PERFECT ONE-FACTORIZATIONS OF THE COMPLETE GRAPH

MIDORI KOBAYASHI

1. Introduction

We denote by $K_{2 n}=(V, E)$ the complete graph with 2 n vertices, where V is the set of $2 n$ vertices and E is the set of $n(2 n-1)$ edges. A 1 -factor of $K_{2 n}$ is a set of pairwise disjoint edges that partition the set of vertices V. A 1 -factorization of $K_{2 n}$ is a set of 1 -factors that partition the set of edges E. A 1-factorization is called perfect if the union of every pair of distinct 1 -factors is a Hamiltonian circuit. Two 1-factorizations F and F^{\prime} are isomorphic if there exists a permutation of V which sends each member of F into a member of F^{\prime}.

The existence of a perfect 1 -factorization of the complete graph $K_{2 n}$ for all $n \geqq 2$ is conjectured, and the problem is settled only for $2 n=p+1,2 p$ (p is prime), and $2 n=$ $16,28,244,344$. In this paper, these perfect 1 -factorizations are explicitly shown.

Perfect 1-factorizations of K_{36}, K_{1332} and K_{6860} have recently been found ($[4,5]$). The papers are in submission.

2. Perfect 1-factorization of K_{p+1} (p is an odd prime)

$G F(p)$ denotes the Galois field with p elements. We put

$$
V=G F(p) \cup\{\infty\}
$$

and

$$
F_{0}=\{\{i, j\} \mid i+j=0, i, j \in G F(p)-\{0\}\} \cup\{(0, \infty)\}
$$

F_{0} is called a starter 1-factor and

$$
\begin{aligned}
F_{g} & =F_{0}+g \\
& =\{\{i+g, j+g\} \mid i+j=0, i, j \in G F(p)-\{0\}\} \cup\{(g, \infty)\} .
\end{aligned}
$$

is an induced 1-factor, where g is an element of $G F(p)$. We obtain a perfect 1-factorization $G K_{p+1}$:

$$
G K_{p+1}=\left\{F_{g} \mid g \in G F(p)\right\}
$$

For example, a starter of $G K_{12}$ is shown in FIGURE 1.

3. Perfect 1-factorization of $K_{2 p}$ (p is an odd prime)

Let

$$
V=\left\{w_{0}, w_{1}, \cdots, w_{p+1}, w_{0}^{*}, w_{1}^{*}, \cdots, w_{p-1}^{*}\right\} .
$$

For mathematical simplicity, we use $w_{i+k p}$ and $w_{i+k p}^{*}$ instead of w_{i} and w_{i}^{*}, respectively, where k is an integer.

For an integer s with $0 \leqq s \leqq p-1$, we put

$$
\begin{aligned}
O G_{s}= & \left\{\left\{w_{i}, w_{j}\right\} \mid i+j \equiv s, i \neq j(\bmod p)\right\} \\
& \cup\left\{\left\{w_{i}^{*}, w_{j}^{*}\right\} \mid i+j \equiv p-2-s, i \neq j(\bmod p)\right\} \\
& \cup\left\{\left\{w_{s / 2}, w_{(p-2-s) / 2}^{*}\right\}\right\}
\end{aligned}
$$

where $1 / 2$ means $2^{-1}(\bmod p)$. For an integer s with $0 \leqq s \leqq p-2$, we put

$$
I G_{s}=\left\{\left\{w_{i}, w_{j}^{*}\right\} \mid i+j \equiv s(\bmod p)\right\} .
$$

Then

$$
G A_{2 p}=\left\{O G_{s} \mid s=0,1, \cdots, p-1\right\} \cup\left\{I G_{s} \mid s=0,1, \cdots, p-2\right\}
$$

is a perfect 1 -factorization of $K_{2 p}([2])$. For example, $G A_{10}$ is shown in FIGURE 2.

FIGURE 2
Let

$$
\begin{aligned}
V^{\prime} & =\left\{v_{0}, v_{1}, \cdots, v_{2 p-1}\right\}, \\
E^{\prime} & =\left\{\left\{v_{i}, v_{j}\right\} \mid 0 \leqq i \leqq 2 p-1,0 \leqq j \leqq 2 p-1, i \neq j\right\} .
\end{aligned}
$$

For mathematical simplicity, we use $v_{i+2 p_{k}}$ instead of v_{i}, where k is an integer.
For any integer s with $0 \leq s \leq 2 p-1$ and $s \neq p$, we define $G_{s}(\subset E)$ as follows:
If s is even, then

$$
G_{S}=\left\{\left\{v_{i}, v_{j}\right\} \mid i+j \equiv s, i \neq j(\bmod 2 p)\right\} \cup\left\{\left\{v_{s / 2}, v_{S / 2+p}\right\}\right\}
$$

If s is odd and $s \neq p$, then

$$
G_{S}=\left\{\left\{v_{i}, v_{j}\right\} \mid i: \text { odd, } i-j \equiv s(\bmod 2 p)\right\} .
$$

G_{s} is a 1 -factor of $K_{2 p}$ and the set of G_{s} denoted by

$$
G N_{2 p}=\left\{G_{s} \mid 0 \leqq s \leqq 2 p-1, s \neq p\right\}
$$

is a perfect 1 -factorization of $K_{2 p}([7])$. For example, $G N_{10}$ is shown in FIGURE 3.
$G A_{2 p}$ and $G N_{2 p}$ are isomorphic perfect 1-factorizations ([3]).

$G N_{10}$
FIGURE 3

4. Perfect 1-factorization of K_{16}

A 1-factorization F is called factor-1-rotational if F has an automorphism fixing two vertices (and one 1 -factor), and permuting the remaining $2 n-2$ vertices (and $2 n-2$ 1 -factors) in a single cycle. It has a convenient geometric representation. One takes the vertices of the regular polygon with $2 n-2$ vertices and labels them with elements of $Z_{2 n-2}$; the other two vertices is labeled with ∞_{1}, ∞_{2}, where $Z_{2 n-2}$ denotes the residue class group modulo $2 n-2$. Let F_{1} be a starter 1 -factor of a factor-1-rotational 1-factorization F. The $2 n$-2 1-factors are obtained by rotating the figure successively through an angle $2 \pi /(2 n-2) . F$ consists of these $2 n-21$-factors and the fixed 1-factor F^{*} :

$$
F^{*}=\{\{i, j\} \mid i-j \equiv n-1(\bmod 2 n-2)\} \cup\left\{\left\{\infty_{1}, \infty_{2}\right\}\right\}
$$

A starter 1-factor of a factor-1-rotational, perfect 1-factorization of K_{16} is shown in FIGURE 4.

FIGURE 4

5. Perfect 1-factorizations of $K_{2 n}$ for $2 n=28,244,344$

Let p be a prime number and m be a natural number such that $p^{m} \equiv 3(\bmod 4)$. We put $q=p^{m}, s=(q-1) / 2$ and $2 n=q+1 . G F(q)$ denotes the Galois field with q elements. $K_{2 n}=(V, E)$ denotes the complete graph with $2 n$ vertices, and

$$
V=G F(q) \cup\{\infty\}
$$

Let ω be a primitive element of $G F(q)$. We define a starter 1 -factor F_{0} :

$$
F_{0}=\left\{\left\{\omega^{2 i}, \omega^{2 i+1}\right\} \mid i=0,1,2, \cdots, s-1\right\} \cup\{\{0, \infty\}\}
$$

For any $g \in G F(q)$,

$$
\begin{aligned}
F_{g} & =F_{0}+g \\
& =\left\{\left\{\omega^{2 i}+g, \omega^{2 i+1}+g\right\} \mid i=0,1,2, \cdots, s-1\right\} \cup\{\{g, \infty\}\}
\end{aligned}
$$

is a 1 -factor which is induced by the starter F_{0}. Then

$$
F(\omega)=\left\{F_{g} \mid g \in G F(q)\right\}
$$

is a 1 -factorization of $K_{2 n}$. It is proved that $F(\omega)$ is semi-regular ([1]). By suitable selections of the semi-regulars, we may construct perfect 1-factorizations.

In case $p=3$ and $m=3$ ，let ω be a primitive element of $G F\left(3^{3}\right)$ with a minimal polynomial $x^{3}+2 x^{2}+1$ ．Then $F(\omega)$ is a perfect 1－factorization of K_{28} ．

In case $p=3$ and $m=5$ ，let ω be a primitive element of $G F\left(3^{5}\right)$ with an minimal polynomial $x^{5}+x^{4}+x^{2}+1$ ．Then $F\left(\omega^{5}\right)$ is a perfect 1 －factorization of K_{244} ．

In case $p=7$ and $m=3$ ，let ω be a primitive element of $G F\left(7^{3}\right)$ with a minimal polynomial $x^{3}+x^{2}+x+2$ ．Then $F\left(\omega^{37}\right)$ is a perfect 1－factorization of K_{344} ．

Acknowledgment．The author would like to express her thanks to Professor Z ． Kiyasu and Professor G．Nakamura for their helpful advice．

REFERENCES

〔1〕 B．A．Anderson，A class of starter induced 1－factorizations，Graphs and Com－ binatorics，Lecture Notes in Mathematics 406，Springer，New York（1974）180－185．
〔2〕 B．A．Anderson，Symmetry groups of some perfect 1－factorizations of complete graphs．Discrete Math．18，227－234（1977）．
〔3〕 M．Kobayashi，On perfect one－factorization of the complete graph $\mathrm{K}_{2 \mathrm{p}}$ ，to ap－ pear．
〔4〕 M．Kobayashi，H．Awoki，Y．Nakazaki and G．Nakamura，A perfect one－factor－ ization of K_{36} ，to appear in Graphs and Combinatorics．
〔5〕 M．Kobayashi and Kiyasu－Zen＇iti，Semi－regular one－factorizations of the complete graph $\mathrm{K}_{\mathrm{p}^{m_{+1}}}$ ，in submission．
［6］E．Mendelsohn and A．Rosa，One－factorizations of the complete graph－a sur－ vey，J．Graph Theory 9 （1985）43－65．
〔7〕 G．Nakamura，Dudney＇s round table problem and the edge－coloring of the com－ plete graph（in Japanese）．Sugaku Seminar No．159，24－29（1975）．
〔8〕 G．Nakamura and M．Tanaka，Solutions of Dudeney＇s round table problem（in Japanese）．RIMS Kokyuroku 371 （1979）47－64．

