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Synopsis Reproduction on mudflats requires that eggs are protected from different 

environmental challenges during development and hatch when environmental conditions are 

favorable for survival of juveniles. Mudskippers are air-breathing, amphibious gobies of the 

subfamily Oxudercinae, and one of a few vertebrates that reside on mudflats. They excavate 

burrows in mudflats and deposit eggs in them. However, these burrows are filled with extremely 

hypoxic water, in which eggs could not survive. To secure embryonic development within their 

burrows, the burrow-guarding parental fish (a male or mating pair) store fresh air in an egg 

chamber, located near the bottom or at mid-depth in a burrow, by transporting mouthfuls of air 

during each low tide. The Japanese mudskipper, Periophthalmus modestus, is the best-studied 

species regarding reproductive strategies. The air-supplying behavior appears to be 

predominantly governed by the oxygen levels within egg chambers, but also by some other 

factor that is possibly related to the tidal cycle. When embryonic development is complete, the 

burrow-guarding male P. modestus removes the air from the egg chamber and releases the air 

outside the burrow on a nocturnal rising tide. Consequently, the tide floods the egg chamber and 

induces hatching. Because P. modestus eggs only have a 5–6 day window for hatching 

competence, the male's initial selection of the position for the burrow in the intertidal zone and 

the timing of spawning relative to the tidal cycle are both important factors in hatching success. 

This is particularly crucial for those burrows in higher intertidal zones, which may be reached 
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only by high spring tides. Not much is known for other mudskippers, but it is likely that they 

also employ similar reproductive strategies. The objective of this review is to summarize 

available information on reproductive strategies of mudskippers, and to discuss future directions 

to better elucidate mechanisms and adaptive significance for the reproduction of mudskippers. 

Further comparative studies with both mudskippers and other oxudercine gobies dwelling 

mudflats could shed new light on how vertebrates solved problems of reproduction when they 

expanded habitats to environments in an air-water interface.  

 

 

Introduction 

Intertidal spawning is known from nine orders of teleosts comprising 25 families, of which 

14 families include resident species; i.e., fishes that live exclusively or during a part of their life 

in the intertidal zone after settlement (DeMartini 1999). Most resident intertidal fish deposit 

demersal eggs on surfaces that may become exposed to air during low tide. Parental care is seen 

in many of them; however, the type of shore where eggs are deposited is a decisive determinant 

of the type and extent of this behavior. Fishes that spawn on sandy shores lack parental care 

because there is no place for the adult to safely remain near the brood (e.g., the grunion 

Leuresthes tenuis and the capelin Mallotus villosus, Martin et al., 2004). In contrast, rocky 
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shores offer microhabitats that are humid and that shelter (i.e., under boulders, rock crevices, or 

rock surface covered by draping macroalgae) the egg-tending fish during periods of emersion. 

Accordingly, blennies, stichaeids and other species in these habitats often show parental care of 

eggs and some endure periods of exposure to air during low tide by breathing air (Coleman 

1999; Martin and Bridges, 1999). The dynamic nature of muddy shores precludes the option of 

laying eggs on the surface: Eggs deposited on the surface of a mudflat risk being buried by 

sediment or carried out to sea by a receding tide.  

Egg incubation in the intertidal zone is thought to offer both benefits and costs (DeMartini 

1999). Benefits include protection from predators of both adult spawners and the offspring, and 

possibly a higher rate of development due to increased availability of oxygen and favorable 

temperatures. The costs include the time and energy expended in parental care and the 

physiological stress of desiccation, deterioration of water quality and overheating of 

egg-tending parents and embryos in the harsh intertidal environment. When intertidal incubation 

of eggs takes place in isolated pools or burrows, there is less contact between the eggs and the 

flow of tidal water. Intertidal egg broods are also subject to predation, both by egg-guarding 

adults (filial cannibalism) and by terrestrial predators. 

Gobies occur mainly in marine habitats, but some live in fresh and brackish environments. 

They are largely bottom dwellers, lay demersal eggs, and show parental care of the eggs 
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(Patzner et al., 2011). Of the 1875 marine gobies, 54 species occur in rocky intertidal habitats 

(Chotknowski et al 1999). The total number of gobies inhabiting in mudflats is not known: The 

subfamily Oxudercinae, which includes mudskippers, has about 40 species (Murdy 2011a). 

There are also several mudflat-dwelling species in Amblyopinae (Murdy 2011b). Gobies 

usually deposit a single layer of demersal eggs on the undersurface of a solid object such as a 

stone or dead shell, or in a burrow.  Deposition of eggs in burrows is known for species in 

Gobiinae, Gobionellinae and Oxudercinae (Breder and Rosen 1966; Gaisner 2005; Takegaki 

and Nakazono 1999a; Takegaki 2000), and likely occurs in other subfamilies. Parental care by 

males is the most common among gobies, but care by the female alone and biparental care both 

also occur (Blumer 1982). The forms of parental care by gobies include guarding eggs, 

nest/burrow building and/or cleaning of the substrate, fanning, internal gestation, and removal 

of dead or diseased eggs. The majority of gobies are iteroparous (i.e., reproducing more than 

once during a life span, Breder and Rosen 1966; Miller, 1984). Hatched larvae usually lead a 

planktonic life-stage for variable periods of time ranging from two weeks to over 200 days 

(Borges et al., 2011).  

Mudskippers are specialized amphibious gobies in the four genera of Oxudercinae 

(Boleophthalmus, Periophthalmodon, Periophthalmus and Scartelaos, Clayton 1993; Graham 

1997; Graham and Wegner, 2010; Ishimatsu and Gonzales, 2011; Murdy 2011a), although other 
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oxudercine gobies also show some degree of amphibious nature (Murdy 1989). Despite that 

ample data are available on various aspects of mudskipper’s behaviors on the exposed surface of 

mudflats (Clayton, 1993), far less is known about their life in the mud. The present review 

attempts to summarize what is known about the reproduction of mudskippers within their 

burrows, and discuss selected important topics for future research.  

 

 

Reproduction of mudskippers 

Most notable of the reproduction in mudskippers are the storage and maintenance of air 

within egg chambers by egg-guarding parental fish, embryonic development therein, and the 

mechanism for the induction of embryonic hatching by actively flooding the chambers by the 

parental fish, even though these are described unequivocally only for a single species of 

mudskippers (Ishimatsu et al. 2007). Table 1 summarizes basic aspects of reproductive biology 

known for five species of mudskippers. Difficulties of collecting accurate data in soft muddy 

habitats apparently are responsible for uncertainties and often conflicting descriptions on the 

reproduction of mudskippers (Clayton 1993). For example, Boleophthalmus dussumieri and B. 

pectinirostris both have been reported to spawn once in a year in some studies, but several times 

in some other studies (Clayton 1993; Washio et al. 1993).  
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All mudskippers studied so far excavate burrows in their habitats in mudflats and use them 

for refuge from predators, for protection from desiccation and extreme temperatures, and for 

incubation of eggs (Clayton 1993). Burrows of mudskippers vary in shape and size between 

species or even within a species (see Brillet 1976), but those built during a reproduction season 

often have a specialized chamber that contains eggs on the ceiling (Fig. 1). Even though 

reproduction is not the exclusive function of their burrows, laying and incubating eggs in 

burrows are critically important elements affecting both the benefits and costs of parental care. 

In some species, the burrows are tended by a male fish (Periophthalmus magnuspinnatus, P. 

modestus and Boleophthalmus pectinirostris), but the male and female both appear to be 

involved in others (Periophthalmodon schlosseri and Scartelaos histophorus, Table 1). 

Depending upon the position of the burrow relative to tidal amplitude, openings of burrows may 

be exposed to air as much as twice each day or remain emergent for several tidal cycles. At the 

time of spawning, these burrow openings may be plugged by mud from inside (Hong et al. 

2007), thus isolating a spawning pair and their eggs on the chamber wall from predators. 

The cost of spawning in burrows is the energetic expenditure for digging and maintaining it, 

and for protecting the embryos from hypoxic stress (Gordon, 1995). The water in mudskippers' 

burrows is known to be extremely hypoxic (Gordon et al., 1978; El-Ziady et al., 1979; Ishimatsu 

et al., 1998, 2000, 2007). Burrows are excavated by mouth and then spitting mud pellets onto 
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the mudflat's surface during either emersion (Periophthalmus) or submersion (Boleophthalmus, 

Ishimatsu et al., personal observation) of the mudflat. Mudskipper burrows can be deep, some 

exceeding the vertical dimension of 1.3 m (Periophthalmodon schlosseri, Ishimatsu et al. 1998) 

or deeper (Boleophthalmus boddarti, Clayton and Vaughan 1986; see also Atkinson and Taylor 

1991 for a review of fish burrows and burrowing), which requires a substantial expenditure of 

energy. If unattended, burrows in mudflats will become filled with sediment carried by the tidal 

flow. Therefore, these burrows need continued maintenance by a burrow-guarding fish, which 

has implications for bioturbation (Atkinson and Taylor 1991).  

The problem of hypoxic water is solved by deposition of the eggs in an egg chamber that 

the male fish fills with air (Ishimatsu et al., 1998, 2007, 2009). After spawning, the male, in 

addition to guarding the eggs, must also ensure that the supply of air surrounding the eggs is 

sufficient to meet their O2 requirements (Ishimatsu et al., 2007). Hatching of eggs in air requires 

an additional behavioral innovation since mudskipper eggs, like the eggs of other intertidally 

spawning fishes, need to be submerged in water for hatching (Martin, 1999). To achieve this, 

mudskippers developed the behavior of expelling air in the egg chambers by repeating gulps of 

the air during high tide as the last step of their egg care. 
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Evolution of the storage of air in burrows  

We suspect that the habit of storing air in burrows initially evolved as an adaptation to the dual 

requirements for securing an oxygen source for adult fish during confinement in a burrow at 

high tide, and ensuring embryonic development in burrows. With higher specialization of 

physiology and behavior, some mudskippers such as Periophthalmus spp. tend to remain 

emergent even during inundation of the mudflat (Ikebe and Oishi 1996; Baeck et al. 2008), but 

they retain the strategy of storing air in the burrow, a behavior that is essential for reproduction. 

This argument is based upon the maintenance of air in the burrow reported for Scartelaos 

histophorus. Lee et al. (2005) demonstrated that both male and female S. histophorus deposited 

air in a laboratory burrow chamber under simulated low-tides. When the PO2 of water in the 

burrow declined to 4.8 kPa during confinement in the burrow under simulated high-tides, the 

fish switched from aquatic to aerial breathing, utilizing air deposited in the chamber as an 

oxygen reservoir. A booklet on the conservation of endangered species on Okinawa Island, 

Japan, states that eggs of S. histophorus are attached to the ceiling of the egg chamber. Whether 

air is present in the egg chambers was not stated, but is implied from the behavior of gulping air 

at the surface and carrying it into the burrow (Okinawa Prefecture, 2000). Similarly, Hong et al. 

(2007) presumed that males and females of B. pectinirostris both store air in their burrows both 

during breeding and non-breeding seasons. Male and female B. pectinirostris both maintain 
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burrows throughout the year, and the fish use them as a retreat during high tide, as in all other 

Boleophthalmus species (Polgar and Crosa 2009). During the breeding season, an egg chamber 

is built in the burrows of male fish; eggs are spawned in a monolayer on the ceiling of the 

chamber (Hong et al. 2007). Hong et al. (2007) demonstrated that a dye infused into burrows of 

male B. pectinirostris would not stain eggs laid on the upper wall of chambers, and suspected 

that the chambers were filled with air.  

In a more terrestrially adapted mudskipper, Periophthalmus modestus, males but not 

females, excavate burrows during the breeding season (Ishimatsu et al. 2007). These burrows 

have the shape of a‘J’, and the upturned terminus is used as an egg chamber (Fig. 1).  Burrows 

of the males showing courtship displays contained air, indicating that deposition of air occurs 

before spawning, possibly to oxidize the chamber wall and thereby reduce oxygen loss into the 

surrounding mud (Ishimatsu et al. 2007). Periophthalmus modestus also digs burrows for 

overwintering, but probably does not excavate them during non-breeding seasons of warmer 

months (Baek et al. 2008).  

Periophthalmus magnuspinnatus might represent a transitional stage between the one seen 

in Boleophthalmus and Scartelaos (oxygen reservoir during confinement of fish in the burrow 

and while embryos are developing) to the one in P. modestus (embryonic development only). In 

comparison, male and female P. magnuspinnatus both likely possess burrows throughout the 
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year, but it is only male’s burrows that contain eggs (Baek et al. 2008). According to the 

description by Baek et al. (2008), some P. magnuspinnatus remain emergent but others retreat 

into burrows during high tide. The hypothesis needs to be tested by further field observations on 

P. magnuspinnatus. The quantity and quality of the field-observation data are not always 

satisfactory about mudskipper’s natural history because of the difficulties that one often 

encounters when attempting to observe these quick and timid fishes in their very soft muddy 

habitats. 

The evidence for the deposition of air in mudskipper burrows is strong, but still there was 

some degree of uncertainty because the destructive methods used might have caused artifactual 

trapping of air (Ishimatsu et al. 2007), the evidence was indirect (Hong et al. 2007), or the 

experiment was conducted under artificial conditions in the laboratory (Lee et al. 2005). 

However, these uncertainties have been dispelled by the direct endoscopic observations of 

air-filled egg chambers in a tropical, giant mudskipper, Periophthalmodon schlosseri (Ishimatsu 

et al. 2009). Air was present in burrows both with and without spawned eggs. The presence of 

air in egg-less burrows supports the idea that deposition of air takes place prior to oviposition, 

because eggs of P. schlosseri need submersion for hatching (Tsuhako et al., 2003), as has been 

observed for P. modestus (Ishimatsu et al., 2007). Although evidence for storage of air is not 

unequivocal for the other species listed in Table 1 and needs more rigorous examination, it is 
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probably prevalent in burrows of all four genera of mudskippers.  

 

 

Role of oxygen in parental care by mudskippers 

The role of oxygen in parental care is best known for P. modestus (Ishimatsu et al. 2007). In 

that study, continuous determinations were made for the oxygen concentration of the gas stored 

within egg chambers. Prior to observations, an upper portion of a burrow were half-destroyed, 

and the roof of the egg chamber was instrumented with an oxygen electrode for determination 

of the oxygen concentration of the gas in the chamber, an endoscope for observation of the 

burrow-guarding male, and a thin tube for manipulation of the gas in the chamber. In addition, a 

pair of impedance electrodes were inserted into the burrow section below the chambers to 

monitor the movements of the male through the vertical shaft. After reconstruction of the 

once-destroyed portion of the burrows, data were continually obtained until the eggs hatched. 

The results demonstrated that the gas in the egg chambers of P. modestus burrows showed 

regular fluctuations in oxygen concentration synchronized with the tidal cycles of emersion and 

submersion of the mudflat (Fig. 2). Thus, oxygen concentration increased during emersion of 

the burrow at low tide, and decreased during submersion at high tide. The correlation between 

male activity (impedance data) and the increase in PO2 of the egg chambers (Fig. 2) most likely 
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reflects transport of mouthfuls of fresh air into the chamber by the male. That the decline of PO2 

in egg-chamber gas reflects the respiration of the eggs is suggested by the product of the 

measured rate of oxygen consumption of a developing mudskipper egg [76.5 ± 

12.0·nl·h–1/hatch-competent egg (Etou et al. 2007)] and the estimated number of eggs in the 

chamber (5200). Calculations demonstrated that oxygen consumption of the eggs accounts for 

75–100% of the observed rate of oxygen depletion of the egg chamber (Ishimatsu et al. 2007). 

Impedance signals recorded as an index of males' burrow guarding behavior occurred only 

during high low tide. Endoscopic observations verified that eggs remained in air, and the males 

occasionally entered the chambers. Even though these lines of evidence are available only for a 

single species of mudskipper, they strongly indicate that the males guarding burrows gulp air 

and release it into the egg chamber, thereby replenishing the oxygen store that was depleted, 

mainly by respiring embryos, during the preceding high-tide. The facts that water in the burrow 

is always severely hypoxic, and that embryos of P. modestus perished when incubated in 

simulated burrow water (Etou et al. 2007) suggest that deposition of air in an egg chamber is a 

general reproductive strategy for other mudskipper species (Table 1), and possibly also for those 

non-mudskipper fishes that supposedly lay eggs in muddy burrows (e.g. Odontamblyopus 

lacepedii and other eel gobies, see Gonzales et al., 2006, 2008).  

Oxygen in egg chambers promptly recovered when it was experimentally reduced by 
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injections of a volume of hypoxic gas through a thin tube fixed to an egg chamber (Fig. 3). The 

injections were made ca. 1 h before the burrow was covered by water of the rising tide and 

while the burrow-guarding male was on the mudflat surface. Fig. 3A,C show the gradual rise in 

egg-chamber PO2 that occurred in two burrows from the beginning of the low-tide period 

through about 7·h and up to the time of hypoxic-gas introduction (arrowheads). In response to 

the sudden drop of egg-chamber PO2, the male fish was able to rapidly restore the PO2 within 

1·h. When the frequency of air-supplying behavior (fa) is plotted against egg-chamber PO2 for 

the periods of the rapid recovery following the injection and the undisturbed periods prior to the 

injections, the fa obtained following the injections lies far above the calculated fa–PO2 

relationships for the undisturbed periods prior to the injections (Fig. 3B,D). These results imply 

that air-supplying behaviour was not solely modulated by air PO2 of egg chambers but also by 

some other factor that is possibly related to the tidal cycle. 

 

 

Oxygen sensing and air-supplying behavior 

 The supply of oxygen to developing embryos through fanning is one of the most important 

functions of parental care among fishes (Keenleyside 1979; Blumer 1982). Brood-guarding 

aquatic fish ventilate their brood by increasing the frequency and/or time allocated to fanning 

(Takegaki and Nakazono 1999b; Jones and Reynolds 1999; Lissåker and Kvarnemo 2006). 
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Even though ample data are available on the role of oxygen as a controlling factor for 

ventilation of the gills (Perry et al. 2009), the egg-fanning responses must require something 

more than the classical autonomic control of ventilation. Regulation of the air-supplying 

behavior shown by mudskippers is even more complex than the fanning responses of aquatic 

fishes, and must include sensing the oxygen levels of the egg chamber, and modulating 

locomotive transport of oxygen from above the water's surface down into the chamber to the 

extent that the level of oxygen is sufficiently high that embryos do not suffer hypoxic stress 

during subsequent submersion of the burrow. Oxygen sensors are believed to reside in the gills, 

and evidence indicates a role for neuroepithelial cells in the filaments for zebrafish and catfish 

(Perry et al. 2009; Nikinmaa 2010). No data are currently available on oxygen sensors in 

mudskippers. 

CO2 can also be an additional candidate for the regulation of the air-supplying behavior. 

The PCO2 of the egg-chamber gas ranges from 0.4 to 2.5 kPa for P. modestus (Ishimatsu et al. 

2007), and from 0.4 to 12 kPa (but this extremely high PCO2 was obtained when gas PO2 was 

nearly zero) for Pn. schlosseri (Ishimatsu et al. 1998). Even though data are limited, an 

insignificant ventilatory response to 2 kPa of PCO2 demonstrated for Pn. schlosseri (Aguilar et 

al. 2000) is indicative of a minor, if any, role of CO2 in air-supplying behavior for mudskippers. 
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Role of tides in parental care by mudskippers 

Spawning by mudskippers is seasonal, and therefore temperature and day length are 

expected to affect gonadal development, particularly in temperate latitudes, as in other fishes 

(Clayton 1993). In addition, tidal or lunar cycles would play a decisive role for spawning by 

intertidal fishes. Many of the well-known examples are tidal migrants, which spawn at high tide 

when spawning grounds are available (DeMartini 1999). Mudskippers are fundamentally 

different from these fishes in that courtship and subsequent spawning occur at low tide when 

mudflats are emergent (Clayton 1993; Matoba and Dotsu1977). 

Mudskippers may excavate burrows in the higher intertidal zones that are submerged only 

by spring high tides. Ishimatsu et al. (2007) revealed that some of the P. modestus burrows in 

these zones remained emergent until the day of hatching (Fig. 2). For burrow-guarding males of 

these burrows, it is crucially important to ensure that burrow openings will be covered by the 

rising tide at the time of hatching. This requires (1) recognition of the vertical location of 

burrows in the intertidal zones in relation to tide and (2) timely spawning. How a male 

mudskipper determines the site of excavation for a breeding burrow in intertidal zones is yet to 

be studied. Unless openings of the burrow are inundated, the larvae cannot be dispersed to open 

water, even if eggs are induced to hatch. If the larvae were to remain in a burrow for an 

extended period of time, they would not survive in a small volume of severely oxygen–depleted 
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water filling the burrow (Etou et al. 2007). In addition, the hatched larvae would be subjected to 

extremely risky conditions of the high intertidal zone (high temperature and intense solar 

irradiation) and to higher risk of predation by terrestrial carnivores. It is also necessary that the 

timing of spawning be adjusted such that future hatching will coincide with submersion of the 

burrow. Ishimatsu et al. (2007) showed that eggs of P. modestus have a 5-6 day window, during 

which eggs can hatch upon submersion. This would afford male P. modestus a correspondingly 

narrow period of courtship. The windows for hatching in mudskippers are thus expected to be 

longer for the species occupying the higher intertidal zone as compared with more fully aquatic 

species.  

 

 

Cues for the hatching of eggs 

Mudskipper eggs cannot hatch in air and must be submerged for hatching to occur (Brillet 1976; 

Tsuhako et al. 2003; Ishimatsu et al. 2007). Reasons for the necessity of immersion for hatching 

are not currently clear, but there is evidence that shortage of oxygen upon submersion is 

responsible for the hatching of embryos that have developed to hatching readiness in air 

(Yamagami 1988; Martin 1999). Embryos of P. modestus develop in air stored in an egg 

chamber, and thus are exposed to a range in PO2 of 13-17 kPa (Fig. 2), but then suddenly are 
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submerged to water having a PO2 of only 1.5 kPa when the male parent floods the egg chamber, 

assuming that the PO2 of the water at the time the male induces hatching is identical to that of 

standing water sampled from the depth of > 5cm in the vertical shaft (Ishimatsu et al. 2007). 

This sudden drop in environmental oxygen is supposedly a strong stimulus triggering hatching 

of P. modestus embryos. Taking into account the reduction in oxygen uptake by P. modestus 

embryos ready to hatch (Etou et al. 2007) and assuming that the entire volume [0.193 µL, 

calculated from the longer axis length of 0.90 mm, the shorter axis length of 0.64 mm 

(Kobayashi et al. 1972), and assuming the eggs as spheroids] of an egg is in equilibrium with 

the air of the egg-chamber, the embryo would consume all of the oxygen reserve in the egg 

capsule within several seconds. This calculation is admittedly too simplistic, but nevertheless 

indicates that embryos are rapidly subjected to hypoxic conditions once submerged. 

Since induction of hatching in mudskippers is a phenomenon initiated and completed by a 

male guarding the burrow, identifying the possible cues for hatching is equivalent to asking how 

and what cues are sensed by the male. How does the male sense that his eggs are mature enough 

to be released from his burrow? Are there some chemical or physical cues emitted from 

thousands of embryos awaiting hatching? Visual cues from the embryos are unlikely since the 

inside of egg chambers must be nearly completely dark. The Y-shape configuration of the upper 

portion of the burrow (e.g. most Periophthalmus species), high turbidity of water in the burrow, 
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or upturned/acclivitous disposition of an egg chamber derived from the almost vertical main 

shaft of the burrow would preclude penetration of light into the chamber.  

 

Selected questions about mudskippers’ reproductive behavior 

The above discussion summarizes the current knowledge about reproduction of a few 

mudskipper species for which data are available. Apparently, data are far from sufficient to gain 

insight into how reproductive behaviors in mudskippers have developed from aquatic ancestral 

gobies. The following lists some of the important questions to be solved by future studies.  

  

1. Can males recognize vertical location of their burrows when excavating for breeding? 

If burrows are too high in intertidal zones, reproduction is not possible since hatched juveniles 

cannot be dispersed. This question should be addressed first by determining vertical locations of 

mudskipper burrows in relation to periods of tidal inundation at respective sites. The embryos 

developing in those burrows may be subjected to higher degrees of stress from lower humidity 

and excessive heat. There might be “failed” burrows that are too high to be covered by high 

spring tide. 

2. Do spawning and fertilization of eggs occur in air? 

As stated earlier, air occurs in the burrows of courting male P. modestus, which suggests that 
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spawning and fertilization both occur in air (Ishimatsu et al., 2007). The presence of air in egg 

chambers of Pn. schlosseri burrows where no eggs were found (Ishimatsu et al., 2009) may also 

represent the deposition of air prior to laying of the eggs. The findings that spawning and 

fertilization of eggs both occur in air-exposed rock crevices by the amphibious blenny Andamia 

tetradactyla pointed out that it is possible for a fish to lay eggs and fertilize them in air (Shimizu 

et al. 2006). Direct video recording of burrow spawning must answer this question. 

3. Are the eggs of mudskippers specialized for developing in air? 

There is no detailed study on morphology of mudskipper eggs. A priori, there seems to be no 

specialization required for the embryonic development in air, as long as desiccation is avoided. 

The air filling egg chambers of mudskippers is thought to be saturated with water vapor, since 

the mud particles of the mudskipper habitats are very fine, e.g., ca. 7 µm for the habitat of P. 

modestus in Ariake, Japan (Ishimatsu et al. 2007), the burrows are submerged by tide twice a 

day (except those build in higher intertidal zones), and those soft substrata usually contain a 

large amount of water (Little 2000). Embryos of a purely aquatic fish, Oryzias latipes, do 

develop normally in moist air and hatch when immersed in water (Yamagami 1988). 

4. Where do mudskippers have oxygen sensors for maintaining egg-chamber O2? 

Stronger ventilatory responses were provoked by aerial hypoxia rather than aquatic hypoxia in 

Periophthalmodon schlosseri (Aguilar et al., 2000), which implies that a role of oxygen sensors 
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on the epithelial surface for air breathing is predominant compared with any oxygen sensors on 

the gills, or that oxygen levels in blood is crucial for the regulation of aerial ventilation. 

Histochemical investigation for detection of neuroepithelial cells (Coolidge et al. 2008) should 

prove whether there are putative oxygen sensors or not on the aerial gas exchange surfaces (the 

bucco-opercular cavities or possibly skin) and the gills of mudskippers. 

5. What triggers the induction of hatching?  

This includes two aspects. One relates to potential signals given by embryos to an egg-tending 

male such that he “realizes” that the embryos are ready to hatch. Vibrational cues might be 

sensed by the male since mudskippers' embryos show increasingly vigorous turning inside the 

egg shell as development proceeds (Kobayashi et al. 1972). Also, the male might sense some 

kind of gaseous substances released from embryos. Oxygen is unlikely to be involved since 

there are no obvious changes of oxygen concentration in an egg chamber toward the end of 

incubation (Ishimatsu et al. 2007). Killing embryos by injecting carbon monoxide shortly before 

expected time of hatching might make clear if vibrational cues are involved. The other aspect 

relates to on what cue the male relies to initiate the behavioral induction of hatching at right 

time. Ambient light is likely involved in this decision since hatching always occurred during 

rising tides at dusk or at night, and never happened during diurnal high tides (Ishimatsu et al. 

2007). 
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6. How are hatched larvae dispersed from within a burrow? 

Rapid escape after hatching is crucial for larvae, because Etou et al. (2007) showed that survival 

of newly hatched larvae rapidly decreased with time in simulated hypoxic burrow water. 

Whether or not the guarding male is involved in releasing larvae from its burrow remains to be 

determined. Artificial induction of larval hatching in burrows from which a guarding male was 

removed suggested that relatively few of the hatched larvae were able to find their way out of 

the burrow (Ishimatsu et al. 2007). Direct endoscopic observation is difficult due to the high 

turbidity of water in the burrows, but should be the most direct way to answer this question. 
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Figure legends 

 

 

Fig. 1 Mudskipper burrows (left, Boleophthalmus pectinirostris; middle, Periophthalmodon 

schlosseri; right, Periophthalmus modestus). Dark gray areas represent water within the burrow. 

Egg chambers are filled with air by a male (or mating pair) that guards the burrow during 

emersion. Eggs are deposited on the ceiling of the egg chamber. The scale represents 10 cm, and 

apply to all diagrams.. Left: Based on plastic casts prepared by Toba and Ishimatsu 

(unpublished). Middle: Modified from Ishimatsu et al. (1998) and Ishimatsu et al. (2000). Right: 

Modified from Matoba and Dotsu (1977). Note that the structural details of mudskipper burrows 

can be highly variable even within a species (see Brillet 1976). 
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Fig. 2 Continuous records of the PO2 of the air in the egg chambers of Periophthalmus 

modestus (black line) and the timing of the male’s visits to egg-chambers (indicated by 

impedance signals, grey spikes) in relation to the tidal cycle. Acquisition of data began with the 

day of instrumentation and continued until hatching was initiated by the male on a rising tide 

(blue triangle). The beginning of day zero was set to the time when a burrow was covered by an 

incoming tide, following which hatching occurred. The initial high PO2 reflects the opening of 

the egg chamber to air during instrumentation. (A) Record for a burrow regularly covered (light 

blue bars) and uncovered by the tidal oscillation (red vertical lines show the time of the highest 

tide). (Note: There are no data for impedance for day –3 due to a technical problem.) (B) Record 

for a burrow located sufficiently high on the mudflat to be continually exposed to air until day 

zero when the rising tide covered the burrow (blue bar) and hatching occurred (blue triangle). 

From Ishimatsu et al. (2007) with permission. 
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Fig. 3 Effect of injection of hypoxic gas into an egg-chamber (A,C) and estimated frequency of 

air-supplying behavior (B,D) by two male Periophthalmus modestus. A and C show the 

significantly higher rate of PO2 increase observed following the injection of hypoxic gas than at 

the beginning of the low-tide period with nearly identical initial PO2.  B and D demonstrate an 

inverse relationship between egg-chamber PO2 and frequency of air-supplying behavior (fa) as 

determined for five (B) or four (D) complete low-tide periods preceding hypoxic-gas injection 

(solid symbols) and fa after injection (open symbol). From Ishimatsu et al. (2007) with 

permission. 
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Table 1 Basic data on the reproduction of mudskippers 

Species Spawning in 

burrows 

Egg care Storage of air 

in burrows 

Hours to hatch Larval period 

(days) 

Transition to amphibious life 

after hatching (days) 

Periophthalmodon schlosseri Yes (1) Biparental? (2) Yes (1,2) Unknown Unknown Unknown 

Periophthalmus magnuspinnatus Yes (4) Male (4) Yes? (4) Unknown Unknown Unknown 

Periophthalmus modestus Yes (5,6) Male (5) Yes (5) 170 -175 (7)* 45 (7)** 50 (7)** 

Boleophthalmus pectinirostris Yes (8) Male (8) Yes? (8) 87 (9) † 28 (9) †† Unknown 

Scartelaos histophorus Yes (10) Biparental? (11) Yes (10,12) Unknown 30 (10) Unknown 

*19-20°C, **23-28°C, †27-29°C, ††25-29°C, (1) Ishimatsu et al. (2009), (2) Ishimatsu et al. (1998), (3) Tsuhako et al. (2003), (4) Baek et al. (2008), (5) Ishimatsu 

et al. (2007), (6) Kobayashi et al. (1971), (7) Kobayashi et al. (1972), (8) Hong et al. (2007), (9) Zhang et al. (1989), (10) Okinawa Prefecture (2000), (11) 

Townsend and Tibbetts (2005), (12) Lee et al. (2005) 

 


