
c© 2011 Yun Wei Chang

SINGLE-LAYER BUS ROUTING FOR HIGH-SPEED BOARDS

BY

YUN WEI CHANG

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2011

Urbana, Illinois

Adviser:

Professor Martin D. F. Wong

ABSTRACT

As the clock frequencies used in industry increase, the timing requirements

on high-speed boards become very tight. Since wire length is directly pro-

portional to wire delay of the buses that connect each chip on high-speed

boards, each wire in the bus has to be tightly bounded by the maximum and

minimum lengths during routing. These rigid requirements cause challenges

for automatic routing. Therefore, more aggressive routing algorithms are

required for current industrial circuits.

This thesis intends to improve Ozdal and Wong’s previous work, which is

an algorithmic study of single-layer bus routing on high-speed boards. Their

routing algorithm assumes that there are no boundaries in the grid during

routing, and the maximum-length bound for each net is always met. This

thesis modifies their code so that it does not make those assumptions. As

a result, the program can now handle boundaries with wire snaking to meet

the minimum-length bound and use diagonal wires if the Manhattan distance

between the two terminal pins cannot satisfy the maximum-length bound.

ii

To my parents and friends, for their love and support

iii

ACKNOWLEDGMENTS

I would like to thank my research adviser, Professor Martin D. F. Wong, for

his ideas, constant guidance and discussions about my thesis project. I would

also like to acknowledge Muhammet Mustafa Ozdal for his previous work on

single-layer bus routing, which was the foundation of this project. Finally,

I would like to thank my parents for funding my study at the University of

Illinois. This thesis would not be possible without their support.

iv

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Minimum-Area Maximum-Length Routing 2
1.2 Minimum-Length Maximum-Length Routing 5
1.3 Finding the Actual Route . 6
1.4 Drawing the Actual Route . 9
1.5 Thesis Overview . 9

CHAPTER 2 INTRODUCING LEFT AND RIGHT BOUNDARIES
FOR THE GRID . 11
2.1 The Boundary File . 11
2.2 Generating the Boundary File 11
2.3 Reading the Boundary File . 13

CHAPTER 3 MINIMUM DISTANCE LABELING WITH LEFT
AND RIGHT BOUNDARIES . 14
3.1 Problems with Each Net’s Boundary 14
3.2 Available Cells for Each Net 15
3.3 Maze Routing for Minimum-Distance Label 15
3.4 Decision for Grid Cell Relaxation 17

CHAPTER 4 WIRE ROUTING AFTER MINIMUM-DISTANCE
LABELING . 26
4.1 Undesirable Zigzag of the Path 26
4.2 Routing Nets Closer to Previous Net to Save More Area . . . 29

CHAPTER 5 WIRE SNAKING WITH LEFT AND RIGHT BOUND-
ARIES . 32
5.1 Adding One More Option for Middle Point for Wire Snaking . 32
5.2 Problems Caused by Having Two Middle Points 34

CHAPTER 6 MEETING THE MAXIMUM-LENGTH BOUND . . . 39
6.1 Introducing Diagonal Wires 39
6.2 The Number of Cells of Diagonal Wire 40
6.3 Determining the Region for Diagonal Wire 41

v

6.4 Satisfying the Maximum-Length Bound with the Diagonal
Region . 44

6.5 Desired Length for Each Net 45

CHAPTER 7 COMPARISON . 47

CHAPTER 8 CONCLUSION . 52
8.1 Summary . 52
8.2 Future Work . 53

REFERENCES . 54

vi

CHAPTER 1

INTRODUCTION

As the clock frequencies used in printed circuit boards increase, bus delay

has become an increasingly important factor in the performance of high-

speed circuits. In a typical bus structure, the data in the bus are clocked

into registers. Therefore, all data in different wires of the same bus need

to arrive at their destinations approximately at the same time. Otherwise,

the clock period needs to be lengthened to ensure all data are ready at

their destinations for the registers. Studies show that higher clock frequency

requires higher consistency in propagation delay of each wire in the bus [1].

Since the propagation delay is directly proportional to the wire length, a

higher degree of wire length matching is needed during bus routing for high-

speed boards as well [2]. These tighter wire length constraints raise challenges

for automatic routers, and hence require more aggressive routing algorithms.

Ozdal and Wong have been working on developing a large-scale routing

system for high-end PCBs [3]. A typical PCB contains several bus structures

that connect different modules like memory and input/output, in addition

to individual nets. These interconnections need to satisfy rigid timing con-

straints due to high frequency of the clock on the boards. Ozdal and Wong

focus on the single-layer bus routing problem, which assumes that layer as-

signments for each net have been done and all nets have been routed from

their individual pins to chip boundaries [3]. Therefore, the problem is to

route all nets between modules belonging to the same bus with the same

length constraint. However, there can be interleaving of buses or nets that

do not belong to any bus on the PCB boards [3]. For this reason, each net

has an individual length constraint.

Ozdal and Wong model the single-layer bus routing problem to be a river

routing problem, which has been studied extensively during the past [4]–[6].

In a river routing problem, all terminal pins are aligned on two opposite sides

of the circuit. There is an underlying grid where routes go center-to-center

1

of each cell, and the terminal pins are aligned at the top and bottom rows

of the grid. In addition, they added extra wire length constraints on all the

nets for routing. Figure 1.1 gives an example of a routing solution of a single-

layer bus routing problem that involves extension of wire length produced by

Ozdal and Wong’s algorithm.

Figure 1.1: Sample routing solution that satisfies the length constraints.

1.1 Minimum-Area Maximum-Length Routing

In order to ensure that the individual length constraint is met, Ozdal and

Wong enforce a minimum-area and a maximum-length constraint on each

net. The objective is to route each net within maximum-length bound while

allocating at least the pre-specified area. Therefore, the nets can be extended

in this area during post processing. The shorter nets are allocated with more

area for wire snaking meet minimum-length bound. The high-level algorithm

for routing with minimum-area maximum-length constraint is shown here [3]:

procedure allocateArea:

find the leftmost boundary Li for each net i

find the rightmost boundary Ri for each net i

2

for each net i from left to right

while Route(Li, Li+1) violates minimum-area constraint

flip an appropriate corner of Li+1 rightwards

The algorithm first determines the leftmost and rightmost boundaries for

all the nets, and the area between the right and left boundaries is where the

net must be routed. These boundaries are decided by the previous net and

the maximum detour, which is defined by maximum-length bound. Any grid

cell that goes beyond the maximum detour is not allocated for the net, so it

is not inside the boundary. After all the boundaries have been assigned, the

algorithm starts routing the nets from left to right. Each net is routed as

close to the previous net as possible while not detouring so much as to violate

maximum-length bound. The remaining grid cells are used during post-

processing when wire snaking is needed. An example of snaking is given in

Figure 1.2. The net is guaranteed to meet the maximum constraint because

the left and right boundaries are decided based on the maximum detour,

which limits the length of the wire. Thus, the algorithm only checks for

minimum-area constraint.

Figure 1.2: Sample example of wire snaking to lengthen the wire.

After one net is first routed, the area is checked against the minimum-area

constraint. If the area is below the constraint, the right boundary (Li) will

3

need to be flipped towards the right until it satisfies the min-area constraint

to leave enough cells for snaking during post processing. However, Li cannot

go beyond the next net’s right boundary (Li+1). If Li cannot be flipped

anymore, the net fails the minimum-area constraint. Each time the right

boundary is flipped, the program routes the net and checks the area again.

The details of boundary flipping are included in Ozdal and Wong’s paper [3].

Even though the minimum-area constraint can guarantee that the net will

have at least the minimum area available to route, it is difficult to make

the transition from minimum-area constraint to minimum-length constraint.

Depending on different shapes of boundaries, some cells can never be used

to route. An example is displayed in Figure 1.3, which is not from an actual

result of the original program. In this example, the minimum-length bound

is 40 for both nets. Both nets have the same available area in the figure,

but the right net’s maximum length is only 30 because the cells marked with

X are not routable. The wire will run into a dead end eventually if those

grid cells are routed. Therefore, the minimum-length constraint is needed to

replace the minimum-area constraint.

Figure 1.3: A sample case where the same number of available cells can
result in different wire lengths.

4

1.2 Minimum-Length Maximum-Length Routing

The algorithm for routing with minimum-length constraint is almost the same

with minimum-area. The difference is that wire length needs to be checked

repetitively in all iterations during routing. It was trivial to calculate the

total area between right and left boundaries after flipping the right boundary,

which is just adding 1 to the available area. However, the calculation for the

maximum length within the boundary uses a more complicated method.

To calculate the maximum routable wire length, two vertices, vlk and vrk,

are defined in each row k, with the exceptions of the first and last row. Those

two rows only have one vertex, which is the terminal pin. The two vertices in

other rows are chosen by comparing the boundaries of the current row with

the row above it. The boundary that is closer to the middle of the grid is

chosen. For example, if row k has Li at (3, k) and Ri (7, k) and Row k-1 has

Li (4, k-1) and Ri (8, k-1), the program chooses (4, k) as vlk and (7, k) as vrk.

The two vertices in each row are the turning points for wire snaking.

An edge is defined from each vertex in row k to each vertex in row k+1.

Since there are always two vertices for each row, the number of edges from

one row to the next is 2× 2 = 4. The length of these edges is defined by the

Manhattan distance between the two vertices. For example, if vlk = (2, k)

and vrk = (5, k) in row k, and vlk+1 = (3, k+1) and vrk+1 = (7, k+1) in row

k+1, the length of the edge from vlk to vlk+1 is 3− 2 + 1 = 2. The rest of the

edges can be determined in the same way.

For each vertex in the grid, there is a corresponding maximum-distance

label for it. This label is defined to be the maximum length from the vertex

to the top terminal pin. It is calculated from the topmost row to bottommost

row. For each vertex, there are two edges, which connect the current vertex

to either the right or left vertex in the upper row. The maximum-distance

label of the above vertex is added to the corresponding edge distance to

calculate the maximum length. The program compares the maximum length

between the left and right vertex in the upper row and sets the larger distance

as maximum-distance label of the current vertex. For example, if vlk−1 has

maximum-distance label 7 and edge distance 3 to vlk, and vrk−1 has maximum-

distance label 9 and edge distance 2 to vlk, then the maximum distance of vlk
is set to max(7 + 3, 9 + 2) = 11.

The maximum-distance label for the first row is initially set to 0, and

5

the algorithm continues setting the maximum-distance label for the rest of

the vertices until the last vertex is set. The maximum-distance label of

the last vertex is the maximum length for the net. Figure 1.4 shows the

maximum length corresponding to the left and right boundaries. The red

dots correspond to left and right vertex in each row. Note that the first and

last rows are not routable in the original program.

Figure 1.4: A sample case of a net with the maximum length in the
allocated cells.

Right before the routing process begins, the router calculates the maxi-

mum length achievable with the initially allocated grids by using the process

described above. If the maximum length is less than the minimum-length

bound, the right boundary needs to be flipped. After the boundary is flipped,

the new maximum wire length is checked against the minimum-bound again.

If it still does not satisfy the min-bound, the right boundary will be flipped

until either the maximum length satisfies the min-bound, or until the right

boundary cannot be flipped anymore. If there is enough area for the net to

route, the program will call the find route function to do the actual routing

for the current net.

1.3 Finding the Actual Route

At this stage, the left and right boundaries, the positions of the vertices in

each row and the maximum-distance labels have all been decided. However,

the minimum-distance label (Dm), which is also the Manhattan distance

to the top terminal pin, is not yet determined for each grid cell inside the

6

boundary. Maze routing is used to label all the grid cells with the minimum

distance because it is suitable for timing-driven global routing [7]-[8]. After

all the labeling is done, the router starts from the bottom terminal pin and

finds the next cell the net routes to until it reaches the top terminal pin.

Typically, there are three choices for the next cell, top, left, and right, as-

suming that no boundary blocks its way. The program makes the decision

by comparing Dm of all three options. The direction with the lowest Dm is

chosen. If the distance is the same, the net favors going in horizontal direc-

tions over vertical direction. During this process, the program has a variable

l for keeping track of the current length of the wire.

After the next cell is chosen, the router adds Dm with the wire length (l)

and compares the result with the minimum-length bound. If the result is

below the min-length bound, snaking is needed for the current row. It finds

the vertex in the upper row that has the longer edge to the current cell and

pushes it onto the route vector. The program then adds the Dm of the parent

vertex and the length of the edge from the current cell to the parent vertex

to l. If the result is still less than the min-length bound, more snaking needs

to be performed in the remaining rows.

On the other hand, if the result is greater, only partial snaking needs to be

used for the current row. Therefore, the parent cell can be any of the cells in

the upper row. It is chosen by finding the cell that just satisfies the minimum-

length bound. After that, the router can choose the parent cell by following

the min path. The chosen parent grid cell is pushed onto the route vector,

and l is updated to correspond to the parent grid cell. Figure 1.5 gives an

example of partial snaking and full snaking. The left net corresponds partial

snaking, while the right figure corresponds to full snaking. The algorithm

performs this entire process until the net reaches the top terminal pin. The

high-level algorithm for the find all route function is shown below.

procedure find all route:

for each net i from left to right

find the left and right boundaries that satisfies the

min-length and max-length bound

find the left and right vertex on each row and

calculate their max-length label

populate the allocated grid cells with maze routing

7

//The actual routing begins here

set current gcell to be the bottom terminal pin

while(current gcell!=top terminal pin)

choose the parent gcell based on min-distance label

if(l+min-distance label of parent gcell+1 > min-length bound)

current gcell=parent gcell;

update l

continue;

//snaking is needed

if(full snaking is needed)

choose parent gcell to be the vertex that has longer edge

update l

else

find the parent gcell that just satisfy the min-length bound

update l

current gcell=parent gcell;

Figure 1.5: A comparison between partial and full snaking.

8

1.4 Drawing the Actual Route

When the parent grid cells are chosen, they are pushed onto a route vector.

Each net has its own route vector, and they are drawn in the grid after all

the nets finish routing. During the drawing process, the background grid

cells are already drawn before routing. The grid cells are drawn from the top

terminal pin to the bottom terminal pin by reading each element from top to

bottom in the route vector. If the grid cell is not adjacent to the last cell, it

means snaking is needed. The nonadjacent cells are connected by drawing a

line going down one cell and turning either left or right, depending on which

vertex was chosen during routing.

1.5 Thesis Overview

Chapter 1 provides the background of Ozdal and Wong’s work on length-

matching algorithm for single-layer bus routing. It discusses the reason for

minimum- and maximum-length bounds and the routing process for each net.

It gives examples of the program’s solution with and without wire snaking

and addresses the difference between minimum-area and minimum-length

constraints.

Chapter 2 describes how a user can specify a grid’s left and right boundaries

in boundary files and the two different ways to produce these two files.

Chapter 3 discusses why individual net’s right and left boundaries need

to be disregarded for minimum-distance labeling. It also introduces a new

method to determine the available grid cells for the current net and provides

multiple examples of non-routable cells in different directions.

Chapter 4 addresses the problem of unnecessary bending of nets along the

left boundary. It introduces the method of giving the parent cell along the

last direction priority over other directions if their minimum-distance label

is the same. It also discusses how this approach can hurt the routability of

the remaining nets such that a cap needs to be used to force the net to turn.

Chapter 5 discusses the effort of making the last row routable by each

net and how different mid-points can be chosen to connect nonadjacent cells

during routing. It also gives examples of how the maximum length of the

wire can be different depending on which mid-point is chosen.

9

Chapter 6 addresses the need for diagonal wires and how another program,

diagonal, is used to preprocess the input files and make independent routing

in different regions that will be combined into one solution at the end.

Chapter 7 presents two examples with graphs to show the differences be-

tween the results of the original program and the new program.

Chapter 8 summarizes the entire thesis and lists a number of improvements

that can be made for the single-layer bus routing program.

10

CHAPTER 2

INTRODUCING LEFT AND RIGHT
BOUNDARIES FOR THE GRID

2.1 The Boundary File

The first step to enable Ozdal and Wong’s program to handle left and right

boundaries is to get the positions of the left and right boundary segments

in each row. The boundary information is provided in two boundary files,

lObstacle and rObstacle, which correspond to left and right obstacles respec-

tively. The two boundary files are text files that contain the x coordinates

of the corresponding left or right boundary segments of each row. Each x

coordinate is separated by a new line, and hence, the number of lines in the

boundary file is the same as the height of the grid. The x coordinate of lOb-

stacle need to be greater than or equal to 0 and less than the x coordinate of

the right boundary in the same row. Likewise, the x coordinate of rObstacle

need to be greater than or equal to the x coordinate of the left boundary in

the same row and less than or equal to the width of the grid. Otherwise,

none of the nets will be routable.

2.2 Generating the Boundary File

To generate the boundary files, the user can type in the x coordinates for

the left and right boundaries of the grid. However, this method will take too

long if there are over hundreds of rows. Therefore, more convenient ways are

provided to produce the boundary files. For example, the user can specify a

boundary-guidance file, which has segments in the symmetry line of the grid.

In this file, the first line contains the distance from the symmetry line to both

left and right boundaries. The rest of the lines contain the x coordinates of

the segments in the symmetry line. Therefore, the number of lines in the

11

boundary-guidance file is one more than the actual boundary files. The

program produces the left and right boundaries by adding or subtracting the

distance from the x coordinate of the segments in the symmetry line in this

file. Any value that goes below 0 or above the width of the grid is capped.

Figure 2.1 gives an example of a grid produced by a guidance file, which

contains distance of 2. The x coordinates of the segments from the first row

to the bottom are 3, 4, 4, 4, 5, 5, 4, 4, 3, and 3, which correspond to the

block symmetry line. The first two columns are not drawn here because they

do not have routable grids.

Figure 2.1: A sample grid that is produced by segments of symmetry line.

There is also another way to produce the boundary files. The user can

specify contiguous boundary segments together if they have the same x co-

ordinate. The program will read the file and produce the corresponding left

and right boundary files. The non-specified regions will be set to default

values, which are 0 for the left boundary and the grid width for the right

boundary. Since most of the obstacles are rectangular, the boundary will be

divided into chunks of different x coordinates most of the time. Therefore,

the user can specify the boundaries with fewer entries.

To use these two methods to produce the two boundary files, the user

needs to call the diagonal program that the author wrote, which serves as

an interface between the user and the route program. The usage format

12

is: ./diagonal input cap boundary filename1 filename2. The input field is the

filename of the file that contains all the nets’ information. The cap field is for

limiting zigzag paths, which will be discussed in Chapter 4. If the symmetry

line file is used, the filename of the guidance file needs to be given in the

filename field, and 1 needs to be the argument for the boundary field. If the

multiple segments files are used, the user needs to specify 2 for the boundary

field, and include two files, the left-segment and right-segment files, in the

filename field. The second filename field is only used if multiple segments

files are used, since two files are needed to specify the two boundaries. The

diagonal program is also used to determine the dimension and position of the

diagonal region. The details will be discussed in Chapter 6.

2.3 Reading the Boundary File

After the boundary files are produced, the author modified Ozdal and Wong’s

program so it can read the files and generate two boundary vectors that

contain the coordinates of the boundaries from top to bottom. The user can

tell the program to use the boundary files by adding 1 as an argument after

the route command in the terminal. If no argument or 0 is given to the

program, the program will use the default 0 for the left boundary vector and

the grid width for he right boundary vector. Therefore, the user does not

need to specify the boundary files if not needed. The two boundary vectors

are used during routing to ensure that the nets do not use the grid cells

beyond the boundaries. Before the routing begins, the grid cells are drawn,

but the cells not inside the boundaries are not drawn. Be aware that the

two boundary vectors are for the entire grid and so differ from an individual

net’s boundary vector.

13

CHAPTER 3

MINIMUM DISTANCE LABELING WITH
LEFT AND RIGHT BOUNDARIES

3.1 Problems with Each Net’s Boundary

Now, the program has the grid’s right boundary (Lg) and left boundary

(Rg), and the grid cells are drawn so any cell not inside the boundary is

excluded. However, the program needs to know that the boundaries exist

during routing. Therefore, the maze routing that populates the grid cells with

minimum-distance label needs to be adjusted to account for the boundaries.

Initially, the author tries to cap the left boundary of the first net to be Lg

and the right boundary of the last net to be Rg. However, this approach

caused many side effects that introduced problems during routing.

One of the problems caused by this approach is an unroutable first or last

net. For example, if the first net’s right boundary (R1) has a segment less

than Lg, the first net becomes unroutable. The reason is that Ri has to have

x coordinate greater than Li’s x coordinate in every row. If one row violates

this condition, no grid cell in that row will be routable because no cells are

inside the boundary. Since net 1’s Li is modified to be Lg, the net cannot be

routable.

In order to solve this problem, R1 has to be moved to Lg+1 for all seg-

ments that are less than or equal to Lg. However, this approach can cause

a domino effect where all the net’s left and right boundaries need to be ad-

justed accordingly. In that case, it causes a drastic change to the routing

process for the remaining net. The original Li and Ri, which are chosen

based on maximum-length and minimum-length bounds without accounting

for Lg and Rg, cannot be used in this case. Therefore, the author decides to

make the individual net’s right and left boundaries ineffective during routing,

except for during the boundary flipping stage of the wire snaking process.

14

3.2 Available Cells for Each Net

Since Li and Ri cannot be used during routing, there must be a different way

to determine the routable cells in the grid for each net. The new allocation

scheme makes all cells inside Lg and Rg available, except for the cells that

are blocked by the previous net or the cells that are essential for routing of

the remaining nets. This is quite different from Ozdal and Wong’s original

program, where the nets are confined in the area between Li and the Ri.

Since each net does not depend on Li and Ri during the routing process,

the previous problems are avoided. One additional change caused by this

approach is that the program now gives the maximum amount of cells for

each net to snake. Therefore, the earlier nets have the most resources and can

satisfy the minimum-length constraint more likely. This way, the program

can complete routing for as many nets as possible with the given cells until

the cells run out.

In the previous version of the program, if the program fails to route, the

user only knows which net is not routable. He or she does not have the

routing information of previous nets, which are vital to make the adjustment

to complete routing for the remaining nets. Therefore, the author decides to

change the drawing process so that each net is drawn right after it has been

routed instead of drawing all nets after they are all routed. With this new

order, even if one net fails the routing process, the previous nets are already

drawn in the figure. As a result, the user will be able to see the half-finished

routing process, which is the best attempt to finish routing for each net by

the automatic routing program. After the user finds out the reason why the

program fails to route from the result, he or she can adjust the pin positions

or the length constraints in the input file to make all nets routable.

3.3 Maze Routing for Minimum-Distance Label

As mentioned in Section 3.1, the minimum-distance label for each grid cell

is populated with the maze routing algorithm. However, the process needs

to be updated to accommodate the boundary changes. To determine the

new routable grid cells, the program needs to know which cells are used

by the previous net, since the left boundary of the current net is basically

15

the previous net, except for the first left boundary. To store previous net’s

routing information, a vector is created to store the leftmost and rightmost

position in each row for each net during routing. The positions are stored in

pairs comprising the x coordinates of the rightmost and leftmost positions

from the top to the bottom row. If there is only one cell used in a particular

row, the element will contain a pair of the same x coordinate. With this

information, the new left boundary for each net (LN
i) can be determined.

Then, the maze routing process has enough information to decide which cells

are available for the current net. The pseudo code for the minimum-distance

label process is shown below:

procedure labelMinDistance:

create a queue GridCells

enqueue top terminal pin onto GridCells

while GridCells is not empty:

dequeue a cell from GridCells into currentCell

if the left cell is routable by current net

relax the left cell

if the lower cell is routable by current net

relax the lower cell

if the right cell is routable by current net

relax the right cell

This piece of code is basically using a breadth-first search for labeling the

minimum distance (Dm) for each grid cell like in maze routing. Relax is

the function that actually updates Dm and pushes the relaxed cell in the

queue. If the grid has been visited before, Dm is updated only if the new

distance is less than the old minimum-distance. This is different from the

original version of the program, in which Dm is assumed to be the absolute

minimum the first time the grid cell is relaxed. Therefore, no cells will be

visited again. However, this assumption might not be true if there is more

than one route to the target cell, in which case the second route might be

shorter than the previous one with different weights of cells. Therefore, the

relax function is modified to check Dm of the visited cell and update the

label if necessary. This simple change enables the program to handle not

only boundaries, but also obstacles in the future. The pseudo code of the

16

relax function is presented here:

procedure relax(fromCell, toCell):

if toCell is already visited by the same net

if toCell’s Dm is greater than fromCell’s Dm+1

update toCell’s Dm to be fromCell’s Dm+1

enqueue toCell into GridCells

else

update toCell’s Dm to be fromCell’s Dm+1

enqueue toCell into GridCells

3.4 Decision for Grid Cell Relaxation

How does the maze routing algorithm know which grid cell is available for the

current net? Many factors affect this decision: the net index, the position

of Lg and Rg in each row, and the cells occupied by previous net. Three

directions need to be checked during the labeling process: left, right, and

down. For the left direction, the program compares the x coordinate of the

left cell (xc-1) with the previous net’s rightmost position in the same row,

which is the new left boundary of current net (LN
i). If xc-1 is less than or

equal to Li
N , the program does not relax the left cell. If the current net is

the first net, the program checks for the left boundary of the grid, Lg.

3.4.1 Relaxing the lower cell

For the cell below the current cell, the program needs to check: 1. LN
i and Lg

in the next row. 2. The bottom of the grid. 3. Routability of the remaining

nets. Li
N and Lg still need to be checked because the lower cell can be

outside the boundary. The grid bottom has to be checked because it has to

be below the cell below the current cell. The third constraint is to make sure

the program leaves enough cells for rest of the nets to route. Therefore, any

cell that is essential for them cannot be relaxed. The first two constraints

are self-explanatory. The final constraint will be discussed in detail here.

If the current net being routed is the last net, the only constraint is Rg

in the next row. For all other nets, the program has to make sure there

17

are at least nr cells to the right of the cell below, where nr represents the

number of nets remaining for routing. However, this condition alone does

not ensure that the rest of the nets will be routable because Rg can become

tighter for the rows below. In that case, more space needs to be allocated for

the remaining nets. To account for this situation, a simple decision-making

scheme is used. The decision tree is drawn in Figure 3.1.

Figure 3.1: The decision tree to decide if the lower cell can be relaxed.

The first decision is to see if the number of rows below the lower cell is less

than nr. If the diagonal line does not exceed the bottom, it means there are

enough rows. Then, if the diagonal line exceeds the right boundary before it

crosses nr + 1 number of cells, it means the lower cell is essential for the rest

of the nets to route. The reason is that there have to be at least nr cells on

the diagonal line to let all the remaining nets route through the right side

of the cell. Otherwise, at least one net will be blocked by the previous net

during routing on the diagonal line. If the diagonal line does not exceed a

boundary, then the lower cell can be relaxed. The rows between y + 1 and

y + 1 + nr, where y is the y coordinate of the current row, are assumed to

have enough cells for the rest of the nets to route. The assumption is true if

the y coordinate of the current cell is below nr + 1, since all those cells have

been checked by the grid cells above. If the assumption does not hold for the

rows above nr +1, that means it is impossible for all nets to complete routing

in those rows. However, the program continues to complete the route for as

18

many nets as possible until a net fails to route in that region.

An example of a lower cell that cannot be relaxed is shown in Figure 3.2.

There are three nets, and the current net is in red. The dots are the terminal

pins of the nets. The numbers are the minimum-distance labels for the cells.

The process is in the midst of minimum-distance labeling, and the current

cell is marked with a red square. The cell below the current cell cannot be

relaxed because the diagonal line exceeds the right boundary before it crosses

nr + 1 cells, which in this case is 3 cells.

Figure 3.2: An example of how the cell below cannot be relaxed.

For the cells that do not have enough rows below the lower cell for the

remaining nets, the router needs to check the bottom terminal pin of one of

the remaining nets to see if the lower cell is essential for routing. Depending

on the number of rows below the lower cell, different net’s bottom terminal

pin may be checked. The formula is i = ic +rb +1, where i is the net index of

the net that the bottom terminal pin needs to be checked, ic is the index of

current net, and rb is the number of rows below the lower cell. The resulting

net’s bottom terminal pin (Bi) has to be lower than the x coordinate of the

current cell (xc) plus rb, to relax the lower cell. If it is not lower, then the

cell cannot be relaxed because it is essential for the nets between i and ic.

19

Otherwise, not enough cells are allocated for the remaining cell.

An example of an unroutable cell in those rows is shown in Figure 3.3.

Again, the current net is marked in red. The dots are the terminal pins, and

the numbers are the minimum distance labels. The current cell is marked

with a square, and it cannot relax the cell below. The target net, i = ic+rb+1,

where ic = 0 and rb = 1, has a bottom terminal pin at 4. Therefore, the

condition xc + rb < Bi, where xc = 3, does not hold. As a result, the cell

below cannot be relaxed. It can be seen in the graph that the second net will

not be routable if the cell is used for net 0 because the path will be blocked

by the first net and the bottom terminal pin of the third net.

Figure 3.3: An example of an unroutable cell that does not have enough
rows below for the remaining nets.

The reason for different relax conditions for cells that have diagonal lines

exceeding the bottom boundary is that the terminal pins can block a net’s

path during routing. Another reason is that the remaining nets do not nec-

essarily cross the diagonal line to complete routing, since their terminal pins

can be more to the right than the diagonal line in the bottom row. Therefore,

the program checks the terminal pins instead of the diagonal line for the cells

that do not have enough rows below.

20

3.4.2 Relaxing the right cell

The decision whether to relax the right cell is similar to that for the lower

cell except that there are two diagonal lines instead of one now. To relax

the right cell, the program has to make sure there are at least nr cells to the

right of the right cell. However, this condition alone does not enforce enough

cells for the remaining nets to complete the path. The reason is that the

grid’s right boundary can become tighter in the rows above and below, not

leaving enough cells to complete the routing. Therefore, two 45◦ diagonal

lines are drawn extending up and down from the right cell, each crossing nr

cells. All the remaining nets have to route through these two diagonal lines

if both lines are in the middle region. If one of these two lines exceeds the

right boundary, the right cell cannot be relaxed. However, the rows between

the two diagonal lines can have insufficient cells as well. As a result, all rows

between row yc − nr and row yc + nr need to be checked, where yc is the y

coordinate of current cell, to see if there are at least nr number of cells to

the right of the x coordinate of the right cell.

If the upper diagonal line exceeds row 1, an extra relax condition is checked,

which checks one of the remaining net’s top terminals to see if there are

enough cells for the nets in between. The same relax condition for rows 1 to

yc + nr is still the same. The condition is very similar to that for the lower

cell that does not have enough rows below, discussed in Subsection 3.4.1.

The formula for the net index is now i = ic + yc. It does not have the +1 like

the formula for the bottom boundary because the first row of the grid is not

used for routing. The condition is that xc + yc < Ti, where Ti is the target

net’s top terminal. If this condition is not satisfied, the right cell cannot be

relaxed. The reason is again that the top terminal can block the net’s path

during routing.

If the lower diagonal line exceeds the bottom boundary, one of the net’s

bottom terminals is again checked. The same relax condition still holds for

rows from yc − nr to the bottom row. The formula to calculate the net that

the bottom terminal needs to be checked is again i = ic + rb + 1. The relax

condition is xc + rb < Bi − 1, where Bi is the target net’s bottom terminal.

The −1 is added because the target cell is xc + 1. The decision tree to relax

the right cell is shown in Figure 3.4.

To illustrate, an example of a right cell that cannot be relaxed will be given

21

for each case here. The current cell will be marked with a square. For the

first example, the target net is equal to 1, where ic = 0 and yc=1. The net’s

top terminal (Ti) is at 3. In this case, Ti is equal to xc + yc, where xc = 2

and yc = 1. Since they are equal, the condition does not hold and the right

cell cannot be relaxed. The example is shown in Figure 3.5.

For the second example, the right cell cannot be relaxed because the row

below the current cell does not have nr number of cells, which, in this case

is 2, to the right of right cell. Notice that all other rows between the two

diagonal lines satisfy the condition. The example is shown in Figure 3.6.

For the last example, the right cell cannot be relaxed. The target net is

equal to 2, where ic = 0 and rb=1. The condition xc + rb < Bi − 1, where

Bi = 4, xc = 2, and rb = 1, is not satisfied. The example is shown in Figure

3.7.

Figure 3.8 shows all the minimum distance labels for the available grid

cells for net 0. Then, the program proceeds to do the actual routing process.

22

Figure 3.4: The decision tree to decide if the right cell can be relaxed.

23

Figure 3.5: An example of an unroutable right cell that does not satisfy the
top terminal condition.

Figure 3.6: An example of an unroutable right cell that does not have
enough cells to the right.

24

Figure 3.7: An example of an unroutable right cell that does not satisfy the
bottom terminal pin condition.

Figure 3.8: Minimum distance label for net 0.

25

CHAPTER 4

WIRE ROUTING AFTER
MINIMUM-DISTANCE LABELING

4.1 Undesirable Zigzag of the Path

With the addition of the grid’s left and right boundaries, the grid cells that

are beyond those two boundaries cannot be routed. This change causes unde-

sirable zigzag along the left boundary during routing when the left boundary

is also in a zigzag shape. An example is given in Figure 4.1. Note that the

modified version of the program has blue for the net color to distinguish from

the original version.

Figure 4.1: An example of excessive bending of a route.

In the original program, the left and right cells have priority over the

upper cell. For example, if the upper cell and the left cell have the same

minimum-distance label, the left cell is always chosen. Therefore, the net

will follow the left boundary as closely as possible. To eliminate unnecessary

bending in this case, the priority needs to be changed so the upper cell can

26

be chosen. However, the priority cannot be changed statically because the

upper cell will be chosen over the left cell under every circumstance. If the

upper cell is always chosen before the left cell, later nets have more difficulty

meeting the minimum-length requirement because there are fewer available

cells. Therefore, the priority needs to be changed dynamically.

To eliminate excessive bending, the program gives priority to the previous

direction of the net. For example, if up is the previous direction and the

minimum distance is not greater than either the left or right cell, the program

will choose the upper cell as the next cell. The cell in the previous direction

will be chosen until it is blocked by a boundary. As a result, the program

can achieve minimum bending for each net. However, there can be a problem

with this approach. The nets are routed closer to the left boundary because it

leaves the largest area for the following nets to route. To eliminate bending,

some of the cells have to be wasted by the current net, and the remaining

nets have more difficulty satisfying the minimum-length constraint. If the

left boundary zigzags from top left to bottom right, then the up direction

will waste cells, which corresponds to Figure 4.1. If the left boundary zigzags

from top right to bottom left, then the right direction will waste cells. An

example is given in Figure 4.2. Therefore, there must be a cap to limit the

number of consecutive segments of the directions that will waste cells to

ensure enough area for the remaining nets.

Figure 4.2: An example of excessive bending of a route in another direction.

There is a trade-off between the amount of bending and available cells for

27

remaining nets. As the cap for the directions that waste cells increases, the

bending becomes less because more cells in the same direction are chosen

before the net has to turn. However, it also wastes more area for the remain-

ing nets. Figure 4.3 has the same nets as Figure 4.1, but with a cap value

of 5. Figure 4.4 has the same nets as Figure 4.2, but with a cap value of 5

also. Since snaking is not needed for the rest of the nets, this cap value is

acceptable.

A case where higher cap value hurts routability is shown in Figure 4.5. The

third net from the left does not have enough space for snaking to satisfy the

minimum length bound. To solve this problem, the user can run the program

with a different value in the cap field in the command line. In Figure 4.6,

the cap value is adjusted to 3, allowing the third net to use more area for

snaking during routing. If the user does not specify a value, a heuristic will

be used to set the default value for the cap. If the height of the grid is less

than 10, the cap will be set to 3. If the height is greater than or equal to

10 but less than 20, the cap will be set to 4. For height greater than 20, the

cap is set to 5. Smaller height will require a smaller cap because there is less

area. The highest cap value is set to 5 because a value greater than 5 can

waste a lot of area. After all, the user can adjust the value manually if the

default value produces an undesirable result.

Figure 4.3: An example of the same nets with cap value of 5 from Fig 4.1.

28

Figure 4.4: An example of the same nets with cap value of 5 from Fig 4.2.

4.2 Routing Nets Closer to Previous Net to Save More

Area

In Figure 4.3 and Figure 4.4, some small zigzags appear close to the wire

terminal pins. These zigzags are due to the fact that the wires are routed as

close to the previous net as possible. The nets are routed close together to

save more area for snaking. In addition, the resulting wires look more like a

bundle, which looks more like a bus. Therefore, only the first net needs to

be adjusted to have less-bending wires. It serves as a guidance-net and the

rest of the nets automatically follow it as closely as possible.

If minimum path is always chosen instead of the path that routes closer

to the previous net, the remaining nets will have less area for snaking. An

example is given in Figure 4.7. The minimum path of net 2 is far apart

from net 1, which wastes a lot of grid cells in between. Therefore, a longer

path should be taken to let the remaining nets have as many grid cells as

possible. As long as the wire length satisfies the maximum-length constraint,

the program can take advantage of all extra wire length to route closer to

the previous net. An example is given in Figure 4.8. It can be seen that the

last net has more grid cells for snaking compared to Figure 4.7.

29

Figure 4.5: An example of how a big value of cap wastes area for snaking.

Figure 4.6: A smaller cap allows remaining nets to snake with more area.

30

Figure 4.7: An example of how minimum path wastes area for snaking.

Figure 4.8: A longer route allows the remaining nets to snake with more
area.

31

CHAPTER 5

WIRE SNAKING WITH LEFT AND RIGHT
BOUNDARIES

5.1 Adding One More Option for Middle Point for

Wire Snaking

With the addition of the grid’s left and right boundaries, the vertices in each

row, which are assigned based on the old boundary Li and Ri, need to be

adjusted if they are outside the grid’s right or left boundary. The first and

last rows only have one vertex, which is the terminal point. A lot of grid cells

are wasted in that case. Therefore, we change the program so the wires can

route horizontally in the last row during routing, which gives more area for

snaking. In Figure 5.1, the longest wire without using the last row has length

46, which is shown at the left. The maximum wire length with routable last

row is 52, which is shown at the right.

To make the last row routable and achieve more available grid cells, the

snaking part has to be modified. During the routing process, each chosen

grid cell is pushed onto the route vector from the bottom terminal pin to

the top terminal pin. If snaking is needed during the process, the vertex

with longer edge in the upper row is chosen instead of the next adjacent cell.

Since these two cells are not adjacent to each other, the path between them

becomes ambiguous.

In the original program, the program always chooses one middle point to

connect the two cells. The middle point is chosen to be one unit above the

current cell. For example, if the current cell has the coordinates (x1, y) and

the left vertex in the upper row has the coordinates (x2, y-1), the middle

point is always chosen to be (x1, y-1). After the mid-point is chosen, the

program draws one line from the current cell to the mid-point and another

line from the mid-point to the vertex in upper row. Therefore, only one turn

is needed to connect the two cells. However, there is another mid-point that

32

Figure 5.1: The comparison of routable and unroutable last row.

has only one turn, which is (x2, y). By adding this option for the mid-point,

the snaking becomes much more flexible. Otherwise, the last row cannot be

used for snaking because the mid-point will never be in the bottom row.

Figure 5.2 labels with red dots the vertices chosen during snaking from the

example in Figure 5.1. The resulting wire at the right gains 6 more units

due to the choices of the other mid-points in the rows below. These extra

wires are circled in black. The right vertex in row 3 does not need to get

pushed towards center because it does not run into a dead end. Unlike the

left figure, the right vertex in row 3, (6, 3), has to be pushed to (3, 3) to

ensure that the wire is routable. The wire runs into a dead end when (6, 3)

is chosen because the wire has to be routed horizontally first before it can

go down to the next row in the original program. With the top cell blocked

by the grid’s left boundary, this route is impossible to connect. This is why

having two options for the mid-point has the potential to waste less area.

The left and right vertices in each row do not necessarily need to be pushed

towards the middle for routability because a different mid-point can cause

the vertex to be routable.

The choice between the two mid-points is actually straightforward: the one

that is routable is chosen. For example, in Figure 5.2, mid-point (6, 2) is not

chosen because it is outside the grid’s boundary. If both mid-points are inside

33

Figure 5.2: The comparison of routable and unroutable last row with
vertices shown.

the boundary, the one that is above the current cell is chosen to match closer

with the result in the original program. The reason is to avoid discrepancy

during length calculation, which will be discussed later. If both mid-points

are outside the boundary, there have to be two mid-points to connect the

two cells. Two examples are given in Figure 5.3. It can be seen that both

mid-points, (0, 8) and (5, 9), are beyond the grid’s boundary in the left figure

for the cells (5, 8) and (0, 9). One mid-point is chosen in each row. The x

coordinate is that of the first cell to which the net can go downwards without

being blocked by the previous net or the grid’s boundary. The two mid-points

are (4, 8) and (4, 9) for the left net in Figure 5.3. Another example is shown

in the right net. The two mid-points, (3, 2) and (3, 3), are chosen between

the two cells (0, 2) and (4, 3).

5.2 Problems Caused by Having Two Middle Points

Depending on which middle point the program chooses to route, nets can be

potentially trapped in the vertex that is routable only when a specific mid-

point is chosen. An example is given in Figure 5.4, which shows only one net

34

Figure 5.3: Two mid-points are used for connecting two vertices.

from the original solution. The vertex (13, 8) cannot be routed because the

net will run into a dead end. If the mid-point (13, 7), was chosen instead

of (8, 8), the vertex becomes routable in that case. Since the mid-point is

determined after each vertex is chosen during routing, the vertex needs to be

dynamically adjusted to avoid traps like (13, 8) in the routing process.

In the original program, such traps can be easily avoided because there

is only one way to choose the mid-point. As a result, the traps can be

determined and avoided during the assignment of left and right vertices in

each row. The path that the original program would produce is shown on

top of the new solution in Figure 5.5. A trap exists at (13, 6) for the original

program. After a trap is determined, the vertex that causes the trap needs

to be moved to a new location. If it is a right vertex, the new location is

(Ri − 1, y) where y is the y coordinate of the trap vertex and Ri is the right

boundary in row y-1. If it is a left vertex, the new vertex is (Li + 1, y) where

y is again the y coordinate of the trap vertex and Li is the left boundary in

row y-1. The route produced by the original program is 46, which is 6 units

shorter than the result of the new program in Figure 5.4.

However, this old method does not work if trap cells cannot be determined

prior to the process of choosing the mid-point. A trap cell can only be

35

Figure 5.4: An example of an unroutable vertex during routing.

determined during the process with the new option of the mid-point for

the program. Therefore, when the program tries to find the mid-point to

connect two vertices, it checks whether the previous vertex is a trap cell. If

any direction except up is routable, the vertex is not a trap. If it is a trap, the

net is in a dead end and the program immediately aborts the routing process.

The program pushes the trap vertex on the trap vector and clears the route

vector and the vertices vector. Then, the routing process goes back to the

stage that determines the vertices in each row. Now, the program has the

information of which cells will become trap cells with the current boundary.

Therefore, if the vertex is a left vertex, it is adjusted to (LN
i +1, y), where

LN
i is the new left boundary in row y+1. If it is a right vertex, it is adjusted

to (RN
i − 1, y), where RN

i is the new right boundary in row y+1. The new

high level pseudo code for find route is shown below:

//the minimum labels have been assigned prior to find route

procedure find route:

determine the vertices in each row

complete the route vector by either pushing an adjacent cell or a vertex

determine the mid points for every non-adjacent cell in the route vector

if encounter a trap vertex

36

Figure 5.5: An example of the routing if the other mid-point is chosen.

clear route vector, push the trap vertex to the trap vector

go back to determine the vertices in each row again

The net can have extra grid cells for snaking with a different mid-point that

connects the nonadjacent grid cells as in Figure 5.2 and Fig 5.5. Unfortu-

nately, this longer wire cannot finish routing sometimes due to a trap vertex.

If it encounters a trap, the vertex needs to be moved to make the net routable,

and it is possible that the wire cannot gain any length at all after the vertex

is moved. An example is given in Figure 5.6.

The first attempt to connect all the nonadjacent vertices is shown in the

left graph. In row 3, the right vertex is chosen because the right vertex has

a longer edge than the left vertex. However, this choice will make the vertex

(0, 8) a trap vertex, since the program does not know the grid cell below (0,

8) is not routable; it only knows that when it tries to connect (0, 8) and (6,

9). Since the trap is a left vertex, it is moved to (5, 8). With this new vertex,

the program tries to find the route that produces the maximum-length again.

The result after the program encounters no trap vertex is shown at the right

for the same net. It can be seen that the choice of going to the right vertex in

row 3 actually produces a result that is shorter than going to the left vertex.

37

Therefore, the program chooses the left vertex in row 3 instead of the right

vertex to get the maximum-length for the net.

Figure 5.6: An example of how an original attempt to route can result into
a dead end.

Since the program calculates the maximum-length with the assumption

that there are no trap vertices, the maximum-length needs to be recalcu-

lated again with the new vertices that replaced the traps. In Figure 5.6, the

maximum-length is 50 before the trap vertex, (0, 8), needs to be moved to

(5, 8). After the vertex is moved, the new maximum-length is only 42. If

this new maximum-length, which is shorter than the original one, is below

the minimum-length constraint of the net, not enough grid cells are allo-

cated for the current net. In that case, the right boundary of the net (Ri)

needs to be flipped more towards the right to allocate more cells for snaking.

Remember that Ri is only now used to determine the right vertex in each

row for snaking. Therefore, flipping Ri to the next column is equivalent to

moving the right vertices to the next column, which allocates more cells for

snaking. The flipping process continues until the maximum-length, which is

determined after all the vertices are routable with the mid-points chosen for

each nonadjacent cell, is greater than the minimum-length constraint.

38

CHAPTER 6

MEETING THE MAXIMUM-LENGTH
BOUND

6.1 Introducing Diagonal Wires

In the original program, maximum-length bound is only checked to allocate

individual net’s right and left boundaries, Li and Ri. The program assumes

that all nets will satisfy the maximum-length bound if wire snaking is not re-

quired. Therefore, as long as the nets stay inside Li and Ri, the resulting path

length cannot exceed the maximum-length bound. However, if the minimum

path does not meet the maximum-length requirement, the only solution is

to either change the terminal pins’ position or increase the maximum-length

bound.

Since the wires always route in either horizontal or vertical direction, the

minimum path is always the Manhattan distance between the two terminal

pins. The formula to calculate the Manhattan distance is |xT−xB|+h, where

xT is the x coordinate of the top terminal pin, xB is the x coordinate of the

bottom terminal pin, and h is the height of the grid. Since the minimum

distance between two points is a straight line, the wire length can be less

than the Manhattan distance if the wire can be routed in directions other

than horizontal and vertical. For this reason, diagonal wire should be used

during routing.

If diagonal wire is added in the original program, it will raise many prob-

lems because the original program was not designed to incorporate diagonal

wire. Many fundamental changes will need to be made to add the diagonal

wire. Therefore, we wrote a separate program (diagonal) that uses diago-

nal wire to route in a smaller region inside the grid’s boundary. After the

diagonal program finishes routing, it modifies the original input file, along

with lObstacle and rObstacle, to exclude the region that has been assigned

for the diagonal region already. Then, it calls the route program to finish the

39

routing in the remaining region. At the end, the diagonal program draws

the routing result in the diagonal region and the route program draws in

the remaining area. The two graphs are in the same grid and the combined

graph corresponds to the original input and boundary information. There-

fore, the diagonal program acts like a preprocessing program for the input

file before the route program. The route program does not know that the

diagonal program exists, so it is completely transparent.

6.2 The Number of Cells of Diagonal Wire

The diagonal program first reads the input file and determines the minimum-

path distance for each net by calculating the Manhattan distance. If each

minimum-path distance satisfies each maximum-length constraint, the pro-

gram does not need to use diagonal wire. In that case, the program does not

modify the files and simply calls the route program, never using the diago-

nal. If one of the net’s min-path distances is less than the maximum-length

bound, the program proceeds to calculate the number of cells for diagonal

wire that will satisfy the maximum-length bound.

To determine the length of diagonal wire, the program calculates the differ-

ence between the maximum-length bound and min-path distance. The result

(ldiff) is the wire length that has to be saved to meet the maximum-length

bound. The program then calculates the height (hd) of the diagonal wire to

save ldiff . The length saved by diagonal wire in one cell is the length dif-

ference between the diagonal and the Manhattan distance, which is 2−
√

2.

Therefore, the height of the cells occupied by diagonal wire for a net is de-

termined by the formula: hd = dldiff/(2 −
√

2)e. Since the program has to

satisfy the maximum-length bound for all the nets, hd is calculated for each

wire, and the maximum hd is chosen to be the height of the diagonal region.

The new minimum-path distance with using diagonal wires can also be

determined. The diagonal wire is limited by the coordinates of the terminal

pins. For example, if the top terminal pin is at (5, 0) and the bottom terminal

pin is at (10, 10), the diagonal wire cannot go beyond the rectangle formed

by four vertices, (5, 0), (10, 0), (10, 10), and (5, 10). If the diagonal wire

goes beyond this rectangle, it starts to deviate from the destination terminal

pin, which does not save wire length anymore. The extra length is
√

2, since

40

the deviated wire uses 1 +
√

2 length, while the wire that directly goes up

uses 1. Therefore, the maximum height used by the diagonal region (hM
d)

is min(|xT − xB|, h). The minimum distance of the net (Dm) is calculated

by the formula Dm =
√

2 × hM
d + max(|xT − xB|, h) − hM

d . Therefore, the

program checks the minimum path for all nets and immediately aborts if a

min-path fails to satisfy the max-length bound.

6.3 Determining the Region for Diagonal Wire

After the hd that satisfies all nets has been chosen, the next step is to find

a region inside the grid to place diagonal wires for each net. Since wires do

not cross the same row twice, the free cells that are not used in the diagonal

region cannot be used for the route program. Therefore, the diagonal region

is determined by cutting horizontally in multiple rows. The rows that are

not assigned for the diagonal region are later used for the route program.

The program favors putting the diagonal region at the bottom or at the top

because it has to call the route program only once. All remaining grid cells

after the diagonal program picks its region are used for the route program.

For example, if the rows from h − hd to h are chosen for diagonal wire, the

rows from 0 to h− hd will be used for the route program. However, the pin

positions for the diagonal wires are stuck to the pin positions at the top or

bottom. They cannot be moved closer or farther apart.

The program tries using the bottom rows first, which are from h − hd to

h. Then, it determines if all the wires can fit into the grid by examining the

first and the last nets’ diagonal wires. For each row from h − hd to h, the

diagonal wire’s x coordinate is checked against the left boundary and the

right boundary of the grid. If the wires cannot fit, the diagonal wire region

is moved to the top.

If the diagonal wires do not exceed the boundary, the program draws the

diagonal wires in the direction towards the top terminal pins from the bottom.

Then, it updates the input file with the new bottom pin positions based on the

cells at which the diagonal wires terminate. The minimum- and maximum-

length bounds are also updated by subtracting the length of the diagonal

wire. The height of the grid is updated as well. Finally, the program calls

the route program to finish the routing in the top region. An example is

41

given in Figure 6.1.

If the top rows, which are from 0 to hd, are chosen, the diagonal program

checks if all the wires fit inside the grid, using the same method that was

used to check the bottom rows. If a diagonal wire touches the boundary, the

middle region has to be used. If not, the program draws the diagonal wires

in the direction towards the bottom terminal pins from the top. Then, it

updates the input file with the new top pin positions based on which cells

the diagonal wires route to. The minimum- and maximum-length bounds

are also updated with the height of the grid. Finally, the program calls the

route program to finish the routing in the bottom rows. An example is given

in Figure 6.2.

Figure 6.1: An example of diagonal wires in the bottom rows to satisfy
max-bound.

If both the top and bottom regions fail, the diagonal region has to be in

the middle. In this case, the positions of the starting points of the diagonal

42

Figure 6.2: An example of diagonal wires in the top rows to satisfy
max-bound.

wires do not have to be the same as the terminal pin positions. They can be

moved at the edge of the diagonal region. Therefore, the pins can potentially

be moved closer together so the resulting wires look more like a bundle. The

program arbitrarily chooses the bottom of the middle region in row h/2+hd/2

to make the diagonal region exactly in the middle. An example of diagonal

region in the middle is shown in Figure 6.3.

The pins are chosen to let the diagonal wire for each net be inside the rect-

angle formed by the top and bottom terminal pins. Therefore, the optimal

position for each net will be (xB, h/2 + hd/2), where xB is the x coordinate

of the bottom terminal pin. The program checks the first and last diagonal

regions again to see if they touch the boundary. If one of them touches the

boundary, the program tries to avoid the boundary by moving the pin posi-

tions left or right. If the pin positions cannot be moved to fit the rectangle,

43

the program switches the bottom of the diagonal region to upper or lower

row and tries the entire process again. The program continues searching a

position for the region until a diagonal region can fit in the grid where all

maximum-length bounds are satisfied.

If a diagonal region is decided, the grid is split into three different sections,

and the diagonal program has to call the route program twice to finish the

routing in the top and bottom regions. Different input files need to be pro-

duced with new top and bottom pin positions and new length bounds. The

new max-length bound is determined based on the min-path distance of the

target region. The min-path distances for the top and bottom regions are

added together to form a total min-path distance. The extra wire length is

defined to be (oldmax-bound−
√

2×hd− totalmin-path)/2. This extra wire

length is then split evenly between the top and bottom regions to add to the

min-path distance to form the new maximum-length bound. Therefore, the

region with higher min-path distance gets a larger max-length bound. The

new minimum-length bound is calculated by subtracting
√

2 × hd from the

old minimum-length bound and dividing by 2. The three different regions

are combined together for a single solution after they finish the routing.

6.4 Satisfying the Maximum-Length Bound with the

Diagonal Region

Since the diagonal wires’ lengths have to be uniform for all nets, there can

be cases where the wire length gets shorter than the minimum-length bound

if minimum-path is followed. However, this problem can be easily resolved

because the route program can lengthen the wire by snaking in its region. On

the other hand, the cases where the maximum-length constraint cannot be

satisfied are harder to solve. For some nets, the diagonal wire becomes so long

that it has to exceed the rectangle formed by the top and bottom terminal

pins. After it exceeds the rectangle, the diagonal wire actually makes the

wire longer than necessary, which can cause it to exceed the maximum-length

bound. Unfortunately, there seems to be no easy solution to this problem

other than using variable diagonal wire lengths for different nets. As a result,

each net can have different length of diagonal wire to satisfy the maximum-

length bound. However, this raises the old challenge of routing horizontal

44

Figure 6.3: An example of diagonal wires in the middle to satisfy
max-bound.

and vertical wires with diagonal wires in the same region.

6.5 Desired Length for Each Net

When a wire length meets the minimum- and maximum-length bounds, it is

not set to be close to the middle of the two values. Wire length is always

close to the maximum-length bound because extra wire length is used to

route the nets closer together and leave more grid cells for the rest of the

nets. However, this is not always the desired situation, so a desired value for

the wire can be specified by the user in the input file after the maximum-

length value. As a result, the wire length will be routed closer to the desired

length instead of the maximum-length bound. Therefore, the user has the

45

freedom to change the wire length when the minimum- and maximum-length

bounds are satisfied.

46

CHAPTER 7

COMPARISON

In this chapter, two examples are presented to show the differences between

the original program and the new program.

In this example, there are eight nets to route, and the maximum-length

bound can be satisfied with the Manhattan distance for each net. Figure

7.1 is the result from the original program. The last net is away from the

rest of the nets. In addition, some nets cannot satisfy the minimum-length

bound. For example, the first net has minimum-length bound of 80, but

the resulting wire length is only 75. Figure 7.2 is the result of the newer

program. The first net can satisfy the minimum-length bound now because

it has more grid cells for snaking. The nets in the original program do not

have as many grid cells for snaking because they were preallocated for each

net before the routing process. The last net is also routed closer to previous

nets in the result of the newer version. Figure 7.3 is the result of the newer

version with the addition of left and right boundaries. The nets are routed

tighter together to route around the left and right boundaries.

In the next example, all the nets except for the second one cannot satisfy

the maximum-length bound, which is 80. The shortest path is the Manhattan

distance in the original program, and the user has to adjust the pin position

or the maximum-length bound. The result is shown in Figure 7.4. With

the addition of the diagonal wires in the newer version, the maximum-length

bound can be satisfied by using the diagonal region in the middle. All nets

are below the maximum-length bound in this case. The result is shown in

Figure 7.5

47

Figure 7.1: The result of the original program.

Figure 7.2: The result of the new program with no boundary.

48

Figure 7.3: The result of the new program with boundary.

49

Figure 7.4: The result of the original program with no boundary and no
diagonal wires.

50

Figure 7.5: The result of the new program with boundary and diagonal
wires.

51

CHAPTER 8

CONCLUSION

8.1 Summary

Ozdal and Wong’s program is an automatic single-layer bus routing program

that matches wire lengths on high-speed boards. We try to improve the

program so it becomes more general to accommodate different input nets.

The program now does not have to route inside a uniform grid. The user

can specify left and right boundaries to model the obstacles that might be

encountered during PCB routing. Each individual net’s boundary does not

have to be monotonic anymore. Most of the cells inside the grid’s boundary

are available for the current net as long as they are not essential for the

remaining nets to connect the two terminal pins. Therefore, the earlier nets

can more likely finish routing than the later nets. The nets that have finished

routing are drawn in the solution grid right away. As a result, the half-

finished routing result is still available for the user when a net fails to satisfy

the min-length or max-length bound.

During the actual routing for the net, the program makes an effort to

have less bending in the path by giving priority to the previous direction.

However, those routes can potentially waste cells, so the program gives the

user the capability to enforce a cap on the directions that waste cells for the

remaining nets. The program makes more cells available by making the last

row of the grid routable for each net. As a result, more nets can meet the

minimum-length constraint with tighter boundary.

The program can also use the diagonal wires in cases where the maximum-

length bound cannot be satisfied by the minimum-path length. A second pro-

gram, diagonal, is used to preprocess the input file before the route program.

It checks the minimum-path distance for each net against the maximum-

length bound and routes part of the grid in diagonal wire in case the min-path

52

distance is less than the max-length bound. The diagonal region is chosen

to be either at the bottom, at the top, or in the middle, depending on which

region can contain the diagonal wires. The diagonal wire length has to be

uniform for every wire to avoid the challenge of routing horizontal, vertical,

and diagonal wires in the same region. After all the nets finish routing, the

length of each net is automatically displayed in the terminal for the user.

With all these modifications, the single-layer bus routing program can be

used without the original limitations of the nets input and environment.

8.2 Future Work

There are some improvements that can be made to this program. The diag-

onal program assumes that all nets use diagonal wires in the same direction.

In reality, the nets can be in two different directions, 45◦ left and 45◦ right. As

a result, they will need the program to draw the diagonal wires in these two

directions in the same diagonal region. Furthermore, there are cases where it

is impossible to satisfy the maximum-length bound for all nets using diagonal

wire of uniform length. Therefore, different diagonal wire lengths for differ-

ent requirements can potentially solve this problem. However, the problem

of routing wires of different lengths can be challenging. In addition, mak-

ing the first row routable by the nets provides even more grid cells during

routing. Lastly, the program should make a more intelligent guess of which

mid-point to choose during routing, rather than taking a trial-and-error ap-

proach, which wastes a lot of runtime.

53

REFERENCES

[1] L. W. Ritchey, “Busses: What are they and how do they work?” Printed
Circuit Design Mag., Dec. 2000.

[2] M. Ozdal and M. Wong, “Length matching routing for high-speed printed
circuit boards,” in Proc. IEEE Int. Conf Computer-Aided Design, San
Jose, CA, Nov. 2003, pp. 394–400.

[3] M. Ozdal and M. Wong, “Algorithmic study of single-layer bus routing
for high-speed boards,” IEEE Trans. on CAD of Integrated Circuits and
Systems, vol. 25, pp. 490–503, Mar. 2006.

[4] C. Hsu, “General river routing algorithm,” in Proc. 20th Design Automa-
tion Conf., Miami, FL, June 1983, pp. 578–582.

[5] R. Y. Pinter, “On routing two-point nets across a channel,” in Proc. 19th
Design Automation Conf., Las Vegas, NV, June 1982, pp. 894–902.

[6] H. Zhou and M. Wong, “Optimal river routing with crosstalk con-
straints,” ACM Trransact. Des. Automat. Electron. Syst., vol. 3, no. 3,
pp. 496–514, 1998.

[7] C. Y. Lee, “An algorithm for path connection and its applications,” IRE
Trans. Electron Comput., vol. EC-10, pp. 346–365, Sep. 1961.

[8] S. W. Hur, A. Jagannathan, and J. Lillis, “Timing-driven maze routing,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits and Syst., vol. 19, pp.
234–242, Feb. 2000.

54

