The models built for structured

tasks need to be capable of assigning values to a set of interdependent variables. In this thesis, we point out

that the strong dependencies between the decisions in structured tasks can be exploited to simplify both the

learning task and the annotation effort — it is sometimes possible to supply partial and indirect supervision

to only some of the target variables or to other variables that are derivatives of the target variables and thus

reduce the supervision effort significantly.

Based on this intuition, this thesis addresses the problem of reducing the cost of labeling for structural

tasks. We tackle this problem by developing advanced machine learning algorithms that can learn and

generalize from indirect supervision in addition to labeled data. Indirect supervision can come in the form of

constraints or weaker supervision signals. Our proposed learning frameworks can handle both structured

output problems and problems with latent structures. We demonstrate the effectiveness of the learning

with indirect supervision framework for many natural language processing tasks.
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Chapter 1

Introduction

Natural language processing (NLP) techniques have already made a significant impact on our daily life.

Novel NLP techniques, from speech recognition to machine translation, make computers seem smarter

and human communication easier. Nevertheless, while recent advances in statistical NLP are exciting,

we are still far from providing a level of natural language understanding that can support challenging

applications such as accurate information extraction from unstructured text. One of the key reasons that

hinders the progress in this direction is that training statistical models for complex NLP tasks requires

many training examples.

Natural language tasks are often referred to as “structured tasks” since they involve many interdependent

decisions. The models built for these tasks need to be capable of assigning values to a set of interdependent

variables. Unfortunately, it is challenging to collect labeled examples for these tasks, given that many

decisions need to be made for a single example. We begin this chapter by first pointing out the problem of

the standard supervision protocols.

1.1 Challenges: Motivating Example

Consider the task of semantic parsing, there the goal is to map a human query to a meaning representation.

This task is important because it is at the heart of communicating with Artificial Intelligence agents. Let us

consider how to build an intelligent database interface such that the machine can accept a natural language

query directly such that it can translate the corresponding meaning representation into a database query to

get the answer. One example human query is in Figure 1.1.

Previous works for semantic parsing [Zelle and Mooney, 1996; Tang and Mooney, 2001; Zettlemoyer and

Collins, 2005; Ge and Mooney, 2005; Zettlemoyer and Collins, 2007; Wong and Mooney, 2007] proposed to

use supervised learning algorithms for the semantic parsing task. Their methods therefore require a certain

amount of labeled sentence-representation pairs. In other words, they assume that the full supervision is

provided at the level of the complex structures, which unfortunately is very costly.
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INPUT What is the largest state that borders New York and Maryland?

OUTPUT largest( state( next to( state(NY) ) AND next to( state(MD) )))

Figure 1.1: Semantic Parsing: Translate a human query into a meaning representation.

Note that multiple interdependent decisions are required in order to generate the output meaning rep-

resentation. For example, New York can be a state (state(NY)) or a city (city(NY)). In the example, New

York probably means New York state because Maryland is a state (state(MD)). Therefore, the mappings

between words and logical predicates are interdependent. It is also important to know how to compose

the final logical expression, given that state(next to(·)) and next to(state(·)) have very different

meanings. Since the output structures are very complicated, annotating one example is extremely expen-

sive (especially compared to annotating one example for standard classification tasks, e.g., a message for

spam filtering). In other words, in the supervised learning setting, we assume that we have not only labels

for every example but also labels for every decisions. Importantly, for this task, the annotators need to be

trained such that they can write valid meaning representations. The need for expertise makes supervising

this task even more expensive.

Semantic parsing is just one example of structured prediction task; there are many other different tasks

with complex structures. The ultimate problem for the supervised approaches in the area of natural lan-

guage processing is the diversity of natural language. There are many different languages and many ex-

plored and unexplored NLP applications, so it is just too expensive to provide enough supervision at the

level of complex structures for all applications and languages.

1.2 Insight of the Thesis : Indirect Supervision

When learning models that assign values to variables, one needs to supply supervision for each target

variable of interest. When learning to make structured predictions, the problem is significantly harder,

since the learned model needs to assign values to multiple interdependent variables. The thesis presented

here argues that, in fact, the interdependencies between the target variables can be exploited to simplify

both the learning task and the annotation effort — it is sometimes possible to supply partial and indirect

supervision to only some of the target variables or to other variables that are derivatives of the target

variables and thus reduce the supervision effort significantly.

This intuition brings us the main insight of this thesis. In the binary classification problem, for a given

example, you either have labels or not (see the upper part in Figure 1.2). However, in the structure output
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Figure 1.2: Insight for indirect supervision. (TOP) Binary classification problem. For a given example,
there are only two modes – either it has label or not. (BOTTOM) Structured Prediction problem. A (big)
circle represents all possible output structures of this example. In (A), we have the full supervision, which
indicates the gold structure. In the right most circle (E), there is no supervision. Unlike binary classification
problems, we now have multiple levels of supervision signals. We refer to these signals as indirect supervi-
sion. We can view constraints, partial labels and user responses as different indirect supervision signals.
In (B), (C) and (D), we illustrate the structures that match the corresponding indirect supervision signals.
While the indirect supervision signals does not reveal the gold structure, they still carry information that
we might be able to take advantages from. See the text for more detailed discussions.

prediction, for a given example, there exists other levels of supervision signals. In Figure 1.2, we use a (big)

circle to represent the all possible structures. When we gave a fully labeled example, we know the single

gold structure in the set (Figure 1.2(A)). An unlabeled example is shown in Figure 1.2(E), where we have

no clues about which structure is correct. Interestingly, unlike binary classification problems, there exist

multiple levels of supervision signals for structured prediction problems (Figure 1.2(B,C,D)). In this thesis, we

study several forms of supervision signals including constraints and binary supervision signals, as they have

different utilities in various scenarios. While these supervision signals cannot reveal the correct structures,

they still convey information that we can learn from.

Constraints as indirect supervision signals We can view constraints as indirect supervision signals. For

example, all possible meaning representations that can be generated from the human query in the seman-

tic parsing example forms a very large set. If we take advantages of some prior knowledge and inject

some constraints (for example, “New York” and “Maryland” need to represent similar things, the word

“borders” should represent the next to (·) predicate, and next to predicate can only accept locations
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as arguments), the set becomes much smaller. Note that constraints are only indirect signals, they make

the set of possible structures smaller but cannot provide the correct structure. Examples are illustrated in

Figure 1.2 (C,D).

Why do we want to view constraints as supervision signals? While constraints provide useful information

for this particular example, but at test time, we might not be able to apply the constraints (e.g., we do not

see the phase “New York”, “Maryland” or “borders” in our testing example). Nevertheless, this does not

mean that the constraints have no value. If we can develop machine learning frameworks that learn from

knowledge carried by constraints (given that constraints have some information about the gold structure),

constraints are supervision signals. In other word, we want to have machine learning frameworks that can

generalize the information carried by constraints.

User’s response as indirect supervision signals We can also treat user’s response as an indirect supervi-

sion resource. For instance, in semantic parsing, we can assume that there exists a teacher that will provide

feedback on whether the answer generated from our model is correct or not. In the above example, the

feedback becomes: Is the generated answer Pennsylvania? While this supervision signal is binary, it has deep

connections to the meaning representation — if we get the answer correct, it is very likely that the gener-

ated meaning representation is also correct. We demonstrate the idea by using Figure 1.2(B). Assume that

there are four meaning representations that generate the answer “Pennsylvania”, so the supervision signal

is again indirect. However, the fact that the response drops most of the other structures indicates that it car-

ries a lot of information. Again, the key is to have learning frameworks that can generalize the information

carried by the user’s responses.

Constraints versus Supervision Interestingly, we can also view the full supervision as constraints, since

it constrains the structure that you can choose for this example. However, while this constraint works

perfectly in this example, the key is to have learning frameworks can that generalize the knowledge. In this

thesis, we want to have frameworks that can learn from indirect supervision signals, just like the traditional

machine learning methods do for fully labeled examples.1

We refer to the traditional supervision resources, input-output pairs, as direct supervision signals, as they

provide the correct target output for each example. We refer to supervision signals that do not directly

provide the corresponding correct output of an example as indirect supervision signals. See the illustrations

in Figure 1.2.

1One can also consider partial labels (for example, in the POS tagging task, only certain words are labeled) as indirect supervision
signals [Do and Artières, 2009] (circle C in the Figure 1.2).
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1.3 Goals of the Thesis

Our main goal is to develop machine learning frameworks that can learn (and generalize) from various

forms of indirect supervision signals such that we can reduce the cost of labeling for structured tasks. In

contrast to previous approaches which often design application specific algorithms, we develop principled

and general purpose machine learning algorithms that can take advantage of expressive high-level human

knowledge and easy-to-get indirect supervision signals. Unlike machines, which are good at performing large

scale calculations and capturing statistical relations, humans can often easily contribute high-level knowl-

edge that captures interdependence between decisions. While machines can eventually capture high-level

information, they often require a significant amount of fully labeled examples. Therefore, it is important to

have a learning framework that can both learn from labeled examples and make use of easy-to-get indirect

supervision signals.

Two different notions of “structure” will be discussed in this thesis. First, many NLP problems can be

considered as “structured output prediction” tasks where, given an instance, the goal is to output many

interdependent output variables. For example, consider the task of extracting information from an apart-

ment advertisement. We need to determine what type of information each word/phrase conveys (e.g., rent,

features or neighborhood of the apartment). On the other hand, “structure” also exists as an intermediate

level between input and output representations. Consider the task of paraphrase identification, a task of

judging whether one sentence is a paraphrase of an other sentence or not. Unlike the first type of problem,

now there is only one output decision: “yes” or “no.” Nevertheless, there still exists a notion of structure for

paraphrases: a sentence can be considered a paraphrase of another only if the syntactic/semantic structures

of these two sentences can be properly aligned. Unfortunately, such alignments are typically not labeled in

the training examples — the structure is latent. Given that we have two notions of structure, the question

is whether we can develop a unified algorithmic paradigm for both that — most importantly — makes use

of high-level human knowledge as indirect supervision to learn to predict these structures or improve the

final task performance.

1.4 Overviews of the Solutions

We first address the “structured output” task of incorporating prior human knowledge as constraints (In

Chapter 3). Note that constraints belong to indirect supervision signals, given that they cannot reveal the

full structures directly. For the task of extracting information from an advertisement post, one constraint

may be that information of the same type should be grouped together. We propose a general framework
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called Constraint Driven Learning, which is capable of combining statistical models and general expressive

constraints in a principled way. We show that models combined with this type of high-level knowledge

require significantly fewer numbers of labeled examples to extract information from an advertisement post

compared to standard statistical models. We generalize the framework and propose the Constrained Con-

ditional Model (CCM), which provides a direct way to inject prior knowledge into a conditional model, in

the form of constraints. Our design principle is to use constraints to simplify the modeling of a complex

structured output problem. Instead of building a model from complex features, our model provide a way

to combine “simple” learned models with a few “expressive” constraints. This idea is now broadly used in

the NLP community.

Next, we discuss the relationship between the Constraint Driven Learning framework and the Expec-

tation Maximization (EM) algorithm [Dempster et al., 1977], when there are no labeled examples. Many

unsupervised and semi-supervised learning frameworks are based on the EM algorithm. Due to different

requirements and issues, many EM variations have been proposed. In this thesis, we propose a unified

expectation maximization framework called UEM (Chapter 4), which can be considered as a generalization

over the Constraint Driven Learning framework. UEM allows injecting constraints as indirect supervision,

and covers many different EM variations. The UEM framework provides us a new platform to compare

different EM variations and help us invent new learning algorithms.

We then move the focus to tasks with “latent structures” (Chapter 5). We develop an algorithmic so-

lution that allows us to inject another type of indirect supervision: knowledge of the latent structure of a

given task. For paraphrase identification, for example, while the target output is a simple binary decision,

the latent structures can be defined as the alignments between the syntactic/semantic structures of two sen-

tences. We show that using our new algorithm, we can use simply stated and easily available background

knowledge within a large margin statistical framework and train systems for paraphrase identification and

other tasks to get state-of-the-art results. Figure 1.3(a) illustrates the idea of our approach.

Interestingly, we can combine these two notions of “structure” in a unified and principled statistical

learning framework (Chapter 6). We present a novel approach to structure prediction that is based on

the following observation: structured output problems often have a companion learning problem – de-

termining whether a given input possesses a “good” structure. For example, the companion problem for

part-of-speech (POS) tagging is whether a given sequence of words has a corresponding sequence of POS

tags that is “legitimate.” While obtaining direct supervision for structures is difficult, it is often very easy

to obtain this type of binary indirect supervision — labeled data for the companion binary decision prob-

lem. We develop a large margin learning framework that jointly learns both direct and indirect forms of
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Input
Complex
Structural
Variables

Simple Output
Target

(a) (Chapter 5): Learning complex intermediate representations for binary classification
problems.

Input
Complex
Structural
Variables

(Indirect)
Simple Output

Target

(b) (Chapter 6): Supervising complex structures with easy-to-get binary labels as indi-
rect supervision signals

Figure 1.3: Between Chapter 5 and 6, this thesis points out the relationship between frameworks for large
margin structured output and frameworks for large margin binary output with latent structures (note the
symmetry between (a) and (b), while their target tasks are different). This discovery makes joint learning
from direct and indirect supervision signals possible.

supervision. Our experiments demonstrate the significant contribution of the easy-to-get indirect binary

supervision on many important NLP tasks.

Figure 1.3(b) illustrates the idea of using indirect supervision signals. For a given input example, we

would like to train a model that can annotate complex structures. However, while generating complex

structures is our target, obtaining supervision signals at this level is too expensive. We would like to de-

sign principled machine learning methods that allow accepting indirect supervision signals, which can be

driven by related tasks, invented by human or extracted from from existing prior knowledge.

1.5 Contributions of the Thesis

Due to the high supervision cost for the NLP tasks, people have investigated the possibilities of applying

unsupervised and semi-supervised learning techniques to many important NLP tasks including part-of-

speech tagging [Merialdo, 1994; Smith and Eisner, 2005; Haghighi and Klein, 2006; Johnson, 2007], infor-

mation extraction [Thelen and Riloff, 2002; Grenager et al., 2005; Haghighi and Klein, 2006], named entity

recognition [Collins and Singer, 1999; Cohen and Sarawagi, 2004], parsing [Klein and Manning, 2004; Smith

and Eisner, 2006; Spitkovsky et al., 2010] and co-reference resolution [Haghighi and Klein, 2010]. However,

many of these approaches only restrict themselves to limited forms of supervision signals while some su-

pervision signals are available. While some approaches adopt other forms of prior knowledge to bias the

model, most of them do not define the prior knowledge formally and do not provide a general platform to

incorporate declarative constraints. Moreover, it is not clear how to integrate different types of supervision
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signals and labeled examples together. Finally, the relations between various learning frameworks are often

not studied.

This thesis addresses these issues, and make the following key contributions:

• Principled and general machine learning frameworks for various forms of indirect supervision

Throughout this thesis we have developed several general purpose learning frameworks. In Chap-

ter 3, we propose Constrained Conditional Model as a general platform for injecting declarative con-

straints as indirect supervision signals. In Chapter 5, we provide the first platform that allows in-

corporating expressive constraints for latent structures, and allows joint learning of the simple binary

output and latent structures. In Chapter 6, we propose a learning framework that allows the use

of both constraints and binary labeled data for learning structures. Regarding indirect supervision

signals, we discuss various forms of constraints and extend simple dictionary look up constraints to

more general and long distance constraints that are incorporated into and bias the model learned. We

also discuss the possibility of inventing binary supervision signals or using existing binary supervi-

sion signals for learning structures.

• Making use of different levels of supervision signals

We believe that it is necessary to integrate all types of supervision signals, including labeled examples.

In both Chapter 3 and 6, our framework allows integrating indirect supervision signals together with

direct supervision signals. Compared to unsupervised learning frameworks, frameworks that are able

to combine both labeled examples and prior knowledge have been much less studied.

• Understanding the relations between different learning frameworks

In Chapter 4, we analyze different EM variations and propose a unified constrained EM framework.

The framework helps us find new variations that could be potentially useful. Moreover, between

Chapter 5 and 6, this thesis points out the relationship between frameworks for large margin struc-

tured output and frameworks for large margin binary output with latent structures (note the sym-

metry between Figure 1.3(a) and 1.3(b)). This discovery makes joint learning from direct and indirect

supervision signals possible.

• Advancing state-of-the-art NLP task results

Many of our proposed frameworks advance start-of-the-art results. At the time we published the

papers, several of the systems, including the IE system (Chapter 3) and the Paraphrasing system

(Chapter 5) achieved new state-of-the-art results.
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In the next chapter, we provide a gentle introduction for the necessary background knowledge for struc-

tured output prediction tasks; the details of our indirect supervision approach will be introduced in the

following chapters.

We have not included all our related work in this document. For example, in [Clarke et al., 2010], we

show how to use world’s response as indirect supervision for improving the task of semantic parsing (the

example showed in Figure 1.1). We will discuss these works and more recent works on using indirect

supervision signals in Chapter 7.
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Chapter 2

Background

The necessary background knowledge for structured output prediction learning frameworks and our no-

tations are provided in this chapter. Understanding learning algorithms for structural prediction tasks is

very important in this thesis, since our goal is to improve these frameworks to allow injecting high-level

human knowledge and easy-to-get indirect supervision signals.

In this chapter, we mainly focus on general knowledge for structure learning, and some of the other

advanced background knowledge will be reviewed in each chapter.

Besides reviewing the related work, we also describe an algorithmic contribution of this thesis and

justify the choice of our design in this chapter. Moreover, we summarize different optimization methods

for structural support vector machine [Taskar et al., 2004; Tsochantaridis et al., 2005] in Section 2.4.

2.1 Notations

Many NLP tasks can be considered as structured output prediction tasks. For example, the problem of

Part-of-Speech (POS) tagging (Figure 2.1(a)) is a structured prediction task, where an input example is a

sentence and the output is the corresponding Part-of-Speech sequence. Another example of a structured

prediction task is dependency parsing. The output of dependency parsing is a tree which exhibits the

syntactic relationship between words in the input sentence (Figure 2.1(b)). Note that the output space

of both problems consists of many interdependent decisions, and hence separates them from standard

binary/multiclass classification tasks.

JJ NN NN VBZ NN

Natural language processing is fun

(a) Part-Of-Speech Tagging

ROOT Natural language processing is fun

(b) Dependency Parsing

Figure 2.1: Example structured output prediction NLP tasks.

We first summarize the notations that will be used throughout this thesis in Table 2.1. In order to sep-
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arate the notation of the binary output problem and the structured output problem, we use the symbol

z ∈ {−1, 1} to represent binary output, y to represent the output structure and h to represent latent struc-

ture. One exception is in the Chapter 6, where the symbol h has two different meanings.

Sometimes it is convenient to treat a structure y (or h) as a vector, given that each structure consists of

multiple decisions. For example, we can write

y = (y1, y2, . . . , yT ),

where yi is a variable representing the i-th decision of y, and T is the total number of decisions. For

example, given a sentence, we can define that y1 represents the POS tag of the first word, y2 represents the

POS tag of the second word, and so on.

The feature vector Φ(x,y) is a function defined over an input-output pair (x,y). When discussing the

relationships between structured output models and binary classification models, we also use the notation

Φ(x) to match the standard definition of the feature vector used in the “non-structural” models. See the

discussions in Section 2.2 for more details.

When we mention the word “constraint” in this thesis, without special notice, we refer to the constraint

defined over a structure. A constraint is denoted as Ψ. Ψ can be described by first order logic. For example,

example constraints can be: “there must be at least one verb in a sentence”, or “the verbs cannot appear

consecutively in a sentence”. In the thesis, some of the proposed frameworks only accept linear constraints.

Fortunately, we can convert Ψ by “propositionalize” it into a finite set of linear inequalities. In [Rizzolo and

Roth, 2007], the author states an efficient way of performing such conversions. In this thesis, we write

inequality constraints behind Ψ as u(x,y) ≤ b, where u(x,y) is a linear function over y (it can be a non-

linear function over x).

The loss function ` : R → R can be instantiated by many commonly used loss functions such as hinge

loss, with `(a) = max(0, a) or squared-hinge loss, with `(a) = max(0, a)2.

In the following, we review the basics of structured output prediction and its relationships to other

models in Section 2.2. We review several optimization techniques in Section 2.3 and compare the properties

of different algorithms in Section 2.4. Finally, we mention several semi-supervised learning algorithms in

Section 2.5.
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w a weight vector
Φ(·) a feature vector generation function
x an input example
y an output structure
h a latent structure
Ψ a (first-order like) constraint (See the text for more details)
z an output binary variable, where z ∈ {−1, 1}
Y(x) all possible output structures of x
H(x) all possible latent structures of x
∆(y,y′) distance between structures y and y′

`(·) : R→ R a loss function (hinge loss, square hinge loss, etc.)

Table 2.1: Notations that are used in this thesis.

2.2 Structured Output Prediction: A Gentle Introduction

The supervised training data for structured prediction tasks can be defined as follows: let S = {(xi,yi)}li=1

denote l labeled examples, where xi represents the i-th example and yi represents the corresponding correct

structure. In the POS tagging example, x represents a sentence and y represents the gold POS sequence. In

the dependency parsing examples, y represents the gold standard dependency tree corresponding to the

input sentence x.

In this thesis, we focus on using linear models for structural prediction tasks, where we can represent

the model as w and make predictions by solving the following optimization problem:

arg max
y∈Y(xi)

wT Φ(xi,y). (2.1)

This problem is often referred as the decoding problem. The set Y(xi) represents all possible structures that

can be generated from the example xi. The unique feature of structured prediction models is the use of

Eq. (2.1) to choose the best structure (according to w) among possibly exponentially many structures in

Y(xi).

OUTPUT: yi,q JJ NN NN VBZ NN

...
...

...
...

...

OUTPUT: yi,2 NN JJ JJ JJ JJ

OUTPUT: yi,1 JJ JJ JJ JJ JJ

INPUT: xi Natural language processing is fun

Figure 2.2: POS Tagging Example: Y(xi) for a sentence xi. See the text for more details.
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Detailed Example: POS tagging Consider the POS tagging task as an example, for a given input xi, we

would like to find the structure yi,∗ among all possible structures Y(xi). Figure 2.2 displays an example

showing that the contain of Y(xi). Assume x is the sentence “Natural language processing is fun.” Note

that this sentence contains 5 tokens. Assume that there are 45 different POS tags. The size of Y(xi) is

q = |Y(xi)| = 455. Each element yi,j in Y(xi) represents a possible output for xi. Among these q sequences,

one is the correct output yi,∗ (In Figure 2.2, it is also yi,q).

Note that the feature vector of structured output prediction could be a function over both input x and

output y. For example, the feature vector Φ(x,y) can contain features representing the conjunctions be-

tween a token and its tag (according to y). It can also contain features such as the conjunctions between the

j-th tag and (j + 1)-th tag. According to this feature definition, Φ(xi,yi,q) in Figure 2.2 has the following

active features:

{Natural− JJ, language− NN, processing− NN, is− VBZ, fun− NN, JJ− NN, NN− NN, NN− VBZ, VBZ− NN}.

Note that size of Φ(xi,yi,q) is very large (it contains all possible features in the training data) with only 9

active features for this specific example.

The weight vector assigns score to each feature, and hence assign score to each (x,y) pair. The prediction

of the model is going to be selected by using the decoding problem Eq. (2.1). This procedure might be

expensive if the feature Φ contains the long distance relationship of y.

Learning Algorithms A learning algorithm can be considered as a procedure that finds a w according to

labeled examples S. While we have not introduced any learning algorithm, all learning algorithms try to

reduce the training error (and try not to overfit to the data). In order to reduce the training error, a good w

should try to satisfy the following constraint for every example (xi,yi) ∈ S:

wT Φ(xi,yi) ≥ max
y∈Y(xi)

wT Φ(xi,y). (2.2)

The intuition behind this constraint is that a good weight vector should assign a higher score to the correct

structure yi than it assigns to any other structure.

In the following, we review commonly used models including binary classification models and multi-

class classification models from the perspective of structure prediction models. We will then move on to

sequential tagging models and finally to general structured output prediction methods. Note that we defer

the discussion on the optimization algorithms to Section 2.3.
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Algorithm 1 The Perceptron Learning Algorithm. Note that the feature function only depend on the input
here.
Require: Learning rate η, Number of iteration N , Training Data B = {(xi, zi)}li=1

1: w← 0
2: for t = 1 . . . N do
3: for i = 1 . . . l do
4: if ziwT Φ(xi) ≤ 0 then
5: w← w + ziΦ(xi)
6: end if
7: end for
8: end for

2.2.1 Binary and Multiclass Classification Models

While we focus on structured prediction problems, it is crucial to realize that structured output predic-

tion models are more general than binary/multiclass classification models. In the following, we start by

reviewing binary learning classification models from the perspective of predicting structures.

Discriminative Classifiers: Binary Linear Classifiers and Support Vector Machines Perceptron algo-

rithm [Rosenblatt, 1958, 1962] is probably the earliest and the most important linear learning algorithm. As

the computational power increased dramatically in the past few decades, more advanced linear classifica-

tion models have been developed and used. Among the advanced linear classifiers, support vector machine

(SVM) is the most influential model and has made significant impact both theoretically and practically.

The perceptron learning algorithm is described in Algorithm 1. The training algorithm is a mistake-

driven algorithm, which only updates the weight vector (line 5) when the model makes a mistake (line 4).

Unlike the perceptron algorithm, the SVM algorithm obtains the weight vector w by solving the following

optimization problem:

min
w

‖w‖2

2
+ C

∑
i∈B

max(0, 1− ziwT Φ(xi)), (2.3)

where B = {(xi, zi)}li=1, and C is a parameter that prevents overfitting. That is, C controls the balance

between the regularization term ‖w‖2
2 and the loss term. Note that throughout this thesis, for brevity, we

write i ∈ B to indicate (xi, zi) ∈ B.

While the perceptron algorithm and SVM are different learning algorithms, they do share the same

prediction function: sgn(wT Φ(xi)). That is, the model will predict the example as a positive example if and

only if wT Φ(xi) ≥ 0. At a first glance, it seems that the structured prediction function (Eq. (2.1)) is different

from the one used in perceptron and SVM. However, the decision function used for SVM is a special case

of Eq. (2.1).

Note that the Boolean version of the perceptron algorithm and SVM uses a feature function that only
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depends on the input x, while the feature vector in Eq. (2.1) contains both input and the output variable

Φ(x,y). If we make

Φ(x,y = 1) = Φ(x),Φ(x,y = −1) = 0,

the decision function of structured output variables reduces to the decision function for the standard per-

ceptron and SVM. More precisely,

arg max
y∈{1,−1}

wT Φ(x,y) = arg max
y∈{1,−1}


wT Φ(x) if y = 1

0 if y = -1

=


1 if wT Φ(x) ≥ 0

−1 Otherwise.

We call this trick of reducing structured output prediction to binary output prediction “asymmetric

feature reduction”, as we only assign features to the positive class (z = 1). This trick is in fact very important

when there are latent variables, and we will use this trick again in Chapter 5 and 6. Also see the discussion

in Section 6.6 about this trick when there are latent variables.

Generative Model: naive Bayes The structured prediction function (2.1) also covers the prediction func-

tions of many generative models. This implies that many generative models can be expressed as a linear

classifier. The relationships between discriminative and generative linear classifiers have been discussed in

many different scenarios [Domingos and Pazzani, 1997; Roth, 1999; Ng and Jordan, 2002]. In the following,

we show how to reduce the decision function of a naive Bayes classifier to Eq. (2.1).

For the sake of simplicity, we assume that there are only two classes and discrete binary features when

training a naive Bayes model. Therefore, all of the features used here can be represented as [xj = k], an

indicator function that has the value 1 if and only if the j-th feature of x has value k. A naive Bayes classifier

models the probability distribution P (x, z) directly such that

log P (x, z) = log P (x|z)P (z) =
∑

j

1∑
k=0

log P (xj |z)[x
j=k] + log P (z),

because the naive Bayes model adopts the conditional independence assumption. The training procedure

of a naive Bayes model simply tries to find the most likely value of P (xj |z) and P (z) — if you maximize

the likelihood of P (xj |z) and P (z), you maximize that of log P (x, z). The decision function for an example

x is simply arg maxz P (x, z).
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Define

Φ(x) =
(
[x1 = 0], [x1 = 1], [x2 = 0], [x2 = 1], . . . [xm = 0], [xm = 1], 1

)
,

where m represents the number of input variables for a given example, and one addition dummy feature

is active for all examples. Define w1 as a weight vector that has the same size of Φ(x), where for the feature

[xj = k], the corresponding weight in w1 has the value: log P (xj = k|z = 1). The corresponding weight

value for the extra dummy feature is log P (z = 1). Similarly, we can define another weight vector w−1 for

z = −1. Let

Φ(x, z = 1)T =
[
Φ(x)T 0T

]
,Φ(x, z = −1)T =

[
0T Φ(x)T

]
,wT =

[
wT

1 wT
−1

]
,

then we get

arg max
z∈{1,−1}

wT Φ(xi, z) = arg max
z∈{1,−1}

log P (x, z).

Therefore, the decision function of a naive Bayes model can be written in the form of Eq. (2.1).

Multi-Class Classification Models Many important information retrieval problems such as document

classification tasks can be casted into multiclass classification problems. One-versus-all and all-versus-all

are the commonly used procedures to build a multiclass classification classifiers based on binary classifica-

tion classifiers [Allwein et al., 2000; Har-Peled et al., 2002]. We will focus on the one-versus-all procedure

here. For more information about the comparisons between different multi-class classification models, the

readers can refer to [Hsu and Lin, 2002].

Assume that there are M different classes and let the training data be S = {(x,y)}, where y ∈ {1, 2, . . . ,M}.

The one-versus-all approach is a general approach that builds M classifiers with any binary classification

training algorithm, where the j-th classifier wj is trained based on the training data Bj . The definition of

Bj is

Bj = {(x,+1)|(x,y) ∈ S,y = j} ∪ {(x,−1)|(x,y) ∈ S,y 6= j}.

At test time, the prediction of the one-versus-all prediction function becomes:

arg max
i∈{1,2,...,M}

wiΦ(x). (2.4)
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By rewriting

w =
[
w1 w2 . . . wM

]
,Φ(x, i) =

(i−1) blocks︷ ︸︸ ︷
0 . . .0 Φ(x)︸ ︷︷ ︸

the i-th block

(M−i) blocks︷ ︸︸ ︷
0 . . .0

 ,

the decision function (Eq. (2.1)) would be the same prediction function as Eq. (2.4).

Note that in the one-versus-all approach, the training phase is done by training M classifiers indepen-

dently. However, the prediction function is done by considering all of the M classifiers together, as shown

in [Har-Peled et al., 2002], the right approach is to also consider all M classifiers in the training time. Hence,

several techniques have been proposed to overcome this issue [Nilsson, 1965; Har-Peled et al., 2002]. Cram-

mer and Singer [Crammer and Singer, 2002] proposed a joint model and wrote down M classifiers in one

global objective function. This technique was later extended to the case of general structured output pre-

diction problems [Taskar et al., 2004].

2.2.2 Sequence Tagging Models and General Structure Prediction Models

We now move the focus to the example tasks with more structures. We consider sequential tagging models

first and then move to general structural models.

Generative Model: Hidden Markov Model Generative models specify a joint probability distribution

over observations and the corresponding output structures. Many generative models have been proposed

for structured prediction tasks [Rabiner and Juang, 1986; Eisner, 1996]. In the following, we review a very

popular sequential generative model: the Hidden Markov Model (HMM). A (first-order) HMM is a gener-

ative model which models the joint probability of a series of tokens x and a sequence assignment y. HMMs

make an independence assumption that allows one to write the joint probability of (x,y) as follows:

P (x,y) = P (y1)
T∏

i=2

P (yi|yi−1)
T∏

i=1

P (xi|yi), (2.5)

where xi is the i-th token in the input sequence, yi is the i-th token in the output sequence, T is the number

of tokens in this sequence, P (y1) represents the prior probabilities, P (yi|yi−1) represents the transition

probabilities and P (xi|yi) represents the emission probabilities.

Past works have shown that the prediction problem in HMMs can be viewed as a linear model over

17



Algorithm 2 Structured Perceptron

Require: Number of iteration N , Training Data S = {(xi,yi)}li=1

1: w← 0,wavg ← 0
2: for t = 1 . . . N do
3: for i = 1 . . . l do
4: ŷ = arg maxy∈Y(xi) w

T Φ(xi,y).
5: w← w + Φyi,ŷ(xi)

6: wavg ← wavg + w
7: end for
8: end for
9: return wavg/(T l)

“local” features [Roth, 1999; Collins, 2002]. That is, one can show that

arg max
y

P (y|x) = arg max
y

log P (x,y) = arg max
y

wT Φ(x,y), (2.6)

where w is a weight vector and Φ represents a feature function. Therefore, we can convert the probability

tables of an HMM into a linear function represented by w with appropriate feature functions. In this

representation, the feature function Φ(x,y) is expressed as a set of features which contain “prior features”,

Φp(y1), “transition features” , Φt(yi, yi−1), and “emission features”, Φe(xi, yi) [Roth, 1999]. In other words,

there exists a one-to-one mapping between the active features and the associated probability representation,

which can be rewritten in the form of a linear function.

Structured Perceptron The structured perceptron (SP) was first introduced by [Collins, 2002]. The al-

gorithm (Algorithm 2) extends the mistake-driven idea of the Perceptron algorithm (mentioned in Algo-

rithm 1) to the structured output case. In line 4, it finds the best structure for an example using the cur-

rent weight vector. Then the weight vector is updated with the difference between the feature vectors of

the true label and the prediction. Notice that this is a mistake-driven algorithm, which means that if the

current weight vector successfully finds the correct output, the weights will not change. Inspired by the

results of [Freund and Schapire, 1999], the algorithm maintains an averaged weight vector (lines 6 and 9),

which is the final output. This technique has been shown to improve the generalization ability of the final

model[Freund and Schapire, 1999]. However, while structured perceptron algorithm is simple and easy-to-

implement, it does not capture the concept of margin and there is no easy method to select N , the number

of iterations. In structured perceptron, the prediction function is Eq. (2.1).
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Conditional Random Field Models Conditional Random Field (CRF) [Lafferty et al., 2001] can be viewed

as a probabilistic discriminative model. CRF models the conditional probability by:

P (yi|xi,w) =
expwT Φ(xi,yi)∑

y∈Y(xi)
expwT Φ(xi,y)

. (2.7)

The training of a CRF is done by maximizing the conditional log likelihood of the labeled examples. The

objective function of a CRF can be written as follows:

min
w

‖w‖2

2
+ C

l∑
i=1

log
expwT Φ(xi,yi)∑

y∈Y(xi)
expwT Φ(xi,y)

. (2.8)

The denominator of (2.7) is a summation over all possible structures for this example. Often this is the main

computation bottleneck for training a CRF model, given that it contains exponential number of structures.

Fortunately, this function can be calculated efficiently if we introduce some restrictions on Y and Φ. For

example, in order to calculate the gradient of the weight vector w, one needs to calculate the term

EP (yi|xi,w)[Φ(xi,yi)].

If we adopt the Markov assumption as in a HMM model, this term can be computed by the standard

forward-backward procedure [Rabiner, 1989]. However, such restrictions often make it impossible for CRF

to capture long distance relationships. Several works have tried to improve the CRF models by capturing

the long distance relationships in the supervised setting at test time [Roth and Yih, 2005; Finkel et al., 2005].

In a CRF, the prediction function can be expressed as Eq. (2.1) by rewriting the prediction function as

follows:

arg max
y∈Y(xi)

P (y|xi,w) = arg max
y∈Y(xi)

expwT Φ(xi,yi)∑
y′∈Y(xi)

expwT Φ(xi,y′)
= arg max

y∈Y(xi)

expwT Φ(xi,yi) = arg max
y∈Y(xi)

wT Φ(xi,y).

Max Margin Models: Structural Support Vector Machines The idea of max margin models comes from

improving the constraints (2.2), similar to what has been done in [Har-Peled et al., 2002]. The constraints

can be improved by adding the notion of margin so that it requires the score of the gold structure to be

better than that of the runner up by at least one. Formally, we define ∆(yi,y) to be the binary distance

function which is 0 if and only if two structures yi,y are identical and 1 otherwise. In order words, ∆ can

be considered as a function that measures the binary distance between these two structures. The constraint
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(2.2) is modified as follows:

wT Φ(xi,yi) ≥ max
y∈Y(xi)

[
wT Φ(xi,y) + ∆(yi,y)

]
. (2.9)

The constraint can consider all possible y ∈ Y(xi) including yi in the right hand side because of the defini-

tion of the distance function. For brevity, we sometimes rewrite the above constraint as

max
y∈Y(xi)

[
∆(yi,y)−wT Φyi,y(xi)

]
≤ 0, (2.10)

where Φyi,y(xi) = Φ(xi,yi)−Φ(xi,y). Later [Taskar et al., 2004] extends the definition of distance function

∆(yi,y) to reveal more information on the differences of the structures. For example, for the task of part of

speech tagging, using Hamming distance seems to be more reasonable because the model can express finer

distinction between structures yi and y.

It is very important to note that

max
y∈Y(xi)

[
wT Φ(xi,y) + ∆(yi,y)

]
, (2.11)

is a different inference problem from the decoding problem Eq. (2.1). While Eq. (2.1) tries to find the best

structure, the goal of Eq. (2.11) is to find structure that is the “worst”1 when compared to the gold struc-

ture. To see this, assume that the weight vector is a zero vector and hamming distance is our distance

measurement, the returned structure of Eq. (2.11) is a random structure with maximal hamming distance

with respect to yi, while the Eq (2.1) will return a random structure given that all the weights are zero.

Therefore, the structures revealed by these two procedure can be very different. Therefore, for some algo-

rithms we discussed in this chapter, we need to implement two inference procedures: one for (2.1) and the

other for (2.11).

The framework which captures this idea is often referred as Max-margin Markov Network [Taskar et al.,

2004] or Structural Support Vector Machine (SSVM) [Tsochantaridis et al., 2005]. Training a SSVM entails

solving the following global optimization problem:

min
w

‖w‖2

2
+ C

l∑
i=1

LS(xi,yi,w), (2.12)

where l is the number of labeled examples and LS(xi,yi,w) represents the loss function for the structured

1The word “worst” is respect to the violation of the constraint Eq. (2.9).
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labeled examples. The function LS can be written as

LS(xi,yi,w) = `(max
y

[
∆(y,yi)−wT Φyi,y(xi)

]
),

where the function ` : R → R can be instantiated by many commonly used loss functions such as hinge

loss, with `(a) = max(0, a) or squared-hinge loss, with `(a) = max(0, a)2. Throughout this chapter, we

write the loss function for SSVM as

`(a) = max(0, a)d,

and use the symbol d to indicate the use of the hinge loss function or the square hinge loss function. We

refer to the formula as L1-loss SSVM and L2-loss SSVM for d = 1 and 2, respectively. The loss function LS

is closely related to the margin constraint expressed by Eq. (2.10) and it essentially measures the violation

of the constraints for each example. In the maximal margin model, the prediction function is also Eq. (2.1).

MIRA MIRA could be considered as an approximation online learning algorithm for maximal margin

models.

In contrast to the structured perceptron algorithm, the Margin Infused Relaxed Algorithm (MIRA), which

was introduced by [Crammer et al., 2005], explicitly uses the notion of margin to learn the weight vec-

tor. The algorithm is listed as Algorithm 3. Notice that the only change in this algorithm, compared to

the structured perceptron, is in lines 5 and 6. In line 5, MIRA finds the K-best structures using current

weight vector. Formally, we define ∆(yi,y) to be the binary distance function which is 0 if and only if

two structures yi,y are identical and 1 otherwise. In order words, ∆ can be considered as a function that

measures the binary distance between these two structures. Then, it updates the weight minimally in order

to satisfy the margin constraint (approximately, because it considers only the top K structures instead of all

structures.) This quadratic programming (QP) problem (line 6) can be solved using Hildreth’s algorithm

[Censor and Zenios, 1997] or Platt’s SMO algorithm [Platt, 1999].

It is worthwhile to mention the special case when k = 1. In this case, we can solve the QP problem

analytically. Let y∗ be the structure that maximizes the score with respect to the current weight vector w

(line 5) and suppose y∗ does not equal to the gold label yi. Then, the new weight vector can be written

down in the following way: w← w + ηΦyi,y∗(xi), where

η =
∆(yi,y∗)−wT Φyi,y∗(xi)

‖Φyi,y∗(xi)‖2
.

This reduces to the to Passive Aggressive Algorithm [Crammer et al., 2006], which has many similarities to
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Algorithm 3 Margin Infused Relaxed Algorithm (MIRA). Note that best(k,w,xi) returns the k-best struc-
tures of the current example xi according to w.

Require: Number of iteration N , Training Data S = {(xi,yi)}li=1, Number of constraints K
1: w← 0,wavg ← 0
2: for t = 1 . . . N do
3: for i = 1 . . . l do
4: w0 ← w
5: Hk ← best(k,w,xi)
6: Obtain w by solving

min
w

1
2
‖w −w0‖2

S.T. wT Φyi,y(xi) ≥ ∆(y,yi),∀y ∈ Hk

7: wavg ← wavg + w
8: end for
9: end for

10: return wavg/(T l)

the structured perceptron. The key difference, in this specific case, is that the learning rate η for MIRA is

“self-tuned” – that is, different examples are scaled differently when the update is made. Note that in the

structured perceptron algorithm, unlike the binary case, tuning a fixed learning rate has no effect because

it lacks the concept of margin and the learning rate merely scales the function that needs to be maximized

while performing inference. Like the structured perceptron, the choice of the number of iterations (N )

depends on the domain and the application logic. With MIRA, the prediction function is still Eq. (2.1).

2.3 Optimization Algorithms for Large Margin Structured Output

Prediction Models

A significant part of this thesis focuses on large margin structured margin linear models. Specifically, we

focus on the objective function in Eq (2.12),

min
w

‖w‖2

2
+ C

l∑
i=1

LS(xi,yi,w),

where l is the number of labeled examples and

LS(xi,yi,w) = `(max
y

[
∆(y,yi)−wT Φyi,y(xi)

]
),
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where the function `(a) = max(0, a)d. Recall that we refer the model to L1-loss SSVM and L2-loss

SSVM when d = 1 and 2, respectively.

Fortunately, this is a convex problem, so there are many algorithms that we can apply to optimize

this function. In Section 2.2, we mentioned that many learning problems can be casted into structured

prediction problems. Interestingly, many techniques that are used to optimize the binary models can also

be applied for the structured case.

In this following, we discuss three optimization algorithms for this objective function. Note that we

only focus on the linear case without using non-linear kernels, given that recent advances in optimizing

linear SVM have led to significant reductions in the training time. For example, for binary classification

SVM, the speed of some algorithms [Shalev-Shwartz et al., 2007; Hsieh et al., 2008] is already competi-

tive the speed of online learning algorithms such as perceptron. While we cannot enumerate all possible

optimization procedures, we describe the following three that are easy to implement: stochastic gradient

descent (SGD) [Kiefer and Wolfowitz, 1952; Bishop, 1996; Le Cun et al., 1998; Zhang, 2004; Bottou, 2004],

exponentiated gradient (EG) descent [Kivinen and Warmuth, 1995; Collins et al., 2008] and cutting plane

methods (CP) [Joachims et al., 2009; Chang et al., 2010a].

It is important to realize that some of the optimization methods can also be applied to other models.

For example, the SGD and EG methods can also be applied to optimizing the CRF model (Eq. (2.8)), but we

will mainly focus on solving SSVM. The properties of different optimization algorithms and online learning

algorithms will be discussed in Section 2.4.

2.3.1 Stochastic Gradient Descent

The simplest algorithm, in terms of ease of implementation, is probably the stochastic gradient descent

(SGD) method, [Kiefer and Wolfowitz, 1952; Bishop, 1996; Le Cun et al., 1998; Zhang, 2004; Bottou, 2004]–

a general optimization technique which is widely used across the machine learning community. Broadly,

the method proceeds as follows: at each step, it gets a estimation of the gradient direction of the objective

function from a subset of labeled examples. The weight vector is then updated by the estimated gradient

direction as in standard gradient descent. Compared to gradient methods, SGD updates the weight much

more frequently and it has been shown that in practice SGD is faster than the standard gradient descent

methods. In this thesis, we focus on the most commonly used version of SGD, where only one example is

used to generate the estimated gradient.

To understand the SGD method, we first review the standard gradient descent (GD) method for opti-

mizing a function f(w). The algorithm iteratively goes over two steps:
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• Calculate the gradient ∇f(wk) with respect to the current point wk

• Perform a line search and find a step size ηk ≥ 0 and perform update:

wk+1 ← wk − ηk∇f(wk).

A valid step size ηk needs to ensure sufficient decrease in the value of objective function. For uncon-

strained smooth optimization, Wolfe conditions [Wolfe, 1969] are commonly used to judge if there is

sufficient progress.

While GD methods work fine for general optimization problem, calculating gradient for Eq. (2.12) can

be expensive because it involves all training examples. Recent advances in on-line learning algorithms [Bot-

tou, 2004; Shalev-Shwartz et al., 2007; Hsieh et al., 2008] have shown that algorithms update the weight

vector more frequently are generally faster. The SGD method performs the following two steps iteratively.

• Calculate a noisy gradient g̃k, where E[g̃k] = ∇f(wk).

• With a step size ηk ≥ 0

wk+1 ← wk − ηkg̃k.

The SGD algorithm can be extended for optimizing non-smooth convex functions by using subgradi-

ent [Boyd and Mutapcic, 2008]. With the right selection of a step size that satisfies the following conditions:

ηk ≥ 0,

∞∑
k=1

η2
k ≤ ∞,

∞∑
k=1

ηk =∞,

the SGD procedure converges in expectation [Boyd and Mutapcic, 2008]. A similar proof for smooth func-

tions appeared in some much earlier publications [Kiefer and Wolfowitz, 1952; Bishop, 1996].

In order to generate g̃, an example xj is picked randomly to estimate the gradient direction. The estimate

gradient is generated from approximating the loss term generated by the loss term using one example.

More precisely, we replace C
∑l

i=1 L(xi,yi,w) by lCL(xj ,yj ,w) in the objective function Eq. (2.12). The

derivative of this new function gives us the estimated gradient direction g̃.

g̃ = ∇(
‖w‖2

2
+ lCL(xj ,yj ,w)). (2.13)

This way, E[g̃] (over the choice of the example) equals the gradient of the SSVM objective function.

The full SGD Algorithm for Eq. 2.12 is depicted in Algorithm 4. We follow the common implementation
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Algorithm 4 SGD for structural SVM. Note that d determines whether if the hinge loss or the square hinge
loss are used here. Note that even if the model does not make a mistake, we still perform an update of
w by shirking its size. Unlike structural perceptron, we now are allowed to use a parameter C to balance
between regularization and training error.

Require: Number of iteration N , Training Data S = {(xi,yi)}li=1, Balance C, Degree of Loss function d
where `(a) = max(0, a)d, step sizes {ηk}

1: w← 0
2: for t = 1 . . . N do
3: for i = 1 . . . l do
4: ŷ = arg max

y∈Y(xi)

[
wT Φ(xi,y) + ∆(yi,y)

]
5: if (∆(yi, ŷ) 6= 0) then
6: if d = 1 then
7: γ = 1
8: else if d = 2 then
9: γ = 2(∆(yi, ŷ)−wT Φ(xi, ŷ))

10: end if
11: g̃ = w − γlCΦyi,ŷ(xi)
12: else
13: g̃ = w
14: end if
15: w← w − ηg̃
16: update the step size η
17: end for
18: end for
19: return w

scheme, where we do not sample from the training data to create g̃ but pick the target example in a certain

ordering. In line 4, we perform the loss augmented inference to find the structure that most violates the

constraint in inequality (2.10). Notice that the loss augmented inference solves a different problem from

the structure inference problem Eq. (2.1). Lines 5 to 13 calculate the estimated gradient. Finally, the weight

vector is then updated in line 15.

While SGD is very easy to implement, several problems exist. First, users still need to specify the step

size and this choice may impact the model convergent speed significantly. Second, the stopping criterion is

not well defined. Also note that SGD does not ensure the decrease of the objective function. Therefore, it is

commonly for people to apply the averaging trick here to ensure the quality of the final weight vector.

2.3.2 Exponentiated Gradient Algorithm for Structural SVM

The SGD algorithm solves the primal form of the objective function (Eq. (2.12)). It is also possible to solve

the dual form of Eq. (2.12). Let the loss function `(a) be the hinge loss function max(0, a) and let αi,y denote

the dual variable corresponding to the output y of example xi. The dual of the SVM objective function,

25



Algorithm 5 EG for structural SVM.

Require: Training Data S = {(xi,yi)}li=1, Learning rate η, Balance C
1: pick an initial feasible α randomly
2: for t = 1 . . . N do
3: pick a random example xi

4: for every y ∈ Y(xi) do
5: ∇i,y = ∂Q(α)

∂αi,y

6: end for
7: for every y ∈ Y(xi) do
8: update αi,y to αi,ye−η∇i,y

9: end for
10: normalize αs so that

∑
y∈Y(xi)

αi,y = C
11: end for
12: return w(α)

denoted by Q(α), is as follows:

Q(α) : min
α

1
2
‖w(α)‖2 −

∑
i

∑
y∈Y(xi)

∆(y,yi)αi,y

S.T. αi,y ≥ 0,∀i,y ∈ Y(xi),∑
y∈Y(xi)

αi,y = C,∀i

The weight vector w(α) can be reconstructed from the dual variables as

w(α) =
∑

i

∑
y∈Y(xi)

αi,yΦyi,y.

Note that if we divide α by C, then new αs form a simplex.

Exponentiated gradient (EG) algorithm takes advantage of the fact that the constraints on the dual

variables can be written down as a simplex set and uses the EG update rule introduced in [Kivinen and

Warmuth, 1997] to optimize the dual variable [Collins et al., 2008]. We summarize the EG algorithm in

Algorithm 5. For each randomly selected example xi, the algorithm first computes the gradient of the

dual variables corresponding to this example (lines 4 and 5). The new values of the dual variables can

be obtained by using the gradient on the exponents and then normalizing the values such that it remains

feasible (lines 7-10). In practice, Algorithm 5 is often not feasible, but for certain structure, it is possible to

overcome this difficulty through marginalizing the dot product values over parts (the local decisions of a

structure). For more details, please refer to [Collins et al., 2008].
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2.3.3 Cutting Plane Methods

The cutting plane (CP) methods use a different idea to solve the Structural SVM problem [Tsochantaridis

et al., 2005]. Note that we can rewrite the SSVM objective

min
w

‖w‖2

2
+ C

l∑
i=1

ξd
i (2.14)

S.T. ∀i,y ∈ Y(xi),∆(y,yi)−wT Φyi,y(xi) ≤ ξi, (2.15)

∀i, ξi ≥ 0

where d can be 1 or 2, indicating whether ` is the hinge loss or the square hinge loss function. While it seems

that we have only two constraints for each example xi, in fact (2.15) implicitly carries |Y(xi)| number of

linear inequalities (one for each structure y). However, at the optimal solution, only a few of inequalities

will be “active” (that is, an inequality becomes an equality). Intuitively, these are the difficult structures

given that if the weight vector classified them correctly, Eq. (2.15) will be satisfied.

The cutting plane methods try to keep a set of “difficult” structuresWi (we called it a working set) for

each example xi. Usually the size of the working setWi is extremely small compared to Y(xi). Therefore, it

means that obtaining the weight vector with respect to the current working sets is a lot easier than solving

the original structural SVM problem (2.12). We can write down the objective function respect to the current

working set:

min
w

‖w‖2

2
+ C

l∑
i=1

ξd
i (2.16)

S.T. ∀i,y ∈ Wi,∆(y,yi)−wT Φyi,y(xi) ≤ ξi,

∀i, ξi ≥ 0

where d is 1 or 2 for the hinge loss and square hinge loss functions, respectively.

The cutting plane algorithm (Algorithm 6) updates the working set in the following way:

• For an example xi, find structure ŷi that violates the constraint (2.15) the most, using the current

weight vector w (line 5).

• Add ŷi into the working setWi (line 7).

• Obtain a new w with respect to the current working set by solving Eq. (2.16) (line 8) in Algorithm 6.

The duality gap parameter ε controls the precision of the final solution. Note that the CP strategy still needs
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Algorithm 6 Cutting Plane Methods. Note that the duality gap parameter ε controls the precision of the
final solution.
Require: Training Data S = {(xi,yi)}li=1, Duality gap ε, Balance C

1: w← 0
2: Wi ← ∅,∀i = 1 . . . l
3: repeat
4: for i = 1 . . . l do
5: ŷ = arg max

y∈Y(xi)

[
wT Φ(xi,y) + ∆(yi,y)

]
6: if ∆(yi, ŷ)−wT Φyi,ŷ(xi) > ξi + ε then
7: Wi ←Wi ∪ {ŷ}
8: update w by solving Eq. (2.16)
9: end if

10: end for
11: until no new element is added to anyWi

12: return w

a solver to solve the subproblem (Eq. (2.16)). For example, one can apply SGD to solve the subproblem

(Eq. (2.16)). In [Joachims et al., 2009], they apply a custom-designed solver based on SVM-light to solve the

sub-problem. We will refer to the approach used in [Joachims et al., 2009] as CP+QP.

2.4 Summary of Discriminative Structured Learning Algorithms: A

User Point of View

In this section, we first summarize the learning algorithms for structured models that are commonly used

in the NLP community. At the end of this section, we justify the choice of the optimization algorithm

procedure used in this thesis.

In Table 2.2, we summarize the different models and their corresponding optimization algorithms. Note

that we call the procedure used in [Joachims et al., 2009] CP+QP and the procedure proposed in this thesis

CP+DCD (more details will be mentioned later). We would like to compare these algorithms from a user

point of view. For example, the user might want to know if he needs to adjust the step size by himself and

what inference procedures he needs to implement.

Procedures required in the training phase We first review three different inference procedures we have

mentioned.

• Argmax Inference (Argmax): The inference procedure used in the decoding phase. (Eq. (2.1))

• Loss-Augmented Inference (LArgmax): The inference procedure used in the margin constraint (Eq.

(2.11)).
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Model Objective (Optimization) Algorithms Self-Adjusted Step size? Inference in Training Inference in Testing

CRF Eq. (2.8)
SGD N Marginal Argmax
BFGS Y Marginal Argmax

EG N Marginal Argmax

L1-loss SSVM Eq. (2.14)
SGD N LArgmax Argmax

CP+QP Y LArgmax Argmax
EG N Marginal Argmax

L2-loss SSVM Eq. (2.14)
SGD N LArgmax Argmax

CP+DCD (Contribution) Y LArgmax Argmax
SP None Algorithm 2 N Argmax Argmax

MIRA None Algorithm 3 N Argmax Argmax

Table 2.2: Summary of all algorithms for discriminative structured learning algorithms. Note that we use
CP to represents general algorithms which use cutting plane procedures and CP+DCD to represent the pro-
cedure proposed in this thesis, where we use dual coordinate descent methods to optimize the subproblem
in the CP procedure. See the text for more details.

• Marginal Inference (Marginal): The inference procedure that calculates the summation of certain val-

ues on all possible structures. For example, in a linear chain CRF, we use forward and backward

algorithm to calculate the expectation of the feature functions.

While all learning algorithms use the inference problem (Eq. (2.1)) to make prediction results in the testing

phase, only SP and MIRA use Eq. (2.1) in the training phase. Therefore, a user only needs to implement one

inference procedure for SP and MIRA, and this probably is the reason why SP and MIRA are very popular

in the NLP community. Both SGD and CP (including CP+QP and CP+DCD) run the Loss-Augmented

Inference in the training phase, but make decisions differently. It is interesting to notice that the EG, like

CRF, requires to calculate the marginal values of all structures; especially, in particular, EG can be used to

solve the structured SVM objective function.

Online Learning algorithm and SGD In the algorithms we mentioned, only structured perceptron and

MIRA are mistake-driven algorithms. It means that they do not update their weight vector if the current

weight vector does not make a mistake for a given example. On the other hand, SGD for SSVM updates its

weight vector for every example encountered. Batch algorithms like CP are not mistake-driven algorithms

as well.

The structured perceptron (SP) algorithm seems to be very similar to a stochastic gradient descent algo-

rithm if the regularization term is omitted in the objective in L1-loss SSVM. More specifically, assume that

the objective function for SGD is as follows

l∑
i=1

(
max

y

[
wT Φ(xi,y) + ∆(y,yi)

]
−wT Φ(xi,yi)

)
,

we refer to the SGD algorithm for this objective function as SGD-Loss-Only. However, there are several

important differences between the SGD-Loss-Only and SP. First, the step size for SGD-Loss-Only may be
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different for every example and for different w, while the step size for SP is fixed. Second, note that SGD-

Loss-Only and SP solve different inference problems in their training algorithms. SP solves the structure

prediction problem during training, while SGD performs loss augmented inference. This means that the

user should implement two (very related) inference algorithms for SGD. Therefore, SGD-Loss-Only and SP

are still different even when there is no regularization term. In this sense, the SGD is not “mistake” driven,

given that it did not use the actual inference procedure used in the testing time.

Adjusting the step size We use the cutting plane optimization procedure in this thesis with significant

modifications. In [Joachims et al., 2009], the authors use the hinge loss function (d = 1), and solve Eq. (2.16)

with custom design QP solver. In the Chapter 5 and 6, we first point out and realize that there are many

advantages of choosing the square hinge loss function (d = 2), given that the optimization procedure

for Eq. (2.16) can be easily implemented by the dual coordinate descent methods (DCD) [Hsieh et al., 2008],

which does not require to tune the step size η and is very easy to implement. We refer to our algorithm as

(CP+DCD). The full optimization details are in Section 6.2. To the best our knowledge, this is the first work

which apples CP+DCD to the structured output prediction problems.

Tuning the step size (e.g. the learning rate) is necessary for SP, SGD and EG, but it is not necessary

for MIRA and CP+DCD. In the CP method, we need an optimization algorithm to solve the subproblem

(Eq. (2.16)). If we use the SGD algorithm, adjusting the step size would become necessary. In CP+DCD,

the algorithm can find the optimal step size by itself.

The ability of choosing the step size automatically is one of the major reason that we develop and use

CP+DCD. In addition, CP based method only require solving loss-augmented inference and has better

control of the stopping condition. Hence, we believe that the CP+DCD method is an ideal optimization

method for this thesis. Finally, the CP based methods have a natural way to parallelize the inference pro-

cedure, which is very important for the speed concern.

Stopping Condition Another advantage of CP over SGD and EG is the stopping condition. The usual

stopping condition for SGD and EG is based on the number of iterations, which can be difficult to tune.

Following [Joachims et al., 2009], our stopping condition for SSVM is the duality gap, which is more stable

and easier to control compared to the number of iterations.
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2.5 Unsupervised and Semi-Supervised Structured Output Prediction

Models

Structured output prediction models are designed to capture the interdependence between assignments to

individual variables. Unfortunately, obtaining labeled examples for structures is often difficult, given that

many decisions need to be made for one input example. Hence, several approaches have been proposed to

address the issue of lack of supervision.

2.5.1 Expectation Maximization and Self-training Algorithms

Probably one of the oldest algorithm that is used to address the issue of lacking supervision is the Ex-

pectation Maximization (EM) algorithms [Dempster et al., 1977]. EM algorithms are mainly designed for

generative models, where the objective function aims to maximize the log-likelihood data by marginalizing

all of the unlabeled latent variables. More formally, consider the following unlabeled dataset U = {xi}. Let

us represent the model parameters as θ. The EM algorithm maximizes the following objective function

L(θ) =
|U|∑
i=1

log P (xi|θ) =
|U|∑
i=1

log

 ∑
h∈H(xi)

P (xi,h|θ)

 . (2.17)

This is a non-convex objective function.

The Standard (Original, Soft) EM algorithm The EM algorithm can be considered as an optimization

procedure for this objective function. The EM algorithm iteratively goes over two steps:

• “E-step”: Estimate the probability distribution P (h|xi, θ
t−1) using the parameters from previous iter-

ation θt−1.

• “M-step”: Find the next parameters θt by solving the following objective function

|U|∑
i=1

∑
h∈H(xi)

q(xi,h) log(P (xi,h|θ)),

where q(xi,h) = P (h|xi, θ
t−1).

The EM procedure is guarantee to converge to the local maximal point of the original objective function.

We can apply EM algorithm to generative models that are designed for structured output prediction tasks.

Unlike the supervised learning approaches we mentioned above, the EM procedure take advantages of the
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unlabeled data to improved the model. Unfortunately, previous work has shown that the straight forward

applications of EM procedure can drift away from the right model even with a good starting point because

of lack of guidance [Merialdo, 1994].

The Hard (Truncated, Viterbi) EM algorithm In the EM algorithm, the “E-step” of the EM algorithm

needs to estimate the full posterior distribution P (h|xi, θ
t−1), which can be expensive to compute in certain

scenarios. Therefore, in practice, a commonly used variation of the EM algorithm called the hard (truncated)

EM algorithm has been proposed. The algorithm was first proposed by [Neal and Hinton, 1998], where

they refer to this algorithm as “sparse” EM. Instead of calculating full posterior distribution, the hard EM

algorithm only finds a single best structure according to the current model. The hard EM works as follows:

• “E-step”: Find the best assignment ĥi = arg maxh P (h|xi, θ
t−1) using the parameters from previous

iteration θt−1.

• “M-step”: Find the next parameters θt by solving the following objective function

|U|∑
i=1

∑
h∈H(xi)

log(P (xi, ĥi|θ)).

The EM algorithm is in fact very important in this thesis. In Chapter 3, our algorithm can be considered

as an extension of the hard EM algorithm. In Chapter 4, we put various EM frameworks under the same

framework. For more discussions and comparisons between EM and hard EM, please refer to Chapter 4.

Self-training Algorithms While EM is widely used in the community, it is mainly designed for probabilis-

tic generative models. For general discriminative/generative models, which do not need to be probabilistic

models, self-training is a commonly used algorithm for training semi-supervised models in the natural lan-

guage community [McClosky et al., 2006; Daumé III, 2008]. The self-training algorithm can be decompose

into two steps:

• “Prediction step”: Find the best assignment ĥi = arg maxh wT Φ(xi, ĥ) using the weight vector from

previous iteration w.

• “Retraining step”: Find the next weight vector w by training the model on the pseudo labeled data

{(xi, ĥi)}.

The self-training algorithm is indeed closely related to the hard-EM algorithm. When the model is a gener-

ative model, the self-training algorithm reduce to the hard EM algorithm.
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2.5.2 Approaches Related to Domain Specific Knowledge

Due to the problem of lack of guidance in EM, some works have tried to inject knowledge into EM algo-

rithms. One is using the prior knowledge to accurately tailor the generative model so that it better captures

the domain structure. For example, [Grenager et al., 2005] propose Diagonal Transition Models for sequen-

tial labeling tasks where neighboring words tend to have the same labels. This is done by constraining

the HMM transition matrix, which can be done also for other models, such as CRF. However [Roth and

Yih, 2005] showed that reasoning with more expressive, non-sequential constraints can improve the perfor-

mance for the supervised protocol.

A second approach has been to use a small high-accuracy set of labeled tokens as a way to seed and

bootstrap the semi-supervised learning. This was used, for example, by [Collins and Singer, 1999] in infor-

mation extraction. [Haghighi and Klein, 2006] extends the dictionary-based approach to sequential labeling

tasks by propagating the information given in the seeds with contextual word similarity. This follows a con-

ceptually similar approach by [Cohen and Sarawagi, 2004] that uses a large named-entity dictionary, where

the similarity between the candidate named-entity and its matching prototype in the dictionary is encoded

as a feature in a supervised classifier.

2.5.3 Semi-supervised Structural SVM

There has been several large margin frameworks [Zien et al., 2007; Brefeld and Scheffer, 2006] that try

to address the issue of lacking supervision for structural prediction tasks. [Brefeld and Scheffer, 2006]

extend the idea of co-training [Blum and Mitchell, 1998] to structural prediction tasks. They proposed a

joint objective function that learns over labeled data, maximizing the agreement between two views of the

unlabeled data. [Zien et al., 2007] use the idea of transductive learning and apply it to structural prediction

tasks.

2.5.4 Latent Structural SVM

Latent Structural SVM [Yu and Joachims, 2009] is a framework that allows using latent structures in the

structural SVM framework (Eq. (2.12)). While Latent Structural SVM is not designed for semi-supervised

and supervised learning, it is still worth mentioning here because its relationship to our proposed frame-

works. The goal of Latent Structural SVM is to use latent structures h as an intermediate step to improve

the target task (predicting y) performance.

In the Latent Structural SVM, the feature vector is defined over both the latent structure h and the output
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structure y. Its objective function can be written down as follows:

min
w

‖w‖2

2
+ C

∑
i

(
max
y,h

(
∆(yi,y,h) + wT Φ(xi,y,h)

)
−max

h

(
wT Φ(xi,yi,h)

))
, (2.18)

where y represents the output structures and h represents the latent structures. Unlike Structural SVM,

the objective function for Latent Structural SVM is non-convex. For more details please refer to [Yu and

Joachims, 2009]. For more discussions on Latent Structural SVM and our proposed frameworks, please see

Section 6.14.
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Chapter 3

Constraints as Indirect Supervision

The goal of this thesis is to design structural learning frameworks that can take advantage of high level

human knowledge. We first address “structured output” tasks by incorporating prior human knowledge

as constraints [Chang et al., 2007, 2008a,b].

Natural Language Processing (NLP) systems typically require large amounts of labeled data to achieve

good performance. Acquiring labeled data is a difficult and expensive task. Therefore, increasing attention

has been recently given to semi-supervised learning, where large amounts of unlabeled data are used to

improve the models learned from a small training set. The hope is that semi-supervised or even unsuper-

vised approaches, when given enough knowledge about the structure of the problem, will be competitive

with supervised models trained on large training sets. However, in the general case, semi-supervised ap-

proaches give mixed results, and sometimes even degrade the model performance [Nigam et al., 2000]. In

many cases, improving semi-supervised models is done by seeding these models with domain information

taken from dictionaries [Yarowsky, 1995; Collins and Singer, 1999; Haghighi and Klein, 2006].

In many problems, dependencies among output variables have non-local nature, and incorporating

them into the model as if they were probabilistic phenomena can undo a great deal of the benefit gained by

factorization, as well as making the model more difficult to design and understand. For example, consider

an information extraction task where two particular types of entities cannot appear together in the same

document. Modeling mutual exclusion in the scenario where n random variables can be assigned mutually

exclusive values introduces n2 pairwise edges in the graphical model, with obvious impact on training and

inference. Obviously, this is very expensive given that a lot of parameters are being wasted in order to learn

something the model designer already knows. For example, in order to capture such constraints by higher

order HMMs or CRFs, we need to build a T -order model which can consider all connections if there are

T tokens in x. This requires a significant increase in the number of parameters even though we actually

know that all the weights on the links between yi and yj should be −∞ if yi equals to yj . In short, HMMs

and CRFs do not have a way to encode the knowledge directly but only indirectly, by adding more features

or increasing the order of the models [Roth and Yih, 2005]. However, the inference problems in high-order
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models are very expensive and learning a more complex model requires more labeled examples to have

a good performance. Therefore, high order models will have a huge disadvantage when the number of

examples is limited. In short, non-local and first-order relationships can be very difficult to model using

only local features and might require a lot of training examples to achieve good results.

In this chapter, we address the need of having a general framework that allows to encode the knowledge

directly and develop a general learning framework to address this issue. The contributions of the chapter

are as follows:

1. We propose the Constrained Conditional Model (CCM), which provides a direct way to inject prior

knowledge into a statistical model, in the form of constraints.

One advantage of CCMs is that it allows combining simple models with declarative and expressive con-

straints. This is an effective approach to making probabilistic models expressive. Therefore, CCMs

can be considered as a nice interface for incorporating knowledge into off-the-shelf statistical mod-

els without designing a task-specific model. Note that adding constraints to CCMs does not enlarge

the feature space but rather augments the simple linear models. Along with appropriate training

approaches that we discuss later, we need to learn simpler model than standard high order proba-

bilistic models but can still make decisions with expressive models. Since within CCMs we combine

declarative constraints, possibly written as first order logic expressions [Rizzolo and Roth, 2007], with

learned probabilistic models, we can treat CCMs as a way to combine or bridge logical expressions

and learning statistical models. We also discuss how to solve inference problems with expressive

constraints efficiently in Section 3.1.2.

2. Based on the principle introduced by CCMs, we introduce HMMCCM, a constraint-infused Hidden

Markov Model. We demonstrate how to train and test HMMCCM in a principled way and show that

adding little knowledge can improve the model significantly.

Note that by modeling the constraints directly, the inference problem in Eq. (2.1), becomes harder

to solve, compared to the one used by low order HMMs/CRFs. As we show later, such a sacrifice

is usually very rewarding in terms of final performance. In this chapter, we use soft constraints

rather than hard constraints in the constraint driven learning framework. Our definition of the soft

constraints allows us to use beam search to solve the inference problem approximately. Moreover, by

treating constraints and models separately, the constraints do not add any overhead to our learning

algorithm of HMMCCM.
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3. We show that prior knowledge plays a crucial role when the amount of labeled data is limited. We

empirically show that incorporating high-level knowledge via CCMs significantly improves the re-

sults of both supervised learning and semi-supervised learning.

Note that semi-supervised learning results are especially interesting, since we can consider con-

straints as a supervision resource to guide the semi-supervised learning procedure.

Our generalized procedure for semi-supervised learning is called COnstraint-Driven Learning (CODL)

[Chang et al., 2007]. As is often the case in semi-supervised learning, the algorithm can be viewed as a pro-

cess that improves the model by generating feedback through labeling unlabeled examples. Our algorithm

pushes this intuition further, in that the use of constraints allows us to better exploit domain information

as a way to label, along with the current learned model, unlabeled examples. Given a small amount of

labeled data and a large unlabeled pool, our framework initializes the model with the labeled data and

then repeatedly, as shown in Figure 3.1. This way, we can generate better “training” examples during the

Generalized COnstraint-Driven Learning

1. Uses constraints and the learned model to label the instances in the pool

2. Updates the model using newly labeled data/distributions

Figure 3.1: Generalized constrained driven learning algorithm

semi-supervised learning process. While not only is the procedure is intuitively appealing, it can be justi-

fied as an optimization procedure for an objective function. Note this general algorithm can be considered

as an extension to the hard EM algorithm and the self-training algorithm mentioned in Section 2.5.1.

This chapter formally defines CCMs so that it is easier to apply constraints to statistical models in both

supervised and semi-supervised settings. Moreover, we provide a principled justification for the algo-

rithms proposed in [Chang et al., 2007] (with modifications) and obtain better empirical results. Finally,

this chapter includes a wide set of experiments that show the properties of the HMMCCM algorithm and

compares it to other algorithms.

Note that we are not the first to point out the importance of long distance relationships and other ap-

proximated supervised training algorithms have been proposed (See Section 3.5 for more details). How-

ever, we want to stress that in CCM, the notion of constraint is different and much more general. For

example, the CCM framework offers the possibility to separate models (features) and constraints. There-

fore, it is possible to apply constraints to a trained model directly without re-training the model. Moreover,
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such separation is the key of the success of our semi-supervised learning algorithm, which uses constraints

as a form of supervision. We clarify this point later in text.

The rest of the chapter is organized as follows: Section 3.1 formally defines the constrained conditional

models. We introduce an instance of CCMs based on a Hidden Markov Model in Section 3.2. In Section 3.3

we introduce the tasks and the data on which the algorithms will be tested. The experimental results are

presented in Section 3.4. We discuss related work in Section 3.5 and summarize this chapter in Section 3.6.

3.1 Constrained Conditional Model

CCMs target structured prediction problems, where given a point x in an input space X , the goal is to find

a label assignment y in the set of all possible output structures for x, Y(x). For example, in part-of-speech

(POS) tagging, Y(x) is the set of all possible POS tags for a given input sentence x.

Given a set of feature functions Φ = {φi(·)}ni=1, φi : X × Y → R, which typically encode the local

properties of a pair (x,y) (often, the image of φi is {0, 1}), the “score” of a structure y of a linear model can

be represented as

f(x,y) = wT Φ(x,y) =
n∑

i=1

wiφi(x,y).

The prediction function of this linear model is arg maxy∈Y(x) f(x,y).

Constrained Conditional Models provide a general interface that allows users to easily combine domain

knowledge (which is provided by humans) and statistical models (which are learned from the data). In this

chapter, we represent domain knowledge as a (usually small) set of constraints Ψ = {Ψk}mk=1. For each

constraint, we are also provided a function dΨk
: X × Y → R that measures the degree to which the

constraint Ψk is violated in a pair (x,y). While there are different ways to estimate dΨk
, in this chapter, we

define the “violation function” as follows. Let

y[1...i] = (y1, y2, . . . , yi).

be a partial assignment of y. Then

dΨk
(x,y) =

T∑
i=1

Ψ̂k(x;y[1...i]), (3.1)

where Ψ̂k(x;y[1...i]) is a binary function which indicates whether yi violates the constraint Ψk with respect

to a partial assignment y[1...i−1]. Note that for some constraints, the violation cannot be calculated with
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partial assignments. In these cases, Ψ̂k will return 0 to indicate the constraints i is not violated according to

the current partial assignment.

A Constrained Conditional Model can be represented using two weight vectors: the feature weight

vector w and the constraint penalty vector ρ. The score of an assignment y ∈ Y for an instance x ∈ X can

then be obtained by1

fΦ,Ψ(x,y) =
n∑

i=1

wiφi(x,y)−
m∑

k=1

ρkdΨk
(x,y). (3.2)

A CCM then selects the best structure using the inference problem

y∗ = arg max
y∈Y(x)

fΦ,Ψ(x,y), (3.3)

as its prediction.

Note that Eq. (3.2) allows using both “hard constraints” (constraints that should not be violated) and

“soft constraints” (constraints that can occasionally be violated). Assume that the constraint set can be

partitioned into a soft constraint set S and a hard constraint set H (H ∩ S = ∅ and H ∪ S = 	). The set of

“feasible” structures for a given input x is then reduced to

Ȳ(x) = {v | v ∈ Y(x),Ψk(x,v) = 0,∀Ψk ∈ H}

Eq. (3.3) can be rewritten as

arg max
y∈Ȳ(x)

n∑
i=1

wiφi(x,y)−
∑

k:Ψk∈S

ρkdΨk
(x,y). (3.4)

Note that a CCM is not restricted to be trained with any particular learning algorithm. The key goal of

a CCM is to allow combining constraints and models in the testing phase. Similarly to other linear models,

specialized algorithms may need to be developed to train CCMs. Notice also that the left component

in Eq. (3.2) may stand for multiple linear models, trained separately. Unlike standard linear models, we

assume the availability of some prior knowledge, encoded in the form of constraints. When there is no prior

knowledge, there is no difference between CCMs and other linear models.

1Recall that n is the number of features and is typically very large, and m is the number of constraints, typically small.
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3.1.1 Benefits of Separating Constraints and Features

In Eq. (3.2), the constraints term (the second term) appears to be similar to the features term (the first time).

In fact, using constraints or features to express long distance relationships sometimes can be a design choice.

However, it is important to note that both in this work and in many other recent publications [Roth and

Yih, 2004, 2005; Chang et al., 2007; Graca et al., 2007; Bellare et al., 2009; Carlson et al., 2010; Ganchev et al.,

2010], people have demonstrated the importance of separating features and constraints. In this section we

discuss this issue in details.

• Hard constraints vs. features

While we simplified our notation in Eq. (3.2), the constraint term is different from the feature term

because it can be used to enforce hard constraints. Hence, it is necessary to separate constraints and

features.

• Reuse and improving existing models with expressive constraints

It is often expensive to retrain a complicated NLP system. While sometime choosing features or

constraints to express long distance relationships can be a design choice, adding more features often

require expensive retraining. Moreover, in [Roth and Yih, 2004], they propose use constraints to

combine two independent trained models. Note that if we model the long distance constraints with

features, we need to train these two models jointly, which can be much more expensive compared to

training them separately by separating constraints from the features.

• Implications on learning algorithms

Separating expressive constraints from models also impacts the learning performance. Many recent

works have show many benefits of keeping the existing model and treating the expressive constraints

as a supervision resource [Chang et al., 2007; Graca et al., 2007; Bellare et al., 2009; Carlson et al., 2010;

Ganchev et al., 2010]. As we show in this work, using constraints as a supervision resource can be

very effective when there are few labeled examples in the semi-supervised setting.

In the supervised setting, we separate the constraints from features in Eq. (3.2) because the constraints

should be trusted most of the time. Therefore, the penalties ρ can be fixed or handled separately. For

example, if we are confident about our knowledge, rather than learning the {ρj}, we can directly

set them to ∞, thus enforcing the chosen assignment y to satisfy the constraints. There issues are

discussed in details later in the chapter.

• Efficiency
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Another difference between ρ and w is that ρ should always be positive. The reason is that dΨi(x,y) ≥

0 and the assignments that violate the constraints should be punished (See Eq. (3.2)). This allows us

to design an admissible heuristic and speed up exact inference using A∗ search. We cannot have this

nice result when we treat constraints as features. This is of particular importance, since the constraints

could be non-local, therefore efficient dynamic programming algorithms are not applicable.

There are several advantages of using constraints. First, constraints provide a platform for encoding

prior knowledge, possibly expressed as high level predicates. As we will show later, this is especially

important when the number of labeled instances is small. Second, constraints can be more expressive than

features used by the existing model so adding constraints can sometimes prevent us to redesign the model.

Instead of building a model from complex features, CCMs provide a way to combine “simple” learned

models with a small set of “expressive” constraints. Importantly, combining simple models with constraints

often results in better performance. For example, the top-ranking system in the CoNLL 2005 shared task

uses a CCM approach and outperforms many systems built using complex models [Punyakanok et al.,

2005a].

3.1.2 Inference with Constraints

Adding expressive constraints comes with a price – the dynamic programming inference algorithms typ-

ically used in off-the-shelf statistical models can no longer be applied. In this section, we discuss three

different types of inference algorithms that allow solving the inference problem in Eq. (3.3) with expressive

constraints.

Integer Linear Programming

In the earlier related works that made use of constraints, the constraints were assumed to be binary func-

tions; in most cases, a high level (first order logic) description of the constraints was compiled into a set

of linear inequalities, and exact inference was done using an integer linear programming formulation

(ILP) [Roth and Yih, 2004, 2007, 2005; Punyakanok et al., 2005a; Barzilay and Lapata, 2006; Clarke and

Lapata, 2006]. Although ILP can be intractable for very large-scale problems, it has been shown to be quite

successful in practice when applied to many practical NLP tasks [Roth and Yih, 2007].
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A∗ Search

Recall that the inference problem for CCMs is as follows (a copy of Eq.(3.3)):

max
y

fΦ,Ψ(x,y) = max
y

wT Φ(x,y)−
m∑

k=1

ρkdΨk(x,y)

Assume that there exists an efficient dynamic programming algorithm to compute arg maxwT Φ(x,y) with-

out considering the constraints2. This implies that if we ignore the constraints, given a partial label assign-

ment y[1...i], we can efficiently complete the label assignment y[(i+1)...T ] without considering the constraint

penalty, where T represents the total number of “parts” of the output structure. That is, we can solve the

following optimization problem efficiently and exactly:

h(x,y[1...i]) = max
y[(i+1)...T ]

wT Φ(x,y[(i+1)...T ] | y[1...i]) (3.5)

Note that in the above equation, y[1...i] is fixed and we search over the rest of an assignment y[(i+1)...T ] to

complete y = y[1...i] · y[(i+1)...T ]. The value wT Φ(x,y[(i+1)...T ] | y[1...i]) is the partial score for the y[(i+1)...T ]

with the given prefix and hence,

wT Φ(x,y[1...i] · y[(i+1)...T ]) = wT Φ(x,y[1...i]) + wT Φ(x,y[(i+1)...T ] | y[1...i])

We can perform this factorization because of the assumption that the feature function can be decomposed.

We also define g as the function that returns the score (with constraint penalties) of the current partial

assignment y[1...i]:

g(x,y[1...i]) = wT Φ(x,y[1...i])−
m∑

j=1

ρjdΨj (x,y[1...i]) (3.6)

Next, we show that using g and h, the A∗algorithm can always return the optimal solution of the CCM

inference problem.

Theorem 1. Assume that ρk ≥ 0 for k = 1 . . .m (that is, we always punish the assignment that violates the

constraints), and in A∗ algorithm, we use h(x,y[1...i]) (Eq. (3.5)) as our heuristic function and use g(x,y[1...i])

(Eq. (3.6))to obtain the score of the current partial assignment (that is, we use g(x,y[1...i]) + h(x,y[1...i]) as an

estimation of the final score). Then, the A∗ algorithm will always return the optimal solution of Eq (3.2), the CCMs

2This is the case for virtually all off-the-shelf structured statistical models, since their feature function Φ(x,y) can be decomposed.
For example, if the task is a sequential tagging task and the feature function only captures the relationship of consecutive tokens, there
exists an efficient Viterbi algorithm that can return the optimal sequence.
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inference problem.

Proof. We prove this by showing that h is an admissible heuristic function. Since it is known that ρk ≥ 0,

for k = 1 . . .m and the definition of Eq (3.2),

max
v,v[1...i]=y[1...i]

fΦ,Ψ(x,v) ≤ g(x,y[1...i]) + h(x,y[1...i])

Hence, we never underestimate the final score given the current partial assignment y[1...i]. Given that we

are solving a maximization problem, h is a admissible heuristic function for the A∗algorithm.

Approximated Search

While the A∗ algorithm is technically sound, in this chapter, we use beam search to approximate the solu-

tion for the inference problem in Eq. (3.3). The advantage of using this procedure is that the memory usage

of beam search is fixed while the memory usage of the A∗ algorithm can be potentially big. We found that

the approximated inference procedure performs very well in our experiments. The comparison of the three

proposed inference algorithms on other domains is an interesting issue to address in future research.

3.2 Learning Constrained Conditional Models Based on HMM

In this section, we demonstrate how to apply the idea of CCMs to a commonly used Hidden Markov

Model (HMM) and propose HMMCCM. The new model naturally incorporates the constraints into HMM

and makes it a very powerful model. In Section 3.1.2, we show that while the constraints introduce some

overhead to the inference problem, we can still solve it efficiently in practice. Interestingly, constraints do not

add any overhead to our learning algorithm of HMMCCM.

For HMM, the readers can go to Section 2.2.2 to review the details and its relationships to linear classi-

fiers. The rest of this section is organized as follows: we first review show how to derive the supervised

training algorithm for HMMCCM. In the second part of this section, we describe an instantiation of CoDL, a

semi-supervised learning algorithm for CCMs and apply it to HMMCCM.

3.2.1 HMMCCM: Supervised Training

Assume that we have m constraints Ψ1,Ψ2, . . . ,Ψm, and define P (Ψ) as the probability that constraint Ψ is

violated. In HMMCCM, in order to combine statistical models and constraints (Eq. (3.2)), we adopt the idea

of “product of experts” [Hinton, 1999], where the HMM is the expert that predicts the probability of the
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label assignment, and the constraints component downgrades solutions that violate the constraints. This

defines a new scoring function:

Ω(xj ,yj) = HMM Probability× Constraint Violation Score

= PΘ(xj ,yj)
m∏

k=1

Tj∏
i=1

P (Ψk)ck,i
j P (¬Ψk)1−ck,i

j ,

(3.7)

where Θ are the parameters of the HMM, ck,i
j is a binary variable equal to 1 if the label assignment to yi

j

violates the constraint Ψk with respect to partial assignment yj,[1...i−1], and Ψk indicates the event that the

constraint Ψk is violated. It is important to notice that the constraint violation score captures the “degree of

violation” by counting the penalty multiple times.

The new scoring function Ω(xj ,yj) augments the original HMM with the constraints we have. It is

important to notice that Eq. (3.7) is a CCM. log Ω(xj ,yj) can be rewritten in the form of (3.2) as follows:

log Ω(xj ,yj) ≡ f̂w,ρ(xj ,yj)

= wT Φ(xj ,yj) +
m∑

k=1

log
P (Ψk)

P (¬Ψk)

Tj∑
i

ck,i
j + c

= wT Φ(xj ,yj)−
m∑

k=1

ρkdΨk
(xj ,yj) + c

(3.8)

where ρk = − log P (Ψk)
P (¬Ψk) , dΨk

(xj ,yj) =
∑Tj

i ck,i
j and c is a constant which does not affect the inference

results. Note that the definition of the dΨk
(xj ,yj) matches the one we defined earlier in Eq. (3.1).

To train HMMCCM, we need to find w and ρ that maximize the new scoring function

l∑
j=1

log Ω(xj ,yj) =
l∑

j=1

f̂w,ρ(xj ,yj) (3.9)

It is worth noting several things. First, despite the fact that we use probabilities extensively in the scoring

function, the function in Eq. (3.9) itself does not represent log likelihood of the dataset, since the augmented

model does not have likelihood interpretation. Nevertheless, it is still a smooth concave function and

its optimal value can be determined by setting the gradient to zero. Algorithm 7 describes the training

procedure in detail. Interestingly, the solution resembles the standard HMM model. In fact, we can estimate

the prior probability, transition probability and emission probability in exactly the same way as in HMM.
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For the constraint violation part, a simple derivation shows that the optimal value for P (Ψk) is obtained by

P (Ψk) =

∑l
j=1

∑Tj

i ck,i
j∑l

j=1 Tj

. (3.10)

Note that the training procedure is “inference-free” in the sense that it is only based on partial counting.

We do not need to solve any inference problems during the training but apply the constraints only at the

test phase. In Section 3.1.2 we discuss several alternatives for efficient approximate and exact solutions to

the inference problem. This completes the machinery for supervised training and inference in HMMCCM.

Algorithm 7 Supervised Learning HMMCCM. The algorithm optimizes the objective function∑l
j=1 log f̂w,ρ(xj ,yj) defined in Eq. (3.9).

Require: L: labeled training set, {Ψk}mk=1 : a set of constraints
1: Calculate Θ, the parameters of the HMM model with traditional HMM training.
2: Obtain w by applying the transformation on Θ described in [Roth, 1999; Collins, 2002]
3: for k = 1 . . .m (constraint index) do
4: for j = 1 . . . |L| (training instance index) do
5: for i = 1 . . . Tj (token position) do
6: ck,i

j ← Ψ̂k(xj ; y
j
1, . . . , y

j
i )

7: end for
8: end for
9: end for

10: P (Ψk) =
Pl

j=1
PTj

i ck,i
jPl

j=1 Tj
.

11: ρk = − log P (Ψk)
P (¬Ψk) .

12: return w, ρ

3.2.2 HMMCCM: Semi-Supervised Learning

Acquiring labeled data is a difficult and expensive task. Therefore, an increasing attention has been recently

given to semi-supervised learning, where large amounts of unlabeled data are used to improve models

learned from a small training set [Yarowsky, 1995; Blum and Mitchell, 1998; Collins and Singer, 1999; Thelen

and Riloff, 2002; Haghighi and Klein, 2006].

Before we discuss unsupervised and semi-supervised training in HMMCCM, it is useful to introduce

some new notation. Throughout this section, we assume there is only one unlabeled observed input ex-

ample, xU , with associated unobserved output sequence h for the sake of simplicity. When we use some

model or oracle to assign values to h, we call the pair (xU ,h) pseudo-labeled data. Also, to avoid notation

overload, we assume that we have one labeled and one unlabeled instance. This allows us to drop the sums

of the form
∑

j P (xj ,yj) and write instead P (x,y). We note that this is done without loss of generality and

for notational convenience only.

45



Traditionally, unsupervised and semi-supervised learning are done with the Expectation Maximization

(EM) algorithm [Dempster et al., 1977; Borman, 2004]. Given only the unlabeled data xU , the EM algorithm

is an iterative method for finding the θ which maximizes the objective function3

θ∗ = arg max
Θ

log PΘ(xU ) = arg max
Θ

log
∑

h

PΘ(xU |h)PΘ(h)

Unfortunately, while it is possible to estimate the full distribution P (h|xU ) when the model only cap-

tures “local decisions”, it is very difficult to estimate this distribution when the long distance, expressive

constraints are used 4.

In order to alleviate the difficulty of estimating the full distribution in the presence of constraints, we

maximize the function log Ω(xU ,h) over both the model parameters (w, ρ) and the label assignment h,

which is equivalent to solving the problem:

(w∗, ρ∗,h∗) = arg max
w,ρ,h

log Ω(xU ,h) = arg max
w,ρ,h

f̂w,ρ(xU ,h)

In contrast to EM, which only maximizes the likelihood of the unlabeled data by marginalizing hidden

variables, we search for the best pseudo-label h and the model parameters (w, ρ) at the same time.

Our objective function can be optimized as follows (with initial w and ρ):

1. (Inference) Fix w and ρ, and optimize h.

The solution for h with fixed w and ρ is coming from Eq. (3.8) and can be found using the algorithms

described in section 3.1.2. In other words, h is the solution of the following optimization problem:

h← arg max
h

f̂w,ρ(xU ,h) = arg max
h

wT Φ(xU ,h)−
m∑

k=1

ρkdΨk
(xU ,h),

2. (Learning) Fix h, and optimize w and ρ.

The solution of optimizing w and ρ can be obtained by applying Algorithm 7 on the pseudo-labeled

data (xU ,h).

By the definition of Eq. (3.8), both steps are guaranteed to increase the objective function. Again, note

that this procedure has an advantage over EM: it does not need to compute the conditional probability

distribution, but only to get the best assignment h for the example xU .

3Recall that θ can be rewritten in the form of CCMs using w and ρ.
4[Ganchev et al., 2010] proposed to use expectation constraints to resolve this issue. See Section 3.5 for more discussions.
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In HMMCCM, the weight vector and the penalty vector resemble the probability distributions defined in

section 3.2.2 so they can be estimated easily. As for EM, the objective function is not convex. Therefore, it is

essential to have a good starting point.

Since a good starting point is necessary, we move our focus to “semi-supervised learning” and use

a small amount of labeled examples to initialize the weight vector. One key difference between semi-

supervised learning and unsupervised learning is that we need to balance labeled training data and unla-

beled training data in order to have the best results. It is known that traditional semi-supervised training

can degrade the learned model’s performance [Nigam et al., 2000; Cozman et al., 2003]. [Nigam et al., 2000]

has suggested balancing the contribution of labeled and unlabeled data to the parameters. In our algorithm,

we use a similar intuition, but instead of weighting data instances, we introduce a smoothing parameter β

which controls the convex combination of the models induced by the labeled and unlabeled data.

Algorithm 8 provides a pseudocode for our semi-supervised algorithm called CoDL (COnstraint-Driven

Learning) in [Chang et al., 2007]. We note that CoDL is a general procedure, and as such, can and will be

applied to models other than HMMCCMin later sections.

As is often the case in semi-supervised learning, the algorithm can be viewed as a process that improves

the model by generating feedback through labeling unlabeled examples. Our algorithm pushes this intuition

further, in that the use of constraints allows us to better exploit domain information as a way to label, along

with the current learned model, unlabeled examples. Given a small amount of labeled data and a large

unlabeled pool, our framework initializes the model with the labeled data and then repeatedly:

1. Uses constraints and the learned model to label the instances in the pool (line 5)

2. Updates the model by newly labeled data (line 8).

This way, we can generate better “training” examples during the semi-supervised learning process. Note

that line 8 also performs the linear combinations among models with the parameter β.

CoDL uses constraints as prior knowledge in the semi-supervised setting. We later show that prior

knowledge plays a crucial role when the amount of labeled data is limited. CoDL makes use of CCMs,

which provides a good platform to combine the learned models and prior knowledge. It is very important

to note that CoDL can naturally extend as a general purpose semi-supervised learning algorithm for any

CCM model.

Relations to EM algorithms Recall that we review EM and hard EM algorithms in Section 2.5.1. It is

interesting to note that in the absence of constraints, CoDL reduces to “hard-EM”, which only finds the

best assignment in every step. To further illustrate the difference between CoDL, “hard-EM” and (soft) EM,
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Algorithm 8 Constraint driven learning algorithm, which uses constraints to guide semi-supervised learn-
ing. Note that this version is a specification of the general CoDL algorithm (Figure 3.1).
Require: L: labeled training set, U: unlabeled dataset N : learning cycles

β : balancing parameter with the supervised model,
{C} : a set of constraints,
learn(.) : a supervised learning algorithm

1: Initialize (w, ρ) = (w0, ρ0) = learn(L).
2: for N iterations do
3: T = ∅
4: for x ∈ U do
5: ĥ← arg maxy wT Φ(x,y)−

∑m
k=1 ρkdΨk

(x,y)
6: T = T ∪ {(x, ĥ)}
7: end for
8: (w, ρ) = β(w0, ρ0) + (1− β)learn(T)
9: end for

consider the problem of unsupervised part-of-speech tagging. In (soft) EM, we do not find the most likely

label assignment given the data as part of the training procedure. On the other hand, when estimating the

model parameters, we smoothed over all possible label assignments weighted by their likelihood. When we

run “hard-EM”, we get the most likely label assignment as part of the procedure. Like “hard-EM”, CoDL

also finds only the best assignment during the learning processing. However, unlike “hard-EM”, CoDL

makes use of constraints to guide the learning process. More comparisons between CoDL, “hard-EM” and

EM will be discussed in Section 3.4.3.

3.2.3 HMMCCM versus HMMCCM
∞

We would like to stress again that HMMCCM is just one algorithm of applying CCM models on Hidden

Markov Models. One simple variation is to use “hard constraints” in CCM (called HMMCCM
∞ , given that

the penalty is infinity). The advantage of using hard constraints in CCM is that we do not need to learn

the penalty vector ρ, and the learning algorithm for supervised setting is exactly the same as HMM. The

semi-supervised learning algorithm for HMMCCM(Algorithm 8) can be directly applied to HMMCCM
∞ . The

disadvantage of HMMCCM
∞ is that it always enforces the constraints, which can in fact be violated in the

gold data. See Section 3.4.5 for more comparisons between these two CCM approaches.

3.3 Tasks and Data

In this section we introduce two information extraction problems which we used to evaluate the models

and ideas presented in this chapter. In both problems, given input text, a set of pre-defined fields is to be

identified. Since the fields are typically related and interdependent, these kinds of applications provide
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(a) [ AUTHOR Lars Ole Andersen . ] [ TITLE Program analysis and specialization for
the C programming language . ] [ TECH-REPORT PhD thesis , ] [ INSTITUTION DIKU ,
University of Copenhagen , ] [ DATE May 1994 . ]

(b) [ AUTHOR Lars Ole Andersen . Program analysis and ] [TITLE specialization for the
] [EDITOR C ] [ BOOKTITLE Programming language ] [ TECH-REPORT . PhD thesis , ] [
INSTITUTION DIKU , University of Copenhagen , May ] [ DATE 1994 . ]

Figure 3.2: Error analysis of a HMM model. The labels are underlined to the right of each open bracket. The
correct assignment is shown in (a). The predicted assignment (b) violates some constraints, most obviously,
the punctuation marks.

Citations
Start The citation can only start with author or editor.
AppearsOnce Each field must be a consecutive list of words,

and can appear at most once in a citation.
Punctuation State transitions must occur on punctuation marks.
BookJournal The words proc, journal, proceedings, ACM

are JOURNAL or BOOKTITLE.
Date Four digits starting with 20xx and 19xx are DATE.
Editors The words ed, editors correspond to EDITOR.
Journal The word journal are JOURNAL.
Note The words note, submitted, appear are NOTE.
Pages The words pp., pages correspond to PAGE.
TechReport The words tech, technical are TECH REPORT.
Title Quotations can appear only in titles.
Location The words CA, Australia, NY are LOCATION.

Table 3.1: The list of constraints used in the citations domain. Some constraints are relatively difficult to
represents in traditional models.

a good test case for an approach like ours (the data for both problems is available at: http://L2R.cs.

uiuc.edu/˜cogcomp/Data/IE.tgz.5).

The first task is to identify fields from citations [McCallum et al., 2000]. The data originally included 500

labeled references, and was later extended with 5,000 unannotated citations collected from papers found

on the Internet [Grenager et al., 2005]. Given a citation, the task is to extract the fields that appear in the

given reference. There are 13 possible fields including author, title, location, etc.

To gain an insight into how the constraints can improve the model accuracy and guide semi-supervised

learning, assume that the sentence shown in Figure 3.2 appears in the unlabeled data pool. Part (a) of

the figure shows the correct labeled assignment and part (b) shows the assignment labeled by a HMM

trained on 30 labeled samples. However, if we apply the constraint that state transition can occur only

on punctuation marks, the same HMM will result in the correct labeling (a). Therefore, by adding the

improved labeled assignment we can generate better training samples during semi-supervised learning. In

fact, the requirements on punctuation marks are only some of the constraints that can be applied to this

5Note that we used different training-testing split in our experiments than [Grenager et al., 2005].
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Advertisements
FieldLength Each field must be at least 3 words long.
Punctuation State transitions can occur only on punctuation

marks or the newline symbol.
Address The words address, carlmont, st, cross are ADDRESS.
Available The words immediately, begin, cheaper are AVAILABLE.
Contact The words *Phone*, *Email* are CONTACT.
Features The words laundry, kitchen, parking are FEATURES.
Neighborhood The words close, near, shopping are NEIGHBORHOOD.
Photos The words http, image, link are PHOTOS.
Rent The words $, *Money* are RENT.
Restrictions The words smoking, dogs, cats are RESTRICTIONS.
Roomates The words roommates, respectful, drama are ROOMMATES.
Size The words sq, ft, bdrm are SIZE.
Utilities The words utilities, pays, electricity are UTILITIES.

Table 3.2: The list of constraints used in the advertisements domain. Some constraints are relatively difficult
to represents in traditional models. *Phone*, *Email* and *Money* are tokens corresponding to phone
numbers, email addresses and monetary units, which were identified in text using regular expressions.
This preprocessing was done before applying any training algorithms.

problem. The set of constraints we used in our experiments appears in Table 3.1. Note that some of the

constraints are non-local and are very intuitive for people, yet it is very difficult to inject this knowledge

into most models.

The second problem we consider is extracting fields from advertisements [Grenager et al., 2005]. The

dataset consists of 8,767 advertisements for apartment rentals in the San Francisco Bay Area downloaded

in June 2004 from the Craigslist website. In the dataset, only 302 entries have been labeled with 12 fields,

including size, rent, neighborhood, features, and so on. The data was preprocessed using regular expressions

for phone numbers, email addresses and URLs. The list of the constraints for this domain is given in Ta-

ble 3.2. We implement some global constraints and include unary constraints which were largely imported

from the list of seed words used in [Haghighi and Klein, 2006]. We slightly modified the seed words due to

differences in pre-processing.

3.4 Experimental Results

We empirically verify the effectiveness of combining constraints and statistical models in this section. The

experiments are designed to answer the following series of research questions.

(1) How important is it to add knowledge into statistical models? More specifically:

• How does HMMCCM perform compared to the original HMM?
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Citations
# Labeled Supervised Semi-Supervised
Samples HMM HMMCCM HMM HMMCCM

5 58.48 71.64 ( 31.69 %) 64.55 77.65 ( 36.96 %)
10 63.37 75.44 ( 32.94 %) 69.86 81.51 ( 38.67 %)
20 70.78 81.15 ( 35.49 %) 75.35 85.11 ( 39.61 %)
300 86.69 93.92 ( 54.29 %) 87.89 94.32 ( 53.07 %)

Advertisements
5 53.90 61.16 ( 15.74 %) 60.75 70.79 ( 25.58 %)
10 61.21 68.12 ( 17.80 %) 66.56 75.40 ( 26.42 %)
20 67.69 72.64 ( 15.32 %) 71.36 77.56 ( 21.63 %)
100 76.29 80.80 ( 19.02 %) 77.38 82.00 ( 20.40 %)

Table 3.3: The impact of using constraints for supervised and semi-supervised learning (generative HMM).
Note that while semi-supervised HMMs performs much better than supervised HMMs, using constraints
still improves the semi-supervised HMMs significantly. The numbers in the brackets denote error reduction
over similar algorithm without constraints.
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Figure 3.3: The utility of constraints in semi-supervised setting.
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• How efficient is it to use constraints as a supervision resource?

Note that these two questions address different aspects of using constraints in CCMs. The first question

addresses the amount of improvement obtained by adding constraints. The second question, on the other

hand, addresses the issue of using constraints as a supervision resource compared to labeling examples.

(2) How do our CCM training algorithms compare against other algorithms?

• Comparisons between EM, hard EM and the CoDL algorithm.

• How is the CCM approach compared to other approaches?

First, we ask the question about what are the benefits of using CoDL as opposed to the standard EM and

hard EM algorithms. We then compare CoDL to other approaches of encoding long distance relationships.

Note that we can often design a heavily engineered and tailored model for a specific task. However, this

process is challenging and time consuming, and must be repeated for every new task. On the other hand,

CCMs provide an easy to use model-specification language that works for all tasks. Therefore, we compare

HMMCCM to several tailored models to see if our general purpose model can match the performance of a

specifically designed model. It is natural to expect that a tailored model will perform at least as well as

CoDL, however if CoDL matches the performance of a tailored model, we consider it a success. We also

compared the results to the recent approaches of using expectation constraints [Bellare et al., 2009].

(3) What are the properties of CCMs and CoDL? These questions include:

• In HMMCCM, do we need to learn the penalty vector ρ?

• What is the utility of each constraint in our tasks?

• In CoDL, how important it is to tune β?

Among all of the research questions, the most important one is to verify whether adding constraints

can improve the models or not. Again, while CCMs are not the only way to incorporate constraints, they

provide a nice interface so that users do not need to invent a tailored model for every task.

The results reported in this and the following sections are token-level accuracies, which were averaged

on 5 randomly generated training sets (each round with different labeled set). We tested on a fixed test

set and a fixed development set, both containing 100 labeled samples. When semi-supervised learning

algorithms are used, we use 1000 held-out unlabeled examples as part of our training data in both domains.

This setting was first used by [Grenager et al., 2005; Chang et al., 2007; Haghighi and Klein, 2006] and then
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used by many other works. In the semi-supervised setting we ran 5 iterations of CoDL. The reason that we

choose to run only 5 iterations is that our semi-supervised learning procedure usually converges very fast

(See Section 3.4.3 for more details).

3.4.1 How does HMMCCM perform compared to the original HMM?

To see the impact of using constraints, we compare HMM and HMMCCMin Table 3.3. For our HMM im-

plementation, we use the standard partial counting approach to train the supervised model and use the

hard EM algorithm to train the semi-supervised model. For more discussions between hard EM, EM and

HMMCCM, please refer to Section 3.4.3. For both HMM and HMMCCM, the parameter β was set to 0.1 for

both approaches. We also ran 5 iterations for the hard EM algorithm. The effect of applying constraints is

significant: for example, when there are only 5 labeled examples, the constraints push the accuracy from

58% to 71% in citation domain and from 53% to 61% in advertisement domain. The results for more data

points are shown in Figure 3.3.

In the semi-supervised setting, adding constraints improves the HMM models more dramatically. One

interesting result (see Table 3.3) is that with small amount of labeled data, the benefit of applying con-

straints is greater in the semi-supervised setting than that in the supervised setting. That is, with 5 labeled

samples, in the advertisements domain, applying constraints in the supervised setting reduces the error

rate by 15.47% while applying constraints in the semi-supervised setting reduces the error rate by 25.58%.

Similarly, on the citations domain, applying the constraints reduces the error rate by 31.69% in the super-

vised setting, while in the semi-supervised setting, the error rate decreases by 36.96%. This result highlights

the utility of using constraints in semi-supervised setting.

While with small amounts of labeled data, the majority of improvement comes from guiding semi-

supervised learning with constraints, the situation is reversed when more labeled data is available. In

this scenario, the parameters of the basic model are learned fairly well and semi-supervised learning can-

not improve them further. In this case, most of the improvement comes from applying the constraints,

while the utility of semi-supervised learning is limited. Nevertheless, for the advertisements domain, semi-

supervised learning with constraints outperforms the supervised protocol with constraints by 1.2% (82.00

versus 80.80) even when 100 labeled samples are available.

3.4.2 How efficient is it to use constraints as a supervision resource?

We would like to view the results in the previous section from a different perspective: we can acquire

knowledge either by adding constraints or adding more labeled samples. Here we view the “constraints”
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Figure 3.4: Using constraints as supervision resource. Left: In citations domain, with 25 labeled citations,
our semi-supervised algorithm performs competitively to the supervised version trained on 300 samples.
Right: In ads domain. Note that in semi-HMM(CoDL), we train the HMM model with CoDL, but do not
apply the constraints in the testing phase. The goal of this experiment is to see how well can CoDL guide
the statistical component of the CCMs (in this case, the statistical component is HMM). The superior per-
formance of semi-HMM(CoDL) shows that CoDL indeed can successfully guide the HMM.

as a supervision resource rather than a part of the models and examine the utility of adding constraint as

opposed to adding more labeled data.

The results in Table 3.3 clearly suggest that adding constraints is more efficient than adding labeled

samples. Note that the model driven by constraints and 20 labeled samples outperforms the traditional

HMM trained with 100 labeled samples on the advertisements domain and is only slightly worse compared

to the traditional HMM trained with 300 labeled samples on the citations domain.

Figure 3.4 strengthens the claim of using constraints as a supervision resource. The left figure shows

that in the citations domain, the semi-supervised HMMCCMachieves with 25 labeled samples similar per-

formance to the supervised version without constraints with 300 labeled samples. The right figure distin-

guishes the impact constraints made in the training phase and in the testing phase. Semi-HMM(CoDL)

represents the results where we train the HMM model with CoDL but do not apply the constraints in the

testing phase. The goal of this experiment is to see how well can CoDL guide the statistical component of

the CCMs (in this case, the statistical component is HMM). Semi-HMM(CoDL) and HMM have the same

expressivity, but the former is trained with constraints (using CoDL) while the latter is trained without us-

ing constraints. The superior performance of semi-HMM(CoDL) shows that CoDL indeed can successfully

guide the HMM. This demonstrates the value of constraints as an additional supervision resource.

In other words, injecting constraints into the model requires design effort, but we believe that the in-

creased expressivity of the model is well worth the effort. For example, applying constraints to the basic

54



HMM trained on 300 labeled samples, improves the accuracy from 86.66% to 94.03%. We wanted to get a

rough estimate on the number of additional labeled samples that are needed to achieve similar performance

with the traditional HMM. Since the performance of the semi-supervised model on the citations domain

is 94.51%, we assume that the labels assigned to the unlabeled examples are fairly accurate. Therefore, we

used our final model to label the unlabeled data and appended it to the training set. This way, we had 1300

labeled samples, which we used to train an HMM without constraints. The resulting accuracy was 88.2%,

still far from 94.51%.

Moreover, when we trained the HMM on the training and the test set (400 labeled samples altogether),

the resulting accuracy was 95.63%. That is, even after seeing the test samples, the HMM does not have the

expressivity to learn the true concept. On the other hand, when the constraints are applied, the accuracy

goes up to 99.22%. Therefore, we speculate that the basic HMM is simply unable to capture the expressive

declarative aspects of the problem, no matter how much labeled data is available.

3.4.3 Comparisons between EM, hard EM and the CoDL algorithm

Expectation Maximization is the standard semi-supervised learning algorithm for generative models. In

Section 3.2.2 we showed that our semi-supervised learning algorithm has an objective function which is

different from that of EM, and very similar in spirit to hard-EM, which only find the best assignment instead

of finding the full posterior distribution. In fact, when constraints are not used, our learning procedure is

identical to hard-EM. The difference between EM and hard-EM is that the former requires to predict a

full posterior distribution according to the parameters, while the latter one only requires finding the best

assignment. It is important to note that when hard constraints are used, it is very difficult to calculate

the distribution P (y|x) because of the long distance relationships. Note that one can relax constraints by

transforming them into expectation constraints and make calculating posterior tractable [Ganchev et al.,

2010]. Please see the discussion in Section 3.5 for more details. In Section 3.4.4, we compare our algorithm

to published results of a framework called alternating projections (AP), which uses expectation constraints

in an EM-like algorithm.

In this section, we compare three approaches: EM, hard-EM and semi-HMMCCM. Note that the differ-

ence between hard-EM and semi-HMMCCM is the use of the constraints. The experimental results of using

5 labeled examples are in Figure 3.5. For all of the approaches, we put more weight on the labeled data and

less weight on the unlabeled data (β = 0.9). Putting more weights on the supervised model helps all three

approaches.

First, in our experiments, we find that the accuracy of the EM approach degrades as the number of
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Figure 3.5: The testing accuracy vs. number of iterations of semi-supervised learning in the citations and
ads domain with 5 labeled examples. Note that the difference between hard-EM and semi-HMMCCM is the
usage of the constraints. See the text for more discussion.

iterations grows in Figure 3.5. While EM tries to maximize the log likelihood of the observed variables,

it does not necessary mean that the model will get better performance as the number of the iterations

grows [Liang and Klein, 2008]. This observation is consistent with [Merialdo, 1994; Liang and Klein, 2008;

Collins-thompson, 2009]. Therefore, in our experiments, we find that while the EM approach can be better

than the hard-EM approach (see Figure 3.5(b), number of iterations equals to 5.), the hard-EM approach is

generally more stable as the number of iterations grows. In fact, we hardly see any change for the hard-EM

approach after 5 iterations, and this is the reason why we choose to run only 5 iterations for the semi-

supervised learning algorithms.

Recall that Algorithm 8 is similar to the hard-EM procedure but allows using constraints. Figure 3.5

shows that the semi-HMMCCM approach is significantly better than both EM and hard-EM. Figure 3.5 also

demonstrates that it is important to use constraints in the semi-supervised learning algorithms when the

size of the labeled data is small.

3.4.4 How is the CCM approach compared to other approaches?

In this section, we compare the proposed approach to other existing approaches. First, we compare to a

“tailored model” with a semi-CRF model [Sarawagi and Cohen, 2004], which integrates the long distance

relationships and local relationships together in one model. Second, we compared CCM to alternating pro-

jection (AP) framework [Bellare et al., 2009], which can be considered as a discriminative special case for the

Posterior Regularization framework [Ganchev et al., 2010]. Note that the AP framework is not a “tailored
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model” given that the AP framework also keeps their baseline model and the constraints separately.

Compared to CRF and Semi-CRF We have seen that constraints allow us to capture the properties of

the problem which HMM cannot. However, it can be argued that we can modify a HMM model with

certain amount of work. For example, if we segment the text on punctuation marks, and use a multino-

mial emission model for each state, we can capture the “transition on punctuation marks” constraint. The

question is whether such a tailored model will perform significantly better than an off-the-shelf HMM with

our constraints. Before we go into further discussion, we note that an HMM cannot be tailored to capture

all the constraints, for example the constraint “each field can appear only once” cannot be injected into

an HMM model by tailoring segmentation, emission and transition components. Also, we argue that it is

significantly more time consuming to engineer and implement a tailored model (particularly with semi-

supervised training) than to take an off-the-shelf model and downweight the output space with constraint

violation penalties. Moreover, the tailored model we consider in this section can also be augmented with

additional declarative constraints. In fact, the tailored model can be considered as an instance of CCMs,

but with a tailored way to inject the constraints. Therefore, if the more general way of injecting constraints

which we propose in this chapter works competitively to a tailored model, we consider this a success for

CCMs.

We choose Semi-Markov CRF (semi-CRF) [Sarawagi and Cohen, 2004] as our tailored model competitor.

Semi-CRF operates on a segment level rather than on a token level. That is, we define a segmentation to

be s = (s1, . . . , sT ) where each si (1 ≤ i ≤ T ) is a triple (ti, ui, li) with ti denoting the segment beginning,

ui the segment end, and li - the assigned label. Training a semi-CRF involves finding the weights, and

inference involves finding the segmentation which optimizes the following function:

P (s|x,W ) =
1

Z(x)
expwT Φ(x,s)

where x is the input sequence, s is the segmentation, Φ(x, s) are the features extracted from the segmenta-

tion s of x, and Z(x) =
∑

s′ expwT Φ(x,s′).

This allows the model to extract segment-level features, such as string edit distance to a multi-token

dictionary of entities, and an average field length. Semi-CRFs exploit the fact that in many applications,

adjacent tokens take the same label, an assumption that indeed holds on our data as well. For our problems,

semi-CRFs have an attractive quality– they allow to inject segment-level features like “segment length” and

“segment ends on a punctuation mark.” Another attractive property of semi-CRFs is that the computational

penalty paid for adding the segment-level expressivity when compared to first-order CRF is linear in L, the
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Training semi- semi-
Instances HMM HMMCCM CRF CRF CRF+

5 58.48 63.68 51.43 50.69 60.14
10 63.37 66.88 54.61 50.38 62.51
20 70.78 77.52 63.92 62.96 72.22

300 86.69 93.35 89.09 92.46 94.60

Table 3.4: Comparison between HMMCCMand tailored models citations domain. Also note that semi-CRF
is a supervised learning algorithm and semi-CRF+ use extra features such as the segmentation length. Also
note that in this table, both HMMCCM and semi-CRF only use the “Punctuation” constraint and all the other
models do not use any constraint. We only show the results for the citation domain, because we could not
tune semi-CRF to perform competitively on the advertisements domain using the same features.

maximal segment length. We stress that there are important differences between semi-CRF (which tailors

the training and inference to accommodate segment-level features), between order-L CRF and between

CRF with constrained output space. The comparison of the models is outside the scope of this chapter, the

interested reader is referred to [Sarawagi and Cohen, 2004] and [Roth and Yih, 2005].

Semi-CRFs were originally proposed for the problem of named entity recognition [Cohen, 2004; Sarawagi

and Cohen, 2004] with significant performance gains due to the ability of the model to capture inexact

segment-level string matching to gazetteers. The computational penalty is high – the maximal length of

a named entity was assumed to be 4, so the inference for semi-CRF is 4 times slower than for token-level

first order CRF. In our problems, however, the maximum field length for citations was 100 tokens, and the

maximum field length for the advertisements was 200 tokens, making the training and the inference of the

model prohibitively slow.

Therefore, we compared the behavior of the competing models with a single constraint - “transition on

punctuation marks.” This constraint is readily injected into the semi-CRF by adding the feature indicating

whether a segment ends with punctuation mark. We compared the following models: HMM, HMMCCM,

CRF and semi-CRF. The HMM and the CRF models come without constraints. HMMCCMand semi-CRF use

a single constraint- “transition on punctuation marks.” The default implementation of semi-CRF makes

use of multiple additional features, including token normalization, token prefixes, suffixes, whether the

token contains only digits, and also, most importantly - the segment length. To make a fair comparison,

we removed most of the features, and used the same token-level features as in HMM. However, we were

curious to see how much the segment length feature can improve the performance, particularly since it

comes built in with the tailored model design. Therefore, we have 2 flavors of semi-CRFs: semi-CRF and

semi-CRF+, one with and one without the segment length feature.

The results are summarized in Table 3.4. We note that CRF is a discriminative model, therefore, as it

is often the case, it performs worse than the generative model (HMM) when there is little training data
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and outperforms the HMM when a lot of training data is available [Ng and Jordan, 2001]. Furthermore,

semi-supervised training in discriminative models is substantially harder. We also note that the injection

of constraints in the generic way proposed in the CCM framework improves the HMM performance from

86.66 to 93.35 with 300 labeled samples. Injecting the constraint “state transitions can occur only on punc-

tuation marks” by tailoring CRF improves the performance from 89.09 for CRF to 92.46 for semi-CRF, and

including the additional feature of segment length in semi-CRF+ further improves the performance to 94.60

on the citation domain with 300 labeled samples. Therefore, we see that although the tailored model has

some potential, injecting constraints in the CCM framework actually brings bigger performance gains.

It is important to note that while semi-CRF performed very well on the citations domain, we failed to

tune it to perform competitively on the advertisements domain. We suspect that the reason from the fact

that we use very simple features in our CRF model given that he advertisements domain is a lot more

difficult than the citation domains.

Compared to Approaches with Expectation Constraints The Posterior Regularization Framework (PR)

[Ganchev et al., 2010] observes that while calculating posterior with hard constraints can be difficult, calcu-

lating posterior distribution with expectation constraints can be tractable with careful designs. Please see

Section 3.5 for more discussions.

The Alternating Projections framework [Bellare et al., 2009] can be considered as a special case of PR

with discriminative models. In [Bellare et al., 2009], the authors perform experiments on the citation dataset

in a very similar setting as the one we used in this chapter, although the training-testing data split is a bit

different. Table 3.5 is created by getting our results in Table 3.3 and citing their reported results in [Bellare

et al., 2009].

In Table 3.5, there are two AP approaches: AP-T uses the testing dataset as the unlabeled dataset while

AP-I uses another unlabeled dataset to bootstrap the results. Note that the performances of AP are quite

similar to the CCM models. However, the baseline model used by AP is a much stronger CRF model

compared to both the CRF or the HMM models we built in this chapter. Their baseline CRF model is built

with many different additional features including token features (identity, token prefixes, token suffixes

and character n-grams), lexicon features (the token is presence of a token in a lexicon of author names,

journal names, etc.), regular expressions (common patterns for years and page numbers), and other bi-

gram features.
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# Labeled AP-T AP-I semi-HMMCCM

5 75.6 74.6 77.65
20 85.4 85.1 85.11
300 94.0 94.3 94.32

Table 3.5: Comparison to Alternating Projections [Bellare et al., 2009], a discriminative special case of Pos-
terior Regularization [Ganchev et al., 2010]. The AP results are cited from [Bellare et al., 2009], while the
CCM results are from Table 3.3.

3.4.5 In HMMCCM, do we need to learn the penalty vector ρ?

Previous works ([Punyakanok et al., 2005b; Roth and Yih, 2005]) have used “hard” constraints to disallow

any label assignments that violates them. In the problems considered in this work, several gold assignments

in the training set violate the constraints. Therefore, it seems beneficial to learn a constraint penalty vector

ρ. As we mentioned in Section 3.2.3, HMMCCM is just one instance of a CCM model, and we can also have

the CCM version of HMM using hard constraints HMMCCM
∞ . Table 3.6 shows that with sufficient amount

of labeled data, HMMCCM (learning with soft constraints) outperforms HMMCCM
∞ in both the citations and

the advertisements domain.

(a)-Citations
Training samples 5 10 20 300
semi-HMMCCM 77.65 81.51 85.11 94.32
semi-HMMCCM

∞ 78.18 81.11 85.16 92.80
(b)-Advertisement

Training samples 5 10 20 300
semi-HMMCCM 70.79 75.40 77.56 82.00
semi-HMMCCM

∞ 69.91 73.46 75.25 79.59

Table 3.6: Comparison of using hard constraints and soft constraints in semi-supervised learning.

3.4.6 What is the utility of each constraint in our tasks?

To highlight the impact of each constraint, in the following experiments, rather than learning the penalty

of constraints violation from the data, we have enforced hard constraints. Tables 3.7 and 3.8 show the

contribution of each constraint individually. Table 3.7 shows that the constraint Start (which requires the

citations to start with either author or editor) actually hurts the performance in the semi-supervised setting.

The constraint AppearsOnce hurts the performance in the supervised setting, but improves it significantly

in the semi-supervised setting. Global constraints, such as Punctuation, improve the performance the most.

Another interesting result is that while local constraints do not improve the performance significantly (even

in the semi-supervised setting), when combined with the global constraints, they lead to significant perfor-

mance improvements. While Tables 3.7 and 3.8 show the impact of using hard constraints, it is worthwhile
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Constraint Supervised Semi-Supervised
None 58.48 64.55
Start 58.52 64.52

AppearsOnce 58.69 65.92
Punctuation 63.68 71.23
BookJournal 58.96 64.68

Date 61.50 66.76
Editor 58.70 64.77
Journal 58.66 64.73

Note 58.55 64.61
Pages 58.77 64.68

TechReport 58.73 64.43
Title 59.66 65.54

Location 58.81 64.97
ALL 71.64 77.65

Table 3.7: Utility of hard constraints on the citations domain; supervised and semi-supervised setting with
5 training examples.

to note that the soft constraints perform better (see Table 3.6).

3.4.7 In CoDL, how important it is to tune β?

It is well known (for example, [Cozman et al., 2003]) that semi-supervised learning can degrade the perfor-

mance when the assumptions of the model do not hold on the data. One way to overcome this problem is

to reweight labeled and unlabeled samples. Recall that in analogy to [Nigam et al., 2000], when performing

semi-supervised learning, we use the weighted average of the models trained on labeled and unlabeled

data (see Section 3.2.2).
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Figure 3.6: The performance of HMM semi-supervised algorithm with constraints on the citations domain.
The x axis represents the weight of the supervised model. When weighting parameter is 0, there is no
smoothing at all and the model is equivalent to pure unsupervised training. When weighting parameter is
1, the results will be equivalent to those of a purely supervised model.

Figure 3.6 summarizes the effect of weighting parameter β in line 8 of Algorithm 8. As expected, when

the amount of the labeled data is increased, the model performs better with smaller values of β. Note that
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Constraint Supervised Semi-Supervised
None 53.90 60.75

FieldLength 54.38 63.85
Address 53.95 60.85
Available 53.96 60.77
Contact 53.90 60.75
Features 54.20 60.84

Neighborhood 53.90 60.75
Photos 53.90 60.67
Rent 53.89 60.80

Restrictions 54.27 60.79
Roomates 53.90 60.78

Size 54.22 61.11
Punctuation 58.64 68.81

Utilities 54.05 60.89
All 61.16 70.79

Table 3.8: Utility of hard constraints on the advertisements domain; supervised and semi-supervised setting
with 5 training examples.

in the experiments reported in this chapter, we do not adjust the weighting parameter for different size of

labeled data. We are always using a fixed weighting parameter β = 0.9, which is not an optimal value for

small training sets (for example, for 5 labeled examples).

3.5 Related Work

In this section we review selected publications related to the CCM framework. We first discuss several

publications that can be considered as the special cases of the CCMs framework. Other related publications

are grouped in three different categories and the corresponding discussions are also included in this section.

Note that we defer the discussions of CoDL and several modern constraint-based EM algorithm in the next

chapter.

Our work on CCMs builds on several works that can be considered as special cases of CCMs. In most

cases, these works combine hard constraints with learning algorithms in the supervised setting. The first

work in this line [Roth and Yih, 2004] (extended in [Roth and Yih, 2007]) suggests a formalism that combines

constraints with linear models on information extraction tasks. They use linear inequalities and suggest

Integer Linear Programming as the inference framework. Following [Roth and Yih, 2004, 2007], a series

of works proposed and studied models that incorporate learned models with declarative constraints with

successful applications in Natural Language Processing and Information Extraction, including semantic

role labeling [Roth and Yih, 2005; Punyakanok et al., 2005a, 2008], summarization [Clarke and Lapata,

2006; Barzilay and Lapata, 2006], generation [Marciniak and Strube, 2005], co-reference resolution [Denis
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and Baldridge, 2007], and parsing [Riedel and Clarke, 2006; Martins et al., 2009a].

Most of these works use only hard constraints with the factored approach and supervised classifiers. In

contrast, we introduce soft constraints (modeled as the degree of violating a constraint), into the model and

integrate constraints into semi-supervised learning, extending [Chang et al., 2007]. In addition, we investi-

gate different training paradigms for CCMs, both for the probabilistic component, and for the constraints

component and provide a more rigorous analysis of using constraints in structured prediction tasks. The

Never-Ending-Language-Learner (NELL) project provides a web scale experiments [Carlson et al., 2010]

for using constraints in semi-supervised learning algorithms. They highlight the importance of decoupling

constraints from the model by showing that the constraints can bring significant impact on the performance

in the semi-supervised setting.

3.5.1 Captures Long Distance Relationships

In order to make the inference procedure of finding the best assignment tractable, most structured output

prediction models only capture local relationships. While CCMs are designed to solve this issue, several

approaches (most of them only focus on the supervised learning algorithms) have been proposed in order

to take care of the long distance relationships as well. For example, [Collins, 2000; Charniak and Johnson,

2005; Toutanova et al., 2005] propose to use a two stage approach to address this issue: in the first stage, a

local model is used to produce the k-best solutions and, in the second stage, a global model which captures

long distance relationships is used to rerank the k-best solutions generated in the first stage. Since the global

model only focuses on k assignments, modeling long distance relationships becomes tractable. However,

this approach suffers from the problem of error propagation. If the k-best solutions produced by the local

model does not contain the correct parse tree, it is impossible for the global model to find the correct

solution.

Recently, [Daumé and Marcu, 2005; Kazama and Torisawa, 2007; Huang, 2008] proposed to use approx-

imate inference procedure and let the weights of long distance features guide the search procedure. This

approach is similar to the beamsearch procedure we proposed in Section 3.1.2, in the sense that the search

procedure is guided by the constraint penalties. Importantly, CCMs focus on injecting high level knowl-

edge in the form of “first-order” like features. For example, in this chapter, we show that we can improve

HMM very significantly with 10 extra constraint features. In contrast, lots of grounded features are used in

[Daumé and Marcu, 2005; Kazama and Torisawa, 2007; Huang, 2008] to capture long distance relationships.

Another line of work that captures long distance relationships is [Finkel et al., 2005], which uses Gibbs

sampling as an inference algorithm. The CCM framework is more general, since [Finkel et al., 2005] only
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focuses on a specific type of long distance relationship.

3.5.2 Injecting Knowledge into Graphic Models

The combination of constraints and probabilistic graphical models has also been studied before from the

probabilistic modeling perspective. For example, [Dechter and Mateescu, 2004] propose a combination

of the Bayesian network model with a collection of deterministic constraints and call the resulting model

a mixed network. They conclude that the deterministic constraints of a mixed network are handled more

efficiently when maintained separately from the Bayes network and processed with special purpose algo-

rithms. In addition, they find that the semantics of a mixed network are easier to work with and understand

than an equivalent, “pure” Bayes network with deterministic constraints modeled probabilistically. Similar

in spirit, CCMs differ from the mixed networks by allowing the probabilistic portion of the model to repre-

sent an arbitrary conditional distribution, instead of a joint distribution (in the form of a Bayes network).

Markov Logic Networks (MLN) [Richardson and Domingos, 2006] is a probabilistic logic framework

which uses logic to provide a convenient way of specifying a Markov Random Field. MLN and CCMs are

similar in that they both combine declarative logic into statistical models. The crucial difference between

CCM and MLN is on the issue of model decomposition. MLN includes the expressive features as part

of the probabilistic model, while we propose factoring the model into a simpler probabilistic model with

additional constraints, which can also be specified using first order logic expressions [Rizzolo and Roth,

2007].

3.6 Summary

This chapter provides a unified view of a framework aimed to facilitate decision making with respect to

multiple interdependent variables the values of which are determined by learned probabilistic models. We

proposed CCMs, a framework that augments linear models with expressive declarative constraints as a

way to support decisions in an expressive output space while maintaining modularity and tractability of

training. Importantly, this framework provides a principled way to incorporate expressive background

knowledge into the decision process. It also provides a way to combine conditional models, learned inde-

pendently in different situations, along with declarative information to support coherent global decisions.
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Chapter 4

Unified Constrained Expectation
Maximization

Expectation Maximization (EM) [Dempster et al., 1977] is the most widely used algorithm for unsuper-

vised and semi-supervised learning. Many successful applications of unsupervised and semi-supervised

learning in NLP such as text classification [McCallum et al., 1998; Nigam et al., 2000], Part-of-speech tag-

ging [Merialdo, 1994; Das and Petrov, 2011] and parsing [Klein and Manning, 2004] rely on using EM with

various generative models.

However, the EM algorithm, as it was originally designed, can be difficult to apply or may lead to sub-

optimal performance. Therefore, many variations of EM have been proposed addressing different aspects

of EM. For example, hard EM [Neal and Hinton, 1998] addresses the case when calculating the full posterior

distribution is expensive, as we have discussed in Section 2.5.1.

In Chapter 3, we proposed CoDL (COnstraint-Driven Learning), which uses the constraints as indirect

supervision to guide semi-supervised learning. When there are no labeled examples, we also mentioned that

CoDL is closely related to hard (truncated) EM (Section 3.2.2). Recently, many learning frameworks which

take advantage of constraints have been proposed. Among them, the work most related to the CoDL

algorithm is Posterior Regularization (PR) [Ganchev et al., 2010] 1. While modeling the exact posterior

distribution with hard constraints is expensive in general, PR extends the regular EM algorithm by incor-

porating expectation constraints. We will review the notation and the semantics of expectation constraints

in Section 4.1.

Unfortunately, while there are many different variations of the EM algorithms, little study has been done

to understand the relationships between these EM algorithms in the NLP community. For example, people

often consider hard EM to be an approximation of EM that should only be used for computational reasons.

However, hard EM has its own objective function, and some works have shown that hard EM can sometime

be better than the regular EM algorithm [Spitkovsky et al., 2010]. Moreover, even though hard EM is often

1Note that there exist other approaches which aim to combine human knowledge with statistical models. For example, [Mann and
McCallum, 2008; Bellare et al., 2009] propose Generalized Expectation Criteria, which uses a different distance function in the E-step
of the EM algorithm. [Liang et al., 2009] proposes Learning from Measurements, which incorporates prior information and models
posteriors from a Bayesian point of view. For more discussions and comparisons of these approaches, please refer to [Ganchev et al.,
2010].
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proposed as a worthwhile alternative to an often problematic [Liang and Klein, 2008; Spitkovsky et al.,

2010] EM, it is still unclear when to use which algorithm, and if there are better alternatives.

In this chapter, we approach this important issue from a novel perspective. We believe that “EM or

Hard-EM?” and “PR or CoDL?” are not the right questions to ask. Instead we present a unified framework

for EM called Unified Constrained EM (UEM) that covers most EM variations. UEM allows us to compare

and investigate the properties of EM in a systematic way and helps us find better alternatives. For example,

UEM helps us find “Linear Programming EM”, which has not been formally proposed before to the best of

our knowledge.

Several works [Rose et al., 1990; Rose, 1998; Ueda and Nakano, 1998; Smith and Eisner, 2004] have

addressed the scenario where EM gets stuck in local maxima and use a parameter controlling the “temper-

ature” as a Deterministic Annealing (DA) technique 2. Tempered EM (TEM) algorithm [Hofmann, 2001] is

a very similar technique to address the same issue. The UEM is related to DA and TEM in the sense that

they all use an additional temperature parameter. However, their goals are very different. On one hand,

the main goal of UEM is to analyze the relations between different EM algorithms. On the other hand, TEM

and DA mainly aim to maximize the EM objective function and use temperature as a technique to avoid

local maximum problems. Moreover, these frameworks have largely ignored the use of constraints within

EM. The discussions between the temperature-like parameter and the constraints are at the heart of our

contributions in this chapter.

The contributions of this chapter are as follows:

• We propose a general framework called Unified Expectation Maximization (UEM) that generalizes a

large number of the EM frameworks including constraints-based EM, which allows us to investigate

the properties of different EM algorithms in a systematic way and finds better alternative (Section 4.1).

• We discuss the interactions between the temperature-like parameter γ and the constraints. This dis-

cussions allows us to put PR and CoDL (the hard constraint version) under the same framework, and

also uncovers a potentially important EM-variation, linear programming EM (Section 4.1).

• Through our analysis, we show that it is important to tune γ in order to choose the most appropriate

EM algorithm. We show that the choice of γ has a deep connection to the quality of the initializa-

tion parameters. Surprisingly, we found that standard EM is often not the best choice even if the

initialization point was constructed with few of training examples.

• We show that on a large word-alignment dataset, the UEM framework outperforms the Posterior

2For more discussions about the definition and justification of using the temperature parameter, please refer to[Rose, 1998]
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Regularization framework [Ganchev et al., 2010] and the (modified) CoDL framework significantly3

[Chang et al., 2007] (Section 4.4).

4.1 A Unified Expectation Maximization Framework

In this chapter, we present a unified framework, Unified Expectation Maximization (UEM), for covering,

uncovering, and relating different variations of the EM algorithm by harvesting the ideas from [Rose et al.,

1990; Ueda and Nakano, 1998; Graca et al., 2007] and the CCM model proposed in Chapter 3. First, we

review the standard EM algorithm once again. Probabilistic unsupervised learning often aims to estimate

parameter θ of Pθ(x,h) when only x is observed and h remains hidden. To obtain the parameter θ in the

unsupervised setting, EM maximizes the log likelihood of the observed data:

L(θ) = log Pθ(x) = log
∑

h∈H(x)

Pθ(x,h). (4.1)

UEM builds upon the EM framework. One important feature of UEM is the use of constraint. There-

fore, before talking about the objective function of UEM, we first review the notation of expectation con-

straints and then propose the unified EM approach. We borrow the notation of expectation constraints from

[Ganchev et al., 2010] whenever possible.

Expectation Constraints We mainly focus on using linear constraints in this thesis. Given m linear con-

straints, assume that the k-th constraint can be written in the following form:

uk(x,h) ≤ bk,

where uk(x,h) is a linear function over h (it can be a non-linear function over x)4. Let us define a posterior

distribution q overH(x), the set of all possible structures. The expectation constraints with respect to q can

be expressed by

Eq[u(x,h)] ≤ b, (4.2)

where u(x,h)T =
[
u1(x,h) . . . um(x,h)

]T

and b =
[
b1 . . . bm

]T

. With these constraints, we intro-

duce the notion of Q representing the set of feasible posterior distributions with respect to the expectation

3Note that in this chapter, we only focus on the case where there is no labeled example for the CoDL framework.
4It is beneficial for the readers to review our definition of constraints in Section 2.1. In this chapter, we only focus on linear

constraints. That is, we assume that all first-order like constraints have been converted into linear inequalities.
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constraints. More precisely,

Q = {q | Eq[u(x,h)] ≤ b, q is a valid probability distribution overH(x)}.

Conceptually, Q is closely related to the set

{h | h ∈ H(x),u(x,h) ≤ b},

but the former defines a set of all feasible posterior distributions while the latter one defines a set of all

feasible structures 5.

UEM Objective Function UEM uses a tuning parameter γ and learns θ as

max
θ

T (θ; γ) = max
θ

(
L(θ)−min

q∈Q
D(q(h), Pθ(h|x); γ)

)
, (4.3)

where Q is a space of feasible distributions, D(q(h), p(h); γ) is a modified KL divergence defined by

D(q, p; γ) = H(q, p)− γH(q), (4.4)

and H(q, p) is defined as the cross entropy between distribution q and p. Different values of γ leads to

different treatments of the entropy of the posterior. We can consider that UEM allows us to obtain certain

desirable results by playing with the entropy of the posterior.

The UEM Algorithm Define F (θ, q(h); γ) = L(θ)−D(q(h), Pθ(h|x); γ). In order to maximize F (θ, q(h); γ),

we modify the version of the EM algorithm given by [Neal and Hinton, 1998] and [Ganchev et al., 2010] in

a straightforward way to perform a block coordinate ascent as follows:

1. “E-step”: qt+1 = arg maxq∈Q F (θt, q; γ) = arg minq∈Q D(q, Pθt(h|x); γ).

2. “M-step”: θt+1 = arg maxθ F (θ, qt+1; γ) = arg maxθ Eqt+1 [log Pθ(x,h)].

5For a detailed discussion between the relationships of these two sets, readers can refer to [Sontag, 2010]
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It is important to notice that the UEM algorithms contains constraints, given the definition ofQ. The M-step

comes from the following derivations:

F (θ, q(h); γ) =L(θ)−D(q(h), Pθ(h|x); γ)

= log Pθ(x) +
∑

h∈H(x)

q(h) log Pθ(h|x)− γ
∑

h∈H(x)

q(h) log q(h)

=Eq [log Pθ(x,h)]− γ
∑

h∈H(x)

q(h) log q(h).

Note that γ plays a role only in the E-step, and the M-step is the same as that of the standard EM for

all γ. We refer to the UEM algorithm with parameter γ as UEMγ . The following theorem shows that the

algorithm incrementally improves the objective value for any γ:

Theorem 2. After the tth iteration of UEMγ , T (θt+1; γ) ≥ T (θt; γ) for all γ

Proof. T (θt+1; γ) = F (θt+1, qt+2; γ) ≥ F (θt+1, qt+1; γ) ≥ F (θt, qt+1; γ) = T (θt; γ).

4.2 Relationship between UEM and Other EM Algorithms

The simple parameter γ allows UEM to cover many variations of EM frameworks. In Section 4.4, we show

that choosing the right parameter impacts the results of the EM algorithm significantly.

Note that without the presence of the constraints, the relationship between UEM and other EM algo-

rithms has been discussed before [Ueda and Nakano, 1998; Smith and Eisner, 2004]. However, for the sake

of completeness, we still include that discussion here. The novel contribution of this section is that we are the

first to list and analyze the role of the temperature when the constraints are present. In the following, we discuss

the relationships between UEM and EM algorithms accordingly.

4.2.1 Without constraints

UEM and EM (γ = 1) When there is no constraint on Q (basically, Q represents all possible posterior

distribution of H(x)) and γ = 1, UEM reduces to EM. We can verify this by setting γ = 1, T (θ; γ) =

L(θ) − minq∈Q D(q(h), Pθ(h|x)). Moreover, note that since there is no constraint in Q, Pθ(h|x) ∈ Q and

minq∈Q D(q(h), Pθ(h|x)) = 0. Therefore, the objective function of UEM reduces to L(θ).

UEM and Hard EM (γ = −∞) When γ → −∞, the modified KL-divergence becomes a discrete max-

imization problem of finding the output h′ ∈ H(x) and the distribution becomes δh ∈ Q where δh′ is a
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Kronecker-Delta function centered at h′.

To see this, first, observe that for any q(h) with non-zero entropy, D(q(h), Pθ(h|x); γ)→∞ as γ → −∞.

Second, for any h′, D(δh′ , Pθ(h|x); γ) = − log Pθ(h′|x). These imply that D(q(h)Pθ(h|x); γ) is minimized at

q = δh=ĥ where ĥ = arg maxh∈H(x) Pθ(y|x). Similarly, hard EM algorithm replaces the distribution q(h) in

the E-step by just a single h which maximizes Pθ(h|x).

UEM and DA, TEM (γ ∈ (∞, 1)) When γ → ∞, the E-step predicts uniform probability for all outputs.

This property has been used in to avoid local maximum problems [Rose, 1998; Ueda and Nakano, 1998;

Hofmann, 2001] of the standard EM where starting from ∞ (uniform), γ is reduced gradually to 1 (EM).

The range of γ ∈ [0, 1] is much less studied in the community.

4.2.2 With constraints

UEM and Posterior Regularization (γ = 1) Similar to EM, Posterior Regularization framework can be

immediately recovered by injecting constraints in Q and setting γ to 1. However, note that when there are

constraints present in Q, the objective function of UEM is not the original log likelihood anymore. The

reason is that the Pθ(h|x) might not be in the feasible setQ, so the minimal value of D(q(h), Pθ(h|x)) might

not be zero.

UEM and CoDL (γ = −∞) The UEM framework also covers the CoDL algorithm proposed in Chapter 3.

More precisely, it covers the CoDL algorithm with the hard constraints. Recall that when γ → −∞, the

posterior distribution needs to become a Kronecker-Delta distribution q = δh=ĥ′ center at a structure h′.

Combining this fact with the expectation constraints: Eq[u(x,h)] ≤ b, the expectation constraints become

hard constraints for h′. The full E-step can then be written as follows:

max
h′∈H(x)

log Pθ(h′|x) (4.5)

S.T. u(x,h′) ≤ b,

which is an integer programming problem. Note that this equation is exactly the same as Eq. (3.4) with

ρ = −∞. Therefore, when there are constraints (written as expectation constraints) and γ = −∞, UEM

reduces to CoDL .

UEM and Linear Programming EM (γ = 0) Many publications [Kearns et al., 1998; Smith and Eisner,

2004; Hofmann, 2001] mention that TEM becomes hard EM when γ = 0. This point is often correct, but it
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does not hold in general. When γ = 0, the entropy term of q vanished, and the E-step can be rewritten as:

max
q

∑
h′∈H(x) qh′ log Pθ(h′|x) (4.6)

S.T. Eq[u(x,h)] ≤ b,

qh′ ≥ 0,∀h′ ∈ H(x),∑
h′∈H(x) qh′ = 1

There are several things worth mentioning in the above formulation. First, we represent the posterior

distribution using real-valued variables and add simplex constraints to make q a valid distribution. Second,

the log Pθ(h′|x) terms are constant in the E-step. Therefore, Eq. (4.6) is a linear programming problem.

Importantly, when there are no additional constraints, the simplex constraints form an integral polyhedron.

The solution set of the linear programming hence also contains integral solutions, so we can consider the

UEM to be a version of hard EM when γ = 0 and there are no constraints. It is crucial to note that Eq. (4.6)

is exactly the linear relaxation of Eq. (4.5). Therefore, if finding the integral solution is too expensive in

CoDL, we can consider using linear programming with the EM algorithm. This algorithm can be justified

by setting γ to 0 in UEM.

While it may seem that this linear programming requires exponential number of variables/constraints

to describe Q, for many common probability model, we can decompose the model and rewrite the linear

programing with polynomial number of constraints [Sontag, 2010]. We refer to UEMγ=0 as LP-EM. To the

best of our knowledge, this is the first time LP-EM is formally introduced.

4.2.3 Summary

Table 4.1 contains a summary of different EM algorithms in the UEM family. We note that some approaches

have not been formally proposed before. One such approach is Tempered Constrained EM, which combines

expectation constraints and the idea of using temperature to avoid the problem of local maximum. Another

example is LP-EM, which is an important member of the UEM family given the recent advances in fast

inference algorithms for linear programming problems.

In order to understand this the UEM framework fully, there are two important notes that are worth

mentioning, and we discuss them specifically in the following.

Interpretation of γ Beside treating γ as a temperature parameter as in [Ueda and Nakano, 1998; Rose,

1998; Smith and Eisner, 2004], another direct viewpoint is to view γ as a parameter that leads to different
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Framework γ =∞→ 1 γ = 1 γ = 0 γ = −∞
No constraints Tempered EM [Hof-

mann, 2001], Deter-
ministic Annealing EM
[Rose et al., 1990]

Standard EM (NEW) Linear pro-
graming EM: Trun-
cated/Hard/Viterbi
EM

Truncated/Hard/Viterbi
EM

With constraints (NEW) Tempered Con-
strained EM

Posterior Regular-
ization [Ganchev
et al., 2010]

(NEW) Constrained
Linear programing EM

CoDL [Chang et al.,
2007]

Table 4.1: The summary of different constrained Expectation Maximization algorithms. The entries marked
with “(NEW)” are the frameworks have not been proposed before to the best of our knowledge. Note that
Eq. (4.3) is the objective function for all the EM frameworks listed in this table. When there is no constraint
and γ = 0, the linear programming EM can be considered as hard EM.

treatments of the entropy of the posterior. In order words, we can treat γ as an entropy regularizer that

biases the posterior distribution.

It is both important to notice that in the original deterministic annealing EM framework [Ueda and

Nakano, 1998; Smith and Eisner, 2004], people usually do not use γ but use the inverse temperature param-

eter β = 1
γ instead. In our analysis, we point out that using γ directly is often more appropriate, given that

the meanings of γ → −∞ and γ → ∞ are very different. One cannot reveal these differences by using the

inverse temperature parameter, given that β → 0 in both cases.

When there are no constraints and γ = 0 It might be confusing that when there are no constraints and

γ = 0, we list both Hard-EM and Linear programming EM in Table 4.1. This is a result of the “totally

unimodular” constraint matrix in the linear programming problem. In (4.6), when there are no user-defined

constraints (there are still linear inequalities to make sure the output distribution is valid), one can trivially

show that the feasible reason is an integral polyhedron and hence the optimal solution of the LP (when

γ = 0) contains integral solutions [Veinott and Dantzig, 1968; Roth and Yih, 2005]. Hence, in this case, one

may consider the LP-EM to be the Hard EM, given that every iteration the E-step can generate integral

solution with the linear programming.

4.3 Solving the E-step for UEM for γ ≥ 0

In Section 4.2, we discussed several specific values of γ for UEM, but other values of γ should be considered

as different UEM variations. In this section, we discuss how to solve the E-step for general γ. Recall that

the E-step solves the following problem:

min
q∈Q

D(q(h), Pθt(h|x); γ). (4.7)
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When γ < 0, Eq. (4.7) is non-convex so it is difficult to find its optimal solution. One can apply integer

linear programming when γ = −∞. In the rest of the section, we focus on the case where γ ≥ 0.

As pointed out by [Smith and Eisner, 2004], a modified version of forward-backward (inside-outside)

algorithm can be used to perform EM with temperature. In [Ganchev et al., 2010], they propose a algorithm

for solving the E-step in PR when constraints are present. We present an efficient novel inference algorithm that

combines these two techniques. Our algorithm works for all γ > 0 and is efficient for agreement constraints.

When γ ≥ 0, Eq. (4.7) is a convex problem. If γ > 0, the solution of the E-Step can be written as

q ∝ Pθt(h|x)
1
γ exp(−λ · f(x,h)x,h))

1
γ , (4.8)

where λ is a vector of the solution of the dual formulation of Eq. (4.7). The derivation of this formulation

appears in Appendix A.1. The vector of λ can be obtained easily by solving the dual formulation of Eq. (4.7),

if the constraints and h can be decomposed in the same way.

When we only have agreement constraints, the E-step can be solved even more efficiently. Agreement

constraints are one natural resource of the constraints. For example, a full parsing model and a dependency

parsing model should agree to each other [Rush et al., 2010]. Assume that we have two models θ1 and θ2

and the output of each model are h1 and h2. Let each output hk be decomposed into a set of specific

variables h̃k and a set of shared variables V . Define u(x,h) as a function that extract the shared variables

V from h. The E-step with agreement constraints can be written in the following way:

arg minq1,q2
D(q1(h1), Pθ1(h1|x); γ) + D(q2(h2), Pθ2(h2|x); γ) (4.9)

S.T. Eq1 [u(x,h1)] = Eq2 [u(x,h2)] (4.10)

The Lagrange function of Eq. (4.9) can be written as

L(q1, q2, λ) = D(q1(h1), Pθ1(h1|x); γ) + D(q2(h2), Pθ2(h2|x); γ)− λT (Eq1 [u(x,h1)]− Eq2 [u(x,h2)])

Because the objective of Eq. (4.9) is a convex function, the optimal solution for the dual problem can be

converted into a solution for the primal problem. The dual problem of Eq. (4.9) can be written down as

max
λ

min
q1,q2

L(q1, q2, λ).

Note L is convex with respect to q1, q2, and is concave with respect to λ.
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Our strategy of solving Eq. (4.9) is to use the subgradient based Lagrange relaxation method, similar

to the one used in [Rush et al., 2010]. The main idea of this approach is to treat minq1,q2 L(q1, q2, λ) as a

function of λ. Note that Eq. (4.9) is a concave function (given that L is concave with respect to λ, and the

minimal of concave functions is still a concave function). However, it is non-differential in general. The

subgradient of this function with respect to the current λ0 is

−Eq̂1 [u(x,h1)] + Eq̂2 [u(x,h2)],

where q̂1 and q̂2 are the optimal q1 with the current λ0, respectively. The value of q̂1 can be obtained by

solving

min
q1

D(q1(h1), Pθ1(h1|x); γ)− λT Eq1 [u(x,h1)], or

min
q1

D(q1(h1), Pθ1(h1|x) exp−λT u(x,h1); γ).

Similarly, q̂2 can be obtained by solving

min
q2

D(q2(h2), Pθ2(h2|x); γ) + λT Eq2 [u(x,h2)], or

min
q2

D(q2(h2), Pθ2(h2|x) expλT u(x,h2); γ).

After obtaining the gradient, the λ can be updated by moving toward to the gradient direction:

λ← λ + η(−Eq̂1 [u(x,h1)] + Eq̂2 [u(x,h2)]),

where η is a step size chosen by the user.

Our final subgradient-based dual decomposition method is listed in Algorithm 9. It finds the optimal

solution of Eq. (4.9) without solving the complex constrained optimization problem directly.

Algorithm 9 The Subgradient-based Dual Decomposition Algorithm for Eq. (4.9) for all γ ≥ 0
1: Input: Two distributions Pθ1 and Pθ2

2: Output: Output distributions q1 and q2 satisfying 4.10
3: λ← 0
4: for N -th iterations do
5: q1(h)← arg minq1

D(q1(h), Pθ1(h|x) exp(−λ · f(x,h)); γ)
6: q2(h)← arg minq2

D(q2(h), Pθ2(h|x) exp(+λ · f(x,h)); γ)
7: λ← λ + ηN (−Eq1 [u(x,h)] + Eq2 [u(x,h)])
8: end for
9: return (q1, q2)
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Note that this is a more general approach compared to the framework proposed in [Rush et al., 2010],

which only focuses on linear programming problems. Assume that our base model is a HMM model. In

steps 5 and 6, we perform the modified forward-backward procedure for γ > 0. For γ → 0, it reduces to the

case discussed by [Rush et al., 2010] by replacing the forward-backward algorithm by the Viterbi algorithm

which finds the highest scoring alignment in steps 5 and 6. For example, when γ > 0, solution of step 5 is

in the form of

Pθ1(h1|x)
1
γ exp(

λ · f(x,h1)
γ

),

and when γ = 0, the solution of step 5 can be obtained by

arg max
h1∈H(x)

Pθ1(h1|x) exp(λ · f(x,h1)).

4.4 Experiments

The main goal of UEM framework is to provide a platform to understand different characteristics of various

EM algorithms, and to gain insight into when to choose which algorithm. By varying the value of γ from

1 to 0, we can obtain the EM algorithm (PR with constraints), the Hard EM algorithm (Constrained Linear

Programming with constraints) and many other variations (1 > γ > 0). Comparing EM and hard-EM

is an important issue. Recently, [Spitkovsky et al., 2010] showed that Viterbi EM can outperform the EM

algorithm by a significant margin. The UEM framework allows us to analyze the EM algorithm in a “con-

tinuous” way. We did not explore γ = ∞ because recent papers [Roth and Yih, 2005; Martins et al., 2009b;

Rush et al., 2010; Koo et al., 2010] show that the linear programming results are often quite satisfactory.

In contrast to many works that use TEM or DA, which focus on γ ≥ 1. In this chapter, we mainly

focus on the values of γ from 1 to 0. Moreover, we use γ as a tool to analyze and compare versions of

EM algorithms, rather than to use it in the annealing setting. Our experiments are designed to answer the

following two research questions:

1. What is the best γ to use? EM or Hard EM? What affects the value of the best γ?

2. Given an available development set, how critical it is to select the appropriate EM algorithm? In other

words, how crucial it is to select γ in a large-scale experiment?

POS experiments In order to answer the first question, we perform an unsupervised POS learning exper-

iment with the tagging dictionary assumption. We take the standard 24,115 token subset of Penn Treebank.

The tagging dictionary is derived from the entire Penn Treebank. We use a first order (bigram) HMM
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Figure 4.1: POS Experiments on the impact of initialization parameters to the best value of γ. We report
the relative performance compared to EM in this figure (see Eq. (4.11)). The number of labeled examples
indicates the size of the training set used to create the initial θ for different EM algorithms. The uniform
initialization does not use any labeled example. The results show that the value of the best γ is sensitive to
the initialization point. Furthermore, EM (γ = 1) is often not the best choice.

model. Our goal is to analyze the impact of different values of γ and its relationship to different initializa-

tions points.

Different initialization points are constructed as follows. The “uniform posterior” initialization is done

by spreading the probability over all possible tags for each tokens. In order to construct better initialization

points, we train a supervised HMM tagger on a hold-out labeled set. We construct 5 different labeled sets,

where the sizes of them are 5, 10 ,20, 40 and 80, respectively. Those initialization points are then fed into the

different EM algorithms. For a particular γ, we report its relative performance with respect to EM (γ = 1.0).

More precisely, we report

rel(γ) =
Acc(UEMγ)−Acc(UEMγ=1)

Acc(UEMγ=1)
, (4.11)
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Data Size En-Fr Fr-En
PR LP-EM UEM0.3 PR LP-EM UEM0.3

10k 13.78 15.01 11.02 13.22 15.70 10.92
50k 11.26 11.03 9.08 10.72 10.13 9.43
100k 10.59 9.19 8.22 10.33 9.68 8.76

Table 4.2: AER comparisons on Hansard Corpus for French-English alignment for various data sizes

where Acc represents the accuracy evaluated on the ambiguous words of the 24,115 set. Note that rel(γ =

1) = 0. When rel(γ) > 0, it means that UEMγ performs better than EM algorithm, and vice versa.

The results summarized are in Figure 4.1. Note that when we use the “uniform” initialization, EM is the

clear winner by a significant margin. Surprisingly, with the initialization point is obtained by merely 5 or

10 examples, EM is not the best algorithm anymore. Interestingly, we find that setting γ = 0.9 works fairly

well across all initialization points beside “uniform.” Moreover, when the initialization point becomes

better, smaller γ performs better. The results indicate that the best value of γ is closely related to the

quality of the initialization point.

This experiment agrees with [Merialdo, 1994], where the authors show that EM stops working in the

semi-supervised setting. We further extend this result by showing this issue can be overcome by just setting

γ to a smaller value. In [Spitkovsky et al., 2010], the authors show that Hard EM (Viterbi EM) can be better

than the standard EM. We suspect that in their setting, a γ that is a little bit smaller than 1 can already beat

EM.

Word Alignment Experiments In order to answer the second question, we present experimental results

on statistical word alignment which is a well known application of unsupervised learning and is a key

step towards machine translation from a source language S to a target language T . We borrow the set-up

from [Ganchev et al., 2008] (also [Graca et al., 2007; Ganchev et al., 2010]6). Note that their setting includes

two language experiments and each of them comes with a small development set. [Ganchev et al., 2008]

shows significant improvements in alignment error rate (AER) by introducing constraints over posterior

probabilities of the alignments to guide their EM algorithm. In particular, we consider the agreement con-

straints which direct alignment probabilities in one direction (Pθ1 : from S to T ) to agree with the alignment

in the other direction (Pθ2 : from T to S) and apply Algorithm 9. Following [Graca et al., 2007], we use the

same testing method called posterior decoding for all of the models [Liang et al., 2006], and do not apply

constraint at test time.

We test our approach on the Hansards corpus for French-English translation [Och and Ney, 2000] and

Europarl corpus [Koehn, 2002] for Spanish-English translation with EPPS [Lambert et al., 2006] alignment

6http://www.seas.upenn.edu/˜strctlrn/CAT/CAT.html
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Data Size En-Es Es-En
PR LP-EM UEM0.3 PR LP-EM UEM0.3

10k 26.78 29.57 24.33 26.09 28.57 23.23
50k 24.11 24.65 22.18 23.23 23.35 21.01
100k 23.26 23.31 21.81 22.55 22.20 20.25

Table 4.3: AER comparisons on EPPS for Spanish-English alignment for various data sizes

annotation. We select the best γ = 0.3 on the development set and used it to build all of our models.

We report the AER for different algorithms and different sizes of unlabeled data. We focus on comparing

γ = 1.0 (EM/PR) and γ = 0.0 (LP-EM) with γ = 0.3. Note that γ = 1 is the same as the PR approach

of [Ganchev et al., 2008]. Note that in this setting LP-EM is fairly close to the CoDL because the dual

decomposition design make Algorithm 9 always returns integral solutions7. UEM0.3 shows significant

improvement over both PR and LP-EM.

4.5 Summary

In this chapter, we present a unified framework for Expectation Maximization (EM) algorithms parametrized

by a temperature-like parameter. While introducing a temperature parameter has been considered in the

literature as a technique to avoid the local maximum problem, we further analyze the role of temperature

with constraints. We demonstrate the importance of this unified framework by showing that in many cases,

EM (or PR when constraints are used) is often not the best choice, and claim that the temperature parameter

is sensitive to the initialization point. The proposed unified constrained EM framework shows significant

improvement over PR and LP-EM on the word alignment problems.

7In some rare cases, the agreement constraints cannot be satisfied. See [Rush et al., 2010] for more discussions.
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Chapter 5

Learning Constrained Intermediate
Representations

Many NLP tasks can be phrased as decision problems over complex linguistic structures. Successful learn-

ing depends on correctly encoding these (often latent) structures as features for the learning system. Tasks

such as transliteration discovery [Klementiev and Roth, 2008], recognizing textual entailment (RTE) [Dagan

et al., 2006] and paraphrase identification [Dolan et al., 2004] are a few prototypical examples. However, the

input to such problems does not specify the latent structures and the problem is defined in terms of surface

forms only. Most current solutions transform the raw input into a meaningful intermediate representation1,

and then encode its structural properties as features for the learning algorithm.

Note that unlike the problems we discussed in Chapter 3 and 4, these problems are binary classification

tasks rather than structured output prediction tasks. Nevertheless, there still exists a notion of structure for

these binary tasks: the requirement of finding a “good” intermediate representation. Since the intermediate

representations are not labeled in the training data, they can be considered as latent structures here.

Consider the RTE task of identifying whether the meaning of a short text snippet (called the hypothesis)

can be inferred from that of another snippet (called the text). A common solution [MacCartney et al., 2008;

Roth et al., 2009] is to begin by defining an alignment over the corresponding entities, predicates and their

arguments as an intermediate representation. A classifier is then trained using features extracted from the

intermediate representation. The idea of using an intermediate representation also occurs frequently in

other NLP tasks [Bergsma and Kondrak, 2007; Qiu et al., 2006].

While the importance of finding a good intermediate representation is clear, emphasis is typically placed

on the later stage of extracting features over this intermediate representation, thus separating learning into

two stages – specifying the intermediate representation, and then extracting features for learning. The

intermediate representation is obtained by an inference process using predefined models or well-designed

heuristics. While these approaches often perform well, they ignore a useful resource when generating the

latent structure – the labeled data for the final learning task. As we will show in this section, this results in

degraded performance for the actual classification task at hand. Several works have considered this issue

1In this section, the phrases “intermediate representation” and “latent representation” are used interchangeably.
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[McCallum et al., 2005; Goldwasser and Roth, 2008; Chang et al., 2009; Das and Smith, 2009]; however, they

provide solutions that do not easily generalize to new tasks.

In [Chang et al., 2010a], we propose a unified solution to the problem of learning to make the classifi-

cation decision jointly with determining the intermediate representation. Our Learning Constrained Latent

Representations (LCLR) framework is guided by the intuition that there is no intrinsically good intermediate

representation, but rather that a representation is good only to the extent to which it improves performance

on the final classification task. In the rest of this section we discuss the properties of our framework and

highlight its contributions.

Learning over Latent Representations This chapter formulates the problem of learning over latent repre-

sentations and presents a novel and general solution applicable to a wide range of NLP applications. We

analyze the properties of our learning solution, thus allowing new research to take advantage of a well

understood learning and optimization framework rather than an ad-hoc solution. We show the general-

ity of our framework by successfully applying it to three domains: transliteration, RTE and paraphrase

identification.

Joint Learning Algorithm In contrast to most existing approaches that employ domain specific heuristics

to construct intermediate representations to learn the final classifier, our algorithm learns to construct the

optimal intermediate representation to support the learning problem. Learning to represent is a difficult

structured learning problem however, unlike other works that use labeled data at the intermediate level,

our algorithm only uses the binary supervision supplied for the final learning problem.

Flexible Inference Successful learning depends on constraining the intermediate representation with

task-specific knowledge. Our framework uses the declarative Integer Linear Programming (ILP) inference

formulation, which makes it easy to define the intermediate representation and to inject knowledge in the

form of constraints. While ILP has been applied to structured output learning, to the best of our knowledge,

this is the first work that makes use of ILP in formalizing the general problem of learning intermediate

representations.

5.1 Preliminaries

We introduce notation using the Paraphrase Identification task as a running example. This is the binary

classification task of identifying whether one sentence is a paraphrase of the other. A paraphrase pair from
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Sentence 1 Druce will face murder charges , Conte said .

Sentence 2 Conte said Druce will be charged with murder .

Figure 5.1: A binary classification problem that needs latent structures: Paraphrase Identification prob-
lem. The task is to identify whether one sentence is a paraphrase of the other. The dotted lines represent
a possible intermediate representation for the paraphrase identification task. Since different representation
choices will impact the binary identification decision directly, our approach chooses the representation that
best facilitates the binary learning task.

the MSR Paraphrase corpus [Quirk et al., 2004] is shown in Figure 5.1. In order to identify that the sentences

paraphrase each other, we need to align constituents of these sentences. One possible alignment is shown

in the figure, in which the dotted edges correspond to the aligned constituents. An alignment can be

specified using binary variables corresponding to every edge between constituents, indicating whether the

edge is included in the alignment. Different activations of these variables induce the space of intermediate

representations.

To formalize this setting, let x denote the input to a decision function, which maps x to z ∈ {−1, 1}.

We consider problems where this decision depends on an intermediate representation (for example, the

collection of all dotted edges in Figure 5.1, which can be represented by a binary vector h.

In the literature, a common approach is to separate the problem into two stages. First, a generation

stage predicts h for each x using a pre-defined model or a heuristic. This is followed by a learning stage, in

which the classifier is trained using h. In our example, if the generation stage predicts the alignment shown,

then the learning stage would use the features computed based on the alignments. Formally, the two-

stage approach uses a pre-defined inference procedure that finds an intermediate representation h′. Using

features Φ(x,h′) and a learned weight vector w′, the example is classified as positive if wT Φ(x,h′) ≥ 0.

However, in the two stage approach, the latent representation, which is provided to the learning algo-

rithm, is determined before learning starts, and without any feedback from the final task. It is dictated by

the intuition of the developer. This approach makes two implicit assumptions: first, it assumes the exis-

tence of a “correct” latent representation and, second, that the model or heuristic used to generate it is the

correct one for the learning problem at hand.
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5.2 Joint Learning with an Intermediate Representation

In contrast to two-stage approaches, we use the annotated data for the final classification task to learn a

suitable intermediate representation which, in turn, helps the final classification.

Choosing a good representation is an optimization problem that selects which of the elements (features)

of the representation best contribute to successful classification given some legitimacy constraints; there-

fore, we (1) set up the optimization framework that finds legitimate representations (Section 5.2.1), and (2)

learn an objective function for this optimization problem, such that it makes the best final decision (Section

5.2.1.)

5.2.1 Inference

Our goal is to correctly predict the final label rather than matching a “gold” intermediate representation.

In our framework, attempting to learn the final decision drives both the selection of the intermediate rep-

resentation and the final prediction.

For each x, let Γ(x) be the set of all substructures of the intermediate representation space. In Figure 5.1,

this could be the set of all alignment edges connecting the constituents of the sentences. Given a vocabu-

lary of such structures of size N = |Γ(x)|, we denote intermediate representations by h ∈ {0, 1}N , which

“selects” the components of the vocabulary that constitute the intermediate representation.

For example, in our paraphrasing example, Γ(x) would be the alignment edges, pairs of edges, triples,

and so on. We associate every element s ∈ Γ(x) with a binary hidden variable hs, each of which can be

thought of as a “switch” that controls whether the corresponding substructure s is included in the predicted

intermediate representation. Assume that there are total m features. We define Φs(x) ∈ Rn to be a feature

vector over the substructure s, which is used to describe the characteristics of s, and define a weight vector

w ∈ Rn over these features.

LetH denote the set of feasible intermediate representations h, specified by means of linear constraints

over h. While Γ(x) might be large, the set of those elements in h that are active can be constrained by

controlling H. After we have learned a weight vector w that scores intermediate representations for the

final classification task, we define our decision function as

fw(x) = max
h∈H

wT Φ(x,h) = max
h∈H

wT
∑

s∈Γ(x)

hsΦs(x), (5.1)

and classify the input as positive if fw(x) ≥ 0.

In Eq. (5.1), wT Φs(x) is the score associated with the substructure s, and fw(x) is the score for the entire
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intermediate representation. Therefore, our decision function fw(x) ≥ 0 makes use of the intermediate

representation and its score to classify the input. An input is labeled as positive if some underlying inter-

mediate structure allows it to cross the decision threshold. The intermediate representation is chosen to

maximize the overall score of the input. This design is especially beneficial for many phenomena in NLP,

where only positive examples have a meaningful underlying structure. In our paraphrase identification

example, good alignments generally exist only for positive examples.

One unique feature of our framework is that we treat Eq. (5.1) as an Integer Linear Programming (ILP)

instance. A concrete instantiation of this setting to the paraphrase identification problem, along with the

actual ILP formulation is shown in Section 5.3.

Learning

We now present an algorithm that learns the weight vector w. For a loss function ` : R→ R and the labeled

set {(xi, zi)}, the goal of learning is to solve the following optimization problem:

min
w

1
2
‖w‖2 + C

∑
i

LB(xi,yi,w) = min
w

1
2
‖w‖2 + C

∑
i

` (1− zifw(xi)) , (5.2)

where the function ` : R→ R can be instantiated by many commonly used loss functions such as hinge loss,

with `(a) = max(0, a), and squared-hinge loss, with `(a) = max(0, a)2. Note that we use LB to represent

the loss for binary labeled examples.

Here, C is the regularization parameter. Substituting Eq. (5.1) into Eq. (5.2), we get

min
w

1
2
‖w‖2 + C

∑
i

`

1− ziC max
h∈H

wT
∑

s∈Γ(x)

hsΦs(xi)

 (5.3)

Note that there is a maximization term inside the global minimization problem, making Eq. (5.3) a non-

convex problem. The minimization drives w towards smaller empirical loss while the maximization uses

w to find the best representation for each example.

The algorithm for Learning over Constrained Latent Representations (LCLR) is listed in Algorithm 10.

In each iteration, first, we find the best feature representations for all positive examples (lines 3-5). This step

can be solved with an off-the-shelf ILP solver. Having fixed the representations for the positive examples,

we update the w by solving Eq. (5.4) at line 6 in the algorithm. It is important to observe that for positive

examples in Eq. (5.4), we use the intermediate representations h∗ from line 4. One reason that we fix the

hidden representation on only positive examples is because we can solve the non-convex objective function
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Algorithm 10 LCLR: The optimization procedure that optimizes (5.3). Note that zi ∈ {−1, 1} represents
the gold standard of the binary output problem.

1: initialize: w← w0

2: repeat
3: for all positive examples (xi, zi = 1) do
4: Find h∗i ← arg maxh∈H

∑
s hswT Φs(xi)

5: end for
6: Update w by solving

min
w

1
2
‖w‖2 + C

∑
i:zi=1

`(1−wT
∑

s

h∗i,sΦs(xi)) + C
∑

i:zi=−1

`(1 + max
h∈H

wT
∑

s

hsΦs(xi)) (5.4)

7: until convergence
8: return w

Eq. (5.3) by solving a series of convex problems (Eq. (5.4)) at line 6 in the Algorithm 10). Theoretically, we

can use any loss function that is convex. In the experiments in this section, we use the squared-hinge loss

function: `(1− zfw(x)) = max(0, 1− zfw(x))2.

It is important to note that the algorithm is asymmetric. It treats positive examples and negative exam-

ples differently. The reason of this is from the fact that the semantics of a positive example and a negative

example are different – only a positive example requires a good intermediate representation to justify its

positive label and a negative example cannot have a good intermediate representation. This asymmetric

property in Algorithm 10, which we first find the representation for positive examples, is important. With-

out this asymmetric property, we will lose the guarantee that the objective function decreases monotonically

in every iteration of the Algorithm 10.

Recall that Eq. (5.4) in line 10 of Algorithm 10 is not the traditional SVM or logistic regression formu-

lation. This is because inside the inner loop, the best representation for each negative example must be

found. Therefore, we need to perform inference for every negative example when updating the weight

vector solution.

Note that our intuition on treating positive examples and negative examples differently also reflects on

the optimization algorithm (Algorithm 10). Because Eq. (5.3) is a non-convex problem, following [Felzen-

szwalb et al., 2009], LCLR iteratively solves a series of easier problems (Eq. (5.4)). This is especially true

for our loss function because Eq. (5.4) is convex and can be solved efficiently. Interestingly, the positive

example are the reasons why this formulation is not convex. Hence, by fixing the representations for the

positive examples, the inner problem becomes a convex problem.

We use a cutting plane algorithm to solve Eq. (5.4). A similar idea has been proposed in [Joachims et al.,

2009]. The algorithm for solving Eq. (5.4) is presented as Algorithm 11. This algorithm uses a “cache” Hj

to store all intermediate representations for negative examples that have been seen in previous iterations
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Algorithm 11 Cutting plane algorithm to optimize Eq. (5.4)
1: for each negative example xj , Hj ← ∅
2: repeat
3: for each negative example xj do
4: Find h∗j ← arg maxh∈C

∑
s hswT φs(xj)

5: Hj ← Hj ∪ {h∗j}
6: end for
7: Solve

min
w

λ

2
‖w‖2 +

∑
i:yi=1

`(−wT
∑

s

h∗i,sφs(xi))

+
∑

i:yi=−1

`(max
h∈Hi

wT
∑

s

hsφs(xi)) (5.5)

8: until no new element is added to any Hj

9: return w

(lines 3-6) 2. The difference between Eq. (5.5) in line 7 of Algorithm 11 and Eq. (5.4) is that in Eq. (5.5), we

do not search over the entire space of intermediate representations. The search space for the minimization

problem Eq. (5.5) is restricted to the cache Hj . Therefore, instead of solving the minimization problem

Eq. (5.4), we can now solve several simpler problems shown in Eq. (5.5). The algorithm is guaranteed

to stop (line 8) because the space of intermediate representations is finite. Furthermore, in practice, the

algorithm needs to consider only a small subset of “hard” examples before it converges. The justification

of the algorithm can be seen in Appendix A.2.

Inspired by [Hsieh et al., 2008], we apply an efficient coordinate descent algorithm for the dual for-

mulation of (Eq. (5.5)) which is guaranteed to find its global minimum. The algorithm is extended and

generalized in Chapter 6. For more detail discussions, please refer to Section 6.2.

5.3 Encoding with ILP: A Paraphrase Identification Example

In this section, we define the intermediate representation for the paraphrase identification task. Unlike

the earlier example, where we considered the alignment of lexical items, we describe a more complex

intermediate representation by aligning graphs created using semantic resources.

An input example is represented as two acyclic graphs, G1 and G2, corresponding to the first and second

input sentences. Each vertex in the graph contains word information (lemma and part-of-speech) and the

edges denote dependency relations, generated by the Stanford parser [Klein and Manning, 2003]. The

intermediate representation for this task can now be defined as an alignment between the graphs, which

2In our implementation, we keep a global cache Hj for each negative example xj . Therefore, in Algorithm 11, we start with a
non-empty cache improving the speed significantly.
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captures lexical and syntactic correlations between the sentences.

We use V (G) and E(G) to denote the set of vertices and edges in G respectively, and define four hidden

variable types to encode vertex and edge mappings between G1 and G2.

• The word-mapping variables, denoted by hv1,v2 , define possible pairings of vertices, where v1 ∈

V (G1) and v2 ∈ V (G2).

• The edge-mapping variables, denoted by he1,e2 , define possible pairings of the graphs edges, where

e1 ∈ E(G1) and e2 ∈ E(G2).

• The word-deletion variables hv1,∗ (or h∗,v2) allow for vertices v1 ∈ V (G1) (or v2 ∈ V (G2)) to be

deleted. This accounts for omission of words (like function words).

• The edge-deletion variables, he1,∗ (or h∗,e2) allow for deletion of edges from G1 (or G2).

Our inference problem is to find the optimal set of hidden variable activations, restricted according to

the following set of linear constraints

• Each vertex in G1 (or G2) can either be mapped to a single vertex in G2 (or G1) or marked as deleted.

In terms of the word-mapping and word-deletion variables, we have

∀v1 ∈ V (G1),
∑

v2∈V (G2)

hv1,v2 + hv1,∗ = 1, ∀v2 ∈ V (G2),
∑

v1∈V (G1)

hv1,v2 + h∗,v2 = 1 (5.6)

• Each edge in G1 (or G2) can either be mapped to a single edge in G2 (or G1) or marked as deleted. In

terms of the edge-mapping and edge-deletion variables, we have

∀e1 ∈ E(G1),
∑

e2∈E(G2)

he1,e2 + he1,∗ = 1, ∀e2 ∈ E(G2),
∑

e1∈E(G1)

he1,e2 + h∗,e2 = 1 (5.7)

• The edge mappings can be active if, and only if, the corresponding node mappings are active. Sup-

pose e1 = (v1, v
′
1) ∈ E(G1) and e2 = (v2, v

′
2) ∈ E(G2), where v1, v

′
1 ∈ V (G1) and v2, v

′
2 ∈ V (G2).

Then, we have

hv1,v2 + hv′1,v′2
− he1,e2 ≤ 1, hv1,v2 ≥ he1,e2 , hv′1,v′2

≥ he1,e2 (5.8)
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These constraints define the feasible set for the inference problem specified in Eq. (5.1). This inference

problem can be formulated as an ILP problem with the objective function from Eq. (5.1):

max
h

∑
s

hswT Φs(x) (5.9)

subject to Eq. (5.6)-Eq. (5.8); ∀s;hs ∈ {0, 1} (5.10)

This example demonstrates a principled approach that uses the ILP formulation to define intermediate

representations incorporating linguistic intuitions.

5.4 Experiments

We applied our framework to three different NLP tasks: transliteration discovery [Klementiev and Roth,

2008], RTE [Dagan et al., 2006], and paraphrase identification [Dolan et al., 2004].

Our experiments are designed to answer the following research question: “given a binary classification

problem defined over latent representations, will the joint LCLR algorithm perform better than a two-

stage approach?” To ensure a fair comparison, both systems use the same feature functions and the same

definition of intermediate representation. We use the same ILP formulation in both configurations, with a

single exception – the objective function parameters: the two stage approach uses a task-specific heuristic,

while LCLR learns it iteratively.

As we mentioned about, previously proposed two staged methods often use task-specific inference

procedures. On the other hand, our constraint-based approach allows us to incorporate linguistic intuition

very easily. Hence, our ILP formulation results in very strong two stage systems. For example, in the para-

phrase identification task, even our two stage system achieves the current state-of-the-art performance. In

these settings, the improvement obtained by our joint approach is non-trivial and can be clearly attributed

to the superiority of the joint learning algorithm. Interestingly, we find that our more general approach is

better or competitive to other joint approaches [Goldwasser and Roth, 2008; Das and Smith, 2009].

We want to stress that both LCLR and our two stage approach benefit from the flexible ILP formulation,

which was adapted and optimized for the individual tasks. In the following, we refer to our two stage

approach as “Alignment+Learning”. The whole procedure is as follows:

1. Use domain-dependent heuristic to create a weight vector w0. The same weight vector is also used to

initialize LCLR.

2. For each example x, solve an integer linear programming problem using w0 to find the best alignment
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h (hence the best constrained representation Φ(x,h)). Find the best representations for all examples

in both training and testing data.

3. Train a support vector machine (square-hinge loss) using the presentations found in the previous step.

4. Test the weight vector found in the step 3 with the representation found by w0.

Since the objective function (5.3) of the joint approach is not convex, a good initialization is required.

We use the weight vector learned by the two stage approach as the starting point for the joint approach.

The algorithm terminates when the relative improvement of the objective is smaller than 10−5.

5.4.1 Transliteration Discovery

Transliteration discovery is the problem of identifying if a word pair, possibly written using two differ-

ent uni-character sets, refers to the same underlying entity. The intermediate representation consists of

all possible character mappings between the two character sets. Identifying this mapping is not easy, as

most writing systems do not perfectly align phonetically and orthographically; rather, this mapping can be

context-dependent and ambiguous.

For an input pair of words (w1, w2), the intermediate structure h is a mapping between their charac-

ters, with the latent variable hij indicating if the ith character in w1 is aligned to the jth character in w2. The

feature vector associated with the variable hij contains unigram character mapping, bigram character map-

ping (by considering surrounding characters). We adopt the one-to-one mapping and non-crossing constraint

used in [Chang et al., 2009]. The detailed feature vector description is in Table 5.1.

Category Feature
Bias a dummy feature that is active for every substructure
Distance the distance between two characters, the value of the feature is 1.0/(|i− j|+ 1)
Unigram the conjunction of the ith character in w1 and the jth character of w2

Bigram the conjunction of the ith, (i + 1)th characters in w1 and the jth character of w2

the conjunction of the ith character in w1 and the jth, (j + 1)th characters of w2

Table 5.1: The features used in the transliteration experiments. We describe the features for the “substruc-
ture” hij , which is associated with the alignment between the ith character of w1 and the jth character of
w2.

We evaluated our system using the English-Hebrew corpus [Goldwasser and Roth, 2008], which consists

of 250 positive transliteration pairs for training, and 300 pairs for testing. As negative examples for training,

we sample 10% from random pairings of words from the positive data. We report two evaluation measures

– (1) the Mean Reciprocal Rank (MRR), which is the average of the multiplicative inverse of the rank of the

correct answer, and (2) the accuracy (Acc), which is the percentage of the top rank candidates being correct.
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Transliteration System Acc MRR
[Goldwasser and Roth, 2008] N/A 89.4
Alignment + Learning 80.0 85.7
LCLR 92.3 95.4

(a) Transliteration System Results

Entailment System Acc
Median of TAC 2009 systems 61.5
Alignment + Learning 65.0
LCLR 66.8

(b) Entailment System Results

Figure 5.2: (Left (a):) Experimental results for transliteration. We compare a two-stage system (Align-
ment+Learning) with LCLR, our joint algorithm. Both Alignment+Learning and LCLR use the same fea-
tures and the same intermediate representation definition. (Right (b):) Experimental results for recognizing
textual entailment. The first row is the median of best performing systems of all teams that participated in
the RTE5 challenge [Bentivogli et al., 2009]. Alignment + Learning is our two-stage system implementation.
Details about these systems are provided in the text. Note that LCLR outperforms [Das and Smith, 2009],
which is a joint approach based on quasi-synchronous dependency grammars.

We initialized the two stage inference process as detailed in [Chang et al., 2009] using a Romanization

table to assign uniform weights to prominent character mappings. This initialization procedure resem-

bles the approach used in [Bergsma and Kondrak, 2007]. An alignment is first built by solving the con-

strained optimization problem. Then, a support vector machine with squared-hinge loss function is used

to train a classifier using features extracted from the alignment. We refer to our two stage approach as

Alignment+Learning.

The results, summarized in Figure 5.2(a), show the significant improvement obtained by the joint ap-

proach (95.4 MRR) compared to the two stage approach (85.7). Moreover, our results are also significantly

better than the joint model published in [Goldwasser and Roth, 2008], which achieve 89.4 MRR. In [Paster-

nack and Roth, 2009], the authors show better results on this dataset with more complex definition of the

structure.

Note that in Chapter 6, we will revisit a variation of this problem. However, instead of focusing on

telling whether two named entities are transliterations of each or not, we want to build the phonetic align-

ment between these two named entities. Please see Section 6.5.5 for more discussions and comparisons.

5.4.2 Textual Entailment

Recognizing Textual Entailment (RTE) is an important textual inference task of predicting if a given text

snippet entails the meaning of another (the hypothesis). In many current RTE systems, the entailment de-

cision depends on successfully aligning the constituents of the text and hypothesis, accounting for the

internal linguistic structure of the input. Please refer to [Chang et al., 2010a] for the details of the feature

design and the hidden variable definitions.

The raw input – the text and hypothesis – are represented as directed acyclic graphs, where vertices

correspond to words. Directed edges link verbs to the head words of semantic role labeling arguments pro-
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Hidden RTE Paraphrase
Variable features features
word-mapping WordNet, POS,

Coref, Neg
WordNet, POS,
NE, ED

word-deletion POS POS, NE
edge-mapping NODE-INFO NODE-INFO,

DEP
edge-deletion N/A DEP

Table 5.2: Summary of latent variables and feature resources for the entailment and paraphrase identifica-
tion tasks. See Section 5.3 for an explanation of the hidden variable types. The linguistic resources used to
generate features are abbreviated as follows – POS: Part of speech, Coref: Canonical coreferent entities; NE:
Named Entity, ED: Edit distance, Neg: Negation markers, DEP: Dependency labels, NODE-INFO: node
alignment resources, N/A: Hidden variable not used.

duced by [Punyakanok et al., 2008]. All other words are connected by dependency edges. The intermediate

representation is an alignment between the nodes and edges of the graphs. We used three hidden vari-

able types from Section 5.3 – word-mapping, word-deletion and edge-mapping, along with the associated

constraints as defined earlier.

The second column of Figure 5.2 lists the resources used to generate features corresponding to each hid-

den variable type. For word-mapping variables, the features include a WordNet based metric, indicators

for the POS tags and negation identifiers. We used a state-of-the-art coreference resolution system to iden-

tify the canonical entities for pronouns and extract features accordingly. For word deletion, we use only the

POS tags of the corresponding tokens to generate features. For edge mapping variables, we include the fea-

tures of the corresponding word mapping variables, scaled by the word similarity of the words comprising

the edge.

We evaluated our system using the RTE-5 challenge data [Bentivogli et al., 2009], consisting of 600

sentence pairs for training and testing respectively, in which positive and negative examples are equally

distributed. In these experiments the joint LCLR algorithm converged in about 5 iterations. For the two

stage system, we used a Wordnet similarity score (WNSim) to score alignments during inference. The

word-based scores influence the edge variables via the constraints. The experimental results are in Fig-

ure 5.2(b). This two-stage system (the Alignment+Learning system) is significantly better than the median

performance of the RTE-5 submissions. Using LCLR further improves the result by almost 2%, a substantial

improvement in this domain.

5.4.3 Paraphrase Identification

Our final task is Paraphrase Identification, discussed in detail in Section 5.3. We use all the four hidden

variable types described in that section. Again, for the feature design, please see [Chang et al., 2010a].

We used the MSR paraphrase dataset of [Dolan et al., 2004] for empirical evaluation. Additionally,
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Paraphrase System Acc
Experiments using [Dolan et al., 2004]
[Qiu et al., 2006] 72.0
[Das and Smith, 2009] 73.86
[Wan et al., 2006] 75.6
Alignment + Learning 76.23
LCLR 76.41
Experiments using Extended data set
Alignment + Learning 72
LCLR 72.75

Table 5.3: Experimental Result For Paraphrasing Identification. Our joint LCLR approach achieves the best
results compared to several previously published systems, and our own two stage system implementation
(Alignment + Learning). We evaluated the systems performance across two datasets: [Dolan et al., 2004]
dataset and the Extended dataset, see the text for details. Note that LCLR outperforms [Das and Smith,
2009], which is a specifically designed joint approach for this task.

we generated a second corpus (called the Extended dataset) by sampling 500 sentence pairs from the MSR

dataset for training and using the entire test collection of the original dataset. In the Extended dataset, for

every sentence pair, we extended the longer sentence by concatenating it with itself. This results in a more

difficult inference problem because it allows more mappings between words. Note that the performance

on the original dataset sets the ceiling on the second one.

The results are summarized in Table 5.3. The first part of the table compares the LCLR system with a

two stage system (Alignment + Learning) and three published results that use the MSR dataset (we only list

single systems in the table3). Interestingly, although still outperformed by our joint LCLR algorithm, the

two stage system is able perform significantly better than existing systems for that dataset.

We hypothesize that the similarity in performance between the joint LCLR algorithm and the two stage

(Alignment + Learning) systems is due to the limited intermediate representation space for input pairs in

this dataset. We evaluated these systems on the more difficult Extended dataset. Results indeed show that

the margin between the two systems increases as the inference problem getting harder: the feasible region

of the inference problem becomes much larger in the Extended dataset.

5.5 Analysis

In this section, we further analyze the results of LCLR by asking the following research questions:

• How important is it to choose the proper definition of the intermediate representation?

• How does LCLR compete with the approximation algorithm used in [Felzenszwalb et al., 2008; Cherry

and Quirk, 2008; Chang et al., 2009]?
3Previous work [Das and Smith, 2009] has shown that combining the results of several systems improves performance.
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Intermediate representation vertex-vertex edge-edge consistence
one-to-one alignment ∀v1,

∑
v2∈V (G2)

hv1,v2 = 1, ∀e1,
∑

e2∈E(G2)

he1,e2 = 1, Eq. (5.8)

+ null word Eq. (5.6) ∀e1,
∑

e2∈E(G2)

he1,e2 = 1, Eq. (5.8)

+ null word + null relation Eq. (5.6) Eq. (5.7) Eq. (5.8)

Table 5.4: Three different definitions of the intermediate representation used in the experiments of analyz-
ing the Paraphrase Identification task with LCLR. Note that we only show the constraints that flows from
sentence 2 to sentence 1 for the sake of space. The definition of “+ null word + null relation” structure is
the same as the one defined in Section 5.3.

• What will happen if we choose a different lexical similarity metric?

We focus on the task of Paraphrase Identification because it has the largest number of training instances

among the three tasks. In order to provide more details, we also show the development set results, where

we split the training data into a 80%-20% split and report the testing results on the 20% portion based on

the systems trained on the 80% portion.

5.5.1 How important is it to choose the proper definition of the intermediate

representation?

In the task of the Paraphrase Identification, the definition of the intermediate structures is defined in Sec-

tion 5.3. To answer this question, we propose three different definitions of intermediate representations

including the one described in Section 5.3. The definitions are described in Table 5.4. Note that in the

structure “one-to-one alignment”, all of the words (dependency edges) in the first sentence need to align

to some words (dependency edges) in the second sentence and visa versa. In other words, no “null word”

and “null edge” are used in this definition. The intermediate representation “+ null word” allows of the

use of “null word” in both directions, but still does not use “null relation.” The intermediate representation

“ + null word + null relation” is the same as the one we reported in Section 5.3.

The experimental results of using different intermediate representation are in Table 5.5. Note that the

results shows the use of “null word” and “null relation” are very important as it brings significant impact

to the paraphrase identification accuracy. On the development data, adding null word and null relation

ends up boosting the accuracy by 3.4 percent, a significant improvement. On the testing data, adding

null word and relationship also improves the results by 3 percent. Therefore, the results show that using

a proper definition of intermediate representation is crucial for LCLR. Since changing the definition of

the intermediate representation implies changing the feature function, picking up the proper definition of

intermediate representation is very important.

It is important to note that the inference algorithm needs to be changed once we choose a different
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Algorithms (FULL) Algorithm 10 (APPROX.) Algorithm 12
intermediate representation Dev Test Dev Test
one-to-one alignment 73.6 73.4 71.0 69.3
+ null word 75.8 76.2 72.9 72.9
+ null word + null relation 77.0 76.4 74.9 75.4

Table 5.5: The table serves two purposes. First, we want to see the impacts of using different definitions
of intermediate representations. Second, we compared the LCLR (Algorithm 10) and the approximation
algorithm (Algorithm 12). See the text for more details.

definition of latent structures. This strengthen our claim of formulating the inference problem as an integer

linear programming problem because changing the definition of latent structures essentially means that

adding variables and constraints into the formulation.

5.5.2 How does LCLR compete with the approximation algorithm used in

[Felzenszwalb et al., 2008; Cherry and Quirk, 2008; Chang et al., 2009]?

In [Felzenszwalb et al., 2008; Cherry and Quirk, 2008; Chang et al., 2009], they proposed an approximation

algorithm to solve the formulation that is similar to Eq. (5.3) by calling an external SVM solver iteratively.

The approximation algorithm works as follows: Note that Algorithm 12 does not have any theoretical

Algorithm 12 Approximation Algorithm for solving Eq (5.3): The algorithm calls a SVM/LR package mul-
tiple times. Note that this algorithm does not have any theoretical guarantee possessed by Algorithm 10.
Also note that this algorithm treats positive examples and negative examples equally.

1: initialize: w← w0

2: repeat
3: for all positive and negative examples (xi, zi) do
4: Find h∗i ← arg maxh∈H

∑
s hswT Φs(xi)

5: end for
6: Update w by solving a regular SVM/Logistic formulation with features based on h∗i for i-th example
7: until finish all iterations
8: return w

guarantee so the objective function needs not necessary to decrease. However, Algorithm 12 is simpler

to implement given that it calls an external SVM solver several times. Also, the previous works report

successes of using this approximation algorithm so it is interesting to know if the approximation algorithm

can work well compared to LCLR on the Paraphrase Identification task.

The comparison results are also reported in Table 5.5. Note that the approximation algorithm fails to

obtain good results over all different definitions of intermediate representations in both development set

and testing set. In that task of Paraphrase Identification, it is apparently important to use the Algorithm 10,

instead of using the approximated version, Algorithm 12.
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Lexical Similarity Metric WNSIM WUP
intermediate representation Alignment+Learning LCLR Alignment+Learning LCLR
one-to-one alignment 73.8 73.4 71.3 73.2
+ null word 75.6 76.2 72.2 76
+ null word + null relation 76.2 76.4 72.3 75.9

Table 5.6: The results of using different lexical similarity metrics WNSIM and WUP. Note that while us-
ing WUP gives the worse results with the Alignment+Learning approach. The system LCLR with WUP
measurement is comparable results of the LCLR with WNSIM.

5.5.3 What will happen if we choose a different lexical similarity metric?

Among the features used in our Paraphrase Identification system, the most important one is the lexical sim-

ilarity metric. The lexical similarity metric, which determines the distance between two words, is used in

finding the initial alignment between two sentences and also affects the constructions of other features. We

follow the settings used in [Do et al., 2009] and conduct experiments with two different similarity metrics:

WUP [Wu and Palmer, 1994] and WNSIM [Do et al., 2009]. WUP is a hierarchical metric defined over the

WordNet hierarchy, and WNSIM is a metric proposed in [Do et al., 2009] to overcome some problems of

WUP. In the report of [Do et al., 2009], they observe that WNSIM performs a little bit better than WUP in

their experiments, though the differences are quite small.

Note that in the experiments conducted by [Do et al., 2009], their systems just uses the similarity metric

to generate a similarity score between two sentences without using other features. In our experiments,

we integrate the similarity features with other features including POS, dependency tree and named en-

tity features. The results are in Table 5.6. Interestingly, while WNSIM and WUP do not impact results

a lot in the experiments conducted in [Do et al., 2009], WNSIM and WUP make a big difference in our

Alignment+Learning approaches. The reason is that while the WNSIM and WUP perform similarly as a

scoring function, they in fact generate very different alignments. Our syntactic features are associated to the

alignments generated by the lexical similarity so different alignments can give very different paraphrase

identification results. For example, when we use “+ null word + null relation”, the difference of using WUP

and WNSIM are about 4%, a very significant difference.

Interestingly, note that the differences between LCLR with WNSIM and LCLR with WUP are only 0.5%.

While WUP does not generate good alignments for paraphrase identification at beginning, our joint ap-

proach LCLR is able to correct the alignments, find better alignments and generate better final results. On

one hand, it probably shows that the WNSIM already generates very good alignments so that the improve-

ment of LCLR over Alignment+Learning is not significant. On the other hand, when we adopt the WUP as

our lexical similarity metric, LCLR performs significantly better than the Alignment+Learning approach.
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5.6 Related Work

Recent NLP research has largely focused on two-stage approaches. Examples include RTE [Zanzotto and

Moschitti, 2006; MacCartney et al., 2008; Roth et al., 2009]; string matching [Bergsma and Kondrak, 2007];

transliteration [Klementiev and Roth, 2008]; and paraphrase identification [Qiu et al., 2006; Wan et al., 2006].

[MacCartney et al., 2008] considered constructing a latent representation to be an independent task and

used manually labeled alignment data [Brockett, 2007] to tune the inference procedure parameters. While

this method identifies alignments well, it does not improve entailment decisions. This strengthens our

intuition that the latent representation should be guided by the final task.

There are several exceptions to the two-stage approach in the NLP community [Haghighi et al., 2005;

McCallum et al., 2005; Goldwasser and Roth, 2008; Das and Smith, 2009]; however, in those cases, the

intermediate representation and the inference for constructing it are closely coupled with the application

task. In contrast, LCLR provides a general inference formulation that allows use of expressive constraints,

making it applicable to many NLP tasks that require latent representations.

While there are other general purpose latent variable SVM frameworks [Felzenszwalb et al., 2009; Yu

and Joachims, 2009], one special feature for LCLR is that it utilizes the declarative inference framework

that allows the use of constraints over an intermediate representation and provides a general platform for a

wide range of NLP tasks.

The optimization procedure in this work and [Felzenszwalb et al., 2009] are quite different. We use the

dual coordinate descent and cutting-plane methods, ensuring we have fewer parameters and that the infer-

ence procedure can be easily parallelized. Our procedure also allows different loss functions. [Cherry and

Quirk, 2008] adopts the Latent SVM algorithm to define a language model. However, their implementation

is not guaranteed to converge.

In CRF-like models with latent variables [McCallum et al., 2005], the decision function marginalizes over

the all hidden states when presented with an input example. Unfortunately, the computational cost of ap-

plying their framework is prohibitive with constrained latent representations. In contrast, our framework

requires only the best hidden representation instead of marginalizing over all possible representations, thus

reducing the computational effort.

5.7 Summary

We consider the problem of learning over an intermediate representation. We assume the existence of

a latent structure in the input, relevant to the learning problem, but not accessible to the learning algo-
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rithm. Many NLP tasks fall into these settings and each can consider a different hidden input structure.

We propose a unifying thread for the different problems and present a novel framework for Learning over

Constrained Latent Representations (LCLR). Our framework can be applied to many different latent rep-

resentations such as parse trees, orthographic mapping and tree alignments. Our approach contrasts with

existing work in which learning is done over a fixed representation, as we advocate jointly learning it with

the final task.

We successfully apply the proposed framework to three learning tasks – Transliteration, Textual Entail-

ment and Paraphrase Identification. Our joint LCLR algorithm achieves superior performance in all three

tasks. We attribute the performance improvement to our novel training algorithm and flexible inference

procedure, allowing us to encode domain knowledge. This presents an interesting line of future work in

which more linguistic intuitions can be encoded into the learning problem. For these reasons, we believe

that our framework provides an important step forward in understanding the problem of learning over

hidden structured inputs.
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Chapter 6

Joint Structured Learning With Binary
Indirect Supervision Signals

Many tasks in Natural Language Processing (NLP) and Computer Vision can be naturally modeled as

structure learning problems. Consider, for example, the problem of entity transliteration. Given an English

name (e.g., Italy), generate the corresponding name in Hebrew (pronounced Ee’Tal’Ya). To do so,

there is a need to learn a model which, given a pair {English named entity, its Hebrew transliteration},

finds phonetic (character sequence) alignments between them.

In Chapter 3, we discussed the constrained framework for output structured variables. In Chapter 5, we

proposed a constrained framework for latent structured variables. Interestingly, we can combine these two

notions of “structure” in a unified and principled statistical learning framework. In this section, we for-

malize the observation that many structured output prediction problems have a companion binary decision

problem: predicting whether an input can produce a good structure or not. Typically, structured output

learning uses direct supervision consisting of annotated structures. The new framework incorporates binary

labeled examples for the companion task into the learning process, acting as indirect supervision. Note that

in Chapter 3, we treat constraints as indirect supervision resource signals. In this chapter, we use binary

labeled examples as indirect supervision. In the following, we refer to this new type of signals as binary

indirect supervision signals.

For instance, consider the following binary problem [Klementiev and Roth, 2008]: given Named Entities

(NE) in two languages, determine if they represent transliterations of each other. Since transliterations of

NEs should sound similar, this binary decision problem can be formulated as the following question: “Can

the two NEs produce good phonetic sequence alignment?” This binary decision task determines whether

a given input (here, a pair of English and Hebrew NEs) can generate a well-formed structure (in this case,

the mapping). Our work is motivated by several recent works [Chang et al., 2009; Felzenszwalb et al.,

2009; Chang et al., 2010a] which solve binary decision problems by learning to predict a (latent) structure on

which the binary labels depend. We observe that it is often easy to obtain supervision (binary labels) for the

companion problem, and we refer to the supervision for the companion binary task as indirect supervision

for the target structure prediction task. The key research question addressed in this chapter is: Can the
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structured output prediction task benefit from indirect supervision to the companion problem?

We propose a novel framework for Joint Learning with Indirect Supervision (J-LIS) which uses both

structured and binary labeled data. In this framework, one can learn structure from a very small number

of structured labeled examples, which are hard to come by, and gain a lot from indirect binary supervi-

sion for the companion decision problem that, as we show, are easy to obtain. It is important to note that

while J-LIS and LCLR (the framework proposed in Chapter 5) are two strongly related learning frame-

works, they are very different conceptually. The differences between these two algorithms are discussed in

Chapter 6.6.3.

We develop a learning algorithm for this formulation that generalizes the structured output SVM (SSVM)

by jointly learning from both forms of supervision. Moreover, our optimization algorithm allows the incor-

poration of constraints on the output space, an approach that is often found very useful in structured output

problems.

6.1 Learning with Binary Indirect Supervision Signals

Before describing the model design, we elaborate the idea of using binary indirect supervision using the

following two examples:

Information Extraction An advertisement on Craigslist contains fields like size, rent and location. Extract-

ing these fields from text is a sequence tagging problem. A companion binary decision can be defined

as that of determining if an article is a well-formed advertisement. A well-formed advertisement should

contain certain fields in an appropriate ordering. While the binary task only asks whether advertisement

fields can be extracted from the article, the relation between the binary task and the structured task is clear:

only a well-formed post can generate good structure. The labeled data for the binary problem is easy to

obtain, for example by crawling the web, and generating negative data by shuffling word sequence of the

advertisement1.

Object Part Recognition Consider the computer vision object recognition task of labeling the “parts”

(e.g., wheels) of a car in an image. The companion binary task can be defined as classifying if an image

contains a car or not. The relation between the problems is clear, as an image containing a car will also

contain car parts. While labeling parts in an image is a difficult and time consuming task, obtaining car and

1Shuffling should also be considered as a supervision resource, since we know it will generate ill-formed examples for this domain
with very high probability.
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non-car images for the binary task is easy. We can collect the car images and non-car (flower, aircraft, etc.)

images from the web relatively easily.

6.1.1 Model

We now formalize the intuition described above. First, we introduce the notation. Let S = {(xi,hi)}li=1

denote the direct supervision set consisting of l examples xi and their corresponding structures hi. Like-

wise, let B = {(xi, zi)}l+m
i=l+1 denote the indirect supervision set, where each zi ∈ {1,−1}. For brevity, we

write i ∈ S to indicate (xi,hi) ∈ S and i ∈ B to indicate (xi, zi) ∈ B. We denote B+ and B− as partitions

of B consisting of positive and negative instances of B respectively. For any x, H(x) denotes the set of all

feasible structures. Let Φ(x,h) be a feature generation function. We define X as the set of all feature vectors

for an x. That is, X = {Φ(x,h) | h ∈ H(x)}.

In the standard structured output prediction task, the goal of learning is to find a weight vector that, for

every example (xi,hi) ∈ S, assigns the highest score to the correct element hi ofH(xi). That is, we wish to

find w such that,

hi = arg max
h∈H(x)

wT Φ(xi,h).

To use binary indirect supervision, the key assumption we make is that an input x is valid (that is, its

z = +1) if and only if its best structure is well-formed. Conversely, the input is invalid (its z = −1) if every

structure for that input is bad. We require that the weight vector w should satisfy two conditions:

∀ (x,−1) ∈ B−, ∀h ∈ H(x),wT Φ(x′,h) ≤ 0,

∀ (x,+1) ∈ B+, ∃h ∈ H(x),wT Φ(x,h) ≥ 0 (6.1)

The geometric interpretation of this setting is shown in Fig. 6.1. In the figure, the circles represent the

set X = {Φ(x,h) | h ∈ H(x)}, the feature vectors corresponding to feasible structures of an example x. The

vector w defines a hyperplane separating the examples into positive and negative classes. The figure on

the left denotes standard structured output learning, where w is learned using a labeled set S. A positive

example, x has a well defined structure, but our prediction is incorrect. In the right figure, the learning

algorithm uses binary indirect supervision. Following the definition that structures obtained from negative

examples should have low scores, the weight vector w is pushed into a better region, allowing the structure

predictor to improve and predict the correct structure.
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Figure 6.1: Learning with indirect supervision when the target output is H . Each circle represents the set
of feature vectors of feasible structures of an example and w denotes a hyperplane. (a) Suppose we have
learned a w using a structure labeled set S. For a positive example, x ∈ B+, we know there exists a well
defined, unknown structure, but our prediction is incorrect. (b) After adding two negative examples: Neg-
ative examples, by definition, do not have a well formed structure. That is, every structure for x1,x2 ∈ B−

should be scored below a threshold, and some structure of x should score above it. The negative examples
restrict the space of hyperplanes supporting the right decision for x. See Section 6.1 for details.

6.1.2 Learning

In the standard structural SVM, the goal of learning is to solve the following minimization problem:

min
w

‖w‖2

2
+ C1

∑
i∈S

LS(xi,hi,w)

where, LS(xi,hi,w) represents the loss function for the structure prediction. The function LS can be written

as

LS(xi,hi,w)= `

(
max

h

(
∆(h,hi)−wT Φhi,h(xi)

))
(6.2)

where Φhi,h(xi) = Φ(xi,hi) − Φ(xi,h) and ∆ is a function which returns the distance between two struc-

tures. We define ∆ as the Hamming distance between structures, but our algorithm can be used with any

suitable definition for the distance between structures. Again, the function ` : R → R can be instantiated

by many commonly used loss functions such as hinge loss, with `(a) = max(0, a), and squared-hinge loss,

with `(a) = max(0, a)2.

We incorporate binary indirect supervision using the intuition from Eq. (6.1) to define the problem of

Joint Learning with Indirect Supervision (J-LIS):

Given a structure labeled dataset S and a binary labeled dataset B, the goal of learning is to find w that minimizes

the objective function Q(w), which is defined as

‖w‖2

2
+C1

∑
i∈S

LS(xi,hi,w) +C2

∑
i∈B

LB(xi, zi,w), (6.3)
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where LS , as before, is the loss for the structure prediction, and LB is the loss for the binary prediction.

The intuition from Eq. (6.1) is incorporated into the binary loss LB . The first inequality of Eq. (6.1) is

equivalent to requiring the highest scoring structure of all negative examples to be below the threshold.

The second inequality will be satisfied if the highest scoring structure of every positive example is above

the threshold. Thus, the two inequalities can be re-stated as follows:

∀ (x,−1) ∈ B−, max
h∈H(x)

wT Φ(x′,h) ≤ 0,

∀ (x,+1) ∈ B+, max
h∈H(x)

wT Φ(x,h) ≥ 0.

Furthermore, the design of the binary loss needs to account for the fact that different examples can have

different sizes. Hence, the weight vectors Φ(xi,h) need to be normalized according to the size of the input.

Accordingly, using κ(x) as normalization for an input x, we define the LB as2

LB(xi, zi,w) = `

(
1− zi max

h∈H(x)
(wT ΦB(xi,h))

)
(6.4)

where ΦB(xi,h)T = Φ(xi,h)T

κ(x) . We also add a dummy feature in ΦB to adjust the relative scale of LB and LS

after normalizing the feature vector.

The J-LIS is related to several other learning frameworks such as structural SVM [Tsochantaridis et al.,

2005], structural SVM with latent variables [Yu and Joachims, 2009] and Contrastive Estimation[Smith and

Eisner, 2005]. The discussions of the relationships between J-LIS and these learning frameworks including

the framework LCLR we proposed in Chapter 5 will be in Section 6.6.

The J-LIS is related to several other learning frameworks such as structural SVM [Tsochantaridis et al.,

2005], structural SVM with latent variables [Yu and Joachims, 2009] and Contrastive Estimation[Smith and

Eisner, 2005]. The discussions of the relationships between J-LIS and these learning frameworks will be in

Section 6.6.

6.2 Optimization Algorithm

This section describes the optimization procedure for solving the objective function Q(w) from Eq. (6.3).

First, we study its convexity properties. We can rewrite Eq. (6.3) as

Q(w) = F (w) + G(w),

2The function κ(x) is not needed when the feature vectors take care of the scaling issue. It is only needed when the φ(x,h) is
sensitive to the size of x.
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Algorithm 13 Iterative algorithm for minimizing Q(w) by repeatedly minimizing A(w,wt).
1: Initialize w0 with direct supervision S.
2: repeat
3: wt+1 ← arg minw A(w,wt)
4: until convergence
5: Return the final weight vector.

where F and G are given by Eq. (6.5) and (6.6), respectively.

F (w) =
‖w‖2

2
+ C1

∑
i∈S

LS(xi,hi,w) + C2

∑
i∈B−

LB(xi, zi,w) (6.5)

G(w) = C2

∑
i∈B+

`

(
1−max

h
(wT ΦB(xi,h))

)
(6.6)

If ` is convex and non-decreasing, F is convex. However, the function G, which includes a maximization

term within it, need not necessarily be convex or concave. This renders the function Q non-convex. This is

an effect of the existential quantification over positive examples in Eq. (6.1).

Since G is not concave, the Concave-Convex procedure (CCCP) [Yuille and Rangarajan, 2003] cannot be

applied as in [Yu and Joachims, 2009]3. However, we can apply an optimization procedure similar to CCCP

without requiring G to be concave. We use the fact that our loss function ` is non-decreasing, which holds

for commonly used loss functions such as hinge loss, square-hinge loss and logistic loss. The algorithm is

in the same spirit as the one proposed in Algorithm 10 in Section 5.2.1 but is more general given that we

also have the term that associated with the structured labeled data.

6.2.1 Main Optimization Procedure

Algorithm 13 iteratively improves the objective function. At the tth iteration of the loop, we denote wt to be

the current estimation of the weight vector, and denote ht
i = arg maxh wt

T Φ(xi,h) to be the best structure

for a positive example according to wt. We then define an approximation function of G using wt:

Ĝ(w,wt) = C2

∑
i∈B+

`(1−wT ΦB(xi,ht
i)). (6.7)

Unlike G, since the ht
is are fixed using wt, the function Ĝ(w,wt) is convex in w given ` is convex. Now,

step 3 of the algorithm minimizes the following convex function A(w,wt) to obtain the next estimate of the

3CCCP cannot be applied to this split of Q into F (w) + G(w) because G is not concave. The theory of CCCP does not forbid a
different split of the objective function where it is applicable. The split proposed in this chapter, however, leads to an intuitive and
efficient algorithm which has similar guarantees as CCCP.
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weights.

A(w,wt) = F (w) + Ĝ(w,wt)

Algorithm 13 has the following property:

Theorem 3. If the loss function ` is a non-decreasing function, then in Algorithm 13, the objective function (Eq. (6.3))

will decrease with every iteration. That is, if wt is the weight vector from the tth iteration and wt+1 is the weight

vector after running the Algorithm 13 for one more iteration. Then, Q(wt+1) ≤ A(wt+1,wt) ≤ Q(wt).

Proof. For any h and w, we know that wT Φ(xi,h) ≤ maxh′ wT Φ(xi,h′). Since ` is non-decreasing,

Ĝ(w,wt) ≥ G(w) for any w. From definition of G and Gt, we have Ĝ(wt,wt) = G(wt). Thus,

Q(wt) =F (wt) + G(wt) = F (wt) + Ĝ(wt,wt)

≥F (wt+1) + Ĝ(wt+1,wt) = A(wt+1,wt)

≥F (wt+1) + Ĝ(wt+1,wt+1) = Q(wt+1).

The first inequality is from line 3 in Algorithm 13. �

Algorithm 13 minimizes Q(w) by constructing a sequence of convex problems A(w,wt) in each it-

eration. The algorithm is defined for any convex and non-decreasing loss functions `. Next, we show

how the inner loop of the Algorithm 13 (that is, minimizing A(w,wt)) can be solved efficiently when

`(x) = max(0, x)2, the squared hinge loss.

6.2.2 Cutting Plane Strategies for Optimization A(w,wt)

Our approach for solving the A(w,wt) adapts the cutting plane strategy of [Joachims et al., 2009] to

minimize A(w,wt). We define a working set for each element in S and B− – let Wi and Vi denote the

working sets of xi ∈ S and xi ∈ B− respectively. While there are exponential number of possible structures

for each example, the cutting plane strategy keeps only a small set of visited structures. We call the set that

keeps visited structures a working set and we keep a working set for every example. We minimize A iter-

atively using Algorithm 14, which first updates the working sets (line 5-11) and then solves the following
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Algorithm 14 Cutting plane algorithm for optimizing A(w,wt) in Algorithm 13 with square hinge loss.

Require: wt, the weight vector from tth iteration
1: Wi ← ∅,∀i ∈ S
2: Vi ← ∅,∀i ∈ B−

3: ht
i = arg maxh wT

t ΦB(xi,h),∀i ∈ B+

4: repeat
5: for i ∈ B− do
6: h∗i ← arg maxh wT ΦB(xi,h)
7: Add h∗i to Vi

8: end for
9: for i ∈ S do

10: h∗i ← arg maxh wT Φ(xi,h) + ∆(hi,h)
11: Add h∗i toWi

12: end for
13: Update w by solving Eq. (5.5)
14: until no new element is added to anyWi and Vi

15: return w

minimization problem (line 13) :

min
w

1
2
‖w‖2 + C1

∑
i∈S

ξ2
i + C2

∑
i∈B

ξ2
i

S.T. ∀i ∈ S,h ∈ Wi, ξi ≥ ∆(h,hi)−wT Φhi,h(xi),

∀i ∈ B−,h ∈ Vi, ξi ≥ 1 + wT ΦB(xi,h),

∀i ∈ B+, ξi ≥ 1−wT ΦB(xi,ht
i) (6.8)

The cutting plane method used in Algorithm 14 has one difference compared to the one used in [Tsochan-

taridis et al., 2005; Joachims et al., 2009]. Their algorithms solve the subproblem immediately when the

working set is updated for one example. In our implementation, we update the working set for all of

our examples and before solving the subproblem. The justification of the algorithm can be seen in Ap-

pendix A.2.

6.2.3 Dual Coordinate Descent Algorithm for Eq. (6.8)

After the working sets are fixed, we solve the convex subproblem Eq. (6.8) with a dual coordinate decrease

method. We first derive the dual formation for Eq. (6.8). We would like to stress it that using square hinge

loss in Eq. (6.8) enable us to discard we the ξi ≥ 0 constraints. Hence, the dual formulation of Eq. (6.8) does

not have any equality constraint. This allows us to use a very efficient coordinate descent method on the

dual formulation of Eq. (6.8).

In the dual of Eq. (6.8), each variable corresponds to one constraint. We use αs to denote the dual
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variables. For each i ∈ S, the dual contains |Wi| variables αi,j for the hi,j ∈ Wi. Similarly, we define αi,j

for every hi,j ∈ Vi, i ∈ B.

The Lagrangian for (6.8) can be written down as follows:

L(w, {ξ}, {α}) =
1
2
‖w‖2 + C1

∑
i∈S

ξ2
i + C2

∑
i∈B

ξ2
i

−
∑
i∈S

∑
j:hi,j∈Wi

αi,j

(
ξi −∆(hi,j ,hi) + wT Φhi,hi,j (xi)

)
−

∑
i∈B

∑
j:hi,j∈Vi

αi,j

(
ξi − 1 + ziwT ΦB(xi,hi,j)

)

Notice that for brevity, we extend the definition of V for elements of B+, where each Vi is a singleton set

consisting of ht
i. The gradient of Lagrangian are:

∂L

∂w
= 0 ⇒ w =

∑
i∈S

∑
j:hi,j∈Wi

αi,jΦhi,hi,j (xi) +
∑
i∈B

∑
j:hi,j∈Vi

ziαi,jΦB(xi,hi,j)

∂L

∂ξi
= 0 ⇒ ξi =

1
2C1

∑
j:hi,j∈Wi

αi,j , if i ∈ S

⇒ ξi =
1

2C2

∑
j:hi,j∈Vi

αi,j , if i ∈ B

Hence, the dual of (6.8) can be written as:

D : min{αi,j}
1
2
‖

∑
i∈S

∑
j:hi,j∈Wi

αi,jΦhi,hi,j (xi) +
∑
i∈B

∑
j:hi,j∈Vi

ziαi,jΦB(xi,hi,j)‖2

+
1

4C1

∑
i∈S

(
∑

j:hi,j∈Wi

αi,j)2 +
1

4C2

∑
i∈B

(
∑

j:hi,j∈Vi

αi,j)2

−
∑
i∈S

∑
j:hi,j∈Wi

∆(hi,j ,hi)αi,j −
∑
i∈B

∑
j:hi,j∈Vi

αi,j

S.T. αi,j ≥ 0,∀i ∈ S, B, ∀j

The idea of coordinate descent is simple. After each iteration, For each time we pick a variable αp,q

to change with all other αi,j ,∀i 6= p or j 6= q fixed. The subproblem is easily solvable, given that only one

variable is involved. It has been shown that keeping track of the current weight vector w can greatly reduce

the cost of calculating the gradient of dual variables αp,q [Hsieh et al., 2008]. We keep the most updated w

such that

w =
∑
i∈S

∑
j:hi,j∈Wi

αi,jΦhi,hi,j (xi) +
∑
i∈B

∑
j:hi,j∈Vi

ziαi,jΦB(xi,hi,j).
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Once the values of αs change, it is easy to update w corresponding to the current values of αs.

We will discuss two cases separately:

Case 1: i ∈ S Assume that we will change αp,q to αp,q + d. The subproblem of finding the optimal d can

be rewritten using the current w:

mind
1
2
‖w + dΦhp,hp,q

(xp)‖2 +
1

4C1
(

∑
j:hp,j∈Wp

αp,j + d)2 −∆(hp,q,hp)d

S.T. d ≥ −αp,q

The solution of this subproblem is

d = max

−αp,q,
∆(hp,hp,q)−wT Φhi,hi,j

(xi)−
P

j αp,j

2C1

‖Φhi,hi,j (xi)‖2 + 1
2C1

 (6.9)

Case 2: i ∈ B The subproblem can be written as:

mind
1
2
‖w + dzpΦB(xp,hp,q)‖2 +

1
4C2

(
∑

j:hp,j∈Vp

αp,j + d)2 − d

S.T. d ≥ −αp,q

And the solution is:

d = max

−αp,q,
1− zpwT ΦB(xp,hp,q)−

P
j αp,q

2C2

‖ΦB(xp,hp,q)‖2 + 1
2C2

 (6.10)

Algorithm 15 summarizes the dual coordinate descent algorithm for minimizing Eq. (6.8).

Our optimization algorithm is related to the convex-concave procedure (CCCP) [Yuille and Rangarajan,

2003], which has been used for solving many non-convex optimization problems [Yu and Joachims, 2009].

We show that it is not necessary to decompose the objective function into a sum of convex and concave

functions to use a CCCP-like iterative procedure. The object recognition work of [Felzenszwalb et al., 2009]

uses a similar optimization procedure for their problem. However, not only is the intent of our algorithm

is completely different (that work only has labels for the binary problem and the goal is to improve bi-

nary classification performance), our main optimization algorithm (Algorithm 13) can handle general loss
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Algorithm 15 Dual coordinate descent for minimizing Eq. (6.8).
1: repeat
2: Pick any variable αi,j

3: if i ∈ S then
4: η1 = ∆(hi,hi,j)−wT Φhi,hi,j (xi) + 1

2C1

∑|Wj |
j=1 αi,j

5: η2 = ‖Φhi,hi,j (xi)‖2 + 1
2C1

6: else
7: η1 = 1− ziwT (ΦB(xi,hi,j)) + 1

2C1

∑|Vj |
j=1 αi,j

8: η2 = ‖ΦB(xi,hi,j)‖2 + 1
2C2

9: end if
10: αi,j ← max(αi,j + η1

η2
, 0)

11: until convergence

functions which are convex and non-decreasing 4.

6.3 Implementation Details

There are several implementation details that are worthwhile to mention here.

Stopping Conditions We hope to run our algorithm until the relative change in the objective function

became less than ν:
Q(wt)−Q(wt−1)

Q(wt−1)
≤ ν

Unfortunately, calculating the objective function Q(w) is very expensive given that it requires resolving the

inference problems for all examples.

On the other hand, we know the value of A(wt,wt−1) while running Algorithm 13 (w0 is the initial

weight vector). In our system, we use the following stopping condition

A(wt,wt−1)−A(wt−1,wt−2)
A(wt−1,wt−2)

≤ ν (6.11)

Note that from Theorem 3,

Q(wt) ≤ A(wt,wt−1) ≤ Q(wt−1)

It means that Eq. (6.11) implies

Q(wt)−Q(wt−2)
Q(wt−2)

≤ A(wt,wt−1)−A(wt−1,wt−2)
A(wt−1,wt−2)

≤ ν (6.12)

4For loss functions other than square-hinge loss, optimization methods other than the dual coordinated descent method might be
needed to solve the subproblem.
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In our implementation, we set ν to be 10−5.

Parallelization It is important to know that in the Algorithm 14, the process of finding the most violated

structures can easily parallelized. In our implementation, we take advantages of this property and imple-

ment a multi-thread approach for solving inference problems (line 5-12 in Algorithm 14). This is especially

important when solving the inference problem is time consuming.

Dual Coordinate Descent In Algorithm 15, we state that we pick any i, j pairs randomly for the sake of

simplicity. In our implementation, we arrange i, j in a random order such that we will touch each pair at

least once before we pick the same i, j pair again. We found that this ordering improves the speed of the

convergence.

6.4 Experiments

We verify the effectiveness of J-LIS by applying it on several NLP tasks defined over complex structures –

Phonetic Transliteration Alignment, Information Extraction [McCallum et al., 2000; Grenager et al., 2005]

and Part of Speech Tagging [Smith and Eisner, 2005]. Our experiments provide insights into the settings

in which binary indirect supervision is most effective. We also conduct a document classification exper-

iment in this section. All three applications are taken from active research areas, and have been widely

discussed in the literature. The binary classification problem in these applications is defined over rich

structures, which in turn present a non-trivial structured learning problem. In the following subsections

we explain the experimental setting for each domain and show that using binary indirect supervision con-

sistently improves performance. For all our experiments, we selected parameters C1 and C2 from the set

{10−1, 100, 101} by sampling the data and evaluating the results on a held-out set.

6.4.1 Phonetic Transliteration Alignment

Given a source language named entity (NE) and a corresponding target language NE, the goal of Phonetic

Transliteration Alignment is to find the best phonetic alignment between the character sequences of the

two NEs.5 The companion binary classification problem is the task of determining whether two words

from different languages correspond to the same underlying entity.

Given two words a1
s, a

2
s, ..., a

n
s and a1

t , a
2
t , ..., a

m
t , the phonetic alignments are defined over (ai

s . . . ak
s) and

(ap
t . . . aq

t ) pairs (We only allows the character sequence contains less or equal to three characters). We allow

5The character sequences can consist of multiple characters.
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a character sequences to map into a empty set but disallow cross alignments. Hence, given an input ex-

ample (in our case, an English and Hebrew NE pair), the best sequence alignment can be efficiently found

using a dynamic programming algorithm. Our feature vector corresponds to the alignment edges, using

the corresponding character sequences. Note that this definition of the structure is different from the one

used in Section 5.4.1, because our domain expert believes that the true underlying alignment should be the

alignments of the character sequences instead of the alignments of single characters. The comparisons be-

tween the LCLR system using the single character alignment structure (the definition used in Section 5.4.1)

and the character sequence structure (the definition used here) will be discussed in 6.5.5.

We used the English-Hebrew data-set from [Chang et al., 2009], consisting of 300 pairs and manually

annotated the alignments between the NEs’ segments. We used 100 pairs for training and 200 for testing.

Our binary data, obtained by crawling the web, consists of 1,000 positive and 10,000 negative pairs6. Note

that obtaining the binary supervision is considerably easier than labeling the alignment.

To measure the impact of binary indirect supervision, we vary the size of the direct and binary indirect

supervision sets. We report the F1 measure for the alignment in Table 6.3(a). Adding binary indirect su-

pervision improves the structure predictor significantly. For example, when we have only ten structured

labeled pairs, the error reduction rate is 26%.

6.4.2 Part-Of-Speech tagging

Our part-of-speech (POS) tagging data is from the Wall Street Journal corpus [Marcus et al.]; we used 25600

tokens for training and another 25600 tokens testing (which each correspond to 1000 sentences). Using

a separate set of sentences corresponding to 51200 tokens, we generated 2500 binary indirect supervision

examples. The negative examples among these were generated by randomly shuffling “positive” sentences

in the corpus. Note that we use the standard definition of POS with 45 possible POS tags. This experiment

setting is different from the one conducted in [Chang et al., 2010b], where we used a reduced set of tags

that contains only 16 tags.

Our model was a first order Markov model with spelling features representing capitalization and suf-

fixes of the current word. The full feature description7 can be found in Table 6.1. In our experiments, the

largest model used approximately 1 million features. We set our κ(x) to be the number of words in the

sentence x. All reported results are averaged over 10 rounds.

The results of the experiments are summarized in Fig. 6.2. We observe that binary indirect supervision

6Negative pairs were created by pairing an English NE to a random Hebrew NE.
7If we use the same features to train a POS model on section 2 to section 21 of the Wall Street Journal corpus. The testing accuracy

is 96.5 on Section 23.
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Feature type Feature Template
Transition ti−1 = T ′ and ti = T

ti = T
Word wi−1 and ti = T
Spelling Features suffix(wi) and ti = T such that |suffix(wi)| ≤ 3

prefix(wi) and ti = T such that |prefix(wi)| ≤ 3
the first character wi is capitalized and ti = T
wi contains a hyper and ti = T
wi contains a number and ti = T

Table 6.1: Features used in our POS Experiments. We use {ti} variables to represent labels to be predicted
– ti represent tags, and wi represent word tokens for the i-th word, respectively. We use T to represent a
possible tag among the 45 possible tags. All features are binary.

is most effective when the size of the structured labeled data-set is small. For example, when S consists of

200 tokens, adding binary indirect supervision improves the predictor from 66.17% to 71.52%. As in the

transliteration domain, increasing the binary indirect supervision often results in better performance, the

trend is very clear in Fig. 6.2. While the effect of binary indirect supervision decreases when the supervision

set for the structure learning problem increases, we found that J-LIS is competitive with structural SVM

even when we used all the labeled data (25.6k). The supervised SVM achieves 93.51% with all labeled

examples, compared to J-LIS’s 93.58%.

6.4.3 Information Extraction

Information Extraction (IE) is the task of identifying predefined fields in text. We report results for two IE

tasks: (i) Extracting fields from citation (e.g., author, title, year) [McCallum et al., 2000], and (ii) Extracting

fields from advertisements (e.g., size, rent and neighborhood) [Grenager et al., 2005]. The companion binary

problem is to classify whether a text is a well structured citation/advertisement. These two tasks are only

modeled as a sequential tagging problem. Followed the setting in [Grenager et al., 2005], for citations,

we used 300 structured labeled examples for training, 100 for development and 100 for testing. In the

advertisements domain, we used 100 labeled examples for training, development and testing. For each

domain, our positive data contains 1k entries (50k tokens for the citation domain and 200k tokens for the

advertisement dataset). We generate 1k negative entries for each domain by randomly shuffling the tokens

from the positive examples of each domain.

We use features corresponding to the current word and previous state allowing us to use Viterbi to find

the best sequence efficiently. The features can be find in Table 6.1 without spelling features. The κ(x) is set

to the number of tokens of this entry.

Our experiments evaluated the extent to which labeled data for the binary classification task could be
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Figure 6.2: Results for the part-of-speech tagging. Adding binary indirect supervision significantly im-
proves the results. Also, the results are better when more binary indirect supervision is used. We report
the size of the data-sets used by counting the total number of tokens due to the variance in sentences
size. See the text for more details. Even when all of our labeled data is used (25.6k), SSVM and J-LIS are
comparable(93.51% v.s. 93.58%)

used as binary indirect supervision for the information extraction task. In the citation domain, we used 300

labeled examples for training, 100 examples for development and 100 examples for testing. Out of these

examples token level examples were generated, 9K for training, 3K testing. A set of 1000 positive citation

entries were used as binary indirect supervision, and a further 1000 negative examples were generated,

which correspond to 50000 token level negative examples. In the advertisement domain, we used 100

labeled examples for training, development and testing. These correspond 19000 token level examples for

training and 20000 token level examples for testing. A set of 1000 positive citation entries were used as

binary indirect supervision, and a further 1000 negative examples were generated, which correspond to

20000 token level negative examples.

The token-level accuracy results for both domains are summarized in Table 6.3(b), where we vary |S|

and fix |B| for each domain. In the advertisement domain, when the number of tokens in S is 500 tokens,

structural SVM attains an accuracy of approximately 58%. Adding binary indirect supervision boosts the

accuracy to over 66%, which even outperforms the structural SVM results with |S| = 1000. In the citation

domain, we observe similar trends.
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SSVM J-LIS
Size of B

|S| 0 2k 4k 8k
10 72.9 78.8 79.8 80.0 (26.2%)
20 82.1 84.6 84.7 85.4 (18.4%)
40 85.7 86.9 87.2 87.4 (12.0%)
80 88.6 89.4 89.0 89.4 (7.1%)

(a) Phonetic Alignment Results

Advertisements Citations
|S| SSVM J-LIS |S| SSVM J-LIS

500 57.18 66.60 100 58.24 64.05
1000 64.93 70.09 400 70.53 73.63
2000 69.57 72.75 1600 82.39 84.28
4000 74.24 75.80 6400 90.15 90.33
19k 78.07 79.00 9k 92.24 92.31

(b) Information Extraction Results

Figure 6.3: Left (a): F1 measure for the phonetic transliteration alignment task. The amount of direct
supervision used for the structured prediction task (|S|) varies across the rows of the table, while the size
of binary indirect supervision (|B|) changes across the columns. The first column, (|B| = 0) is the standard
structural SVM (SSVM). Results show that binary indirect supervision is especially effective when little su-
pervision exists for the structured task. The error reduction compared to structural SVM is in parentheses.
Right (b): Results for two IE tasks. The size of structured supervised set S is measured by number of
tokens. Performance is evaluated by token-level accuracy with fixed binary indirect supervision set B. The
results are bold faced when the improvement obtained by J-LIS is statistically significantly under paired-t
test p < 0.01.

6.4.4 Document Classification

The J-LIS can also be applied on document classification tasks. In the document classification tasks, our goal

is to classify the document to a set of predefined classes of categories. For example, we want to classify a

news document into the “Sports” category or the “Health” category. An important insight here is that

there are documents that do not belong to any of these categories8, and we can take advantages of those

documents to improve our target classifiers.

In order to have a better understanding how to set up this experiment, we list the semantics of each type

of data in Table 6.2. In our experiment, we conduct this experiment on the commonly used 20 newsgroup

dataset [Lang, 1995; Fan and Lin]. We randomly select 10 categories as our predefined categories. That

is, our main focus now is a 10-way classification problem. In the structured labeled data, we have the

standard definition of “labeled data”, where we know the correct category for each document. We separate

the original training data into two sets. We sample the structured labeled data from the first set, and

we artificially generated the binary labeled data from the second set. The positive binary labeled data is

generated by picking examples that belong to category 1 to 10 from the second set and then throw away

the label associated to each example. The negative data is based on the examples that belong to category

11 to category 20.

It is important to note that we only present to the classifier the examples that belong to these predefined

categories (category 1 to category 10) in the testing time. We varies the size of structured labeled data here

and fixed the size of the binary labeled data in all of our experiments. We set κ(x) = 1 here and report

8We assume that in the “Miscellaneous” does not belong to our predefined categories.
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Data Type Semantics Mathematics Semantics
Structured
Labeled Data S

Document xi and the label hi

belongs to class 1 to m
wT Φ(xi,hi) ≥ max

h={1,...,m}
wT Φ(xi,h)

Positive Data
B+

Document x belongs to class
1 to m. However, we do not
now which class it is.

max
h={1,...,m}

wT ΦB(xi,h) ≥ 0

Negative Data
B−

Document x does NOT be-
long to class 1 to m.

max
h={1,...,m}

wT ΦB(xi,h) < 0

Testing Data
This document belongs to
class 1 to m. However, we do
not now which class it is.

prediction: arg maxh={1,...,m}wT Φ(xi,h)

Table 6.2: The semantics of structured and binary labeled data in the document classification problem.
Assume that our target task is to classify a document into a set of predefined categories: {1, . . . m}. Note
that the binary negative examples can be obtained by collecting documents which do not belong to class
1 . . .m.

results over 10 rounds.

The experimental results are in Figure 6.4. In the figure, it is clear that binary labeled data significantly

improve the accuracy on the target task, especially when we do not have a lot of labeled data.

In this experiment, we found one limitation of the J-LIS framework. When there are extremely few

labeled examples (less than 10 examples for each category), adding binary labeled data can hurt the perfor-

mance (in fact, it can drop the accuracy by 20%). Our hypothesis is that given that our objective function

is non-convex, the initialization point is very important. When there are not enough amount of labeled

examples, we do not have enough information to construct a good initialization point. This explains why

adding binary labeled data here can hurt us. Setting up a procedure to ensure a good initialization weight

vector is one of our future work.

6.5 Analysis

In this section we discuss several important aspects of our framework. First, we would like to know how

much impacts negative examples bring. The use of negative examples is unique in J-LIS compared to other

discriminative semi-supervised learning framework.

We would also want to investigate some other properties of our algorithm. This includes analyzing the

number of iterations it needs as well as the impact of generating more negative examples.

Moreover, we extrapolate the experiments in Section 6.4 to consider the case when there are no labeled

structure examples and discuss learning with just the binary indirect supervision.

In the final part of this section, we consider a common scenario in many natural NLP and computer

vision applications is using Y (instead of H) as the target output space. We explore the question of using
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Figure 6.4: Document Classification Experiments on 20 newsgroup. We do not show the results when |S| <
100 give that we find adding binary labeled data stop working in these cases. See the text in Section 6.4.4
for more details.

supervision for the structure (H) as binary indirect supervision for the binary classification task. The key

novel property of our algorithm is that it uses “invalid” examples as a source of supervision. In the third

part of the section, we study experimentally the question of how “invalid” examples impact learning from

binary indirect supervision.

6.5.1 How much impacts does negative examples bring?

The key difference between J-LIS and previous work on discriminative semi-supervised structured output

prediction (e.g., [Brefeld and Scheffer, 2006; Zien et al., 2007]) is the use of invalid (y = −1) examples. These

approaches use well-formed unlabeled examples for training. These correspond only to our y = +1 class.

To provide further insight into the role of negative examples, we isolate the contribution of the invalid

examples in the binary indirect supervision dataset by fixing the number of positive examples, and show

the effect of varying the number of negative examples in the citation domain. We fix the structured labeled

set (|H| = 100 tokens). The binary indirect training set is created as follows – positive examples are fixed

(34767 tokens) and the number of negative examples is varied.

Results in Fig. 6.5(a) show that increasing the number of negative examples improves the perfor-

mance of the structure predictor. This stresses the advantage of J-LIS over the standard discriminative
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Figure 6.5: (a) Left: Impact of negative examples in the citation domain. Results show that as more negative
examples (y = −1) are used, binary indirect supervision improves performance.
(b) Right: Number of iterations needed in the POS experiments. The results show that we need more
iterations when the number of structured labeled examples decreases or the number of binary labeled
examples increases.

semi-supervised approaches which cannot gain from negative examples.

6.5.2 How many iterations does J-LIS take to converge?

Algorithm 13 seldom takes more than 50 iterations to stop respect with our stopping condition (Eq. (6.11)).

In Fig. 6.5(b), we show the average number of iterations over 10 rounds in the POS experiments. Interest-

ingly, we found that J-LIS needs to run more iterations when the number of structured labeled examples

decreases or the number of binary labeled examples increases. When there is a large amount of structured

labeled data, the algorithm sometimes finish the algorithms in just 2 or 3 iterations. Our hypothesis is that

when there a large amount structured labeled data, the binary task becomes very easy to learn and a small

number of iterations are often enough.

6.5.3 What are the impacts of generating more negative examples?

In the POS Experiments in Section 6.4.2, we generate one negative example by shuffling a positive exam-

ple. In this section, we conduct the following experiments to understand the impacts of generating more

negative experiments.

In this experiment, we use 10 labeled sentences and approximately 250 sentences in the positive training

data. Then, we generate k negative sentences from each sentence in the 250 positive sentence dataset, where
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k = 1, 2, 4, 8, 16. The experimental results are in Figure 6.6(a). It shows that there exists a positive correlation

between the number of generated examples and the final accuracy. Again, it implies that J-LIS uses negative

examples to learn “what not to do” so generating more examples can be helpful. Generating informative

negative examples is an important future research topic for this framework.

6.5.4 When the size of S is zero: compare to Contrastive Estimation

Contrastive Estimation [Smith and Eisner, 2005] (CE) is a probabilistic framework for unsupervised struc-

tured learning with log-linear models. The key idea of CE is to find bad “neighbors” for a given example

and then push the probability mass from the bad neighbors to the given example. More precisely, for an

given example x, it models the probability P (x) by

P (x) =
∑

h exp(wT Φ(x,h))∑
h,x̂∈N (x) exp(wT Φ(x̂,h))

,

where N(x) contains bad neighbors for the current example. Note that when N(x) contains all possible

input, this framework reduce to the Expectation-Maximization framework.

CE is conceptually related to this work. However, the goal of J-LIS is to jointly learn from both structured

and binary supervision, while CE is not designed to use labeled structures. Therefore, we compare to CE

by restricting J-LIS to use |S| = 0. Next, we describe the conceptual difference between the approaches and

then empirically compare the two algorithms and Expectation-Maximization(EM).

Even without any labeled structure, J-LIS is less restricted than CE. First, in CE, a “good” example and

its “bad” neighbors need to be grouped together and CE cannot be directly applied when the relationship

between good and bad examples is not known. In contrast, our framework can be directly applied to

existing binary datasets. Moreover, CE needs to marginalize over all possible hidden structures, while J-

LIS only looks for the best structure. Hence, the practical computational cost of the inference problem is

lower. This property also allows us to incorporate complex domain specific constraints, which as previous

work has shown can significantly boost the performance of structure predictors [Roth and Yih, 2005, 2007;

Martins et al., 2009b]. It is not clear how to use arbitrary constraints in CE without using an approximated

inference procedure.

Following [Smith and Eisner, 2005], we adopt the commonly used tagging dictionary assumption: for

any word, we know all its possible POS (e.g. ‘play’ can be a verb or a noun). We used a 96K word subset

of the WSJ corpus, and evaluated on ambiguous words (that is, words with more than one allowed tag),

as in the CE work. All models used the second order Markov assumption and exactly the same features.
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Figure 6.6: (a) Left: The impact of adding more negative examples in a POS experiments. As we generate
more negative examples, we get better final results.
(b) Right:The impact of structured labeled data when binary classification is our target. Results (for translit-
eration identification) show that joint training significantly improves performance, especially when direct
supervision is scarce.

The spelling features are not used here because we want to compare to EM. For J-LIS, we generate four

negative examples for each positive one by randomly shuffling its words. We compare to the closest CE

experimental setting which transposes neighboring words.

We found that in this setting, it is very important for J-LIS to have an inference algorithm capable of

randomly choosing among equivalent best solutions. This can be easily done by random shuffling the

order of the operators in the dynamic programming algorithm. The reason is that J-LIS only finds a single

best structure for an instance. It is likely that many structures are assigned the same score as the best one.

Without any randomization, the J-LIS will pick the first encounter structure, which is not ideal in the case

of unsupervised learning.

The token accuracy of a second-order EM and CE with trigrams are 60.9% and 74.7%, respectively in

a pure unsupervised learning. When hyper-parameters are tuned using supervised data, the performance

can go up to 62.6% and 79.0% [Smith and Eisner, 2005]. Without any randomization, J-LIS obtains 62.89%.

With randomized inference procedure the averaged accuracy for J-LIS over ten times is 70.16% (with stan-

dard deviation of 0.8%), which is significantly better than EM but worse than CE. Interestingly, if we run

J-LIS for 50 times and pick the one with the lowest objective value, we can get the accuracy 76.2% — a very sig-

nificant improvement over the model with random initialization. Again, we hypothesize that the reason is that

J-LIS only finds a single best structure. While this does not affect CE, which sums over the score of all

structures, J-LIS might commit to a solution too early. We further verified this intuition by adding merely
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5 structured labeled sentences that provide better initial point, resulting in an accuracy of 79.1%.

6.5.5 Using structure as indirect supervision

In this section we consider the reverse question: can structured data act as indirect supervision for the

binary task. Since J-LIS does not make any assumptions about S and B, it can be applied directly when

the binary task is the target. We briefly describe experimental results in this setting using the transliteration

identification task (determining if a given NE pair is a transliteration pair). This is the companion problem to

the transliteration alignment problem considered in Sec. 6.4.1. We matched each English NE in the test data

with the best Hebrew NE using the classifier’s confidence and measured the accuracy of the top ranking

prediction. Our test data consists of 200 English and Hebrew NEs.

There are two ways of using S to improve binary prediction: (1) Initialize the weight vector using S,

and apply J-LIS to B. (2) Initialize the weight vector with S, and then apply J-LIS on both B and S (the

joint approach).

We vary the size of the |B| from 100 to 800 and keep the positive to negative ratio to 0.1 and report

results for |S| ∈ {10, 20}. Fig. 6.6(b) shows that increasing |S| improves accuracy. Furthermore, the joint

method performs significantly better than using S for initialization only.

Note that the experiments in this section are similar to the experiments in Section 5.4.1. If there are no

additional structured labeled examples, J-LIS becomes LCLR. However, in Section 6.4.1 and Section 5.4.1,

we use two different definitions of the alignment between named entities. Here we re-run the LCLR sys-

tems with two different definitions of the structures on a slightly different training and testing split of the

dataset. When using the single character alignment definition on this split (the definition used in Sec-

tion 5.4.1), LCLR obtains 93.9 of the MRR. When using the character sequence alignment (the definition

used in this Chapter), LCLR obtains 93.25 of MRR. When adding 50 labeled structured examples (we only

have labels for character sequence alignment) as indirect supervision, J-LIS obtains 94.5 MRR. It shows that

adding structured labeled example can indeed help boost the performance of the binary task.

6.6 Discussion and Related Work

In this section, we discuss the relationships between J-LIS and other learning frameworks. Note that we

have discuss the relationship between our framework and Contrastive Estimation in Section 6.5.
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6.6.1 Structural SVM

Several discriminative algorithms for learning structured output predictors have been proposed in the liter-

ature: these include conditional random fields [Lafferty et al., 2001], max-margin Markov network [Taskar

et al., 2004] and structural SVM [Tsochantaridis et al., 2005]. These methods use feature vectors of input-

output space to capture the interdependency between output variables.

Our framework generalizes some of these structure learning frameworks. When B = ∅ and ` is the

hinge loss or squared hinge loss, it reduces to the structural SVM framework. When S = ∅ and the goal is

the binary task, it is a latent variable framework similar to [Felzenszwalb et al., 2009], which learns a binary

SVM over latent structures and is an instantiation of the latent structural SVM of [Yu and Joachims, 2009].

Our approach differs from both of these frameworks as it aims to use indirect supervision from one task to

help the companion target task.

6.6.2 Latent Structural SVM

Latent Structural SVM [Yu and Joachims, 2009] is a framework that allows using latent structures in the

structural SVM framework. The goal of Latent Structural SVM is to use latent structures as an interme-

diate step to improve the target task performance. J-LIS, on the other hand, allows the users of binary

labeled data for structured learning tasks. Nevertheless, there are interesting connections between these

two frameworks.

Recall that Latent Structural SVM can be written as

min
w

‖w‖2

2
+ C

∑
i

(
max
y,h

(
∆(yi,y,h) + wT Φ(xi,y,h)

)
−max

h

(
wT Φ(xi,yi,h)

))
, (6.13)

where y represents the output structures and h represents the latent structures9.

If we restrict the output structures to be binary (y ∈ {−1,+1}) and take away all features used in the

negative data such that Φ(xi,+1,h) = Φ(xi,h), and Φ(xi,−1,h) = bz, where bz is a zero vector. Latent

Structural SVM will be reduced to an instantiation of the J-LIS objective function, which assume |S| = 0. It

9Note that in the Latent Structural SVM, they only use hinge loss function.
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can be showed from the following derivation:

C
∑

i

(
max
y,h

(
∆(yi,y,h) + wT Φ(xi,y,h)

)
−max

h

(
wT Φ(xi,yi,h)

))
=C

∑
yi=1

(
1−max

h
wT Φ(xi,h)

)
+ C

∑
yi=−1

(
1 + max

h
wT Φ(xi,h)

)
=C

∑
i

(
1− yi max

h
wT Φ(xi,h)

) (6.14)

We refer to this trick as “asymmetric feature reduction”, and this trick has also been used for reducing a

structural SVM into a binary SVM (Section 2.2.1).

Eq. (6.14) shows one important property of J-LIS: it only models the positive data using the same defini-

tion of structures used in the structured labeled data. It does not model negative examples. In other words,

the process here is asymmetric – J-LIS only measures if an example is qualify to be a positive example or

not.

We argue that this asymmetric design is natural and important for J-LIS. It is often hard define an

inference problem to support negative examples. Take the phonetic alignment problem as an example. In

the positive examples (two words in an example represents transliteration pairs), we know that there exists

good phonetic alignments. For a negative example, it is hard to find a structure to justify that there do not

exist good alignments. It is tempting to set up a similar inference problem that finds “the worst alignment”

to support negative examples. However, this approach will not work because bad alignments also exist in

positive examples.

On the other hand, how to use Latent Structural SVM to allow using structural data as binary indirect

supervision for another structural prediction problems is an interesting future research direction.

6.6.3 Relation between J-LIS and LCLR

Note that J-LIS and LCLR (the framework proposed in Chapter 5) are two strongly related learning frame-

works. However, conceptually they are very different. In LCLR, the target task is to make a binary predic-

tion and we only have binary supervision signals. While LCLR searches for the intermediate representation,

we do not care about the correctness of the intermediate representation.

On the other hand, the design goal of J-LIS is to see if the binary supervision signal can help learn

structures or not. Hence, in the experimental section, we use the binary signal as supervision but evaluate

the models on structured labeled data. Moreover, J-LIS supports jointly learning from the structured labeled

data and binary labeled data, hence allows the two-way communication between the target task and the
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companion task.

6.6.4 Semi-Supervised Structural SVM

The objective function Eq. (6.3) contains two loss terms corresponding to the direct and binary indirect

supervision. While the form of the objective function resembles the objective function of semi-supervised

structure learning [Zien et al., 2007; Brefeld and Scheffer, 2006], J-LIS is very different both conceptually and

technically. The difference stems from our interpretation of the relation between the companion problems

allowing us to use invalid examples (y = −1), which are not used by semi-supervised learning frameworks.

We further discuss the impact of negative examples empirically in Sec. 6.5.1.

Our work is conceptually related to Contrastive Estimation (CE) [Smith and Eisner, 2005], where the

goal is to learn a structure predictor by pushing the probability mass away from the “bad” neighbors.

There are several technical differences between the two approaches. These differences are discussed in

Sec. 6.5 with related experiments.

6.6.5 Generative Models

Generative models specify a joint probability over observations and the corresponding output structures.

Many generative models have been proposed for structured prediction tasks [Rabiner and Juang, 1986;

Eisner, 1996]. Assume that a generative model parametrized by θ, the model can be obtained through

maximizing the joint likelihood P (x,y|θ).

J-LIS is related to generative models. It tries to separate the correct examples from the “incorrect”

examples, while generative models maximize the joint probability of the current “correct” examples among

all possible input-output combinations. However, there are two important differences.

First, J-LIS allows us to choose or generate negative examples. One important advantage of this property

is that J-LIS can use existing labeled examples as a supervision resource. Second, while J-LIS has strong

relationships to generative models, it is a discriminative model. On the other hand, in Section 6.5.4, we show

that J-LIS in fact performs better than a generative model with exactly the same features. Investigating the

relationship between J-LIS and generative models would be an interesting and important future work.

6.6.6 Multi-task Learning Framework

One might also consider J-LIS as a framework for multi-task learning [Caruana, 1997; Argyriou et al., 2007;

Kato et al., 2008], given that it accepts two different tasks in one unified framework. One difference of the
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J-LIS framework is that it clearly defines the relationships between two tasks. On one hand, we use Eq. (6.1)

to capture the relations between the structured task and the binary task. On the other hand, most multitask

learning frameworks use either shared representation [Caruana, 1997] or a well-designed regularization

term to capture the relationships between different tasks [Argyriou et al., 2007; Kato et al., 2008]. Moreover,

the J-LIS framework is designed for bridging a general structured task and its companion binary task, while

many other multi-task framework focuses on jointly learn multiple multiclass or binary classification tasks.

6.6.7 Optimization Techniques

The idea of convex-concave procedure (CCCP) [Yuille and Rangarajan, 2003] has been used in solving

many non-convex optimization objective function [Collobert et al., 2006; Yu and Joachims, 2009]. In this

chapter, we show that we do not necessary need to decompose the object function to a convex function and

a concave function to performance an iterative procedure that is related to the CCCP algorithm. This dis-

covery allows us to use square-loss function and our coordinate descent method on the dual formulations

of Eq. (6.8).

To best of our knowledge, this work (along with [Chang et al., 2010b]) is one of the first work that apply

dual coordinate descent algorithm for structural SVM. This greatly reduce the software complexity so that

we can implement Structural SVM from scratch without using existing implementations such as SVMlight.

The advantages and disadvantages of our optimization procedure remains an open problem for the future.

6.7 Summary

This chapter studies two companion problems – structured output prediction and a binary decision prob-

lem over the structure. The key contribution of this work is the development of a discriminative joint learn-

ing framework, J-LIS, that exploits the relationship between the two problems. Consequently it can make

use of easy-to-get supervision for the binary problem to improve structure prediction, where supervision

is hard to get. We apply our framework to three structure learning tasks - phonetic transliteration align-

ment, information extraction and part-of-speech tagging and show significant empirical improvements.

Interestingly, in all three domains the most significant improvement is obtained when little direct supervi-

sion is available for the structure prediction task, thus demonstrating the benefit of using our framework

especially in data-poor domains, where more supervision is required.
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Chapter 7

Conclusion and Discussion

Structured prediction is at the heart of natural language processing. From parsing to textual entailment, and

even to learning to map human queries to meaning representations, almost all natural language processing

tasks are structural. In this thesis, we examine the possibility of using indirect binary supervision signals

and constraints to learn structural models. We show the effectiveness of using indirect supervision for

many different tasks, especially when the number of labeled examples is limited.

In this chapter, we conclude this thesis by first reviewing several recent works that use the idea of

indirect supervision. Then, we discuss possible future directions of this thesis.

7.1 Recent NLP Systems that Adopt the Idea of Indirect Supervision

Recently, the idea of using indirect supervision signals has already impacted the natural language process-

ing community. In the followings, we list some of the recent works that adopts similar ideas (where most

of the listed papers directly cite our work), and use indirect supervision signals to boost their models. We

believe this line of work shows the effectiveness of indirect supervision signals and sheds some light on

future work of using indirect supervision signals.

Semantic Parsing The idea of using indirect supervision have impacted the task of semantic parsing, a

task at the heart of communicating with Artificial Intelligence agents (the example in Figure 1.1). The goal

of a semantic parsing system is to parse a human query and generate the corresponding meaning represen-

tation. In [Clarke et al., 2010], we address this the issue of labeling the semantic parsing and propose to use

the world response as an indirect binary supervision resource through interacting through interacting with

a database. 1 We show that good models can be obtained using this weak binary supervision signal without

using any labeled query-representation pairs. Our learning algorithm is able to achieve 73.2% accuracy,

which is only 7% below a fully supervised model.

1See Section 1.1 for more discussions.
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In [Liang et al., 2011], the authors follow the same setting and explore integrating more domain knowl-

edge of the task. Surprisingly, by just using the same indirect world response, they build a system that

outperforms systems trained with labeled examples (but without domain knowledge). We believe that this

work strengthens our claim of the importance of indirect supervision signals.

Large scale information extraction The idea of using indirect supervision also inspires some works in the

area on large scale information extraction. Never-Ending Language Learning (NELL) is a research project

that attempts and create a computer system that learns over time to read the web to create a relational

database. In [Carlson et al., 2010], the authors claim that adding constraints in their bootstrap learning

procedure for NELL greatly improve the performance of their system.

The concept of distance supervision is proposed by [Mintz et al., 2009], where they use Freebase, a large

semantic database of several thousand relations, to provide distant supervision for a system to find relations

between entities. In [Riedel et al., 2010], the authors propose to train their graphical model by framing

distant supervision as an instance of a constraint-driven semi-supervision framework. They include an

additional constraint to help filter noisy feedback during their learning procedure. Their test results show

that the constrained-infused model is significantly better than the distant supervision model.

Parsing Recently, the idea of using indirect supervision signals is frequently used to build better parsers.

The system proposed by [Katz-Brown et al., 2011] reranks the parser by using an indirect external loss sig-

nal: word reordering performance for machine translation. They show that by using this external signals,

while they cannot improve the parsing results, the performance on the reordering has improved signifi-

cantly. The system [McDonald et al., 2011] cleverly “invents” constraints by projecting the labels in English

into different languages to form the constraints for other languages. They build a simple but effective

constraint driven learning framework. [Hall et al., 2011] proposes a multi-objective perceptron learning

algorithm. The algorithm, which is conceptually similar to the algorithm proposed in Chapter 6, allows the

use both direct and indirect supervision resources.

In [Spitkovsky et al., 2011], the authors propose to use punctuations as a clue to generate different

constraints, and introduce these constraints in a hard EM algorithm. The framework is basically similar to

the CoDL algorithm proposed in Chapter 3. Their unsupervised, constrained training algorithm achieves

59.5% accuracy on the out-of-domain data, which is more than 6% higher than the previous best results.

Sentiment Classifications Latest works on sentiment classification also embrace the idea of using multi-

ple levels of supervision signals. Several works focus on document-level sentiment labels, sentence-level
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sentiment, and their interactions [Yessenalina et al., 2010; Tackstrom and McDonald, 2011].

7.2 Future Directions

Better usage of the existing resources One natural question to ask is how to obtain indirect supervision

signals. In this thesis, we mainly use human knowledge to provide these supervision signals. For in-

stance, in Chapter 6, we point out that human can invent binary supervision signals for learning structures.

Recently, many works show that there are many existing resources that we can take advantages of. For

example, [McDonald et al., 2011] shows that constraints for other languages can be generated by projecting

labels of English data into these languages. We believe that many existing indirect supervision resources

are waiting for us to explore.

Better interactive learning protocols One strength of using indirect supervision is that it allows users to

provide easy labels instead of complex structures. Building a better interactive learning interface is a critical

issue, given that it allows us to take advantage of crowd sourcing sites like Amazon Turk more efficiently.

[Snow et al., 2008] shows that non-expert annotators can provide pretty good labels for simple classification

tasks. However, it is still not clear how to use sites like Amazon Turk to help structured tasks. We believe

that indirect supervision framework could possibly provide a solution here.

Some preliminary works have been done along this direction. In [Clarke et al., 2010], we propose to

use the world response as indirect supervision resources to build a query-translation model. In [Hall et al.,

2011], the authors show that by just using a weak supervision signal, they can boost the parsing perfor-

mance on the out-of-domain data very significantly. It would also be interesting to apply active learn-

ing [Tong and Koller, 2001] to indirect supervision frameworks.

Multiple levels of the supervision signals Supervision signals can come in many different levels. At

the highest level, the full structure is the most informative but also the most expensive. The supervision

resource can also be a binary signal, but the information it carries might vary. Fortunately, there are many

other levels of supervision signals. For example, the annotators can provide real value feedback instead

of binary feedback. One can also try to use partial labels (for example, in the POS tagging task, only

certain words are labeled) as indirect supervision signals [Do and Artières, 2009]. For different forms of the

supervision signals, we need to adapt the learning frameworks to benefit from these signals. Hence, it is

necessary to explore this direction and invent new learning mechanisms. Another important direction is

to analyze the cost-and-effect relations on different levels of supervision signals so that we can choose the
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most effective one.

In this thesis, the proposed systems mostly accept two or three types of supervision signals. It would be

interesting to see if we can have learning frameworks that accept more types of supervision. Importantly,

having such frameworks which can accept more supervision without retraining the whole system would be

highly desirable.

Enhancing the learning frameworks Another natural extension is to improve the learning framework.

In this thesis, the proposed learning frameworks assume that most of the indirect supervision signals are

perfect (but they are not). When applying indirect supervision frameworks in the large-scale datasets, it is

likely to have noisy feedback. Therefore, how to enhance the learning frameworks to be robust to noise is

a crucial issue to investigate.

Another direction is to exploit the effect of the different regularization terms. Many machine learning

studies have been devoted to evaluating the value of using different regularization terms. However, little

analysis has been done on structural learning and latent variable learning algorithms. The commonly used

L2 regularization ‖w‖2 might not be ideal for many NLP tasks, given that there are often many noisy

features. Therefore, it is worthwhile to explore this issue further.
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Appendix A

A.1 Derivations for Eq. (4.8)

Our goal here is to provide a general solution of the following optimization problem when γ ≥ 0 :

min
q∈Q

D(q(h), Pθt(h|x); γ).

By defining log 0 = −∞ and 0 log 0 = 0, we can rewrite the formulation as follows:

min
q

−
∑

h′∈H(x) qh′ log Pθ(h′|x) + γ
∑

qh′ log qh′ (A.1)

S.T. Eq[u(x,h)] ≤ b,

qh′ ≥ 0,∀h′ ∈ H(x), (A.2)∑
h′∈H(x) qh′ = 1

First note that each qh′ needs to be greater or equal to zero, otherwise the objective function is not well

defined. However, removing linear inequalities Eq. (A.2) might still not be safe, given that the optimal

value for some qh′ could be zero.

However, let us remove Eq. (A.2) first and at the end of the section, we argue that it is safe to remove

Eq. (A.2) by using the standard tricks.

Without Eq. (A.2), the Lagrange function of Eq. (A.1) can be written as:

L = γ
∑

qh′ log qh′ −
∑

h′∈H(x)

qh′ log Pθ(h′|x)− β(
∑

h′∈H(x)

qh′ − 1)− λT (b− Eq[u(x,h)])

One of the optimality conditions of q is:

∂L

∂qh′
= γ(log qh′ + 1)− log Pθ(h′|x)− β + λT (b− u(x,h′)) = 0,
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and it follows that

qh′ = log Pθ(h′|x)
1
γ exp

−λT u(x,h′)
γ exp

β
γ−1, (A.3)

where the value of β can be obtained by enforcing the sum-to-1 constraint. Eq. (4.8) can be directly obtained

from this equation.

Next, we discuss that why dropping Eq. (A.2) is safe. Note that for a specific ĥ, if Pθt(ĥ|x); γ) = 0,

then the corresponding qĥ needs to be zero. Otherwise, the objective function well be negative infinity.

Therefore, we can remove all other ĥ such Pθt(ĥ|x); γ) = 0, and only consider ĥ such that Pθt(ĥ|x); γ) > 0.

Interestingly, Eq. (A.3) implies that the answer of qĥ will always be greater than zero if Pθt(ĥ|x); γ) > 0.

Therefore, the constraints are never active, so it is safe to remove Eq. (A.2).

A.2 The Correctness of Algorithm 11 and Algorithm 14

In Chapter 5 and 6, we described both Algorithm 11 and Algorithm 14 with some details omitted. In this

section, we show that Algorithm 11 and Algorithm 14 are well justified. We also describe the implementa-

tion and the stopping conditions in more details. Note that Algorithm 14 can be treated as a generalization

over Algorithm 11, so we mainly focus on Algorithm 14 here. We only discuss the case of using square

hinge loss, as it is the main loss function we used throughout this thesis. The proof is mostly based the

techniques proposed by [Tsochantaridis et al., 2005; Joachims et al., 2009].

Recall that Algorithm 14 solves the following objective function:

min
w

1
2‖w‖

2 + C1

∑
i∈S

ξ2
i + C2

∑
i∈B

ξ2
i

S.T. ∀i ∈ S,h ∈ H(xi), ξi ≥ ∆(h,hi)−wT Φhi,h(xi),

∀i ∈ B,h ∈ H(xi), ξi ≥ 1− ziwT ΦB(xi,h),

We copy Algorithm 14 here for the sake of easiness to read and add more descriptions in it. The details

are in Algorithm 16. Note that there is a parameter ε that controls the stopping condition of the algorithm.

Therefore, the stopping condition for the cutting-plane strategy is to ensure that there are no constraints

that are ε-violated. In the following, we show that the algorithm stops at finite number of iterations.

The following lemma helps us build our main theorem in this section.

Lemma 1. [Tsochantaridis et al., 2005] [Lemma 10, Corollary 13] Let A be a symmetric, positive semi-denite matrix,

and dene a concave objective in F (α) = 1
2αT Aα + bT α, which we assume to be bounded from above. Assume that a

solution α0 and an optimization direction η = er for a single coordinate optimization direction are given. Denote the
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Algorithm 16 Cutting plane algorithm for optimizing A(w,wt) in Algorithm 13 with square hinge loss.
This is a detailed version of Algorithm 14. Note that we only add constraints if they are ε-violated.

Require: wt, the weight vector from tth iteration
1: Wi ← ∅,∀i ∈ S
2: Vi ← ∅,∀i ∈ B−

3: ht
i = arg maxh wT

t ΦB(xi,h),∀i ∈ B+

4: repeat
5: for i ∈ B− do
6: h∗i ← arg maxh wT ΦB(xi,h)
7: if 1− ziwT ΦB(xi,h) ≥ ξi + ε then {The constraint is ε-violated}
8: Add h∗i to Vi

9: end if
10: end for
11: for i ∈ S do
12: h∗i ← arg maxh wT Φ(xi,h) + ∆(hi,h)
13: if ∆(h,hi)−wT Φhi,h(xi) ≥ ξi + ε then {The constraint is ε-violated}
14: Add h∗i toWi

15: end if
16: end for
17: Update w by solving Eq. (5.5)
18: until no new element is added to anyWi and Vi {No constraints are ε-violated}
19: return w

step size β ≥ 0. Then, the objective function improves at least by

F (α0 + βer)− F (α0) ≥ 1
2

∂F
∂αr

(α0)2

Arr
,

where αr represents a single variable that associated with er, and Arr represents the r-th diagonal element of the

matrix A.

First, notice that dual formulation of Eq. (A.4) can be exactly be written down in the form of F (α). In our

formulation, each variable α is associated with a pair (i, q) to indicate its association to the q-th structure of

the i-th example. Also notice that in Algorithm 16, we might choose more than one new structure to add

at each iteration. Fortunately, jointly optimizing over a set of variables that include αi,q can only further

increase the value of the dual objective.

Proposition 1. Define Rs ≡ maxi,q ‖Φhi,hi,q (xi)‖ and Rb ≡ maxi,q ‖ΦB(xi,hi,q)‖2, then in Algorithm 16, in

each iteration, the objective value of dual of Eq. (A.4) improves at least

min{1
2

ε2

R2
s + 1

2C1

,
1
2

ε2

R2
b + 1

2C2

}.

Proof.
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Assume that ei,q is a single coordinate direction along with αi,q , it is trivial to show that if i ∈ S, then

∂F

∂αi,q
= ∆(hi,hi,q)−wT Φhi,hi,j (xi)− ξi ≥ ε.

Hence,

F (α0 + βei,q)− F (α0) ≥ 1
2

ε2

‖Φhi,hi,q (xi)‖2 + 1
2C1

.

Similar, if i ∈ B, then

F (α0 + βei,q)− F (α0) ≥ 1
2

ε2

‖ΦB(xi,hi,q)‖2 + 1
2C2

.

Note that in Algorithm 16, we might choose more than one new cutting plane to add at each iteration, but

jointly optimizing over a set of variables that include αi,q can only further increase the value of the dual

objective. Therefore, at each iteration, the improvement over the cutting plane method is at least

min{1
2

ε2

R2
s + 1

2C1

,
1
2

ε2

R2
b + 1

2C2

}.

Theorem 4. The number of iterations of Algorithm 16 is bounded by

|S|C1 + |B|C2

min{ 1
2

ε2

R2
s+ 1

2C1

, 1
2

ε2

R2
b+ 1

2C2

}

Proof. The theorem follows by observing the dual gap of (A.4) can be bounded by |S|C1 + |B|C2.
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