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Abstract 

In a Bloch-wave-based STEM image simulation, a framework for calculating the 

cross section for any incoherent scattering process was formulated by Allen et al. They 

simulated the HAADF, BSE, EELS and EDX STEM images from the inelastic scattering 

coefficients. Furthermore, a skilful approach for deriving the excitation amplitude and block 

diagonalization in the eigenvalue equation were employed to reduce the computing time and 

memory. In the present work, we extend their scheme to a layer-by-layer representation for 

application to inhomogeneous crystals. Calculations for a multi-layer Si sample including a 

displaced layer was performed by multiplying Allen et al.’s block-diagonalized matrices. 

Electron intensities within the sample and EDX STEM images were calculated at various 

conditions. From the calculations, 3-dimensional STEM analysis was considered. 

 

Introduction 

The STEM image simulation by the dynamical electron diffraction was 

established by two individual methods: the multi-slice method [1-3] and the Bloch-wave 

method. The multi-slice method is effective for various objects including defects, but requires 

enormous computing time because parallel calculations in the STEM mode must be 

performed at each probe position. The Bloch-wave method reduces computing time and 

memory drastically for crystalline objects. However, images of defects demand large number 

of partial incident beams. 

Pennycook et al. initially developed the simulation of high-angle annular 

dark-field (HAADF) STEM images by the Bloch-wave method [4,5]. Furthermore, Mitsuishi 

et al. [6] and Yamazaki et al. [7] extended HAADF STEM simulations based on the 

Bloch-wave method to layer-by-layer representation. In their method, the combination of the 

different types of layers can be calculated by multiplying matrices. 

On the other hand, Allen et al. simulated electron energy-loss spectroscopy 
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(EELS), energy-dispersive X-ray spectroscopy (EDX) and back-scattered electron (BSE) 

STEM images as well as HAADF STEM images by calculating the cross section for inelastic 

scattering [8,9]. They formulated a framework for calculating the cross section for any 

incoherent scattering process from the inelastic scattering coefficient. Furthermore, their 

method employed a skilful approach for deriving the excitation amplitude and block 

diagonalization in the eigenvalue equation. The present author extended Allen’s scheme to a 

layer-by-layer representation and applied it for Si-Sb-Si multi-layer samples [10]. In the 

present work, I extend this method to multi-layer samples including atomic displacement. 

From the calculations, 3-dimensional STEM analysis is considered, which was experimentally 

and theoretically reported as the depth sectioning ideas in Refs. [11-15]. 

 

Methods 

A wave function in the STEM simulation is calculated by the Bethe equation 

D
kK )(2 CAC  , 

where C  and D
k )(  are the matrices of eigenvectors kCg  and of the eigenvalues, 

respectively. The subscript D indicates diagonal. K is the averaged wave number in the crystal. 

Findlay et al. [9] presented the reflections in STEM mode as 

lqGg  , 

where the capitalized vector G  denotes N physical reciprocal lattice vectors, and lq  

denotes nearly continuous m vectors in the first Brillouin zone. The Bethe equation, whose 

dimension is mNmN  , can be block diagonalized since the wave functions for different l  

do not interact with each other. Findlay et al. [9] presented the Bethe equation consisting of 

the m sub-matrices whose dimension are NN  . We may now solve the m eigenvalue 

equation consisting of the sub-matrix such as 

Dl
k

lll K )]()][([2)]()][([ qqCqCqA  . 
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The total wave function is given by 
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where r  and z indicate the positions along transverse and depth directions, respectively. R 

indicates the probe focus position. The excitation amplitude kl ,  was presented by Allen et 

al. [8]. 

Equation (1) is rewritten as a product of the r -dependent term and the 

z-dependent amplitude )(, zl G  in Darwin’s representation [16]. 
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This can be expressed by block-diagonalized matrix form as in Ref. [10]. 

)]([]})(2)]{exp[([)]([ lnDnl
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nlnnn ziz

l
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When a crystal is divided into many layers, from the boundary condition the excitation 

amplitudes of the n-th layer are expressed as follows: 
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where nt  is the thickness of the n-th layer. The excitation amplitude of the 1st-layer )(1 lqα  

is obtained from the boundary condition between the upper surface of the sample and the 

vacuum [8]. The wave function in the n-th layer is calculated by substituting the z-dependent 

amplitude )(,
n

l
n zG  into Eq. (2). 

Equation (4) is very general formula. Any restrictions about the crystal structures 
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between the sequent layers are not required in Eq. (4). If the n-th layer in the sample of an 

elementary substance has an atomic displacement of nτ  as shown in Fig. 1, the formulas are 

notably simplified. In this case, )]([ ln qC  in Eqs. (3) and (4) may be replaced by 

)]([)](2[exp[ 1
1

lDni qCτG   in the same manner as Ref. [16] also in the STEM case. The 

diagonal matrix Dni )]2[exp( τG   indicates the phase change of structure factors due to the 

atomic displacement. 

The cross section for inelastic scattering or EDX STEM signal intensity is 

calculated following the representation of Allen et al. [8-10]. In the present work, the 

off-diagonal elements of the Bethe matrix )]([ lqA  were estimated using the atomic 

scattering factors by Doyle and Turner [17] and the absorption potentials by Humphreys and 

Hirsch [18]. The numbers of the physical reciprocal lattices (N) and of the nearly continuous 

vectors in the first Brillouin zone (m) were assumed to be 205 and 53, respectively, in 

zeroth-order Laue zone at [110] zone axis incidence. The accelerating voltage was assumed to 

be 200 kV. The atomic scattering factor for inelastic scattering included in the inelastic 

scattering cross section was approximately estimated as Fourier coefficients of Lorentzian or 

Gaussian profiles smeared by Debye-Waller factors [19]. The amplitude and the full-width at 

half maximum of the profiles for various elements were calculated by Oxley and Allen for 

EDX [20] and EELS [21]. We estimate the scattering factor for EDX from Ref. [20] and from 

the Debye temperatures ΘSi = 645 K. The transfer function of the objective lens is defined in 

the same manner as in Rossouw et al. [22] and the underfocus is assumed to be negative. 

 

Results 

     Figure 1 shows the sample used in the simulation, which is composed of a 3-layer Si 

stack along [110] in a diamond lattice. The 2nd layer has a hypothetical displacement of 0.05 

nm along [001] direction. The thicknesses of the 1st, 2nd and 3rd layers were 4.5, 1 and 4.5 
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nm, respectively. The lattice constants were assumed to be 0.543 nm. Each layer was assumed 

to be free of strain. 

     Figure 2 shows the dependence of the electron intensities on the spherical aberration Cs 

calculated from Eq. (2). The horizontal and the vertical axes indicate the coordinate x along 

[001] and the depth z from the sample surface along [110], respectively. The brightness is 

proportional to the electron intensity at each point. The atomic columns in the 1st and 3rd 

layers are located at x = 0 and –0.136 nm. The centre of the STEM probe is located at x = 0 

nm. The position of the displaced layers is shown at the right side of the figures. The 

simulation was performed for Cs = 0.1 mm (a), 0.01 mm (b) and 0.001 mm (c). The Scherzer 

focuses were assumed to be -19 nm (a), -6 nm (b) and –1.9 nm (c) ])(2.1[ 2/1
SC , and the 

optimal cut-off apertures were assumed to be 7.6 nm-1 (a), 13.5 nm-1 (b) and 24 nm-1 (c) 

])(51.1[ 4/13 
SC  such as in Ref. [10]. The STEM probe electrons at any Cs concentrated 

along z direction at x = 0 nm and even in the deep area of sample. The transverse resolution 

increases with decreasing Cs. The electron intensities seem to broaden along transverse 

direction around the displaced 2nd layer at Cs = 0.1 mm. The resolution along the z direction 

increased, and the focal depth of field decreased with decreasing Cs. At Cs = 0.001 mm, the 

depth of field attained was about 1 nm. 

     Figure 3 shows the defocus dependence of the electron intensities calculated at Cs = 

0.001 mm when the centre of the STEM probe is located at x = 0 nm. The depths of the 

intensity maxima decreased with increasing defocus from -10 to 0 nm. If the potential at the 

atomic column and the spherical aberration are zero, the depths of intensity maxima are equal 

to the absolute defocus. Though, the depths were somewhat smaller than the absolute defocus 

for these effects, which were reported as a prefocus effect [23]. The high depth resolution or 

the narrow depth of field ~1 nm enabled us to calculate depth-sectioning STEM images at Cs 

= 0.001 mm. 



 7

     Figure 4 shows the probe line-scan simulation of SiK EDX signals at Cs = 0.1 mm (a), 

0.01 mm (b) and 0.001 mm (c). Horizontal and vertical axes indicate the probe position along 

[001] and the defocus, respectively. The intensive areas are observed around x = 0 and –0.136 

nm. The transverse resolution increased with decreasing Cs. The displacements of the 

intensive areas corresponding to the atomic displacement are observed at Cs = 0.001 mm. 

They cannot be observed at Cs=0.1 and 0.01 mm because of the resolution limit with the 

depth of field. The displaced intensive area is nearly equal to the displaced layer thickness of 

1 nm; however, the absolute defocus at the displaced area is larger than the depth of the 

displaced layer because of the prefocus effect as shown in Fig. 3. SiK intensities at x = 0 and 

–0.136 nm are attenuated around the displaced intensive area in (c).  

Figure 5 shows the defocus dependence of the EDX STEM image simulations for 

the [110] zone axis calculated at Cs = 0.001 mm. Intensity maximum and minimum are 

indicated under each image. The bright spots are observed at atomic column positions in the 

1st and 3rd layers at any defocus with high transverse resolution. The displaced spots are 

observed at Δf = -7 and -6 nm as indicated in Fig. 4 (c). These absolute defocuses are larger 

than the depth of the displaced layer because of the prefocus effect. Comparison of the 

defocus-dependent simulations of the STEM images with the experimental ones enabled us to 

obtain quantitative 3-dimensional information. 

     Figure 6 shows the probe line-scan simulation of SiK EDX signals at Cs = 0.001 mm 

for displaced layer thickness of 2 nm (a), 1 nm (b) and 0.2 nm (c). The displaced layers are 

located at the centre along the z-direction in the samples. The displaced intensive area along 

the vertical axis decreased with decreasing displaced layer thickness from (a) to (b). The 

intensities at x = 0 and –0.136 nm were concomitantly attenuated around Δf = -7 nm in them. 

The displaced intensive area in (c) is difficult to be observed. This is because of the resolution 

limit with the depth of field at CS = 0.001 mm. The attenuate areas are slightly observed in 

(c). 
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Conclusions 

Allen et al. skilfully formulated a framework for calculating the HAADF, BSE, 

EELS and EDX STEM images from the inelastic scattering coefficient by the Bloch wave 

method. We extended their scheme to a layer-by-layer representation. Calculations were 

performed for a multi-layer Si sample including a displaced layer by multiplying Allen et al.’s 

block-diagonalized matrices. Electron intensities within the sample and EDX STEM images 

were calculated at various conditions. Calculations of the STEM images revealed that 

3-dimensional information can be obtained. 
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Figure legends 

 

Fig. 1. Scheme of the simulated multi-layer Si sample. It is composed of 3-layer stack along 

[110] in a diamond lattice. The 2nd layer has a hypothetical displacement of 0.05 nm along 

[001]. The thicknesses of the 1st, 2nd and 3rd layers were 4.5, 1 and 4.5 nm, respectively. 
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Fig. 2. Calculated electron intensities in the Si stack sample of Fig. 1. The calculations were 

performed in the spherical aberrations of 0.1 mm (a), 0.01 mm (b) and 0.001 mm (c) with 

Scherzer focuses and optimal cut-off apertures. The horizontal and the vertical axes indicate 

coordinates along [001] and the depth from the sample surface along [110], respectively. The 

atomic columns are located at x = 0 and –0.136 nm in the 1st and 3rd layers. The center of the 

STEM probe is located at x = 0 nm. The position of the 3 layers is shown at the right side of 

the figures. 
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Fig. 3. Calculated electron intensities in the Si stack sample of Fig. 1. The calculations were 

performed at the defocuses of -10 nm (a), -8 nm (b), -6 nm (c), -4 nm (d), -2 nm (e) and 0 nm 

(f) with spherical aberration 0.001 mm and optimal cut-off aperture 24 nm-1. The horizontal 

and the vertical axes indicate coordinates along [001] and the depth from the sample surface 

along [110], respectively. The atomic columns are located at x = 0 and –0.136 nm in the 1st 

and 3rd layers. The center of the STEM probe is located at x = 0 nm. The position of the 3 

layers is shown at the right side of the figures. 
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Fig. 4. Probe line-scan simulation of SiK EDX signal in the Si stack sample of Fig. 1. The 

horizontal and the vertical axes indicate the coordinate along [001] and the objective lens 

defocus, respectively. The calculations were performed for spherical aberrations 0.1 mm (a), 

0.01 mm (b) and 0.001 mm (c) and for optimal cut-off apertures. 
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Fig. 5. Calculated EDX STEM image simulations for [110] zone axis incidence at the 

defocuses of -10 nm (a), -8 nm (b), -7 nm (c), -6 nm (d), -4 nm (e) and -2 nm (f) with 

spherical aberration 0.001 mm and optimal cut-off aperture 24 nm-1. Intensity maximum and 

minimum are indicated under the each image. 
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Fig. 6. Probe line-scan simulation of SiK EDX signals for displaced 2nd layer thickness of 2 

nm (a), 1 nm (b) and 0.2 nm (c). The displaced 2nd layers are located on the center along the 

z-direction in the samples. The horizontal and the vertical axes indicate the coordinate along 

[001] and the objective lens defocus, respectively. The calculations were performed for 

spherical aberration 0.001 mm and optimal cut-off aperture 24 nm-1. 


