IMPLICIT ENUMERATION METHOD FOR THE

INTEGER PROGRAMMING PROBLEM

MIDORI KOBAYASHI

1. Consider the bounded variable integer programming problem

minimize
$$z = \sum_{j=1}^{n} c_j x_j$$
 subject to
$$\sum_{j=1}^{n} a_{ij} x_j (\geq, =, \leq) b_i \qquad (1 \leq i \leq m)$$

$$0 \leq x_i \leq l_i, x_i \in Z \qquad (1 \leq j \leq n),$$

where $c_j \in R$, $a_{ij} \in R$, $b_i \in R$, $l_j \in Z$ ($1 \le i \le m$, $1 \le j \le n$). R and Z denote the set of all real numbers and the set of all integers, respectively

The above problem can be written in the form

minimize
$$z = \sum_{j=1}^{n} c_j x_j$$
 subject to
$$\sum_{j=1}^{n} a_{ij} x_j \ge b_i$$
 $(1 \le i \le m)$
$$0 \le x_j \le l_j, x_j \in Z$$
 $(1 \le j \le n),$

where $c_i \ge 0 \ (1 \le i \le n)$.

If there exists r such that $c_r < 0$, replace the variable x_r with another variable y_r : $y_r = l_r - x_r$

then we have

are u equalities

$$z = \sum_{j+r} c_j x_j + c_r x_r = \sum_{j+r} c_j x_j + (-c_r) y_r + c_r l_r$$

and

$$0 \le y_r \le l_r$$
, $y_r \in Z$.

The inequality $\sum_{j=1}^n a_{ij} x_j \le b_i$ is equivalent to $\sum_{j=1}^n (-a_{ij}) x_j \ge -b_i$, and the equality $\sum_{j=1}^n a_{ij} x_j = b_j$ is equivalent to two inequalities $\sum_{j=1}^n a_{ij} x_j \ge b_j$ and $\sum_{j=1}^n a_{ij} x_j \le b_i$. If there

$$\sum_{i=1}^{n} a_{ij} x_j = b_i \qquad (1 \le i \le u),$$

we can replace the equivalent (u+1) inequalities:

$$\sum_{j=1}^{n} a_{ij} x_{j} \ge b_{i} \qquad (1 \le i \le u),$$

$$\sum_{j=1}^{u} \sum_{i=1}^{n} a_{ij} x_{j} \le \sum_{i=1}^{u} b_{i}.$$

If x is a bounded variable with $0 \le x \le l$, substitute

$$x = \sum_{t=0}^{k-1} 2^t y_t + (l - \sum_{t=0}^{k-1} 2^t) y_k,$$

where k is the smallest integer such that $l \leq 2^{k+1}-1$, and y_t is a binary variable $(0 \leq t \leq k)$. Hence any bounded variable integer programming problem can be reduced to a 0-1 integer programming problem, so it can be solved by the implicit enumeration for 0-1 variables. In this paper we apply the implicit enumeration method to the bounded variable integer programming problem without transforming to 0-1 variables.

2. Consider the 0-1-2 integer programming model

minimize
$$z = 5x_1 + 4x_2 + 3x_3$$
 subject to
$$Q_1 = 5 - 2x_1 + 5x_2 - 3x_3 \ge 0$$

$$Q_2 = -3 + 4x_1 + x_2 + 3x_3 \ge 0$$

$$Q_3 = -1 + x_2 + x_3 \ge 0$$

$$0 \le x_j \le 2, \ x_j \in Z \quad (1 \le j \le 3).$$

Step 1

If we put $x_1 = x_2 = x_3 = 0$ then

$$z = 0$$

$$Q_1 = 5 \ge 0$$

$$Q_2 = -3 \ge 0$$

$$Q_3 = -1 \ge 0$$

so constraints Q_2 and Q_3 are violated. Consequently the solution $x_1 = x_2 = x_3 = 0$, which corresponds to node 1 in Figure 1, is not feasible. We determine if further branching can be done from node 1.

Step 2

Let T_1 be the set of all variables with positive coefficients in some violated constraint: $T_1 = \{x_1, x_2, x_3\}$. We choose a variable in T_1 that would minimize the total distance from feasibility as a partitioning variable.

For variable 1	$(x_1 = 1): Q_1 = 3$ $Q_2 = 1$ $Q_3 = -1$ $(x_1 = 2): Q_1 = 1$ $Q_2 = 5$ $Q_3 = -1$	Distance from feasibility 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	$Q_3 - 1$	Total = 2
	•	10ta1 = 2
For variable 2	$(x_1=1): Q_1=10$	0
	$Q_2 = -2$	2
	$Q_3 = 0$	0
	$(x_2=2): Q_1=15$	0
	$Q_2 = -1$. 1
	$Q_3=1$	0
		Total = 3
For variable 3	$(x_3=1): Q_1=2$	0
	$Q_2 = 0$	0
	$Q_3 = 0$. 0
	$(x_3=2): Q_1=-1$	1
	$Q_2 = 3$	0
	$Q_3 = 1$	0
		Total = 1

Therefore we choose x_3 .

Step 3

 x_3 is specified to be 1, and x_1 and x_2 are still free to take on 0 or 1 or 2, which corresponds to node 2 in Figure 1.

Step 4

Put $x_1 = x_2 = 0$ (and $x_3 = 1$), then we have

$$Q_1 = 2 \ge 0$$

$$Q_2 = 0 \ge 0$$

$$Q_3 = 0 \ge 0$$

Thus $x_1 = x_2 = 0$, $x_3 = 1$ is a feasible solution with z = 3. Let $z_{min} = 3$. This is the best value to date. Since all coefficients c_j of the objective function are non-negative, z = 3 is the minimal value among all the solutions with $x_3 = 1$. It is not necessary to examine any solution from node 2.

Step 5

Go back to node 1 and specify $x_3=2$, and x_1 and x_2 are still free variables, which corresponds to node 3 in Figure 1.

Step 6

Put $x_1 = x_2 = 0$ (and $x_3 = 2$), then

$$z = 6$$

 $Q_1 = -1 \ge 0$
 $Q_2 = 3 \ge 0$
 $Q_3 = 1 \ge 0$,

so Q_1 is a violated constraint.

Step 7

Let T be the set of all free variables which have an objective coefficient less than $z_{min}-z$, and a positive coefficient in some violated constraint. In this case we have $T=\emptyset$, so there is no feasible solution with $x_3=2$ and z<3, Hence node 3 is fathomed.

Step 8

Go back to node 1 and specify $x_3 = 0$, which corresponds to node 4 in Figure 1.

Step 9

Put
$$x_1 = x_2 = 0$$
 (and $x_3 = 0$), then

$$z = 0$$

$$Q_1 = 5 \ge 0$$

$$Q_2 = -3 \ge 0$$

$$Q_3 = -1 \ge 0$$

so constraints Q_2 and Q_3 are violated.

Step 10

We have $T=\emptyset$, so there is no feasible solution with $x_3=0$ and z<3. Hence node 4 is

fathomed.

Step 11

Thus $x_1 = x_2 = 0$ and $x_3 = 1$ is an optimal solution with z = 3.

Figure 1

3. Consider the bounded variable integer programming problem

minimize
$$z = \sum_{j=1}^{n} c_j x_j$$
 subject to
$$Q_i = -b_i + \sum_{j=1}^{n} a_{ij} x_j \ge 0 \qquad (1 \le i \le m)$$

$$0 \le x_j \le l_j, \ x_j \in Z \qquad (1 \le j \le n),$$

where $c_j \ge 0$ $(1 \le j \le n)$.

We denote by F the set of variables that have not been specified, by NF the set of variables whose value has been specified, and by z_{min} the value of the objective function corresponding to the best feasible solution to date.

Let x_s be any variable in F. x_s is a bounded variable with $0 \le x_s \le l_s$. Let d be any integer with $0 < d \le l_s$. Evaluate each constraint Q_i $(1 \le i \le m)$ using the variables in NF with their specified values, $x_s = d$, and the remaining variables in F each set equal to 0. Let denote by $Q_i(d)$ the value of Q_i :

$$Q_{i}(d) = -b_{i} + \sum_{x_{j} \in NF} a_{ij} x_{j} + a_{is} d$$
.

Define

$$TD(x_s) = \sum_{d=1}^{l_s} \sum_{\substack{i=1\\Q_i(d)<0}}^{m} |Q_i(d)|$$

to be the total distance from feasibility of x_s .

The implicit enumeration algorithm is as follows:

Step 1 (Initialization)

At node 1, set $F = \{ x_1, x_2, \dots, x_n \}$, $NF = \emptyset$ and $z_{min} = \infty$. Go to Step 2.

Step 2 (Calculating bounds)

At node k, $z = \sum_{x_j \in NF} c_j x_j$. If $NF = \emptyset$, then we put z = 0. Go to Step 3.

Step 3 (Fathoming)

Evaluate the constraints Q_i ($1 \le i \le m$) putting the variables in NF with their specified values and the variables in F with value $0: Q_i = -b_i + \sum\limits_{x_j \in NF} a_{ij} x_j$. Let VC be the set of violated constraints. If $VC = \emptyset$ and $z \ge z_{min}$, node k is fathomed, so go to Step 4. If $VC = \emptyset$ and $z < z_{min}$, we put $z_{min} = z$ and node k is fathomed, so go to Step 4. If $VC \ne \emptyset$, go to Step 5.

Step 4 (Backtracing)

If no live node exists, go to Step 6. Otherwise branch to the live node and go to Step 2.

Step 5 (Partitioning and branching)

Put $B = z_{min} - z$. Let T be the set of the free variables that have a positive coefficient in some violated constraint and an objective function coefficient less than B:

$$T = \{ x_j \in F : \quad {}^{\exists}Q_i \in VC, \ a_{ij} > 0,$$
 and $c_i < B \}.$

If $T=\emptyset$, there is no feasible solution with $z < z_{min}$, so it is fathomed and go to Step 4. If $T \neq \emptyset$, evaluate each constraint Q_i in VC using the variables in NF with their specified values, the variables x_s in T with value l_s , and the remaining variables in F with value 0:

$$Q_i = -b_i + \sum_{x_j \in NF} a_{ij} x_j + \sum_{x_s \in T} a_{is} l_s$$
.

If any of the constraints are still violated, it is fathomed, so go to Step 4. Otherwise, we choose a variable x_p in T that would minimize the total distance from feasibility as a partitioning variable. Branch to x_p with a specified value. Go to Step 2.

Step 6 (Termination)

If $z_{min} = \infty$, there is no feasible solution. If $z_{min} < \infty$, that feasible solution which yielded z_{min} is opital.

4. Example

minimize
$$z = 6x_1 + 3x_2 + x_3 + 5x_4$$

subject to $Q = -6 + 5x_1 + 2x_2 + x_3 + 3x_4 \ge 0$
 x_1 , x_2 , x_3 , $x_4 = 0$ or 1 or 2.

Step 1

At node 1,
$$F = \{ x_1, x_2, x_3, x_4 \}$$
, $NF = \emptyset$, $z_{min} = \infty$.

Step 2

At node 1, z=0.

Step 3

$$Q = -6 \ge 0$$
, $VC = \{Q\}$.

Step 5

$$B = \infty$$
, $T = \{x_1, x_2, x_3, x_4\}$. Choose x_1 .

Step 2A

At node 2,
$$F = \{x_2, x_3, x_4\}$$
, $NF = \{x_1\}$, $x_1 = 2$, $z = 12$.

Step 3A

$$Q=4 \ge 0$$
, $VC=\emptyset$, $x_{min}=12$, and node 2 is fathomed.

Step 4A

Branch to node 3.

Step 2B

At node 3,
$$F = \{ x_2, x_3, x_4 \}$$
, $NF = \{ x_1 \}$, $x_1 = 1$, $z = 6$.

Step 3B

$$Q = -1 \ge 0$$
, $VC = \{Q\}$.

Step 5A

$$B=12-6=6$$
, $T=\{x_2, x_3, x_4\}$. Choose x_3 .

Step 2C

At node 4,
$$F = \{x_2, x_4\}$$
, $NF = \{x_1, x_3\}$, $x_1 = 1$, $x_3 = 2$, $z = 8$.

Step 3C

$$Q=1 \ge 0$$
, $VC=\emptyset$, $z < z_{min}$, put $z_{min}=8$.

Step 4B

Branch to node 5.

Step 2D

At node 5, $F = \{x_2, x_4\}$, $NF = \{x_1, x_3\}$, $x_1 = 1$, $x_3 = 1$, z = 7.

Step 3D

Q=0, $VC=\emptyset$, $z < z_{min}$, put $z_{min}=7$.

Step 4C

Branch to node 6.

Step 2E

At node 6, $F = \{x_2, x_4\}$, $NF = \{x_1, x_3\}$, $x_1 = 1$, $x_3 = 0$, z = 6.

Step 3E

 $Q = -1 \ge 0$, $VC = \{Q\}$.

Step 5B

B=7-6=1, $T=\emptyset$, so node 6 is fathomed.

Step 4D

Branch to node 7.

Step 2F

At node 7, $F = \{x_2, x_3, x_4\}$, $NF = \{x_1\}$, $x_1 = 0$, z = 0.

Step 3F

 $Q = -6 \ge 0$, $VC = \{Q\}$.

Step 5C

B=7-0=7, $T=\{x_2, x_3, x_4\}$. Choose x_4 .

Step 2G

At node 8, $F = \{x_2, x_3\}$, $NF = \{x_1, x_4\}$, $x_1 = 0$, $x_4 = 2$, z = 10.

Step 3G

Q=0, $VC=\emptyset$, $z=z_{min}$, so node 8 is fathomed.

Step 4E

Branch to node 9.

Step 2H

At node 9, $F = \{x_2, x_3\}$, $NF = \{x_1, x_4\}$, $x_1 = 0$, $x_4 = 1$, z = 5.

Step 3H

Q = -3, $VC = \{Q\}$.

Step 5D

B=7-5=2, $T=\{x_3\}$, $Q=-6+2+3=-1 \ge 0$, node 9 is fathomed.

Step 4F

Branch to node 10.

Step 2I

At node 10, $F = \{x_2, x_3\}$, $NF = \{x_1, x_4\}$, $x_1 = 0$, $x_4 = 0$, z = 0.

Step 3I

 $Q = -6 \ge 0$, $VC = \{Q\}$.

Figure 2

Step 5E

$$B=7-0=7$$
, $T=\{x_2, x_3\}$. Choose x_2 .

Step 2J

At node 11, $F = \{x_3\}$, $NF = \{x_1, x_2, x_4\}$, $x_1 = 0$, $x_2 = 2$, $x_4 = 0$, z = 6.

Step 3J

$$Q = -2 \ge 0$$
, $VC = \{Q\}$.

Step 5F

B=7-6=1, $T=\emptyset$, node 11 is fathomed.

Step 4G

Branch to node 12.

Step 2K

At node 12,
$$F = \{x_3\}$$
, $NF = \{x_1, x_2, x_4\}$, $x_1 = 0$, $x_2 = 1$, $x_4 = 0$, $z = 3$.

Step 3K

$$Q = -4 \ge 0$$
, $VC = \{Q\}$.

Step 5G

$$B=7-3=4$$
, $T=\{x_3\}$, $Q=-6+2+2=-2 \ge 0$, node 12 is fathomed.

Step 4H

Branch to node 13.

Step 2L

At node 13,
$$F = \{x_3\}$$
, $NF = \{x_1, x_2, x_4\}$, $x_1 = x_2 = x_4 = 0$, $z = 0$.

Step 3L

$$Q = -6 \ge 0$$
, $VC = \{Q\}$.

Step 5H

$$B=7$$
, $T=\{x_2\}$, $Q=-6+2=-4 \ge 0$, node 13 is fathomed.

Step 4I

No live node exists.

Step 6

 $x_1 = 1$, $x_2 = 0$, $x_3 = 1$, $x_4 = 0$ is an optimal solution with z = 7.

REFERENCES

- [1] R.S.Garfinkel and G.L.Nemhauser, Integer Programming, John Wiley & Sons, 1972.
- [2] B.E.Gillett, Introduction to Operations Research, McGraw-Hill, 1976.