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Abstract

Hybrid dynamical systems or switched systems can operate in several different modes, with

some discrete dynamics governing the mode changes. Each mode of operation is described

by a dynamical subsystem having an internal state, an external input (which can be thought

of as a disturbance or a control signal), and a measured output. Hybrid/switched systems

may arise in practice because of the interaction of digital devices with physical components

in order to implement control schemes, or due to integration of small-scale systems to form

a large network, or due to transitions occurring in the model of some physical phenomenon.

Because of the richness of their application, switched systems have attracted the attention of

many researchers over the past decade for the study of analysis and control design problems.

In this thesis, we analyze the properties of invertibility and observability for switched

systems and study their related applications in system design. The common facet to both

these problems involves the extraction of unknown variables from the knowledge of the

output. It is well known that, under certain assumptions, the state trajectory and the

output response of any dynamical system are uniquely defined once the initial condition and

the input are fixed. Broadly speaking, if the output is assumed to be known, the problems

considered in our work deal with: (a) the reconstruction of the input when the initial state

is known, or (b) the recovery of the initial state when the inputs are known; the former is

called the invertibility problem and the latter is called observability.

Invertibility is an important property in system design and system security analysis, and

has only recently been studied for switched systems. Since we treat the switching signal as

an exogenous signal, invertibility of switched systems relates to the ability to reconstruct

the unknown input and the unknown switching signal from the knowledge of the measured

output and the initial state. The thesis addresses the invertibility problem of switched

systems where the subsystem dynamics are nonlinear but affine in controls. The novel

concept of switch-singular pairs, which arises in the reconstruction of the switching signal,

is extended to nonlinear systems and a formula is developed for checking if the given state

and output form a switch-singular pair. We give a necessary and sufficient condition for a
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switched system to be invertible, which says that the subsystems should be invertible and

there should be no switch-singular pairs. In case a switched system is invertible, one can

build a switched inverse system to reconstruct the switching signal and the input. The setup

naturally leads to an algorithm for output generation where a prescribed reference signal is

generated using the system dynamics.

In practice, the exact knowledge of the initial condition and the output may be an overly

stringent requirement for invertibility of the system. We relax this requirement by allowing

disturbances in the output and uncertainties in the knowledge of the initial condition. Using

the theory of reachable sets, an alternative formulation for reconstruction of the switching

signal is presented. To relieve the computational burden, we utilize the notion of a gap

between subspaces for mode detection that involves merely coarse spherical approximation

of the reachable set. This approach of using the reachable sets, though applicable to a

general class of linear systems, may not reconstruct switching over large time intervals as

the uncertainties in the state may grow to an extent that the outputs of the subsystems

become indistinguishable. However, if the individual subsystems are assumed to be minimum

phase, which is the same as assuming the stability of the minimal order inverse system in the

linear case, then the switching signal can be reconstructed for all times under the dwell-time

assumption.

Another important property for diagnostic applications and system design is the observ-

ability of switched systems. It is seen that the switched systems essentially act as time-

varying systems, and in contrast to time-invariant systems, the ability to recover the state

either instantaneously or after some time has different meanings as the information available

after switching, from another subsystem, may reveal more knowledge about the state. This

idea of gathering information from all the active subsystems is formalized to yield a character-

ization of observability for switched linear systems. A related, but relatively weaker, notion

of determinability deals with recovering the value of the state at some time in the future

rather than the initial time. This turns out to be particularly useful in the construction of

observers, as the estimates generated by the observers are shown to converge asymptotically

to the true state when the switched system is determinable. Similar concepts are studied

for another class of switched systems where the underlying subsystems are modeled with

differential algebraic equations instead of ordinary differential equations, but the observer

design remains a topic of further study in such systems.

The problem of observability is also studied in the context of switched nonlinear systems.

Because of the rich nature of the dynamics of such systems and the fact that analytical solu-
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tions of the nonlinear ordinary differential equations are not always available, the framework

of linear systems is not easily extendable. We therefore propose an alternate approach to

derive a sufficient condition for observability in nonlinear switched systems. This condition

naturally leads to an observer design, and with the help of analysis, it is shown that the

corresponding state estimate indeed converges to the actual state of the system. An effort

is made to obtain a characterization in the form of a necessary and sufficient condition for

observability. Examples are included throughout the text to help understand the underlying

concepts.

Having discussed the properties of invertibility and observability from an analytical per-

spective, we then discuss an application of these theoretical concepts to study the problem of

fault detection in electrical energy systems. The tools developed for solving the invertibility

and observability problem have been tailored to address the models of voltage converters

and their networks. Categorizing soft faults as unknown disturbances and hard faults as

unknown mode transitions, we show that such faults can be recovered if the switched system

under consideration is invertible. An algorithm for fault detection and results of simulation

are included to demonstrate the utility of the proposed framework. Since the invertibility

approach requires the knowledge of the initial condition and the derivatives of the output to

reconstruct the soft faults, an alternative observer-based approach is presented for detection

of soft faults. Because the initial condition is no longer assumed to be known, the observer

dynamics first estimate the state of the system, and then we define auxiliary observer out-

puts that are only sensitive to faults so that the effect of a nonzero fault is reflected in those

new outputs.

A significant aspect of structural properties is their utility in solving some of the prominent

design problems, and the concepts related to invertibility of switched systems are utilized in

designing switching signals and control inputs for generating desired output trajectories. We

conclude the document by proposing some synthesis problems using the system inversion

tools. A desired property for the control input in output generation and tracking is its

boundedness relative to the size of the output. Classically, this is achieved by requiring the

inverse system to be stabilizable. We extend this idea to switched systems to propose a

preliminary result for computing bounded inputs that generate a desired bounded output

trajectory. If the initial condition is not known, then exact output generation may not be

possible and in that case, tracking the output asymptotically is the problem of interest.

We present our initial approach on how to achieve output tracking in switched systems and

outline the methods for our future work related to this problem.
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Chapter 1

Introduction

1.1 Motivation

In systems theory, a system is typically modeled as a set of differential equations that de-

scribe the evolution of certain variables, called state variables, in a finite-dimensional space.

The structure of these differential equations basically defines the behavior of the state vari-

ables over time. The functions appearing in these equations can be linear, nonlinear, time-

invariant, time-varying, smooth, non-smooth or even discontinuous in their arguments. Simi-

lar formalisms exist in the domain of discrete systems, where instead of differential equations,

the system is modeled by difference equations.

Broadly speaking, the thesis deals with a class of dynamical systems described by a set of

differential equations that are discontinuous in time. In practice, such systems are encoun-

tered when there is a coupling between continuous dynamics and discrete events. With the

use of computers becoming extremely popular, digital networks and embedded systems are

getting increasingly complex and there is a need to study the interaction between logic-based

components and continuous-time physical systems. This leads to a new modeling paradigm

to allow analysis, and design of systems that combine continuous dynamics with discrete

logic. Systems in which these two types of dynamics coexist and interact are called hybrid

systems.

The hybrid modeling framework covers a large class of systems, which leads to their

application in various fields:

1. Electrical Energy Systems: It is natural to think of electrical circuits using switches to

direct the flow of electrical current. Systems in power electronics, such as converters,

use switching to regulate the voltage levels or change the frequency of the current. The

use of a switch causes abrupt changes in the flow of state variables, and the models of

such circuits must accommodate the changes caused by the switches [1]. We will study

some of these models in Chapter 7.
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2. Robotic Systems: The output tracking problem in robotic manipulators is of utmost

utility in industry. Depending on the task being performed, the inertial dynamics of

the robot may change from time to time [2]. Another kind of system that combines

discrete events with continuous dynamics is a biped walking robot where the dynamics

exhibit switching from flight mode to stance mode while running [3]. The hybrid

behavior is also seen in some complex models of bipeds involving feet movement and

ankle rotation [4]. Moreover, hybrid strategies have been employed extensively in the

control and stabilization of robot dynamics [5, 6].

3. Multi-agent Networks: In multi-agent systems, the collective dynamics of the network

of agents are obtained by putting together all the agent dynamics, and depend on how

the agents are connected to each other [7]. If the network under consideration consists

of mobile agents, then it is natural to assume that some of the existing communication

links may fail due to an obstacle between two agents or new links may be established

over the period of time as the change in position of agents would affect the range of

detection between one another. Because of the time-varying nature of the network

topology, these networks can be modeled as hybrid systems where the subsystems are

the network dynamics with fixed topologies and the discrete logic, in this case, indicates

the active topology at every time.

4. Biological Systems: Biological cell networks exhibit complex combinations of both dis-

crete and continuous behaviors; the dynamics that govern the spatial and temporal

increase or decrease of protein concentration or activity inside a single cell are con-

tinuous differential equations, while the activation or deactivation of these continuous

dynamics is triggered by switches which encode protein concentrations reaching given

thresholds. Hybrid systems theory presents an ideal framework to model and analyze

these processes, with the goal of generating predictions that can be experimentally ver-

ified. An example dealing with the regulation of intracellular Delta and Notch protein

concentrations is considered in [8, 9], where the authors also use the derived hybrid

model to compute the reachable sets in Delta-Notch signalling mechanism.

Several other examples of modeling the hybrid systems along with a generalized solution

framework, adopted to address asymptotic and robust stability, are discussed in [10]. From

the analysis viewpoint, detailed investigation of the discrete behavior has been a lower pri-

ority for researchers in the control-theoretic area. For feasibility of analysis, we ignore the

details of discrete dynamics and consider a more general class of systems, called switched
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systems [11, 12, 13]. Switched systems comprise a family of continuous-time dynamical

subsystems (also called modes) and a switching signal that determines the active mode of

operation. Switched systems can be broadly classified as time-varying because of the changes

induced in the dynamics by the switching signals. However, as the name indicates, it is more

appropriate to think of them as systems where transition occurs from one dynamical subsys-

tem to another. This way we can relate the properties of the whole system to the properties

of individual subsystems so that the standard tools can be extended for the purpose of

analysis.

The most general class of switched systems (with the exception of Chapter 6) considered

in this thesis has the following structure:

Γσ :





dx

dt
= fσ(x) +Gσ(x)u(t) = fσ(x) +

∑m
k=1(gk)σ(x)uk(t), t 6= ti,

x(ti) = ψσ(t−i ),σ(ti)
(x(t−i )),

y(t) = hσ(x),

(1.1)

where σ : [t0, T ) → P is the switching signal that indicates the active subsystem at every

time, P is some finite index set, and fp, Gp, hp, where p ∈ P, define the dynamics of individual

subsystems; and the jump map ψp,q defines the transition in the value of state trajectory

when switching from mode p to mode q. The switching signal is a piecewise constant and

everywhere right-continuous function that has a finite number of discontinuities on every

bounded time interval; the time instants at which these discontinuities occur are denoted

by ti, which we call switching times. For any initial state x0, switching signal σ(·), and
any admissible input u(·), a solution of (1.1) always exists (in Carathéodory sense) and is

unique, provided the flow of every subsystem is well-defined for the time interval during

which it is active, i.e., the state trajectories do not blow up in finite time. In fact, this

assumption results in state trajectories that are locally absolutely continuous [10, 14]. Since

the switching signals are right-continuous, the outputs are also right-continuous (note that,

in general, hi(x) 6= hj(x), for i 6= j) and whenever we take the derivative of an output, we

assume it is the right derivative.

1.2 Thesis Overview

Structural properties of a dynamical system are attributed to the interaction between its

three components: the state, the inputs, and the outputs. Switched systems represent a
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class of dynamical systems that arise in practice where the continuous dynamics of the

system interact with the discrete variables in the system. Because of their immense utility

in the modeling of physical phenomena [15], the design of control strategies [16], and system

verification [17], switched systems have attracted the attention of many researchers in the

past couple of decades. From analysis standpoint, several structural properties of switched

systems, such as stability, controllability, and observability, have been studied where the

most intriguing aspect is how the interaction between the state, the inputs and the outputs

gets affected due to the presence of a switching signal and whether a property of interest is

preserved under certain classes of switching signals.

In this thesis, we treat two of the structural properties of switched systems mentioned

above: invertibility and observability. If the dynamical systems are seen as mappings from

the input space to the output space that depend on the internal states of the system, then

both these properties relate to the recovery of an unknown entity from the measurements of

the outputs. Both invertibility and observability have been used in stabilization of systems

using dynamic output feedback [18] and observer-based state feedback [19], respectively.

Moreover, their study is particularly useful in diagnostic applications as they have been

employed in fault detection algorithms frequently [20, 21, 22, 23]. Thus, these properties

are not only theoretically interesting but also possess useful applications. This provides the

motivation to study them outside the realm of non-switched systems.

1.2.1 Research on Switched Systems

Below we provide brief notes on the existing literature on structural properties of switched

systems:

Stability

Stability of dynamical systems is critical for any application. For this reason, stability of

switched systems has received the most attention among all other structural properties. A

survey addressing the issues involved in stability and design of switched systems appears

in [12] and a tutorial description of some of the existing results appears in [11, Chapters

2 and 3]. One is also referred to [24] for a recent survey on stability and stabilizability of

switched linear systems. The two fundamental questions that arise in addressing the stability

of switched systems are: (a) whether the system is stable under arbitrary switching or (b)
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whether the stability is achieved for a limited class of switching signals. In answering the first

question, extending the classical tool set, one seeks a common Lyapunov function. Similar

to standard Lyapunov stability theorem, the existence of common Lyapunov function proves

to be sufficient for stability. Moreover, the converse Lyapunov theorem can also be derived

in different settings [25, 26]. Note that the uniform stability with respect to the switching

signals requires the individual subsystems to be stable; under an additional condition that

requires the vector fields of the subsystems to commute, which in turn leads to commutativity

of the flows of corresponding subsystems, the overall system becomes stable. The results

based on commutator operation or Lie-algebraic criteria appear in [27, 28, 29].

On the other hand, for stability under constrained switching, one uses the multiple Lya-

punov function approach [30, 31]. The basic idea that follows in this approach is that if

we look at the values of the Lyapunov function associated to each subsystem at every time

that subsystem is activated, then those values must form a non-decreasing sequence. One

can extend this idea to develop the notion of dwell-time and average dwell-time stability in

switched systems [32, 33] under which the stability among asymptotically stable systems is

preserved when the switching is slow enough. This idea of slow switching has been com-

bined with stability notions of nonlinear subsystems to develop conditions for Input-to-state

stability [34, 35], Input/Output-to-state stability [36], the concepts which have been applied

to feedback stabilization [34] and construction of state-norm estimators for switched sys-

tems [37, 38]. It is also possible to stabilize the switched system even when some of the

constituent subsystems are not stable. The most common result along these lines is to look

for a stable convex combination of the constituent subsystems that can be implemented by

switching among the subsystems with the ratio determined by the coefficients of the con-

vex combination [39, 40]. Methods relying on limiting the total activation time of unstable

modes appear in [41, 42, 36], and more recently averaging methods have been used to com-

pute switching signals that stabilize the switched system [43] with unstable modes. Some of

these stability notions will be applied in Chapter 3.

Controllability

Controllability basically refers to the notion of driving the state from any point in the state

space to the origin. Its natural extension to switched systems addresses the question whether

there exists a switching signal and an input that can drive an arbitrary state to the origin.

If the objective is to drive the state to the origin arbitrarily fast, then the controllability of
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individual modes is required. However, even if the individual modes are not controllable,

under certain conditions, it is possible to drive the state to the origin after some time, with

the help of switching. Geometric criteria for controllability over a time interval in terms of

controllability subspaces of individual subsystems appear in [44, 45, 46]. Also, look at [13] for

a detailed overview. Along the same lines, the recent work of [47], in addition, identifies the

minimum number of switches required to drive the state to the origin. A sufficient condition

and a necessary condition for controllability independent of switching times was given by

[48]. Note that when seeking conditions independent of switching times, there is always

a gap between the necessary and sufficient condition. The major motivation for studying

controllability is to achieve stabilization, which has been studied by [49] under the assumption

that all subsystems are controllable, and by [50] without imposing controllability assumption

on individual modes but requiring the switching signal to be periodic such that the switching

yields a Hurwitz convex combination of the constituent modes. In case the control inputs are

constrained, small-time controllability of the switched system is no longer equivalent to the

controllability of individual modes, and characterization of small-time controllability with

conic constraints on control inputs has been studied by [51].

Observability

The observability in switched systems has also been investigated by several researchers. In

classical linear time-invariant systems, there is a single uniform notion of observability that

deals with recovering the state from the knowledge of the output. However, in switched

systems the observability problem can be approached in several ways. If we allow for the

usage of the differential operator in the observer, then it may be desirable to determine the

state of the system instantaneously from the measured output. This in turn requires each

subsystem to be observable; however, the problem becomes nontrivial when the switching

signal is treated as a discrete state and simultaneous recovery of the discrete and continuous

state is required for observability. Some results on this problem are published in [52, 53, 54].

On the other hand, with the knowledge of switching signal, even though the individual

modes are not observable, it is possible to recover the initial state x(t0) when the output is

observed over an interval [t0, T ) that involves multiple switching instants. This phenomenon

is inherent only to switched systems as the notion of instantaneous observability and ob-

servability over an interval coincide for linear time invariant systems. This variant of the

observability in switched systems has been studied most notably by [45, 46, 55]. The authors
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in [56, 57] study the observability problem for the systems that allow jumps in the states,

but they do not consider the change in the dynamics that is introduced by switching to

different matrices associated with the active mode. Moreover, the observer design has also

received some attention in the literature [58, 59, 60, 55]. With the exception of [55], it is

assumed that each mode in the system is in fact observable admitting a state observer, and

the switching is treated as a source of perturbation effect. This approach immediately incurs

the need of a common Lyapunov function for the switched error dynamics, or a fixed amount

of dwell-time between switching instants, because it is intrinsically a stability problem of the

error dynamics.

Invertibility

System inversion is an interesting problem, not only from a theoretic standpoint but also

from practical viewpoint as it finds application in stabilization [61, 62] and output tracking

problems [18, 63, 64]. Although the literature on the inversion of non-switched system dates

back to the 1960s, the problem of invertibility for switched systema was introduced very

recently in [65].

Roughy speaking, the problem of invertibility deals with recovering the input from the

knowledge of the output. In non-switched systems, there is no ambiguity about the input

space. However, in switched systems, the switching signal can be seen as an exogenous

signal acting on the system in case of time-dependent switching or an internal signal when

the switching is state-dependent. In the former case, switching signal may be treated as an

extended ‘input’ to the system and in the latter case, it can be regarded as a function of

state variables. Since the state is assumed to be known in solving the invertibility, recovering

the switching signal or assuming it is known generates two different approaches towards the

solution of this problem. The case where the switching signal is assumed to be unknown and

the problem of invertibility deals with recovering the input and the switching signal has been

treated in [65] for linear systems. A geometric approach towards the solution of this problem

appears in [66]. Our results on invertibility of nonlinear switched systems are published in

[67]. A geometric heuristic based approach for this problem also appears in [68].

The problem of recovering the input from the output with known switching signal and

initial state has been discussed for discrete-time linear switched systems in [69, 70]. The

case of quantized measurements of the output under the known switching signal assumption

is treated in [71, 72]. Since this is one of the topics explored in this thesis, we give more
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details in the next section.

1.2.2 Contribution

In the context of switched systems, this thesis aims at studying the structural properties

that relate to extracting information about the state and/or the inputs from the knowledge

of the output. The first one, commonly called observability, is based on investigating the

mapping that exists between the state space and the output space. The second property,

called invertibility, relates to the mapping between the input space and the output space. On

an abstract level, the fundamental question in studying either of these properties is whether

the underlying mapping is injective (one-to-one); this characteristic determines whether the

output can reveal complete information about the state (observability) or the input (in-

vertibility). Both these system properties reveal fundamental characteristics of switched

systems, in the spirit of what one can say about the qualitative behavior of the system in

the long run or how much one can infer from and influence the system’s behavior based

on observed data. Also, because of the switching dynamics, the interface between discrete

and continuous dynamics not only reveals several novel phenomena, but also provides some

new insights into the structure of switched systems. It will turn out that several features of

the relevant mappings are attributed to a particular class of switching signals; therefore, it

is of interest not only to determine the maximal information that could be obtained from

the measured outputs but whether or not this information is preserved for certain classes of

switching signals. We now highlight the contribution of our research on the study of these

properties.

Invertibility of Switched Systems

For every control system with an output, we have an input-output map and the question

of left (resp. right) invertibility is, roughly speaking, that of the injectivity (surjectivity) of

this map. When dealing with non-switched systems, the existing literature on invertibility

mainly presents conditions and algorithms which make it possible to recover the input from

the output using the knowledge of initial state. The problem statement in switched systems

framework is analogous to the classical invertibility problem for non-switched systems. As

expected, the main difference arises because of the presence of the switching signal, which is

viewed as an exogenous signal with time as its only argument. This way the ‘input’ space

8



for switched systems is augmented, which motivates us to define the invertibility problem

as follows: What is the condition on the subsystems of a switched system so that, given an

initial state x0 and the corresponding output y generated with some switching signal σ and

input u, we can recover the switching signal σ and the input u uniquely?

This problem has only been recently studied for switched linear systems [65]. In our

work, we extend their methodology to study the problem of invertibility of continuous-time

switched nonlinear systems, which concerns finding the conditions on the subsystems to

guarantee unique recovery of the switching signal and the input from the initial state and

the output. Necessary and sufficient conditions for invertibility of nonlinear systems, affine

in control, are given. Formulae are computed that would lead to the reconstruction of σ and

u. Also, an output generation algorithm is presented that computes the switching signal and

input that would exactly reproduce a prescribed desired output.

In order to solve the invertibility problem, we use the exact knowledge of the initial

condition. In several engineering problems, this may be undesired or the knowledge of initial

state may not be precise. Moreover, some error is introduced in the actual values of outputs

when they are stored digitally. Thus, it is natural to work out a robust extension of the

invertibility problem which deals with perturbations in the values of the output and the

initial state. This motivates us to develop the robust invertibility framework where we derive

sufficient conditions for reconstruction of the original switching signal even in the presence

of disturbances. In the general case, this can be done only on a finite time interval as the

uncertainties may grow unbounded after some point in time, making it difficult to recover the

exact information. However, when the constituent subsystems are assumed to be minimum

phase, conditions that would lead to the exact recovery of the switching signal for all times

are presented with the underlying assumption that the switching is slow enough.

Note that the inverse systems may produce unbounded inputs even when the outputs are

bounded. Since the boundedness of the input is the most desirable property in the practical

setup, we show that certain stability assumptions in addition to invertibility lead to bounded

inputs when the switching signals are restricted by average dwell-time. In general, it is not

possible to generate desired output exactly when the initial condition is not known, and the

objective is to track the given signal asymptotically. In non-switched systems, a stabilizing

control input (different from the one obtained from the inverse system) can be computed that

achieves this objective, but in case of switched systems, the unknown switching signal makes

the problem more interesting and nontrivial. Designing control laws for output tracking with

switched systems is proposed as a topic of future work.
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To study the applications of invertibility of systems, we propose a framework for fault de-

tection and isolation (FDI) in electrical energy systems. Modeling faults as external unknown

exogenous signals, the problem of fault detection can then be seen as recovering, reconstruct-

ing or identifying these unknown signals. Some of the most commonly used power converters,

both small and large scale, can be modeled as switched systems either because of internal

switching or occurrence of faults. The invertibility algorithms not only detect the fault but

also reveal their magnitude in case the faults are slow and time-varying.

Observability of Switched Systems

Similar to invertibility, the problem of observability deals with extracting information from

the output of the system with the roles of input and initial state reversed, that is, the un-

known quantity to be recovered is the state of the systems while the input and the switching

signal are assumed to be known. The basic difference in the problem formulation is because

of the fact that the state evolves in a finite-dimensional space and the value of the state at

the initial time determines the value of state trajectory for all times as a solution of differen-

tial equations. So, essentially, we are recovering a finite-dimensional unknown variable from

the knowledge of an element in an infinite-dimensional space, which is different from the

invertibility problem where the unknown input is itself an infinite-dimensional entity and

may assume any value at any time. The notions adopted in the observability of switched

systems mainly come from nonlinear system theory. Using the terminology adopted in [73],

the system is called large-time observable if there exists a time after which the state can be

determined uniquely, and it is small-time observable if the state can be recovered completely

on an arbitrarily small time interval. We will also use the term instantaneous observability

to refer to small-time observability.

As mentioned earlier, the existing literature on observability of switched systems is mainly

concentrated on linear systems and deals with small-time as well as large-time observabil-

ity. Small-time observability mainly employs a differentiable operator on the outputs to

compute the state. In the literature on large-time observability, the conditions that guar-

antee observability basically determine whether there exists a switching signal which makes

it possible to recover the state uniquely. Existing observer designs mostly assume that the

individual modes are observable so that the classic Luenberger observer for each mode can

be constructed; assuming slow switching in this case leads to converging state estimates.

In our work, we start off with linear switched systems that involve state jumps. We assume
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the switching signal to be known and fixed so that the execution of a switched system can

be seen as that of a time-varying system. For this time-varying system, we determine a

necessary and sufficient condition for recovering the initial state. Recovering the initial state

also determines the value of the entire state trajectory (in theory). The characterization thus

obtained depends on the switching times. As a corollary, we derive a necessary condition

and a sufficient condition that only depend on the mode sequence and not the switching

instants.

In presence of non-invertible jump maps, our knowledge about the state vector essentially

collapses to a subspace in the ambient space after switching, so that the information re-

quired to compute the state is less than it was before the switching. Recovering the state

at some time instant using the knowledge of past outputs is called determinability or recon-

structability. This concept may be essential for several practical considerations where the

knowledge of state trajectory for all times is not required and it suffices to recover the state

from the current time onwards. Based on the characterization of determinability, an observer

is constructed which generates state estimates that converge asymptotically to the actual

state of the system. This unified approach of constructing a dynamic observer based on the

geometric conditions for observability differentiates our work from the existing literature on

similar topics.

Continuing with observability, we then move on to nonlinear switched systems. The tool

set adopted to solve the linear case is not so easy to generalize for the nonlinear case; however,

at a conceptual level we will try to extend the same idea. Our first step is to use the tools from

differential geometry to derive a sufficient condition for observability of switched systems

that involve state jumps and comprise nonlinear dynamical subsystems affine in control.

Without assuming observability of individual modes, the sufficient condition is based on

gathering partial information from each mode so that the state is recovered completely after

some time. Based on the sufficient condition, an observer is designed which employs a novel

‘back-and-forth’ technique to generate state estimates. Under the assumption of persistent

switching, analysis shows that the estimate converges asymptotically to the actual state of

the system. In order to develop results parallel to linear systems, an attempt is made to

obtain a characterization for observability of switched systems in the form of a necessary

and sufficient condition. The result is presented in the form of a conjecture for a simpler

class of subsystems and applied to several examples.

Finally, we deal with another class of switched systems where the dynamical subsystems

are modeled as differential-algebraic equations (DAEs). DAEs are an important class of
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mathematical models used to describe several mechanical and electrical systems. Because

of their rich solution framework, they need to be treated separately. We study observability

of switched linear DAEs, which has not been explored much in the literature. To highlight

the differences with the switched ODEs, we first study the simplest case of two modes where

the switching signal only involves a single transition. Similar to the ODEs, characterization

for the general case with multiple switches is developed using this basic approach. However,

observer construction for such systems is still a topic of ongoing work.

1.3 Organization of the Thesis

The remainder of the thesis is structured as follows:

Chapter 2 addresses the invertibility problem for switched nonlinear systems affine in con-

trols. The problem is concerned with reconstructing the input and switching signal uniquely

from given output and initial state. We extend the concept of switch-singular pairs, intro-

duced recently, to nonlinear systems and develop a formula for checking if the given state

and output form a switch-singular pair. A necessary and sufficient condition for the invert-

ibility of switched nonlinear systems is given, which requires the invertibility of individual

subsystems and the nonexistence of switch-singular pairs. When all the subsystems are in-

vertible, we present an algorithm for finding switching signals and inputs that generate a

given output in a finite interval when there is a finite number of such switching signals and

inputs. Detailed examples are included to illustrate these newly developed concepts.

Chapter 3 deals with the problem of robust invertibility and bounded output generation

and tracking. To address practical concerns, we develop the framework of reconstructing the

switching signal in the presence of disturbances in the output and uncertainty in the initial

condition. Using the notion of distance between subspaces, we give an upper bound on the

time interval over which the switching signal can be recovered exactly. In case the underlying

subsystems are minimum-phase, that interval can be extended all the way to infinity under

certain dwell-time assumption.

Chapter 4 is concerned with the observability of switched linear systems. Necessary and

sufficient conditions for observability and determinability are presented which lead to the

construction of an observer. Analyses show that the state estimates converge to the actual

state.

Chapter 5 is about observability in nonlinear switched systems. We use the differential

geometric approach to propose a sufficient condition for observability which leads to the
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design of an observer for state estimation. The analyses prove the convergence property of

the observer and the results are demonstrated with the help of examples.

Chapter 6 discusses the observability of switched linear DAEs. For clarity of presenta-

tion, the simplest case of two subsystems with a single mode transition is considered which

highlights the differences that arise in obtaining the characterization of observability for this

particular class of systems. We then extend the basic results to the general class of switched

DAEs with multiple switchings and subsystems.

Chapter 7 presents the applications of system inversion and observability in electrical

energy systems. An invertibility-based approach is adopted for detection of soft and hard

faults; and to overcome the limitations of invertibility (need of initial condition and output

derivatives), an observer-based strategy is proposed for detection of soft faults. We tailor

the algorithms to address the particular structure of power-electronic circuits. Several case

studies of DC-DC converters are included along with simulation results.

Chapter 8 summarizes the entire thesis and some design problems are presented as a

research direction for future work. The problem of generating a prescribed output with

bounded inputs is studied. For the related problem of bounded output tracking, problem

statements are proposed as an initial stepping stone.
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Chapter 2

Invertibility of Switched Nonlinear Systems

2.1 Introduction

System invertibility problems are of great importance from theoretical and practical view-

points and have been studied extensively for fifty years, after being pioneered by Brockett

and Mesarovic [74]. For nonswitched linear systems, the algebraic criterion for invertibility

and the construction of inverse systems were given by Silverman [75], and also by Sain and

Massey [76]. The systematic study of invertibility for nonswitched nonlinear systems began

with Hirschorn, who first studied the single-input single-output (SISO) case [77] and then

generalized Silverman’s structure algorithm to multiple-input multiple-output (MIMO) non-

linear systems [78]. Singh [79] then modified the algorithm to cover a larger class of systems.

Isidori and Moog [80] used this algorithm to calculate zero-output constrained dynamics and

reduced inverse system dynamics. The algorithm is also closely related to the dynamic ex-

tension algorithm used to solve the dynamic state feedback input-output decoupling problem

[63, Sections 8.2 and 11.3]. Geometric methods have been studied in [81]. A higher-level

interpretation given by a linear-algebraic framework, which also establishes links between

these algorithms and the geometric approach, is presented in [82]. We also recommend a

useful survey on various invertibility techniques by Respondek [83].

The problem of invertibility for switched linear systems was introduced very recently by

Vu and Liberzon [65], where the authors used Silverman’s structure algorithm to formulate

conditions for the invertibility of switched systems with continuous dynamics. The problem

of invertibility for discrete-time switched linear systems has been discussed in [69, 70], but

the authors assume that the switching sequence is known and find the corresponding input.

In this chapter, we make no such assumption and adopt an approach similar to [65], to study

the invertibility problem for continuous-time switched nonlinear systems, affine in controls,1

1A related problem is discussed in [68] but it does not follow the same theoretical approach we do, and
instead uses a heuristic approach with the purpose of studying a specific application.
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using Singh’s nonlinear structure algorithm. The concept of singular pairs, conceived in [65],

is extended to nonlinear systems; however, in the thesis, such pairs are termed as “switch-

singular pairs” to avoid conflict with the singularities of individual nonlinear subsystems.

The main contribution of our work lies in the technical details of developing and checking

the conditions for invertibility of nonlinear systems. In particular, the use of nonlinear

structure algorithm, possibility of finite escape times, and the existence of singularities in

state space and output set require more careful analysis and technical rigor as compared to

the linear case.

As is the case in the classical setting of nonswitched systems, we start with an output and

an initial state, but here there is a set of dynamic models and we wish to recover the switching

signal in addition to the input. In the context of hybrid systems, recovering the switching

signal is equivalent to the mode identification for hybrid systems or the observability of the

discrete state variable (location), which has been studied in [84, 52, 53]. Hence, the inversion

of switched systems can also be thought of as doing the mode detection and input recovery

simultaneously. Consequently, the basic idea for solving the invertibility problem is to first

do the mode identification by utilizing the relationship among the outputs and the states

of the subsystems, and then use the nonlinear structure algorithm for the corresponding

subsystem to recover the input.

For the case when subsystems are linear, Silverman’s structure algorithm seems to be

the most convenient tool to formulate invertibility conditions, which leads to a simple and

elegant rank test for checking the existence of switch-singular pairs, but in nonlinear systems

it is hard to achieve such a level of generality. For this reason, we start with the SISO case

to highlight the technical difficulties in moving from linear to nonlinear systems. Discussing

the SISO case first also helps in understanding the concepts behind the formula derived for

verification of switch-singular pairs.

The remainder of this chapter is organized as follows. Section 2.2 contains the definitions

of invertibility and the formal problem statement. The main result on left-invertibility is

presented in Section 2.3. We then give a characterization of switch-singular pairs and the

construction of inverse systems in Section 2.4. An algorithm for output generation is given

in Section 2.5 along with an example.

15



2.2 Preliminaries

In this section, we develop the required notations and provide some background on invert-

ibility of nonswitched nonlinear systems. Based on that, we develop the definition for the

invertibility of switched nonlinear systems followed by the formal problem statement to which

we seek solution in the chapter.

2.2.1 Nonswitched Nonlinear Systems

The dynamics of a square nonlinear system, affine in controls, are given by

Γ :=

{
ẋ = f(x) +G(x)u = f(x) +

∑m

i=1 gi(x)ui,

y = h(x),
(2.1)

where x ∈ M, an n-dimensional real connected smooth manifold, for example R
n; f , gi are

smooth vector fields on M; and h : M→ R
m is a smooth function. Admissible input signals

are locally essentially bounded, Lebesgue measurable functions u : [t0,∞)→ R
m. If the two

inputs differ on a set of measure zero, i.e. u1(t) = u2(t) almost everywhere (a.e.), then they

are considered to be equal. We use the notation u[t0,T ) to denote the input u over the time

interval [t0, T ); and Γx0(u) denotes the state trajectory generated by (2.1) after applying the

input u with initial condition x0.

We start off by reviewing classical definitions of invertibility for such systems. For that,

consider the input-output map Hx0 : U → Y for some input function space U and the corre-

sponding output function space Y . Hx0 maps an input u(·) to the output y(·) generated by

the system driven by u(·) with an initial condition x0. Since the state trajectories of non-

linear systems may exhibit finite escape times, an input u[t0,∞) may not have a well defined

image in the output space, over the interval [t0,∞), under this map. For this reason, we

only consider inputs over a finite interval [t0, T ), which is the maximal interval of existence

of solution, such that Hx0(u[t0,T )) = y[t0,T ) always exists and is well-defined.

Invertibility2 of the dynamical system (2.1) basically refers to the injectivity of the map

Hx0 . Before giving a formal definition, let us have a look at an example first.

2Throughout the text, invertibility refers to the left-invertibility.
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Example 2.1. Consider a nonswitched nonlinear system with two inputs and two outputs,




ẋ1

ẋ2

ẋ3


 =




x1u1

x3u1

u2


 ,

(
y1

y2

)
=

(
x1

x2

)
, M = R

3.

We then have

ẏ1 = x1u1, (2.2a)

ÿ2 =
x3ÿ1 − ẏ1ẏ2 + ẏ1u2

x1
. (2.2b)

It follows that u1 can be recovered uniquely from ẏ1 if x1 6= 0, and u2 can be recovered

uniquely from ÿ2 if ẏ1 6= 0 and x1 6= 0. The point x1 = 0 and the function ẏ1 = 0 are the

singularities in the state space and the output space, respectively. Let Mα := {x ∈ R
3 | x1 6=

0}, Y s = {z ∈ R
2 | z1 = 0}, and Ys := {y : [t0, T ) → R

2 | ẏ(t) ∈ Y s for almost all t ∈
[t0, t0 + δ) ⊆ [t0, T ), where δ > 0 is arbitrary}. In words, Ys includes those outputs which

remain in singular set for some duration of time. The complement of Ys is given by Yα := {y :

[t0, T )→ R
2 | ẏ(t) /∈ Y s

1 for almost all t ∈ [t0, t0+ ε) and some ε > 0}. If the system is driven

by a class of inputs u such that the resulting motion Γx0(u) ∈M
α a.e. and Hx0(u) ∈ Yα, then

there is a one-to-one relation between the output and input signals provided their domains

are restricted to [t0, t0 + ε). In summary, the input can be recovered uniquely using the

knowledge of output, its derivatives and possibly some states as long as the output and state

trajectories do not hit some singularities. ⊳

We now proceed to the formal definition of invertibility for nonswitched systems.

Definition 2.2. Fix an output set Y and consider an arbitrary interval [t0, T ). The system

(2.1) is invertible at a point x0 := x(t0) ∈ M over Y if for every y[t0,T ) ∈ Y, the equality

Hx0(u1[t0,T )) = Hx0(u2[t0,T )) = y[t0,T ) implies that ∃ ε > 0 such that u1[t0,t0+ε) = u2[t0,t0+ε).

The system is strongly invertible at a point x0 if it is invertible for each x ∈ N(x0), where

N is some open neighborhood of x0. The system is strongly invertible if there exists an open

and dense submanifold M
α such that ∀x0 ∈M

α, the system is strongly invertible at x0. ⊳

As illustrated in Example 2.1, a system is invertible at x0 for the class of inputs u(·) such
that along the trajectory of the system (2.1), the resulting motion x(·), y(·) does not hit any
singularities. It is entirely possible that the state trajectory or the output hits singularity at

a time instant t0 + ε with 0 < ε < T − t0, thus making it impossible to recover u uniquely
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beyond t0+ε; this explains why we require distinct inputs over arbitrarily small time domains

in Definition 2.2.

In the most general construction of inverse systems like the one given by [79], there exists

a set of singular outputs Ys such that the system is not invertible for y ∈ Ys; and its

complement Yα := Y\Ys is the set of all outputs on which the system is strongly invertible.

Also, in general, the inverses of nonlinear dynamical systems are not defined on the entire

state space. If the vector fields f(x), g(x) and the output function h(x) are analytic, then

the singular points are reduced to a closed and nowhere dense set comprising zeros of certain

analytic functions. Under these assumptions, if the system is invertible then there exists an

open and dense subset of M on which the dynamics of a nonlinear system are invertible;

that subset is called the inverse submanifold and is denoted by M
α. All these notions will

be developed formally in Section 2.4.

Using Definition 2.2, invertibility at x0 is equivalent to saying that u1[t0,t0+ε) 6= u2[t0,t0+ε)

for all ε ∈ (0, T − t0) implies that Hx0(u1[t0,T )) 6= Hx0(u2[t0,T )). This notion was captured

by [78]. Our definition is essentially the same as one considered by Hirschorn in the sense

that both notions address the injectivity of an input-output map. The difference lies in the

fact that Hirschorn considered a class of analytic nonlinear systems with analytic inputs and

Ys = ∅, an empty set. In that case, if the system is invertible and the state trajectory starts

from a nonsingular set, it is possible to recover inputs on a small interval, but because of

analyticity, we continue to recover inputs uniquely even after hitting singularity. For if two

analytic inputs are different on a subinterval then they are different everywhere; otherwise,

their difference (an analytic function) would have an infinite number of zeros on a finite

interval. In our work though, we consider non-analytic systems driven by inputs that are

not necessarily analytic, so the input recovery can be guaranteed over small time intervals

only.

We will now generalize this notion of local invertibility to the switched systems.

2.2.2 Switched Nonlinear Systems

In this chapter, we will consider switched nonlinear systems, affine in controls, that have the

following structure:

Γσ :

{
ẋ = fσ(x) +Gσ(x)u = fσ(x) +

∑m

i=1(gi)σ(x)ui,

y = hσ(x),
(2.3)
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where σ : [t0, T ) → P is the switching signal that indicates the active subsystem at every

time, P is some finite index set, and fp, Gp, hp, where p ∈ P, define the dynamics of individual

subsystems. The state space M is a connected real smooth manifold of dimension n, for

example R
n; fp, (gi)p are real smooth vector fields on M; and hp : M → R

m is a smooth

function. A switching signal is a piecewise constant and everywhere right-continuous function

that has a finite number of discontinuities at ti, which we call switching times, on every

bounded time interval. Denote by σp[t0,T ) the constant switching signal over the interval

[t0, T ) such that σp(t) := p ∈ P, ∀ t ∈ [t0, T ). We assume that all the subsystems are

equidimensional, they live in the same state space M, and the state jump at the switching

times is disregarded for the time being. For any initial state x0, switching signal σ(·), and
any admissible input u(·), a solution of (2.3) always exists (in Carathéodory sense) and is

unique, provided the flow of every subsystem is well-defined for the time interval during

which it is active; i.e., the state trajectories do not blow up in finite time. In fact, this

assumption results in absolutely continuous state trajectories [14]. Denote by [t0, T ) the

maximal interval of existence of solution, so that the outputs are well-defined on [t0, T ).

Since the switching signals are right-continuous, the outputs are also right-continuous (note

that, in general, hi(x) 6= hj(x), for i 6= j) and whenever we take the derivative of an output,

we assume it is the right derivative. For p ∈ P, denote by Γp,x0(u) the trajectory of the

corresponding subsystem with the initial state x0 and the input u, and the corresponding

output by ΓOp,x0(u).

We will use Fpc to denote the space of piecewise right-continuous functions3 and Fn to

denote the subset of Fpc whose elements are n times differentiable between two consecutive

discontinuities. Likewise, FAC denotes the subset of Fpc whose elements are absolutely

continuous between two consecutive discontinuities. Finally, we use ⊕ for the concatenation

of two signals.

In case of switched systems (2.3), the map Hx0 has an augmented domain; that is, now

we have a (switching signal × input)-output map Hx0 : S × U → Y , where S is a switching

signal set, U is the input space, and Y is the output space. Let us first extend the definition

of invertibility to switched systems.

Definition 2.3. Fix an output set Y and consider an arbitrary interval [t0, T ). A switched

3By piecewise right-continuous functions, we mean that there is a finite number of jump discontinuities in
any finite interval; the function is continuous in between any two consecutive discontinuities; and the function
is continuous from the right at discontinuities. To avoid excessive rigidness, we will use the term “piecewise
continuous” throughout the paper, and it is understood that “piecewise continuous” means “piecewise right-
continuous.”
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system is invertible at a point x0 over Y if for every output y[t0,T ) ∈ Y, the equality

Hx0(σ1[t0,T ), u1[t0,T )) = Hx0(σ2[t0,T ), u2[t0,T )) = y[t0,T ) implies that ∃ ε > 0 such that σ1[t0,t0+ε) =

σ2[t0,t0+ε) and u1[t0,t0+ε) = u2[t0,t0+ε). A switched system is strongly invertible at a point x0

if it is invertible at each x ∈ N(x0), where N is some open neighborhood of x0. A switched

system is strongly invertible if there exists an open and dense submanifold M
α of M such

that ∀x0 ∈M
α, the system is strongly invertible at x0. ⊳

For linear switched systems, as discussed by [65], all the notions in Definition 2.3 coincide

and a system is termed invertible if the input and switching signal could be recovered uniquely

for all x0.

The invertibility property formulated in Definition 2.3 may fail to hold in two ways: (a)

either because there exist two different inputs u1 and u2 that yield the same output or

(b) because there exist two different switching signals σ1(·) and σ2(·) that yield the same

output. The first case refers to the notion of classical invertibility as already explained in

Definition 2.2 and Section 2.2.1. To address the second possibility, we need the concept of

switch-singular pairs which refers to the ability of more than one subsystem to produce a

segment of the desired output starting from the same initial condition. The formal definition

is given below:

Definition 2.4. Consider x0 ∈ M and y ∈ Yp ∩ Yq on some time interval [t0, T ), where

p, q ∈ P, p 6= q. The pair (x0, y) is a switch-singular pair of the two subsystems Γp, Γq if

there exist u1, u2 and ε > 0 such that ΓOp,x0(u1[t0,t0+ε)) = ΓOq,x0(u2[t0,t0+ε)) = y[t0,t0+ε). ⊳

If all subsystems are linear, x0 = 0 and y ≡ 0 always form a switch-singular pair regardless

of the dynamics of the subsystems. This is because u ≡ 0 and any switching signal will

produce y ≡ 0, that is, H0(σ, 0) = 0 ∀ σ, and therefore H0 is not injective if the zero function

belongs to Y . In nonlinear systems, this is not the case in general, and all switch-singular

pairs are solely determined by the subsystem dynamics. As stated earlier and will be formally

proved below, the switched system is not invertible if Y contains outputs that form switch-

singular pairs with x0. Thus, if there exist any switch-singular pairs, we have to restrict the

output set Y , instead of letting Y be the set of all possible concatenations of nonsingular

output trajectories.

Next, we use the concept of switch-singular pairs to study the invertibility problem of

switched systems. Since Definition 2.3 contains different variants of invertibility, we start off

with the weakest of them all, i.e., invertibility of a switched system at a point. In particular,

we are interested in solving the following fundamental problem: Find a suitable set Y and
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a condition on the subsystems such that the system is invertible at x0 over Y. An abstract

characterization of the set Y and constraints on subsystem dynamics which guarantee in-

vertibility are given in Section 2.3 under Theorem 2.5; Corollary 2.6 and Corollary 2.7 then

characterize the set Y more explicitly (depending on the required variant of invertibility).

Later in Section 2.4, we give mathematical formulae (Lemma 2.11 through Lemma 2.22) for

checking the abstract conditions given in Section 2.3.

2.3 Characterization of Invertibility

In this section, we describe the output set Y used in Definition 2.3 and give conditions on

the subsystem dynamics so that the switched system is invertible for some sets S, U , and
Y . Restricting the outputs to lie in Y implies a set of restrictions on the set of allowable

inputs, but an explicit characterization of such inputs is not always obtainable. That is why

we do not explicitly specify what the input sets U and S are, but instead specify the set Y
and then U will be the corresponding set which, together with S, generates Y .
For all p ∈ P, let Yp be the set of smooth outputs4 that can be generated by Γp, and

let Yall be the set of all the possible concatenations of all elements of Yp, ∀p ∈ P. Due to

the existence of certain singular outputs (for which the system is not invertible), we seek

invertibility at a fixed point x0 over a subset Yα ⊆ Yall.

Theorem 2.5. Consider the switched system (2.3) and an output set Yα ⊆ Yall. The

switched system is invertible at x0 ∈M over Yα if and only if each subsystem Γp is invertible

at x0 over Yα ∩ Yp and for all y ∈ Yα, the pairs (x0, y) are not switch-singular pairs of Γp,

Γq for all p 6= q, p, q ∈ P.

Proof. Necessity: We show that if any of the subsystems is not invertible at x0 or if there

exist switch-singular pairs (x0, y), then the switched system is not invertible.

Suppose that a subsystem Γp, p ∈ P, is not invertible at x0 over Yα ∩ Yp; then there

exists y[t0,T ) ∈ Yα ∩ Yp such that ΓOp,x0(u1[t0,T )) = ΓOp,x0(u2[t0,T )) = y[t0,T ) for some u1, u2

and ∀ ε ∈ (0, T − t0), u1 6= u2 on [t0, t0 + ε). This implies that Hx0(σ
p

[t0,T )
, u1[t0,T )) =

Hx0(σ
p

[t0,T )
, u2[t0,T )) = y[t0,T ) and thus, Definition 2.3 implies that the switched system is not

invertible at x0 over Yα.
4This assumption can be relaxed depending upon the system under consideration; see Remarks 2.13 and

2.19 in Section 2.4 for details.
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For necessity of the second condition, suppose that ∃ y ∈ Yα ∩ Yp ∩ Yq, so that (x0, y)

is a switch-singular pair of Γp, Γq, p 6= q. This means that both subsystems, even though

invertible at x0, can produce this output over the interval [t0, t0 + ε) ⊂ [t0, T ), ∀ε > 0. Con-

sequently, ∃ u1[t0,T ), u2[t0,T ) (possibly same) such that ΓOp,x0(u1[t0,T )) = ΓOq,x0(u2[t0,T )) = y[t0,T ).

Hence, we have Hx0(σ
p

[t0,T )
, u1[t0,T )) = Hx0(σ

q

[t0,T )
, u2[t0,T )) = y[t0,T ); that is, the preimage of y

is not unique as σp 6= σq on [t0 + t0 + ε), ∀ ε ∈ (0, T − t0). This implies that the switched

system is not invertible at x0 for given Yα.
Sufficiency: Suppose that for the given x0 ∈ M, there exist some inputs u1, u2 and

switching signals σ1, σ2 such that Hx0(σ1, u1) = Hx0(σ2, u2) = y ∈ Yα over [t0, T ). Since

(x0, y) is not a switch-singular pair, there exists ε1 such that σ1(t) = σ2(t) = p, ∀ t ∈ [t0, t0+

ε1)
5 and y[t0,t0+ε1) ∈ Yp. Since Γp is invertible at x0, ∃ ε2 < ε1 such that u1[t0,t0+ε2) = u2[t0,t0+ε2)

and ΓOp,x0(u1[t0,t0+ε2)) = ΓOp,x0(u2[t0,t0+ε2)) = y[t0,t0+ε2). Letting ε = min{ε1, ε2}, it then follows

from Definition 2.3 that the switched system is invertible at x0 over Yα.
In the proof of the sufficiency part, the switched system is strongly invertible at x0 for

the signals whose domain is restricted to the interval [t0, t0 + ε), where t0 + ε is the time

instant at which the state trajectory or the output enters the singular set. If the output y

loses continuity over the interval [t0, t0 + ε) because of switching, then (σ[t0,t0+ε), u[t0,t0+ε)) =

(σ[t0,t1), u[t0,t1)) ⊕ · · · ⊕ (σ[tk,t0+ε), u[tk,t0+ε)), where k is the total number of switches in the

interval [t0, t0 + ε) and ti, i = 1, · · · , k, are the switching instants.

Let us now consider a refinement of Theorem 2.5 by characterizing the set Yα. For all

p ∈ P, let Ysp be the set of singular outputs of Γp for which Γp is not invertible (see Example

2.1 and Section 2.4.2, or [79]), and let Yαp = Yp\Ysp be the set of outputs on which Γp is

invertible at x0. Define Ys := ∪p∈PYsp as the collection of all singular outputs and let Yall be
the set of outputs generated by all the possible concatenations of all elements of Yp, ∀p ∈ P.
Finally, define Yα := Yall\Ys as a set of outputs over which we seek invertibility. We now

have the following modified version of Theorem 2.5.

Corollary 2.6. The switched system is invertible at x0 over the set Yα if and only if the

pairs (x0, y) are not switch-singular pairs of Γp and Γq, for all y ∈ Yα, for all p 6= q, p, q ∈ P.

Proof. By the application of Theorem 2.5, the desired result is obtained by showing that

Γp, ∀ p ∈ P, is invertible at x0 over the set Yα ∩ Yp. By construction, Yp = Yαp ∪ Ysp and

5This argument can also be proved in another way: it will be shown later that the points in state space
that form switch-singular pairs are actually a zero set of smooth nonlinear equations. Thus, if x0 does
not form a switch-singular pair with y then there exists a neighborhood N(x0) such that ∀x ∈ N(x0),
(x, y) is not a switch-singular pair. As there are no switch-singular pairs in N(x0), ∃ ε1 > 0 such that
σ1[t0,t0+ε1) = σ2[t0,t0+ε1).
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Yα ∩ Ysp = ∅; using these two equalities, it is easy to see that Yα ∩ Yp ⊆ Yαp . As each

subsystem Γp is invertible at x0 over Yαp , it follows that each subsystem Γp is, in particular,

invertible at x0 over the output set Yα ∩ Yp.

Corollary 2.7. Consider the switched system (2.3) and an output set Yα ⊆ Y. The switched
system is strongly invertible at x0 ∈ M over Yα if and only if each subsystem Γp is strongly

invertible at x0 over Yα ∩ Yp and there exists a neighborhood N(x0) such that for all x ∈
N(x0), y ∈ Yα, the pairs (x, y) are not switch-singular pairs of Γp, Γq for all p 6= q, p, q ∈ P.

Proof. Necessity: If the switched system is strongly invertible at x0, then ∃N(x0) such

that the switched system is invertible at every x ∈ N(x0) over Yα. Let N(x0) := N(x0). By

Theorem 2.5, each subsystem is invertible at every x ∈ N(x0), hence strongly invertible at

x0, and there exist no switch-singular pairs (x, y), for all x ∈ N(x0), y ∈ Yα.
Sufficiency: If each subsystem is strongly invertible at x0, i.e., ∃Np(x0) such that Γp is

invertible at every x ∈ Np(x0), then N
α :=

⋂
p∈P Np is an open set on which all subsystems

are invertible. If we define N := Nα ∩ N , then the switched system is invertible at every

x ∈ N(x0) over Yα and hence by Theorem 2.5, strongly invertible at x0.

For the strong invertibility of the switched system on an open and dense subset, assume

that the vector fields fp, (gi)p and the output function hp are analytic. Under these assump-

tions, if a subsystem Γp is strongly invertible, then M
α
p denotes the inverse submanifold of

Γp.

Corollary 2.8. The switched system (2.3) is strongly invertible, with inverse submanifold

M
α ⊆M, over an output set Yα ⊆ Y if and only if each subsystem is strongly invertible over

Yα ∩ Yp and the subsystem dynamics are such that the pairs (x0, y) are not switch-singular

pairs of Γp, Γq for all p 6= q, p, q ∈ P, for every x0 ∈M
α, and every y ∈ Yα.

Proof. Necessity: If the switched system is strongly invertible, then it is strongly invertible

at every x0 ∈ M
α over Yα. By Corollary 2.7, each subsystem is strongly invertible at every

x0 ∈ M
α, and hence strongly invertible with inverse submanifold M

α. Furthermore, there

exist no switch-singular pairs (x0, y), ∀ x0 ∈ M
α, y ∈ Yα.

Sufficiency: Under the given hypothesis, there exists an inverse submanifold M
α
p such that

Γp is strongly invertible at every x0 ∈M
α
p over Yα∩Yp, for all p ∈ P. DefineMα :=

⋂
p∈P M

α
p ;

then M
α is an open and dense subset of M because it is a finite intersection of open and

dense subsets. Under relative topology, Mα is a submanifold. Since each subsystem Γp is

strongly invertible at every x0 ∈ M
α over Yα ∩ Yp and there exist no switch-singular pairs,
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application of Corollary 2.7 implies that the switched system is strongly invertible at every

x0 ∈M
α over Yα.

In essence, Theorem 2.5, and the related corollaries state that the invertibility of subsys-

tems in a certain sense implies the invertibility of the switched system in a similar sense

provided there are no switch-singular pairs between the states and the outputs considered.

Before concluding this section, a couple of remarks are in order.

Remark 2.9. For the switched system (2.3), if all the subsystems are globally invertible in

addition to the hypothesis of Corollary 2.8, that is, Mα = M and Ys = ∅, then it is possible

to recover the inputs and switching signals uniquely over the time interval [t0, T ). Also note

that T may be arbitrarily large if the state trajectories do not exhibit finite escape time. ⊳

Remark 2.10. If a subsystem has more inputs than outputs, then it cannot be (left) in-

vertible. On the other hand, if it has more outputs than inputs, then some outputs are

redundant (as far as the task of recovering the input is concerned). Thus, the case of input

and output dimensions being equal is, perhaps, the most interesting case. ⊳

2.4 Checking Invertibility

In this section, we address the computational aspect of the concepts introduced in previous

sections and develop algebraic criteria for checking the invertibility of switched systems.

The first condition in Theorem 2.5 asks for invertibility of subsystems and is verified by the

structure algorithm. To put everything into perspective, we provide appropriate background

related to the invertibility of nonswitched systems and use it to develop the concept of

functional reproducibility. To check if (x0, y) is a switch-singular pair, we develop a formula

using the functional reproducibility criteria of nonswitched systems. After verifying the

invertibility of subsystems and nonexistence of switch-singular pairs, we will be able to

construct a switched inverse system that recovers the original input and switching signal

uniquely.

2.4.1 Single-Input Single-Output (SISO) Systems

We start off with the case when all the subsystems are SISO because it gives more in-

sight into computations and helps understand the concepts which we will later generalize

to multivariable systems. To this end, consider a SISO nonlinear system affine in controls
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(2.1) with m = 1 and assume it has a relative degree r at x0 [18], i.e., ∃ a neighborhood

N(x0) such that LgL
k
fh(x) = 0, ∀ x ∈ N(x0), k = 0, · · · , r − 1 and LgL

r−1
f h(x0) 6= 0, where

Lkfh(x) =
∂(Lk−1

f
h(x))

∂x
f(x) and L0

fh(x) = h(x).

To check if the subsystem is invertible or not, following [77], we first derive an explicit

expression for the input u in terms of the output y by computing the derivatives of y as

follows:

y(t) = h(x(t)), (2.4a)

ẏ(t) = Lfh(x(t)), (2.4b)
...

y(r)(t) = Lrfh(x(t)) + LgL
r−1
f h(x(t))u(t). (2.4c)

From the last equation, we can derive an expression for u(t):

u(t) = −
Lrfh(x(t))

LgL
r−1
f h(x(t))

+
1

LgL
r−1
f h(x(t))

y(r)(t). (2.5)

Hence, u can be determined explicitly in terms of the measured output y, and state x. On

substituting the expression for u from (2.5) in equation (2.1), one gets the dynamics for the

inverse system:

ż = f(z) + g(z)
(
−

Lrfh(z)

LgL
r−1
f h(z)

+
1

LgL
r−1
f h(z)

y(r)
)
,

u = − Lrfh(z)

LgL
r−1
f h(z)

+
1

LgL
r−1
f h(z)

y(r). (2.6)

The dynamics of this inverse subsystem evolve on the set Mα := {z ∈M | LgLr−1
f h(z) 6= 0}.

M
α is open and dense if f, g, h are analytic. Since the inverse system dynamics are driven by

y(r)(·) which satisfies equation (2.4c), it is not hard to see that the state trajectories of the

inverse system satisfy the differential equation of the original system (2.1) where the input

has just been replaced by a function of y. So if the inverse system is initialized with the

same initial condition as that of the plant, then both of the systems follow exactly the same

trajectory. This discussion motivates the following result:

Lemma 2.11. A SISO system is strongly invertible at x0 if the system has a finite relative

degree r at x0. ⊳
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Remark 2.12. The condition given in Lemma 2.11 for strong invertibility at a point x0

is only sufficient, and not necessary. As an example, consider ẋ = 1 + xu, y = x, x ∈ R,

x0 = 0; there is no relative degree at x0, but the system is strongly invertible at x0 because

the trajectory immediately leaves the singularity. In general, this occurs when the first

function of the sequence Lgh(x), LgLfh(x), · · · , LgLkfh(x) which is not identically zero (in a

neighborhood of x0) has a zero exactly at the point x = x0. A result somewhat similar to

Lemma 2.11 appears in [77, Theorem 2.1], where the author gives a necessary and sufficient

condition for strong invertibility of a SISO system but considers only analytic systems with

a slightly different notion of relative degree. ⊳

Remark 2.13. For SISO systems, the input u appears in the r-th derivative of the output

(2.4). Thus the differentiability/smoothness of u will not affect the existence of first r − 1

derivatives of y. If u : [t0, T ) → R is a locally essentially bounded, Lebesgue measurable

function, then y(r)(·) exists almost everywhere and y(r−1)(·) is absolutely continuous [14]. So

for SISO nonlinear nonswitched systems, U is defined as the space of functions which are

locally essentially bounded and Lebesgue measurable, and Yα is the set of corresponding

outputs. ⊳

We now turn to the concept of functional reproducibility, which in broad terms means

the ability to follow a given reference signal. This concept will help us study the existence

of switch-singular pairs. We look at the conditions under which a system can produce the

desired output yd over some interval [t0, T ) starting from a particular initial state x0. To be

precise, given the system (2.1) with m = 1 and initial state x0, we want to find out if there

exists a control u such that ΓOx0(u) = yd. The following result was given by [77]:

Lemma 2.14. If the system (2.1), with m = 1 and x(t0) = x0, has a relative degree r <∞
at x0, then there exists a control input u such that ΓOx0(u) = yd if and only if

y
(k)
d (t0) = Lkfh(x0) ∀ k = 0, 1, · · · , r − 1. (2.7)

This result is easy to comprehend by looking at the expressions for the output derivatives

(2.4). As control u(t) does not directly affect y(k)(t), for k = 1, · · · , r − 1, their values at t0

are determined by the initial state. Substituting

u(t) = −
Lrfh(x(t))

LgL
r−1
f h(x(t))

+
1

LgL
r−1
f h(x(t))

y
(r)
d (t) (2.8)

in (2.4c) gives y(r)(t) = y
(r)
d (t). Using (2.7), repeated integration yields y(t) = yd(t).
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We can now easily check for the switch-singular pairs among Γp,Γq with relative degrees

rp, rq respectively, where p, q ∈ P.

Lemma 2.15. For SISO switched systems, (x0, y) is a switch-singular pair of two subsystems

Γp and Γq if and only if y ∈ Yp ∩ Yq and



y
...

y(rκ−1)


 (t0) =




hκ(x0)
...

Lrκ−1
fκ

hκ(x0)


 , (2.9)

where κ = p, q. ⊳

The example below illustrates the use of these concepts.

Example 2.16. Consider a SISO switched system with two modes

Γp :=





ẋ =




x1 + x2

x2

x1x2


+




0

1

x2


 u, M = R

3,

y = x1,

Γq :=





ẋ =




x2

x2x3

−x2


+




0

1

x2


 u, M = R

3.

y = 2x1,

If Γp is active, then ẏ = x1+x2; if Γq is active, then ẏ = 2x2. Both subsystems have relative

degree 2 on R
3 which can be verified by taking the second derivative of the output. If there

exists x ∈ R
3 which forms a switch-singular pair with y ∈ Yp∩Yq, then the following equality

must be satisfied: (
x1

x1 + x2

)
=

(
2x1

2x2

)
,

which gives x1 = x2 = 0. This state constraint yields y = ẏ = 0. If we let Yα :=
{
y :

[t0, T ) → R | ẏ[t0,T ) ∈ FAC and

(
y(t)

ẏ(t)

)
6= 0 for almost all t ∈ [t0, T )

}
, then there exists

no switch-singular pair between x0 ∈ R
3 and y ∈ Yα. Theorem 2.5 and Lemma 2.11 infer that

the switched system generated by {Γp,Γq} is strongly invertible with inverse submanifold R
3
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over Yα. Alternatively, if x0 6= 0 then (x0, y) is not a switch-singular pair for any y and the

switched system is strongly invertible with inverse submanifold R
3\{0} over Yall. ⊳

For general switched nonlinear systems, it is hard to check for the existence of switch-

singular pairs. To see this, consider the system (2.3) with m = 1. For simplicity, assume

that P = {p, q} and the subsystems Γp, Γq have equal relative degrees, i.e., rp = rq =: r.

Lemma 2.15 states that Γp, Γq have a switch-singular pair (x0, y) if and only if

ŷ = Hp(x0) = Hq(x0), (2.10)

where ŷ = (y, ẏ, · · · , y(r−1))T and Hκ = (hp, Lfphp, · · · , Lr−1
fp

hp)
T , κ = {p, q}. To see if

there exist any switch-singular pairs between two subsystems, one is interested in solving

Hp(x0) = Hq(x0) for x0; that is, x0 that forms switch-singular pair actually lies in the

solution space of r-nonlinear equations where each equation itself involves functions of an

n-dimensional variable x0. As it is hard to talk to about the solutions of nonlinear equations

in general, investigation into more constructive conditions for checking of switch-singular

pairs is a topic of ongoing research. Nonetheless, in case of SISO switched bilinear systems,

the nonlinear equations in (2.9) become linear and the task of checking the existence of

switch-singular pairs between two subsystems is comparatively easier, as illustrated below.

Example 2.17. Consider a switched system with SISO bilinear subsystems, having the

dynamics of the form

ẋ = Aσ(t)x+Bσ(t)xu,

y = Cσ(t)x, (2.11)

where σ(t) = p ∈ P, x ∈ R
n, Ap, Bp ∈ R

n×n, Cp ∈ R
1×n. Also, u(t), y(t) ∈ R.

If some mode p ∈ P is active over a time interval, then at any time t in that interval, the

expression for the derivatives of output is

y(t) = Cpx(t),

ẏ(t) = CpApx(t),

...

y(rp−1)(t) = CpA
rp−1
p x(t),

y(rp)(t) = CpA
rp
p x(t) + CpA

rp−1
p Bpxu(t), (2.12)
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where rp denotes the relative degree of subsystem p. If we introduce the notations

ŷp(t) :=




y(t)

ẏ(t)
...

y(rp−1)(t)




and Zp :=




Cp

CpAp
...

CpA
rp−1
p



,

then based on the functional reproducibility criteria, an output y[t0,t0+ε) can be produced

by a subsystem p if and only if ŷp(t0) = Zpx(t0). Consequently, if two subsystems p, q can

produce a given segment of output on an interval [t0, t0 + ε), then we will have

(
ŷp(t0)

ŷq(t0)

)
=

(
Zp

Zq

)
x(t0) . (2.13)

This is equivalent to saying that

[
Ip

Iq

]
ŷ(t0) =

(
Zp

Zq

)
x(t0), (2.14)

where ŷ :=
(
y, ẏ, · · · , y(r−1)

)T
, r := max{rp, rq}, and for κ = {p, q}, Iκ is an rκ × r matrix

whose ijth element is 1 if i = j and 0 otherwise. Thus, the existence of switch-singular

pairs in case of SISO bilinear switched systems implies that the intersection of range spaces

of

(
Ip

Iq

)
and

(
Zp

Zq

)
is not empty. Since

(
Ip

Iq

)
and

(
Zp

Zq

)
are both linear opera-

tors acting on linear subspaces, the zero vector is always in their range space. Thus, an

identically zero output always forms a switch singular pair with the kernel of

(
Zp

Zq

)
;

that is, (ker

(
Zp

Zq

)
, 0) forms a switch-singular pair for such systems. That is the triv-

ial case; for the nontrivial case we check if

(
Ip

Iq

)
and

(
Zp

Zq

)
have a nontrivial com-

mon range space. So, if there exists a nonzero output that forms a switch-singular pair

with some state at time t, then ŷ(t) ∈ range

(
Ip

Iq

)
∩ range

(
Zp

Zq

)
, or equivalently

rank

[
Ip Zp

Iq Zq

]
< rank

[
Ip

Iq

]
+ rank

[
Zp

Zq

]
.
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In other words, if all the subsystems in (2.11) are invertible and r := maxp∈P rp <∞, then

for all x(t0) := x0 ∈ R
n and y ∈ Yα := {y | y(r−1) ∈ FAC and ŷ[t0,t0+ε) 6≡ 0, for some ε > 0},

the pairs (x0, y) are not switch-singular pairs of Γp,Γq, if and only if the following rank

condition holds:

rank

[
Ip Zp

Iq Zq

]
= rank

[
Ip

Iq

]
+ rank

[
Zp

Zq

]
, (2.15)

for all p 6= q, p, q ∈ P such that Yp ∩ Yq 6= {0}.
This condition is similar to the one given in [65, Lemma 3] for checking the existence of

switch-singular pairs in switched linear systems. The common framework in both cases is

the appearance of linear equations when taking the derivatives of the outputs, which makes

it easier to derive the rank conditions. ⊳

We now have a toolset to check the invertibility conditions given in Theorem 2.5. If

these conditions are satisfied and the switched system is strongly invertible, a switched

inverse system can be constructed to recover the input and switching signal σ from given

output and initial state. For the switched inverse system, define the index inversion function

Σ
−1

: Mα × Yα → P as:

Σ
−1
(x0, y) = p : y ∈ Yp and y(k)(t0) = Lkfphp(x0), (2.16)

where k = 0, 1, · · · , rp − 1, t0 is the initial time of y, and x0 = x(t0). The function Σ
−1

is well-defined since p is unique by the fact that there are no switch-singular pairs. The

existence of p is guaranteed because it is assumed that y ∈ Yα is an output. The dynamics

of the inverse switched system Γ−1
σ are:

σ(t) = Σ
−1
(z(t), y[t,t+ε)),

ż = fσ(z) + gσ(z)
(y(rσ) − Lrσfσhσ(z)
LgσL

rσ−1
fσ

hσ(z)

)
,

u(t) =
y(rσ)(t)− Lrσfσhσ(z(t))
LgσL

rσ−1
fσ

hσ(z(t))
·

with the initial condition z(t0) = x0. The notation (·)σ denotes the object in the parenthesis

calculated for the subsystem with index σ(t). The initial condition σ(t0) determines the

initial active subsystem at the initial time t0, from which time onwards, the active subsystem

indexes and the input as well as the state are determined uniquely and simultaneously.
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2.4.2 Multiple-Input Multiple-Output (MIMO) Systems

For multiple-input multiple-output (MIMO) nonlinear systems affine in controls (2.1), one

uses the structure algorithm to compute the inverse. When a system is invertible, the

structure algorithm, or Singh’s inversion algorithm, allows us to express the input as a

function of the output, its derivatives and possibly some states.

The Structure Algorithm: This version of the algorithm closely follows the construction

given by [82], which is a slightly modified version of the algorithm by [79].

Step 1: Calculate

ẏ = Lfh(x) + LGh(x)u =
∂h

∂x
[f(x) +G(x)u],

and write it as ẏ =: a1(x) + b1(x)u. Define s1 := rank b1(x), which is the rank of b1(x) in

some neighborhood of x0, denoted as N1(x0). Permute, if necessary, the components of the

output so that the first s1 rows of b1(x) are linearly dependent. Decompose y as

ẏ =

(
˙̃y1
˙̂y1

)
=

(
ã1(x) + b̃1(x)u

â1(x) + b̂1(x)u

)
,

where ˙̃y1 consists of the first s1 rows of ẏ. Since the last m − s1 rows of b1(x) are linearly

dependent upon the first s1 rows, there exists a matrix F1(x) such that

˙̃y1 = ã1(x) + b̃1(x)u,

˙̂y1 = ĥ1(x, ˙̃y1) = â1(x) + F1(x)( ˙̃y1 − ã1(x)), (2.17a)

where the last equation is affine in ˙̃y1. Finally, set B̃1(x) := b̃1(x).

Step k+1: Suppose that in steps 1 through k, ˙̃y1, · · · , ỹ(k)k , ŷ
(k)
k have been defined so that

˙̃y1 = ã1(x) + b̃1(x)u,

...

ỹ
(k)
k = ãk(x, {ỹ(j)i | 1 ≤ i ≤ k − 1, i ≤ j ≤ k})

+ b̃k(x, {ỹ(j)i | 1 ≤ i ≤ k − 1, i ≤ j ≤ k − 1})u,
ŷ
(k)
k = ĥk(x, {ỹ(j)i | 1 ≤ i ≤ k, i ≤ j ≤ k}),

where all the expressions on the right-hand side are rational functions of ỹ
(j)
i . Suppose
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also that the matrix B̃k := [b̃T1 , . . . , b̃
T
k ]
T (vertical stacking of the linearly independent rows

obtained at each step) has full rank equal to sk in Nk(x0). Then calculate

ŷ
(k+1)
k =

∂ĥk

∂x
[f(x) +G(x)u] +

k∑

i=1

k∑

j=i

∂ĥk

∂ỹ
(j)
i

ỹ
(j+1)
i ,

and write it as

ŷ
(k+1)
k = ak+1(x, {ỹ(j)i | 1 ≤ i ≤ k, i ≤ j ≤ k + 1})

+ bk+1(x, {ỹ(j)i | 1 ≤ i ≤ k, i ≤ j ≤ k})u. (2.18)

Define Bk+1 := [B̃T
k , b

T
k+1]

T , and sk+1 := rankBk+1. Permute, if necessary, the components

of ŷ
(k+1)
k so that the first sk+1 rows of Bk+1 are linearly independent. Decompose ŷ

(k+1)
k as

ŷ
(k+1)
k =




ỹ
(k+1)
k+1

ŷ
(k+1)
k+1


 ,

where ỹ
(k+1)
k+1 consists of the first (sk+1 − sk) rows. Since the last rows of Bk+1(x, {ỹ(j)i | 1 ≤

i ≤ k, i ≤ j ≤ k}) are linearly dependent on the first sk+1 rows, we can write

˙̃y1 = ã1(x) + b̃1(x)u,

...

ỹ
(k+1)
k+1 = ãk+1(x, {ỹ(j)i | 1 ≤ i ≤ k, i ≤ j ≤ k + 1})

+ b̃k+1(x, {ỹ(j)i | 1 ≤ i ≤ k, i ≤ j ≤ k})u,
ŷ
(k+1)
k+1 = ĥk+1(x, {ỹ(j)i | 1 ≤ i ≤ k + 1, i ≤ j ≤ k + 1}),

where once again everything is rational in ỹ
(j)
i . Finally, set B̃k+1 := [B̃T

k , b̃
T
k+1]

T , which has

full rank equal to sk+1 locally.

End of Step k + 1.

By construction, s1 ≤ s2 ≤ · · · ≤ m. If for some integer α we have sα = m, then the

algorithm terminates and the system is strongly invertible at x0. We call α the relative

order 6 of the system. The closed form expression for u is derived from the α-th step of the

6The term was coined by [78] and is weaker than the notion of vector relative degree. Parallel to the
terminology used in linear system theory, [85] show that α is the highest order of zeros at infinity.
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structure algorithm, which gives an invertible matrix B̃α := [b̃T1 , . . . , b̃
T
α ]
T having full rank

equal to m in a neighborhood Nα(x0) =: N(x0), namely,

u = B̃−1
α







˙̃y1
...

ỹ
(α)
α


−




ã1
...

ãα





 =: B̃−1

α [Ỹα − Ãα]. (2.19)

Note that the entries of the matrix B̃α are rational functions of the derivatives of the

output and there may exist an output for which the rank of B̃α drops. We denote by Y s the

values of the output and its derivatives, evaluated at a time instant t, for which the rank of

B̃α(x, y(t)) is less than m, while x ∈ N(x0). We can now formally define the sets Ys and Yα
for a subsystem as follows: Ys := {y : [t0, T )→ R

2 | y(t) ∈ Y s for almost all t ∈ [t0, t0+ δ) ⊆
[t0, T ), where δ > 0 is arbitrary}, and Yα := {y : [t0, T ) → R

2 | y(t) /∈ Y s for almost all t ∈
[t0, t0 + ε) and some ε > 0}. In other words, Ys includes those outputs for which the matrix

B̃α is not invertible and Yα is its complement. Hence, we work with u such that ΓOx0(u) /∈ Ys.
Comparing to the SISO case, we had B̃α = LgL

r−1
f h(x) which is a function of the state only

and thus there exists no singular output for SISO systems. Another useful class of systems

for which Ys = ∅ was discussed by [78]. As was the case in SISO systems, substitution of

the expression for u from (2.19) in (2.1) gives the dynamics of the inverse system. These

dynamics are defined on the set Mα := {x ∈ M | rank B̃α(x, y(t)) = m, y(t) /∈ Y s}, which is

open and dense if f(x), g(x), h(x) are analytic functions.

Example 2.18. As an illustration of the structure algorithm, let us revisit the system defined

in Example 2.1. Step 1 of the algorithm yields ẏ =

(
˙̃y1
˙̂y1

)
=

(
ẏ1

ẏ2

)
=

(
x1 0

x3 0

)
u. Using

F1(x) = x3/x1, we get ˙̂y1 = ẏ2 = (x3/x1)ẏ1. In Step 2, after differentiating ˙̂y1 = ẏ2, we get

the following set of equations:

˙̃y1 = ẏ1 = x1u1,

¨̃y2 = ÿ2 =
x3ÿ1 − ẏ1ẏ2 + ẏ1u2

x1
⇒ B̃2 =

(
x1 0

0 ẏ1/x1

)
.

So, B̃2 has rank 2, the number of inputs. Hence, α = 2; Mα = {x ∈ R
3 | x1 6= 0}; Y s =

{z ∈ R
2 | z1 = 0}, and Ys = {y : [t0, T ) → R

2 | ẏ(t) ∈ Y s for almost all t ∈ [t0, t0 + δ) ⊆
[t0, T ), where δ > 0 is arbitrary}. ⊳
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Remark 2.19. Unlike in the SISO case, we need some differentiability assumptions on the

input signals to characterize the input space for MIMO systems. In the structure algorithm,

Step 1 gives ˙̃y1 that has already u on the right-hand side and the α-th step of the algorithm

involves {ỹ(j)i | 1 ≤ i ≤ α− 1, i ≤ j ≤ α}. Thus ỹ(α−1)
i must be absolutely continuous so that

ỹ
(α)
i exists almost everywhere. For the input space, it means that u(α−1) must be Lebesgue

measurable and locally essentially bounded. These constraints characterize the input space

U for MIMO case and Y is the corresponding set of outputs. From the structure algorithm,

we deduce that the system is invertible on Yα = Y\Ys. ⊳

Based on the structure algorithm, we now study the conditions for functional reproducibil-

ity of multivariable nonlinear systems. Using the notation derived in the structure algorithm,

denote by Z the vector

Z
(
x, ˙̃y1, · · · , ỹ(α−1)

α−1

)
:=




h(x)

ĥ1(x, ˙̃y1)
...

ĥα−1
(
x, ˙̃y1, · · · , ỹ(α−1)

α−1

)



, (2.20)

and let

ŷ :=




y

ŷ1
...

ŷ
(α−1)
α−1




, ŷd :=




yd

ŷd1
...

ŷ
(α−1)
dα−1



. (2.21)

So Z is basically a concatenation of the expressions appearing at each step of Singh’s structure

algorithm which get differentiated and ŷ is the concatenation of the corresponding expressions

on the left-hand side so that

Z
(
x, ˙̃y1, · · · , ỹ(α−1)

α−1

)
− ŷ = 0.

The following result is along the same line as Lemma 2.14 and has appeared in [86, Theorem

1]. However, the proof given here is developed differently than [86].

Lemma 2.20. If the system given by (2.1), with x(t0) = x0, has a relative order α < ∞,

then there exists a control input u such that ΓOx0(u) = yd(·) if and only if

ŷd(t0) = Z
(
x0, ˙̃yd1(t0), · · · , ỹ(k)dk

(t0)
)

∀k = 0, 1, · · · , α− 1. (2.22)
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Proof. Necessity: Supposing ∃ ε > 0 and input u defined over the interval [t0, t0+ ε), such

that ΓOx0(u(t)) = yd(t), ∀t ∈ [t0, t0 + ε), then

yd(t0) = y(t0) = h(x0),

ŷd1(t0) = ŷ1(t0) = ĥ1(x, ˙̃y1) = ĥ1(x, ˙̃yd1),

...

ŷ
(α−1)
dα−1 (t0) = ŷ

(α−1)
α−1 (t0)

= ĥα−1
(
x0, ˙̃y1, · · · , ỹ(α−1)

1 , · · · , ỹ(α−1)
α−1

)

= ĥα−1
(
x0, ˙̃yd1, · · · , ỹ(α−1)

d1
, · · · , ỹ(α−1)

dα−1

)
,

and hence equation (2.22) is satisfied.

Sufficiency: If we inject yd(t) into the inverse system, then the control input produced by

this inverse system is given by (2.19) with ỹ replaced by ỹd, and substituting it in the α-th

step of the structure algorithm

˙̃y1 = ã1(x) + b̃1(x)u,

...

ỹ(α)α = ãα(x, {ỹ(j)i | 1 ≤ i ≤ α− 1, i ≤ j ≤ α})
+ b̃α(x, {ỹ(j)i | 1 ≤ i ≤ α− 1, i ≤ j ≤ α− 1})u,

we get

˙̃y1(t) = ˙̃yd1(t), ∀ t ∈ [t0, t0 + ε) · (2.23)

Here t0 + ε characterizes the time instant at which the trajectory of the inverse system

hits the singular point in the state space. As the system is strongly invertible at x0, it is

guaranteed that ε > 0.

Using hypothesis (2.22), we have h(x0) = yd(t0), and integrating (2.23) on both sides over

the interval [t0, t0 + ε) to get

ỹ1(t) = ỹd1(t), ∀ t ∈ [t0, t0 + ε) · (2.24)

Using the initial conditions characterized by (2.22), the desired result can now be derived
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by induction. Suppose Equations (2.23) and (2.24) are true for index k; that is

ỹ
(k)
k (t) = ỹ

(k)
dk

(t) ∀ t ∈ [t0, t0 + ε),

ỹk(t) = ỹdk(t) ∀ t ∈ [t0, t0 + ε) .

Since ỹ
(k+1)
k+1 = ãk+1(x, {ỹ(j)i | 1 ≤ i ≤ k, i ≤ j ≤ k+1})+ b̃k+1(x, {ỹ(j)i | 1 ≤ i ≤ k, i ≤ j ≤ k})u,

substituting u from (2.19) as generated by the inverse system, with ỹ replaced by ỹd, gives

ỹ
(k+1)
k+1 (t) = ỹ

(k+1)
dk+1

(t) ∀ t ∈ [t0, t0 + ε) .

Again using hypothesis (2.22) and integrating both sides, we get

ỹk+1(t) = ỹdk+1
(t) ∀ t ∈ [t0, t0 + ε) .

As y(t) = (ỹ1(t), . . . , ỹα(t)), we get ΓOx0(u(t)) = yd(t), ∀ t ∈ [t0, t0 + ε).

Another version of this result in terms of jet spaces is given by [83]. Similarly to the

SISO case, the idea is that the portion of the output which is not directly affected by u is

determined initially by the value of state variables; and the input u, for which ΓOx0(u) = yd(·),
is given by (2.19) with y replaced by yd in that formula.

Example 2.21. Consider the system given in Example 2.1. The vector ŷ is the portion of

the output that gets differentiated, and therefore

ŷ =




y1

y2

ẏ2


 ⇒ ŷd =




yd1

yd2

ẏd2


 .

The vector Z(x, yd1 , y2, ẏd1) is given by

Z(x, yd1 , y2, ẏd1) =




x1

x2

ẏd1(x3/x1)


 .

Using Lemma 2.20 and calculations in Example 2.18, if we have

ŷd(t0) = Z
(
(x0, yd1(t0), y2(t0), ẏd1(t0)

)
,
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then the control which produces yd as an output, on a small interval, is given by

u1 =
ẏd1
x1
,

u2 =
x1ÿd2 − x3ÿd1 + ẏd1 ẏd2

ẏd1
·

If yd(·) ∈ Yα for all times and the corresponding state trajectory x(·) ∈M
α, then the system

can produce yd(·) as an output over an arbitrary time interval. ⊳

Lemma 2.20 gives the following condition for the verification of switch-singular pairs.

Lemma 2.22. For MIMO switched systems, (x0, y) is a switch-singular pair of two subsys-

tems Γp, Γq if and only if y ∈ Yp ∩ Yq and



y
˙̂y1
...

ŷακ−1
(ακ−1)




=




hκ(x0)

ĥ1κ(x0, ˙̃y1)
...

ĥακ−1
κ (x0, ˙̃y1, · · · , ỹ(ακ−1)

ακ−1 )



, (2.25)

for κ = p, q, and ακ denotes the relative order of subsystem Γκ. ⊳

The procedure for constructing the inverse from this point onwards is exactly the same as

discussed earlier for the SISO case with u given by (2.19) instead of (2.5).

Remark 2.23. The results in this section can also be extended to include the case when there

are state jumps at switching times. Denote by ψp,q : M→ M the reset map when switching

from subsystem p to subsystem q, p, q ∈ P. Thus far, we have considered the case of

identity reset maps only, where ψp,q(x) = x ∀ p, q ∈ P, ∀x ∈M. For nonidentity reset maps,

Definition 2.4 is modified to “(x0, y) is a switch-singular pair of the two subsystems Γp, Γq

if there exist u1, u2 and ε > 0 such that ΓOp,x0(u1[t0,t0+ε)) = ΓOq,ψp,q(x0)
(u2[t0,t0+ε)) = y[t0,t0+ε) or

ΓOp,ψq,p(x0)
(u1[t0,t0+ε)) = ΓOq,x0(u2[t0,t0+ε)) = y[t0,t0+ε).” Essentially, this means that the output is

indistinguishable between the two subsystems, taking into account the effect of state jumps.

In case of SISO systems, instead of equation (2.9), we check for switch-singular pairs using




y
...

y(rκ−1)


 (t0) =




hκ(ψp,κ(x0))
...

Lrκ−1
fκ

hκ(ψp,κ(x0))


 , (2.26)
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or 


y
...

y(rκ−1)


 (t0) =




hκ(ψq,κ(x0))
...

Lrκ−1
fκ

hκ(ψq,κ(x0))


 , (2.27)

where κ = p, q ∈ P and ψp,p(x0) = ψq,q(x0) = x0, ∀ p, q ∈ P. Equation (2.25) would also

be modified similarly when dealing with MIMO systems. The statement of Theorem 2.5, in

either case, remains unchanged.

Another generalization is to include switching mechanisms, such as switching surfaces.

Denote by Sp,q the switching surface for subsystem p, where the switched system jumps to

subsystem q. Then we only need to check for the switch-singularity of x0 ∈ Sp,q and x0 ∈ Sq,p
instead of x0 ∈M for the two subsystems Γp,Γq. ⊳

2.5 Output Generation

In the previous section, we considered the question of left-invertibility where the objective

was to recover (σ, u) uniquely for all y in some output set Yα. In this section, we ad-

dress a different problem which concerns finding (σ, u) (that may not be unique) such that

Hx0(σ, u) = yd for a given function yd and a state x0. For the invertibility problem, we found

conditions on the subsystems and the output set Y so that the map Hx0 is injective. Here,

we are given one particular (x0, yd) and wish to find its preimage under the map Hx0. For

the switched system (2.3), denote by H−1
x0
(yd) the preimage of a function yd,

H−1
x0
(yd) := {(σ, u) : Hx0(σ, u) = yd}. (2.28)

If yd is not in the image set of Hx0, then by convention H−1
x0

= ∅. When H−1
x0
(yd) is a

singleton, the system is invertible at x0. We want to find conditions and an algorithm to

generate H−1
x0
(yd) when H−1

x0
(yd) is a finite set.

We require the individual subsystems to be invertible at x0 because if this is not the case,

then the set H−1
x0
(yd) may be infinite. When a square nonswitched nonlinear system is not

invertible, the matrix B̃−1
α in (2.19) is not defined and the expression for u is modified to:

u(t) = B̃†
α[Ỹα − Ãα] +K(x, Ỹα−1)v, (2.29)

where K is a matrix whose columns form a basis for the null space of B̃α and B̃†
α :=
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B̃T
α (B̃αB̃

T
α )

−1 is a right pseudo-inverse of B̃α. If an output is generated by some input u

obtained from (2.29) with some initial state, then due to arbitrary choice of v, there always

exist infinitely many different inputs that generate the same output with the same initial

state. Hence to avoid infinite loop reasoning, we will assume that the individual subsystems

Γp are invertible at x0 for all p ∈ P. However, we do not assume that the switched system

is invertible as the subsystems may have switch-singular pairs. We will only consider the

functions yd(·) over finite time intervals so that there is only a finite number of switches

under consideration.

A switching inversion algorithm for switched systems, similar to the one given by [65],

is now presented in Algorithm 1. The algorithm takes the parameters x0 ∈ M, yd ∈ Fpc
(defined over a finite interval) and returns the set H−1

x0
(yd). It uses the index-matching map7

Σ−1 : M×Fpc → 2P defined as Σ−1(x0, yd) := {p such that yd ∈ Yαp and yd satisfies (2.22)},
obtained via the structure algorithm of Γp. The index-matching map returns the indexes

of the subsystems that are capable of generating yd starting from x0. If the returned set

is empty, no subsystem is able to generate that yd starting from x0. Note that the index-

matching map Σ−1 is defined for every pair (x0, yd) and always returns a set, whereas the

index inversion function Σ
−1

in (2.16) is defined only for (x0, yd) which are not switch-singular

pairs and returns an element of P.
In the algorithm, Γ−1,O

p,x0
(yd) denotes the output of the inverse subsystem Γ−1

p ; the symbol

“←” reads “assigned as”, and “:=” reads “defined as”. The concatenation of an element

η and a set S is η ⊕ S := {η ⊕ ζ, ζ ∈ S}. By convention, η ⊕ ∅ = ∅, ∀η. Finally, the

concatenation of two sets S and T is S ⊕ T := {η ⊕ ζ, η ∈ S, ζ ∈ T}.
The return set A is always finite and, if nonempty, it contains the pairs of switching signals

and inputs that generate the given yd starting from x0. If the return is an empty set, it means

that there is no switching signal and input that generate yd, or there is an infinite number

of possible switching times. Also by our concatenation notation, if at any instant of time,

the return of the procedure is an empty set, then that branch of the search will be empty

because η ⊕ ∅ = ∅.
Based on the semigroup property for the trajectories of dynamical systems, the algorithm

determines the switching signal and the input on a subinterval [t0, t) of [t0, T ) and then

concatenates these signals with the corresponding preimage on the rest of the interval [t, T ).

If t is the first switching time after t0, then we can find H−1
x0

(yd[t0,t)) by singling out which

subsystems are capable of generating yd[t0,t) using the index-matching map. The obvious

7The set 2P denotes the set of all subsets of the set P .
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Algorithm 1: Output Generation in Nonlinear Switched Systems

begin H−1
x0
(yd[t0,T ))1

Let P := {p ∈ P : yd[t0,t0+ε) ∈ Yαp and x0 ∈M
α
p , ε > 0}2

Let t∗ := min{t ∈ [t0, T ) : yd[t,t+ε) /∈ Yαp for some p ∈ P , ε > 0} otherwise t∗ = T .3

Let P∗ := Σ−1(x0, yd[t0,t0+ε)).4

if P∗ 6= ∅ then5

Let A := ∅6

foreach p ∈ P∗ do7

Let x := Γ−1
p,x0

(yd[t0,t∗))8

if x ∈ M
α
p and yd[t0,t∗) ∈ Yαp then9

Let u := Γ−1,O
p,x0

(yd[t0,t∗))10

T := {t ∈ (t0, t
∗) : (x(t), yd(t)) is a switch- singular pair of Γp, Γq for11

some q 6= p}.
if T is a finite set then12

foreach ti ∈ T do13

let ξ := Γp(u)(ti)14

A ← A ∪{(σ[t0,ti), u[t0,ti))⊕H−1
ξ (yd[ti,T ))}15

else if T = ∅ and t∗ < T then16

let ξ := Γp(u)(t
∗)17

A ← A∪ {(σ[t0,t∗), u)⊕H−1
ξ (yd[t∗,T ))}18

else if T = ∅ and t∗ = T then19

A ← A∪ {(σ[t0,T ), u)}20

else21

A := ∅22

else23

A := ∅24

else25

A := ∅26

return H−1
x0
(yd) := A27

end28

candidate for first switching time, denoted by t∗ in the algorithm, is the time at which the

output loses smoothness. Note that in the SISO case, t∗ is the time at which one of the

first r − 1 derivatives of the output lose continuity (see Section 2.4.1). But, it is entirely

possible that we have a switching at some time instant ti and the output is still smooth (see

Example 2.24). In this case, (x(ti), y[ti,ti+ε)) forms a switch-singular which, in the SISO case,

can be checked by using (2.9), or for the systems with reset maps, using (2.26) or (2.27).
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The algorithm keeps track of all the switch-singular pairs encountered along the trajectory

of the motion and uses a switch at a later time to recover a “hidden switch” earlier (e.g.

a switch at which the output is smooth). This makes the switching inversion algorithm a

recursive procedure calling itself with different parameters within the main algorithm (e.g.

the function H−1
x0
(yd) uses the returns of H−1

ξ (yd[t∗,T ))).

The following example should help understand this algorithm.

Example 2.24. Consider a SISO switched system with two modes

Γ1 :





ẋ =

(
x1x2

x2

)
+

(
0

1

)
u, M = R

2,

y = x2,

Γ2 :





ẋ =

(
0

x1

)
+

(
ex2

ex2

)
u, M = R

2.

y = x1,

We wish to reconstruct the switching signal σ(·) and the input u(·) which will generate the

following output:

yd(t) =

{
cos t if t ∈ [0, t∗),

2 cos t if t ∈ [t∗, T ),

where t∗ = π and T = 4.5, with the given initial state x0 = (0, 1)T .

In this example, (x0, y[t0,t0+ε)) form a switch-singular pair if, for some c ∈ R, x0 =

(
c

c

)

and y(t0) = c.

We now use the above switching inversion algorithm to find (σ, u) such that ΓOx0,σ(u) = yd.

We have P = {1, 2} and P∗ := Σ−1(x0, yd[0,t∗)) = {1} by using the index-matching map with

given x0 and yd(0) = 1. The inverse of Γ1 on [0, t∗) is

Γ−1
1 :





ż =

(
z1z2

0

)
+

(
0

1

)
ẏd, M

α
1 = R

2,

u(t) = −z2 + ẏd,
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with z(0) = x0, which then gives

z(t) =

(
0

cos t

)
=: x(t),

u(t) = − cos t− sin t,

(2.30)

for t ∈ [0, t∗). We want to find the set T := {t ≤ t∗ : (x(t), yd[t,t∗)) is a switch-singular pair

of Γ1, Γ2}, which is equivalent to solving

cos t = x1(t) = 0, t ∈ (0, t∗).

This equation has a solution t = π/2 =: t1 < t∗, and hence T = {t1}, a finite set. We have

ξ = x(t1) = (0, 0)T and we repeat the procedure for the initial state ξ and the output yd[t1,T )

with P∗ := Σ−1(ξ, yd[t1,t∗)) = {1, 2}. We analyze these two cases:

Case 1: p = 1. This implies t1 is not a switching time, i.e., σ(t) = 1 for t ∈ [t0, t
∗) and

u(t), x(t) are given by (2.30) for 0 ≤ t < t∗, which gives ξ = x(t∗) = (0, −1)T . At t∗, Γ2

must be active, but then y(t∗) = x1(t
∗) = 0 6= −2 = yd(t

∗); thus the index-matching map

returns an empty set, Σ−1(ξ, yd[t∗,T )) = ∅.
Case 2: p = 2, which means that t1 is a switching instant. So we work with the inverse

system of Γ2,

Γ−1
2 :





ż =

(
0

z1

)
+

(
1

1

)
ẏd, M

α
1 = R

2,

u(t) = e−z2 ẏd,

with initial state z(t1) = ξ, which gives

z(t) =

(
cos t

cos t+ sin t− 1

)
=: x(t),

u(t) = −e(1−cos t−sin t) sin t,

for t ≥ t1. We find T = {t1 < t ≤ t∗ : (x(t), yd[t,t∗)) is a switch-singular pair of Γ1, Γ2},
which is equivalent to solving for

cos t = cos t + sin t− 1,
π

2
= t1 < t ≤ t∗ = π.

It is easy to see that this equation has no solution and thus there exist no switch-singular

pairs in the interval (t1, t
∗). So, we let ξ = x(t∗) = (−1, −2)T and repeat the procedure
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with ξ and yd[t∗,T ), which gives the unique solution σ[t∗,T ) = 1 and u[t∗,T ) = −2(cos t+ sin t).

Thus, the switching inversion algorithm returns (σ, u), where

(σ, u) =





(1, − cos t− sin t), if 0 ≤ t < t1,

(2, −e(1−cos t−sin t) sin t), if t1 ≤ t < t∗,

(1, −2(cos t+ sin t)), if t∗ ≤ t ≤ T .

In this example, two switches are required to generate the given output. One of the switching

instants is t∗ as the output loses smoothness at that instant. The other switching instant is

t1 where the output does not lose smoothness. Without the concept of switch-singular pairs,

one may try all the four possible combinations with t∗ as the only switching instant and

arrive at the false conclusion that there is no switching signal and input that generate yd(t);

but instead the use of the switching inversion algorithm allows us to construct the input and

switching signal. ⊳
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Chapter 3

Robust Invertibility of Switched Linear
Systems

This chapter takes into account the practical considerations of invertibility algorithms. One

of the main drawbacks of the problem of invertibility is that it requires precise knowledge

of the output and the initial condition in order to recover the switching signal and the

input. Due to physical limitations of the sensors and non-uniform/unpredictable operating

conditions of the system, it is often the case that these two quantities (output and the initial

condition) are not precisely known. Thus, it is natural to ask the question whether it is

possible to recover the unknown switching signal and the input with disturbances in the

measurement of the output and imprecise knowledge of the initial state.

Motivated by this practical setup, this chapter will address the effects of uncertainties in

output measurements and initial conditions on the recovery of the input and the switching

signal. We give conditions under which it is possible to recover the exact switching signal

over certain time interval, provided the uncertainties are bounded in some sense. If there are

no switch-singular pairs under ideal setup, i.e., it is possible to recover the switching signal

with exact measurements and initial condition, then a lower bound on the time interval, over

which the switching signal can be recovered in the presence of uncertainties, is provided. In

addition, we discuss separately the case where each subsystem is minimum-phase and it

is possible to recover the exact switching signal globally in time. The input, though, is

recoverable only up to a neighborhood of the original input.

For the problem of recovering the switching signal under uncertainties, we will only con-

sider switched linear systems described as:

Γσ :

{
ẋ = Aσx+Bσu,

y = Cσx+Dσu.
(3.1)

For each p in the index set P, Ap ∈ R
n×n, Bp ∈ R

n×m, Cp ∈ R
m×n, Dp ∈ R

m×m so that

u(t) ∈ R
m, and y(t) ∈ R

l; also, state variable x ∈ R
n. The input and output dimensions are

assumed to be the same so that the system is square. Further, u ∈ Fn, so that the output
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y ∈ Fn, where Fn denotes the subset of piecewise right-continuous functions whose elements

are n-times continuously differentiable between any two consecutive discontinuities.

Notations: We denote by ΓOp,x0(u) the output of subsystem p with initial condition x0 and

input u. The p-norm of a vector in Euclidean spaces is denoted by | · |p, 1 ≤ p ≤ ∞ and

the induced p-norm of a matrix is denoted by ‖ · ‖p. If no subscript appears, we mean the

2-norm. For a signal y : R 7→ R
m, we denote by yI the restriction of the signal over the

interval I ⊆ R. The notation ‖yI‖p denotes the p-th norm of the signal defined as:

‖yI‖p :=
(∫

I
|y(s)|pds

) 1
p

, 1 ≤ p <∞

and ‖yI‖∞ := ess supt∈I |y(t)|∞. For two matrices, A1 and A2, col(A1, A2) denotes the

vertical concatenation of A1 and A2, that is, col(A1, A2) := [A⊤
1 , A

⊤
2 ]

⊤, where the vectors in

R
k are seen as matrices of dimension k×1. For a signal y : R 7→ R

k, Y k := col(y, ẏ, · · · , y(k)),
so that Y k is the vertical concatenation of the output and its derivatives. For a vector z in

some Euclidean space and a positive scalar r, the ball of radius r centered at z is defined as

Br(z) := {y : |y − z| ≤ r}. We use the symbol 〈z, y〉 to denote the inner product of z and y,

whenever y and z are the vectors in the same space.

Problem Setup: With y : R → R
m as the exact output of the system, let Y k :=

col(y, ẏ, ÿ, · · · , y(k)), k ∈ N, denote the vector comprising the exact output and its first

k-derivatives. For brevity, Y := Y n. Both y and Y k are considered to be unknown. Let

Ŷ k := col(ŷ, ˆ̇y, ˆ̈y, · · · , ŷ(k)) denote the imprecise estimate of the output and its derivatives ob-

tained by inaccurate measurements and numerical differentiation. Several useful techniques

for obtaining the estimates of the derivatives, even for noisy signals, have been discussed in

the literature; see [87] and references therein. It is assumed that for each t, the uncertainty

in the measurement of the output and its derivatives is bounded by some fixed and known

number ̺ > 0, that is, |Y (t) − Ŷ (t)| ≤ ̺. Also, the exact knowledge of the initial state

x0 := x(t0) is no longer assumed; instead x0 is assumed to be contained in a known compact

and convex set Rt0 , so that1 x̂0 ∈ Rt0 is an initial estimate of x0. Our objective is to: (a) find

conditions on subsystem dynamics and a deterministic function Σ̃−1(x̂0, ŷ) that reconstructs

the original value of σ over some time interval, (b) compute the maximum error between

the actual and the reconstructed input, (c) find conditions under which Σ̃−1(x̂0, ŷ) yields the

actual value of σ at all times for a particular class of systems.

1In order to reduce uncertainty and for reasons that will become clear later on, x̂0 is chosen as: x̂0 =
argminx∈Rt0

{
miny∈Rt0

|x− y|
}
. Thus, for a spherical or an ellipsoidal Rt0 , x̂(t0) is chosen as the center of

that sphere or ellipsoid.
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After stating the required background and basic terminologies in Section 3.1, the solutions

to problems (a) and (b) appear in Section 3.2 as we derive the analytical bounds on time

intervals over which exact recovery of the switching signal is possible under certain condi-

tions. If each subsystem is minimum-phase, then we extend these conditions to recover the

switching signal globally for all times in Section 3.3 as a solution to (c).

3.1 Background and Preliminaries

As mentioned at the beginning of Chapter 2, invertibility of a switched system (3.1) requires

each subsystem to be invertible and the identification of the active mode [65]. To check

the former property, i.e., invertibility of a subsystem, one uses Silverman’s structure algo-

rithm [75, 88]; this paper, however, uses the notations developed in a terse version of the

structure algorithm given in [65]. If a subsystem is invertible, the structure algorithm leads

to the construction of an inverse subsystem that reconstructs the original input using the

state and the output values. For mode identification in (3.1), we first develop a relation-

ship between the output and the state for each subsystem and then utilize it to determine

the active subsystem at each time instant. This relationship is characterized by the range

theorem [88] and the characterization uses certain operators Lp and Wp, which are obtained

by applying the structure algorithm to each subsystem Γp. The formulae for Lp and Wp

in terms of system data have been developed in the Appendix A. The exact expressions of

these operators are not required in the understanding of this paper, and we refer the reader

to Appendix A if such formulae are sought. The following example helps illustrate how these

operators show up in computations:

Example 3.1. Consider a non-switched linear SISO system

Γ1 :





ẋ =

[
−1 1

1 1

]
x+

[
0.5

0

]
u,

y = [0 0.5]x.

Clearly, y and ẏ are independent of the input; that is,
( y
ẏ

)
= [ 0 0.5

0.5 0.5 ]x, or equivalently

[I2×2 02×1]Y = [ 0 0.5
0.5 0.5 ] x, where Y := col(y, ẏ, ÿ). So, we let W1 := [I2×2 02×1], and L1 :=

[ 0 0.5
0.5 0.5 ] and the relation W1Y (t) = L1x(t) holds ∀ t ≥ t0. Computing the expression for

ÿ, solving it for u, and plugging the resultant back into the original dynamics yields the
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corresponding inverse system,

Γ−1
1 :





˙̂x =

[
−1 −1
1 1

]
x̂+

[
2

0

]
ˆ̈y,

u = [0 − 4]x̂+ 4ˆ̈y.

⊳

For the sake of clear presentation, we introduce the following assumptions to state a

simplified version of the range theorem in Proposition 3.2 which characterizes the relationship

between the output and the state for a subsystem Γp.

Assumption 3.1. Throughout the paper, it is assumed that:

1. each subsystem Γp, p ∈ P, is invertible;

2. and the inputs are such that the output produced by each subsystem is n-times differ-

entiable (i.e., Cn).

Proposition 3.2. Consider system (3.1) with initial state x0. If Assumption 3.1 holds and

y ∈ Cn([t0, t1),Rm), then there exists an input u such that y[t0,t1) = ΓOp,x0(u[t0,t1)) if and only

if WpY ∈ C0([t0, t1),Rm) and WpY (t0) = Lpx0. ⊳

In other words, when the outputs considered are sufficiently smooth on an interval [t0, t1),

the condition WpY (t0) = Lpx0 guarantees that the particular y can be generated by subsys-

tem Γp on that interval, starting from the particular initial state x0 at time t0. It is also

noted from the structure algorithm that regardless of what the input is, the output and the

state are related by the equation WpY (t) = Lpx(t), for all t ≥ t0 when Γp is active, and not

just at the initial time t0. When dealing with the switched systems, this is the fundamental

idea employed in mode detection and it also leads to the following concept of switch-singular

pairs [65].

Definition 3.3. Let x0 ∈ R
n and y ∈ Cn be an R

m-valued function on some time interval.

The pair (x0, y) is a switch-singular pair of the two subsystems Γp, Γq if there exist u1, u2

such that ΓOp,x0(u1[t0,t0+ǫ)
) = ΓOq,x0(u2[t0,t0+ǫ)

) = y[t0,t0+ǫ), for some ǫ > 0. ⊳

Essentially, if a state and an output (the time domain can be arbitrary) form a switch-

singular pair, then there exist inputs for the two subsystems to produce that same output

starting from that same initial state. Under Assumption 3.1, it follows from Definition 3.3
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and Proposition 3.2 that (x0, y) is a switch-singular pair for Γp,Γq if, and only if,

[
Wp

Wq

]
Y (t0) =

[
Lp

Lq

]
x0, (3.2)

where x0 = x(t0), and t0 is the initial time of y. This condition for verifying the existence

of switch-singular pairs can be checked easily for a certain class of outputs using a rank

condition. According to [65, Lemma 3], if y is such that
[
Wp

Wq

]
Y (t) 6= 0, for any t ≥ t0, then

there exist no switch-singular pairs (x0, y) between subsystems Γp and Γq if, and only if,

rank

[
Lp Wp

Lq Wq

]
= rank

[
Lp

Lq

]
+ rank

[
Wp

Wq

]
. (3.3)

If Lpq and Wpq denote the range spaces of the matrices
[
Lp

Lq

]
and

[
Wp

Wq

]
respectively, then

geometrically, condition (3.3) is equivalent to saying that Lpq ∩Wpq = {0}.
Next, let Y be the set of piecewise smooth functions such that if y ∈ Y , then

[
Wp

Wq

]
Y (t0) 6=

0 for all p 6= q, p, q ∈ P. It has been shown in [65] that, for the output set Y , a switched

system is invertible if and only if all subsystems are invertible and subsystem dynamics

are such that there exist no switch-singular pairs among them. So, if Assumption 3.1 and

equation (3.3) hold, then the switched system is invertible for the output set Y .
In case a switched system is invertible, a switched inverse system can be constructed to

recover the input and the switching signal σ from the given output and the initial state.

Towards that end, define the index-inversion function Σ
−1

: Rn × Y → P as:

Σ
−1
(x0, y) = {p : WpY (t0) = Lpx0}. (3.4)

The function Σ
−1

is well-defined since p is unique by the fact that there are no switch-singular

pairs. The existence of p is guaranteed because it is assumed that y ∈ Y is an output. Having

determined the mode using (3.4), the corresponding inverse system is activated to recover

the input. Thus, an inverse switched system Γ−1
σ , with initial condition x0, is implemented

as follows:

σ(t) = Σ
−1
(x(t), y[t,t+ǫ)), (3.5a)

ẋ = Âσ(t)x+ B̂σ(t)Y, (3.5b)

u = Ĉσ(t)x+ D̂σ(t)Y, (3.5c)
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where Âσ := (A − BD−1

α Cα)σ, B̂σ := (BD
−1

α V )σ, Ĉσ := (−D−1

α Cα)σ, and D̂σ := (D
−1

α V )σ.

The matrices Cα, Dα, V are defined for each subsystem through the structure algorithm and

their formulae are developed in the Appendix A. The notation (·)σ denotes the object in

the parenthesis calculated for the subsystem with index σ(t). The initial condition σ(t0)

determines the initial active subsystem at the initial time t0, from which time onwards, the

active subsystem indexes and the input as well as the state are determined uniquely and

simultaneously.

3.2 Inversion under Uncertainties

In the problem setup, it is assumed that x0 and Y are unknown, and we work with their

respective estimates x̂0 ∈ Rt0 , and Ŷ . So, instead of (3.5), the following equations are

utilized to get an estimate of the actual state trajectory and the input appearing in (3.1),

which are now denoted by x̂ and û respectively.

˙̂x(t) = Âσx̂(t) + B̂σŶ (t), (3.6a)

û(t) = Ĉσx̂(t) + D̂σŶ (t). (3.6b)

In (3.6), the switching signal σ remains unknown and the remainder of this section con-

centrates on recovering the switching signal using Rt0 and Ŷ . In Section 3.2.1, we use the

concept of reachable sets to compute σ; this method, although conceptually simple and

meaningful, is computationally expensive as it requires propagating reachable sets of the

switched system and computing distances among certain polygons at each instant in time.

A computationally feasible method is then devised in Section 3.2.2, where we introduce the

concept of weak switch-singular pair and, using the idea of minimal gap between subspaces,

derive the necessary conditions for existence of weak switch-singular pairs. This leads to

simpler computations for reconstructing σ for the case Rt0 = Bδ0(x̂0) for some known δ0.

Section 3.2.3 then quantifies the error between the actual input and its estimate.

3.2.1 Switching Signal Recovery using Reachable Sets

In the presence of uncertainties in the output and the state values, the most natural extension

of the mode identification method described in the previous section is to compute the set

that contains x(t) and look at the intersection of the image of this set under the map Lp
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with Wp(B̺(Ŷ (t))). The subsystem Γp is declared active if the corresponding intersection is

non-empty.

Let x̃(t) := x(t)− x̂(t), then the difference of equations (3.5a) and (3.6a) gives,

˙̃x(t) = Âσx̃(t) + B̂σw(t), (3.7)

where w(t) := Y (t)− Ŷ (t), and |w(t)| ≤ ̺ for each t ≥ t0.

Reachable Sets

The following lemma reveals two important properties of the reachable sets of linear time

invariant systems which can be generalized to the switched systems.

Lemma 3.4 (Reachable sets). Consider the linear time invariant system

ẋ = Ax+Bη(t), (3.8)

with initial state x0, η(t) contained in some compact, convex set U for t ∈ [t0, t1]; then

the reachable set Rt1 = {x(t1) : x(t) solves (3.8) with η(t) ∈ U , t ∈ [t0, t1], x(t0) = x0} is

compact, convex and varies continuously with t1 on t1 ≥ t0. ⊳

This result is proved in [89]. Since the computation of reachable sets is well-studied topic,

several methods for computing the set Rt are available in literature [90] and we assume that

Rt can be computed.

The statement of Lemma 3.4 also holds if we replace the initial condition x(t0) = x0 by the

condition x(t0) ∈ Rt0 where Rt0 is a compact convex set. To show that Rt1 is compact and

varies continuously with t1, one can essentially follow the same arguments as given in the

proof of Theorem 1 in [89, Section 2.2]. The convexity part, though obvious from variations

of constants formula, is proved formally in [91].

The last part of the theorem states that the correspondence t → Rt, for t > t0 is a

continuous map of the real half line into the metric space of nonempty compact subsets of

R
n. If we introduce the following definitions2:

ǫ1 := min
x∈Rt1

max
y∈Rt2

|x− y| ; ǫ2 := min
y∈Rt2

max
x∈Rt1

|y − x|,

2In [89], ǫ1 and ǫ2 appear as the definitions of distances between the reachable sets Rt1 and Rt2 . To
avoid confusion, these definitions are not termed as distances as we will work with the notion of distance
given in (3.10).
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then for given ǫ > 0, there exists δ > 0 so that the min{ǫ1, ǫ2} < ǫ whenever |t1 − t2| < δ.

The result of Lemma 3.4 can be extended to the error dynamics of a switched system

given in (3.7) when the solution is in the sense of Carathédory. As w(t) is contained in

the ball of radius ̺ around the origin, a compact and convex set, and x̃(t0) is contained

in3 Rt0 − x̂(t0), which is also compact and convex, then so is the reachable set Rt1 − x̂(t1).
An inductive argument and repeated application of Lemma 3.4 suggests that Rti − x̂ti is

compact and convex at i-th switching instant and Rt − x̂(t) is also compact and convex for

each t ∈ [ti, ti+1], i ≥ 0. Since x(t) = e(t) + x̂(t), x(t) belongs to the set Rt containing x̂(t),

for each t ≥ t0. One can also arrive at similar result using Fillipov’s theorem for linear time

varying systems.

Note that Lp is a linear and continuous operator and since Rt is a compact and convex

set at each time t, Lp(Rt) is also compact and convex.

Index Matching Function Σ̂−1

To compute the value of the switching signal σ(t) using index-inversion function (3.4), we

find p for which WpY (t) = Lpx(t), or alternatively |WpY (t) − Lpx(t)| = 0. Since Y (t) and

x(t) are no longer available, this condition cannot be verified anymore. A new function, that

recovers the value of the switching signal, can be computed using the following lemma.

Proposition 3.5. For system (3.1), if there exists an input u such that ΓOp,x0(u) = y over an

interval [t0, t1), and |Y (t)− Ŷ (t)| ≤ ̺, then |Lpx(t)−WpŶ (t)| ≤ ‖Wp‖̺, for each t ∈ [t0, t1).

Proof. Since ΓOp,x0(u) = y over the interval [t0, t1) for some input u, it follows from

Proposition 3.2 that Lpx(t) =WpY (t) for each t ∈ [t0, t1). So that,

|Lpx(t)−WpŶ (t)| = |��
��Lpx(t)−�

�
�
��WpY (t) +WpY (t)−WpŶ (t)|

= |Wp(Y (t)− Ŷ (t))|
≤ ‖Wp‖ |Y (t)− Ŷ (t)| ≤ ‖Wp‖̺.

Note that, rather than the exact value of x(t), it is only known that x(t) ∈ Rt. If

Zp(t) := Lp(Rt), we define the distance between the set Zp(t) and the vector WpY (t) to be:

dp(t) = min
z∈Zp(t)

|WpŶ (t)− z|· (3.10)

3For a given vector z and a set R, we define R− z := {x |x = r − z, r ∈ R}.
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The set Zp(t) is compact and convex and contains Lpx(t), so there exists a unique solution

to this optimization problem and according to the projection theorem in [92], there exists a

unique z∗ ∈ Zp(t) that satisfies
〈
WpŶ (t)− z∗, z − z∗

〉
≤ 0, for all z ∈ Zp(t) and dp(t) =

|WpŶ (t) − z∗|. Use of Proposition 3.5 guarantees that if Γp produces the output at time t,

then the distance between the set Zp(t) and WpŶ (t) is less than ‖Wp‖̺. This motivates us

to introduce the following definition of index-matching function:

Σ̂−1(Rt, ŷ[t,t+ǫ)) := {p | dp(t) ≤ ‖Wp‖̺}. (3.11)

Next, in Proposition 3.7, it is shown that the distance function (3.10) is continuous locally

in time and that the value of the index-matching function (3.11) coincides with the original

switching signal. The proof requires the following lemma.

Lemma 3.6. Let z∗p,0 = argminz∈Zp(t0) |Y0 − z|, and z∗p,s = argminz∈Zp(s) |Ys − z|, where Y0
and Ys are some given fixed vectors. Then, for every ǫ > 0, there exists ρ > 0 such that

|z∗p,s − z∗p,0| < ǫ whenever |s− t0| < ρ, and |Ys − Y0| ≤ ǫ
2
.

Proof. Step 1: We show that, for a nonempty, compact, convex set Z, the correspondence

Y 7→ argmin
z∈Z

|Y − z|

is continuous. Let zi = argminz∈Z |Yi−z|, i = 0, 1; then according to the projection theorem

[92], the following holds for any z0, z1 ∈ Z:

〈Y0 − z0, z0 − z0〉 ≤ 0, 〈z1 − Y1, z1 − z1〉 ≤ 0.

In particular, let z0 = z1 and z1 = z0; then adding the two inequalities and applying the

Cauchy-Schwarz inequality, we get:

〈z1 − z0, z1 − z0〉 ≤ 〈Y1 − Y0, z1 − z0〉 ,
|z1 − z0|2 ≤ |Y1 − Y0| · |z1 − z0|,
|z1 − z0| ≤ |Y1 − Y0|.

Thus, small perturbations in the value of Y result in small changes in the value argminz∈Z |Y−
z|, hence proving continuity of the map under consideration.

Step 2: For a fixed vector Y , let z∗0 = argminz∈Zp(t0) |Y −z|, z∗s = argminz∈Zp(s) |Y −z|. For
a given ǫ > 0, we show that ∃ ρ > 0 such that |z∗0 − z∗s | ≤ ǫ whenever |s− t0| ≤ ρ. According

52



to the projection theorem, for any z0 ∈ Zp(t0), 〈Y − z∗0 , z0 − z∗0〉 ≤ 0, or equivalently

〈Y − z∗0 , z∗s − z∗0〉+ 〈Y − z∗0 , z0 − z∗s〉 ≤ 0. (3.12)

Similarly, for any zs ∈ Zp(s), 〈z∗s − Y, z∗s − zs〉 ≤ 0, which leads to

〈z∗s − Y, z∗s − z∗0〉+ 〈z∗s − Y, z∗s − z1〉 ≤ 0. (3.13)

Adding (3.12) and (3.13), we get

〈z∗s − z∗0 , z∗s − z∗0〉 ≤ 〈z∗0 − Y, z0 − z∗s〉+ 〈Y − z∗s , z∗0 − zs〉 ,
|z∗s − z∗0 |2 ≤ |z∗0 − Y | · |z0 − z∗s |+ |Y − z∗s | · |z∗0 − zs|. (3.14)

Let x∗0 ∈ R0 (resp. x∗s ∈ Rs) be such that z∗0 = Lpx
∗
0 (resp. z∗s = Lpx

∗
s). By Lemma 3.4,

there exist ρ > 0 and x0 ∈ R0 (resp. xs ∈ Rs) so that |x0 − x∗s| < ǫ2

16‖Lp‖|z∗0−Y | (resp.

|xs − x∗0| < ǫ2

16‖Lp‖|Y−z∗s |) whenever |s − t0| < ρ. Choosing z0 = Lpx0 (resp. zs = Lpxs), we

get |z0 − z∗s | < ǫ2

16|z∗0−Y | , and |z∗0 − zs| < ǫ2

16|Y−z∗s | . Inequality (3.14) now becomes:

|z∗s − z∗0 | ≤
̺

4
+
̺

4
=
̺

2
·

For the desired result, we now combine Step 1 and Step 2. Define zp,0 := argminz∈Zp(t0) |Ys−
z|; then

|z∗p,s − z∗p,0| ≤ |z∗p,s − zp,0|+ |zp,0 − z∗p,0| ≤
ǫ

2
+
ǫ

2
= ǫ,

whenever |s− t0| ≤ ρ and |Ys − Y0| ≤ ǫ
2
.

This lemma leads us to the following result:

Proposition 3.7. Consider the switched system (3.1) with initial condition contained in a

compact, convex set Rt0, and measured output ŷ over time interval [t0, t1]. Assume that:

1. there exists a unique p ∈ P such that dp(t0) ≤ ‖Wp‖̺,

2. for all q 6= p, dq(t0) > 3‖Wq‖ ̺;

then there exists ρ > 0 such that σ(t) = Σ̂−1(Rt, ŷ[t,t+ǫ)) for all t ∈ [t0, t0 + ρ), where Σ̂−1 is

defined in (3.11).

Literally speaking, Proposition 3.5 gives the necessary condition for a subsystem to pro-

duce an output in presence of bounded disturbances and Proposition 3.7 states that if there
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is a unique candidate satisfying this necessary condition then the continuity of the reachable

sets guarantees uniqueness over some time interval.

Proof of Proposition 3.7. By assumption, σ̂(t0) = p. If σ(t0) 6= p, then there exists

q ∈ P and some u such that ΓOq,x0(u[t0,t0+ǫ)) = y[t0,t0+ǫ) ⇒ |Lqx̂0 −WqŶ (t0)| < ‖Wq‖̺ ⇒
dq(t0) < ‖Wq‖̺, which is a contradiction and hence σ̂(t0) = p = σ(t0).

Let t := min{t > t0 | u or σ is discontinuous at t}. Since Y remains continuous on the

interval [t0, t), there exists ρ1 > 0 such that if |t− t0| < ρ1, then |Y (t)− Y (t0)| < ǫ/2. This

gives

|WqŶ (t)−WqŶ (t0)| ≤ ‖Wq‖ |Ŷ (t)− Ŷ (t0)| (3.15a)

≤ ‖Wq‖ (|Ŷ (t)− Y (t)|+ |Y (t)− Y (t0)|+ |Y (t0)− Ŷ (t0)|) (3.15b)

≤ ‖Wq‖(̺+ ̺) +
ǫ

2
= 2‖Wq‖ ̺+

ǫ

2
, (3.15c)

for all t such that |t− t0| < ρ1.

Let z∗q,0, z
∗
q,s be such that dp(t0) = |WqŶ (t0)− z∗q,0| and dp(s) = |WqŶ (s)− z∗q,s|. Lemma 3.6

implies that there exists ρ2 > 0 such that if |s − t0| < ρ2, then |z∗q,s − z∗q,0| < ǫ
2
. Choose

ρ = min{ρ1, ρ2}; then for all s satisfying |s− t0| < ρ, the use of reverse triangle inequality

and (3.15) gives:

|WqŶ (s)− z∗q,s| = |
(
WqŶ (t0)− z∗q,0

)
−
(
WqŶ (t0)−WqŶ (s)

)
−
(
z∗q,s − z∗q,0

)
| (3.16a)

≥ |WqŶ (t0)− z∗q,0| − |WqŶ (t0)−WqŶ (s)| − |z∗q,s − z∗q,0| (3.16b)

> 3‖Wq‖ ̺− 2‖Wq‖ ̺−
ǫ

2
− ǫ

2
= ‖Wq‖ ̺− ǫ. (3.16c)

Since ǫ > 0 is arbitrary, we have |WqŶ (s)− z∗q,s| > ‖Wq‖̺. This guarantees that if σ̂(t0) 6= q,

then there exists an interval [t0, t0 + ρ) such that σ̂[t0,t0+ρ) 6= q. As the output y is being

produced by Γp over the interval [t0, t0 + ρ), we obtain σ̂[t0,t0+ρ) = σ[t0,t0+ρ) = p.

Proposition 3.7 basically suggests that there exists a lower bound on the time interval

over which the switching signal can be recovered. If the conditions of this proposition are

also satisfied at time t0 + ρ, then there exists ρ > 0 such that the switching signal can be

recovered over the interval [t0, t0+ρ+ρ). Thus, larger intervals can be obtained by applying

Proposition 3.7 inductively. The switching signal σ(·) is now recovered by letting:

σ(t) = Σ̂−1(Rt, ŷ[t,t+ǫ)).
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This definition leads to the recovery of switching signal over an interval [t0, T ), where T :=

min{t ≥ t0 | ∃ p, q ∈ P satisfying dp(t) ≤ ̺‖Wp‖ and dq(t)̺‖Wq‖}. We now incorporate

these results in an example.

Example 3.8. Consider a switched system with following two modes:

Γ1 :





ẋ =

[
−1 1

1 1

]
x+

[
0.5

0

]
u

y =
[
0 0.5

]
x

; Γ2 :





ẋ =

[
−1 1

1 −0.5

]
x+

[
2

0

]
u

y =
[
0 1

]
x.

The corresponding inverse systems are:

Γ−1
1 :





˙̂x =

[
−1 −1
1 1

]
x̂+

[
2

0

]
ˆ̈y

û =
[
0 −4

]
x̂+ 4ˆ̈y

; Γ−1
2 :





˙̂x =

[
0.5 −0.25
1 −0.5

]
x̂+

[
1

0

]
ˆ̈y

û =
[
0.75 −0.625

]
x̂+ 0.5ˆ̈y.

For this example, W1 = W2 = I2×2, and

L1 =

[
0 0.5

0.5 0.5

]
; L2 =

[
0 1

1 −0.5

]
.

Both the subsystems Γ1,Γ2 are invertible and the conditions in Proposition 3.7 hold for

̺ = 0.25 and R0 = {x : (x − 10)⊤(x − 10) = 1)} (a ball of of unit radius centered at

col(10, 10)). The results of the simulation are shown in Fig. 3.1.

Figure 3.1(a) shows the measured output and its derivatives used in the computation, and

Fig. 3.1(b) shows the distance functions and the switching signal obtained by comparing

these two distance functions. It can be seen that σ(t) = 1 when d1(t) is near zero and

σ(t) = 2 when d2 is near zero. Figure 3.1(c) plots the set Z1(t) = L1(Rt) (in red) and

Z2(t) = L2(Rt) (in green) at several distinct points t in the (y, ẏ) plane. The reachable sets

Rt are obtained by ellipsoidal approximations. ⊳

3.2.2 Switching Signal Recovery using Approximate Reachable

Sets

In the previous section, we recovered the switching signal using the index-inversion function

Σ̂−1, whose arguments were the measured output and the reachable set at each point in
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(a) Measured output trajectory and its derivatives.
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(c) Corresponding Reach Sets Rt.

Figure 3.1: Reconstruction of switching signal using reachable sets.

time, and furthermore the function itself involved solving the optimization problem at each

instant in time. Clearly, this approach is computationally very expensive. In this section,

we derive an alternative formula for the recovery of the switching signal with the help of

certain approximations, which relieves the computational burden enormously. The drawback,

however, is that the interval over which the switching signal is recovered is smaller. We start

off with the definition of (R, ̺) switch-singular pair :

Definition 3.9 ((R, ̺) switch-singular pair). Let x0 = x(t0) be contained in a compact set

R ⊂ R
n, and y be an R

m-valued function over some time interval with Y0 := Y (t0). We say
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that (x0, y) forms an (R, ̺) switch-singular pair for subsystems Γp,Γq if, for a given ̺ > 0,

there exist x1, x2 ∈ R and Y1, Y2 ∈ B̺(Y0) such that Lpx1 =WpY1 and Lqx2 = WqY2. ⊳

In the sequel, we will also refer to (R, ̺) switch-singular pair as the weak switch-singular

pair when R and ̺ are clear from the context.

Gap between Subspaces

To study the existence of weak switch-singular pairs, one has to introduce the notion of

minimal gap between the subspaces which is defined as follows.

Definition 3.10 (Minimal Gap between subspaces). LetM,N be two subspaces of an Eu-

clidean space. The minimal gap α(M,N ) is defined as:

α(M,N ) = α(N ,M) := min{α̂(M,N ), α̂(N ,M)},

where

α̂(M,N ) := min
|x|=1,x∈M

d(x,N ). ⊳

The notion of minimum gap between subspaces has appeared in [93, 94, 95] for spaces

other than Euclidean spaces. A dual notion of maximal gap has also been used in robust

control, see [96, 97] and references therein.

Proposition 3.11 (Computation of α̂(M,N )). Let ΠN denote the orthogonal projection on

N and matrix M be such that its columns are orthonormal vectors that spanM; then

α̂(M,N )2 = min
|x|=1,x∈M

d2(x,N ) = 1− ‖ΠNM‖2.

Proof. Using the projection theorem [92], the square of the distance between a point x

and a subspace N is given by |x|2 − |ΠNx|2. The desired expression can now be derived as

follows:

min
|x|=1,x∈M

d2(x,N ) = min
|x|=1,x∈M

{
|x|2 − |ΠNx|2

}
= 1− max

|x|=1,x∈M
|ΠNx|2

= 1− max
|Mz|=1

|ΠNMz|2 = 1−max
|z|=1
|ΠNMz|2

= 1− ‖ΠNM‖2.

57



The first equality uses the fact that −min(−A) = max(A) for any set A, and the third

equality uses the fact that M is orthonormal, so ‖M‖ = 1, which in turn implies that

|Mz| = 1 if and only if |z| = 1.

Note that α(M,N ) = 0 if and only ifM∩N 6= {0}, and α(M,N ) = 1 if and only ifM
and N are mutually orthogonal to each other. Roughly speaking, α(M,N ) measures the

sine of minimum angle between the subspacesM and N .

Corollary 3.12. SupposeM, N are two subspaces such thatM∩N = {0}. Given x ∈M,

z ∈ N , |x− z| < ǫ, only if, |x| < ǫ

α(M,N )
.

Proof. For x 6= 0, x ∈ M can be written as x = cy where y ∈ M has unit norm. Note

that |x| = |c|. Using reverse triangle inequality, we obtain:

ǫ > |x− z| ≥ ||x| − |z|| ≥ |c|
∣∣∣|y| −

∣∣∣z
c

∣∣∣
∣∣∣ ≥ |c|d(y,N )

≥ |c| inf
|y|=1,y∈M

d(y,N ) = |c|α̂(M,N ) ≥ |c|α(M,N ),

whence the desired result follows.

Necessary Conditions for Weak Switch-Singular Pairs

If for a given x̂0 and ŷ, there exists x0 ∈ Bδ0(x̂0) and Y0 ∈ B̺(Ŷ0), Ŷ0 := Ŷ (t0), such that

Lpx0 =WpY0, that is, subsystem Γp produces the output y with initial condition x0, then

|Lpx̂0 −WpŶ0| ≤ |Lpx̂0 − Lpx0|+
(
(
(
(
(
(
((|Lpx0 −WpY0|+ |WpY0 −WpŶ0| (3.17a)

≤ ‖Lp‖δ0 + ‖Wp‖̺. (3.17b)

In particular, if (x̂0, ŷ) forms an (Bδ0(x̂0), ̺) switch-singular pair, then
∣∣∣∣∣

[
Lp

Lq

]
x̂0 −

[
Wp

Wq

]
Ŷ0

∣∣∣∣∣ ≤ |Lpx̂0 −WpŶ0|+ |Lqx̂0 −WqŶ0|

≤ (‖Lp‖+ ‖Lq‖)δ0 + (‖Wp‖+ ‖Wq‖)̺ =: κ0pq.

With Lpq denoting the range space of

[
Lp

Lq

]
and Wpq denoting the range space of

[
Wp

Wq

]
, we

have the following result.
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Proposition 3.13. If Lpq ∩ Wpq = {0}, then (x̂0, ŷ) forms an (Bδ0(x̂0), ̺) switch-singular

pair for subsystems Γp and Γq, p, q ∈ P only if

∣∣∣∣∣

[
Lp

Lq

]
x̂0

∣∣∣∣∣ ≤
κ0pq

α(Lpq,Wpq)
and

∣∣∣∣∣

[
Wp

Wq

]
Ŷ0

∣∣∣∣∣ ≤
κ0pq

α(Lpq,Wpq)
·

Proof. This is a straightforward consequence of Corollary 3.12 applied withM := Lpq and
N :=Wpq.

The above proposition gives two necessary conditions under which subsystems Γp, Γq,

p, q ∈ P, may form weak switch-singular pairs.

Example 3.14. Consider the second order SISO switched system given in Example 3.8. We

showed that W1 = W2 = I2×2 = L1 =

[
0 0.5

0.5 0.5

]
; L2 =

[
0 1

1 −0.5

]
. The columns of

W12 = col(W1,W2) and L12 = col(L1, L2) span two-dimensional subspaces of R4 and it can

be verified that their intersection is the null vector. In terms of orthonormal basis, we can

write

W12 = span








1/
√
2

0

1/
√
2

0



,




1/
√
2

0

1/
√
2

0








; L12 = span








1/
√
5

0

2/
√
5

0



,




1/
√
7

1/
√
7

2/
√
7

−1/
√
7







.

Since both W12 and L12 comprise linearly independent columns, they are left-invertible and

the orthogonal projection can be written in terms of left-pseudo inverse (denoted by †), that
is,

ΠL12 = L12L
†
12 = L12(L

⊤
12L12)

−1L⊤
12 ; ΠW12 =W12W

†
12 =W12(W

⊤
12W12)

−1W⊤
12.

From these matrices we can now compute the gap between L12 and W12:

α(W12,L12) = α̂(W12,L12) = α̂(L12,W12) = 0.1368.

Moreover, with ̺ = δ0 = 0.25, we get κ012 = 1.0224. Considering the data of Example 3.8 at

initial time t0 with x̂0 = col(10, 10), we get

∣∣∣∣∣

[
Wp

Wq

]
Ŷ

∣∣∣∣∣ = 11.45 >
κ0pq

α(Lpq,Wpq)
= 7.02, and
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∣∣∣∣∣

[
Lp

Lq

]
x̂0

∣∣∣∣∣ = 11.18. Both necessary conditions are violated, so there are no switch-singular

pairs at time t0. Using certain approximations, we will show that there is a subinterval over

which the nonexistence of switch-singular pairs can be guaranteed. ⊳

Spherical Approximation and Elimination of Switch-Singular Pairs over an
Interval

Proposition 3.13 provides necessary conditions for the existence of weak switch-singular pairs

at time instant t0 when the uncertainty in the initial state is given by a ball of radius δ0.

Note that, even though the output is changing with time, there is a constant upper bound

on the uncertainties in the output ̺, whereas the uncertainty in the state variable, denoted

by δ(t) (δ0 := δ(t0)), is a function of time. This is because, in absence of uncertainties, the

inverse system gives the state trajectory of the original system. But now since the inverse

system is being driven by the corrupted output, the accuracy of the state estimate changes

with time. To guarantee that state x̂(t) does not form (Bδ(t)(x̂(t)), ̺) switch-singular pairs

with the output ŷ(t), one must verify that, at time t, the following inequality holds:

∣∣∣∣∣

[
Lp

Lq

]
x̂(t)−

[
Wp

Wq

]
Ŷ (t)

∣∣∣∣∣ ≥ (‖Lp‖+ ‖Lq‖)δ(t) + (‖Wp‖+ ‖Wq‖)̺ =: κtpq. (3.18)

Our goal now is to determine whether, under certain conditions, it is possible to rule out

the existence of weak switch-singular pairs over some time interval. The following result

specifies the length of such time intervals during which the output and state form no switch-

singular pairs.

Theorem 3.15. Consider the switched system in (3.1) and assume that the following hold:

1. rank

[
Lp Wp

Lq Wq

]
= rank

[
Lp

Lq

]
+ rank

[
Wp

Wq

]
(i.e., Lpq ∩Wpq = {0}),

2. mint≥t0 |WpŶ (t)| ≥ β > ̺ for each p ∈ P.

Moreover, let ̺ be the maximum amount of error in the output measurements, i.e., |Ŷα(t)−
Yα(t)| ≤ ̺ for each t ≥ t0; then there exist4 δ0 > 0, T > t0, such that if x(t0) ∈ Bδ0(x̂(t0))
then (x(t), y(t)) do not form a weak switch-singular pair for any t ∈ [t0, T ).

4The explicit expressions for δ0 and T appear in the proof.
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Proof. Let x̃ = x − x̂, where x indicates the original state trajectory of the plant (3.5a)

and x̂ is the state trajectory obtained by simulating the inverse system (3.6a) with corrupted

outputs and uncertain initial condition x̂0 = x̂(t0); then the following expression is obtained

by solving (3.7):

x̃(t) = eÂpk+1
(t−tk)eÂpk

(tk−tk−1) · · · eÂp1(t1−t0)x̃(t0)

+

∫ t1

t0

eÂpk+1
(t−tk)eÂpk

(tk−tk−1) · · · eÂp1 (t1−s)B̂p1w(s)ds

+

∫ t2

t1

eÂpk+1
(t−tk)eÂpk

(tk−tk−1) · · · eÂp2 (t2−s)B̂p2w(s)ds

+ · · ·+
∫ tk

tk−1

eÂpk+1
(t−tk)eÂpk

(tk−s)B̂pkw(s)ds+

∫ t

tk

eÂpk+1
(t−s)B̂pk+1

w(s)ds.

(3.19)

For each p ∈ P, there exists λp, ap ∈ R such that ‖ exp (Âpt)‖ ≤ e(ap+λpt). Define λ :=

maxp∈P λp, a := maxp∈P ap and b := maxp∈P ‖B̂p‖. We consider two cases where λ 6= 0 and

λ = 0.

Case 1: λ 6= 0; In this case (3.19) leads to:

|x̃(t)| ≤ e(k+1)aeλ(t−t0)|x̃(t0)|+ e(k+1)aeλt
(
e−λt0 − e−λt1

λ

)
b̺+ ekaeλt

(
e−λt1 − e−λt2

λ

)
b̺

+ · · ·+ e2aeλt
(
e−λtk−1 − e−λtk

λ

)
b̺+ eaeλt

(
e−λtk − e−λt

λ

)
b̺

≤ e(k+1)aeλ(t−t0)|x̃(t0)|+ e(k+1)aeλt
(
e−λt0 − e−λt

λ

)
b̺

≤ ea+ka+λ(t−t0)
(
δ0 +

b̺

λ

)
− e(a+ka)b̺

λ
=: δ(t).

(3.20)

Condition 2 of the theorem statement and use of Proposition 3.13 imply that if a subsystem

Γp producing the output forms a weak switch-singular pair with Γq at any time instant

t ∈ [tk, tk+1), then

β ≤ |WpŶ (t)| ≤
∣∣∣∣∣

[
Wp

Wq

]
Ŷ (t)

∣∣∣∣∣ ≤
(‖Lp‖+ ‖Lq‖)δ(t) + (‖Wp‖+ ‖Wq‖)̺

α(Lpq,Wpq)
·
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So the minimal uncertainty in the state variable, denoted by δ(t), that allows the existence

of weak switch-singular pairs between subsystems Γp and Γq is:

δ(t) ≥ α(Lpq,Wpq)β − (‖Wp‖+ ‖Wq‖)̺
(‖Lp‖+ ‖Lq‖)

=: Ωpq. (3.21)

Let

Ω := max
p,q∈P

Ωpq;

then (x̂(t), ŷ(t)) do not form a (Bδ(t)(x̂(t)), ̺) switch-singular pair if

δ(t) < Ω.

As Rt ⊆ Bδ(t)(x̂(t)), the above condition also guarantees that (x̂(t), ŷ(t)) do not form a

(Rt, ̺) switch-singular pair. Substituting the expression of δ(t) from (3.20) on the left-hand

side, one gets the following inequality after simple algebraic manipulations:

λ(t− t0) < log

(
λΩ+ e(a+ka)b̺

λδ0 + b̺

)
− (k + 1)a. (3.22)

It is easy to verify that right hand side is strictly positive if

δ0 <
Ω

e(a+ka)
. (3.23)

Under the constraint imposed by (3.23), the inequality (3.22) can now be solved for the

minimal time interval [t0, T ), which does not allow the existence of weak switch-singular

pairs, where

T < t0 +
1

λ
log

(
λΩ+ e(a+ka)b̺

λδ0 + b̺

)
− (k + 1)a

λ
· (3.24)

Case 2: λ = 0; In this case, the expression for δ(t) is derived as follows:

|x̃(t)| ≤ e(k+1)a|x̃(t0)|+ e(k+1)ab̺(t1 − t0) + ekab̺(t2 − t1)
+ · · ·+ e2ab̺(tk − tk−1) + eab̺(t− tk)

≤ e(k+1)a|x̃(t0)|+ e(k+1)ab̺(t− t0)
≤ e(k+1)a(δ0 + b̺(t− t0)) =: δ(t).

(3.25)
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In order to have δ(t) < Ω, at time t, we must have

T < t0 +
1

b̺

(
Ω

e((k+1)a)
− δ0

)
. (3.26)

As before, the right-hand side is strictly positive if (3.23) holds. Under this constraint, the

above inequality gives the minimal length of the interval over which there exist no switch-

singular pairs.

Based on the result of the Theorem 3.15, one can formulate an alternative index-matching

function Σ̃−1 as follows:

Σ̃−1(x̂(t), y[t,t+ǫ)) = {p |Lpx̂(t)−WpŶ (t)| ≤ ‖Lp‖δ(t) + ‖Wp‖̺}, (3.27)

where x̂(t) is obtained by solving (3.6) and δ is obtained from (3.20). It is guaranteed by

Theorem 3.15 that σ(t) = Σ̃−1(x̂(t), y[t,t+ǫ)) is well defined over the interval [t0, T ) where the

expression for T is either given by (3.24) or (3.26). The result of Theorem 3.15 could be

applied to reconstruct σ from (3.27) using the following algorithm:

Algorithm 2: Reconstruction of switching signal

Input: x̂0, ŷ

Initialization: σ(t0)← Σ̃−1(x̂0, ŷ[t0,t0+ε)), i = 0.

1: while σ(ti) is not multi-valued do

2: k = 0, t0 = ti, δ0 = δ(ti)

3: if δ0 satisfies (3.23) then

4: compute T using (3.24) or (3.26)

5: while σ(t) = σ(t−) and t < T do

6: compute δ(t) using (3.20) or (3.25)

7: compute x̂(t) from (3.6a).

8: σ(t)← Σ̃−1(x̂(t), y[t,t+ε))

9: end while

10: ti+1 = t; i = i+ 1.

11: end if

12: end while

If we compare the two functions Σ̂−1 in (3.11) and Σ̃−1 in (3.27), then it is observed that

the mode detection through Σ̂−1 requires the computation of minimum distance between the

reachable sets and the measured output at each instant in time, whereas the function Σ̃−1
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only requires coarse spherical approximation of the reachable set, which can be obtained

analytically as shown in the proof of Theorem 3.15. The interval over which the switching

signal can be constructed is, in general, larger with Σ̂−1 than with Σ̃−1. To obtain a larger

time interval for reconstruction of switching signal with light computation, one may combine

the index-matching function Σ̃−1 in (3.27) with the computation of tightly approximated

reachable sets. This can be done by resetting the value of δ(ti) to a number that tightly

approximates the radius of reachable sets at ti in Step 2 of Algorithm 2.

Example 3.16. (Simulation of Theorem 3.15) Once again, consider the system given in Ex-

ample 3.8. It was shown in Example 3.14 that α(L12,W12) = 0.1368. Further computations

give:

b = 2 ; λ1 = 1 , λ2 = 0.625 ⇒ λ = 1 ; a1 = 0.9624 , a2 = 0.4949 ⇒ a = 0.9624.

We consider the same output trajectory considered in Example 3.8, Fig. 3.1(a), for which

β = 11.18. With ̺ = 0.1, one gets Ω12 = 0.636. Now starting with δ0 = 0.05, and ̺ = 0.1,

we get T = 0.17. The recovered switching signal over this interval is given in Fig. 3.2(b).

The simulation results show that no switch-singular pairs were encountered up till t = 0.17.
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(a) Measured output trajectory and its derivative.
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Figure 3.2: Simulation results for illustration of Theorem 3.15.

The conservativeness of this method can be seen from the fact that even after t = 0.17, one

continues to recover the switching signal over the entire interval [0, 1] with the same method

because the necessary condition for producing the output is satisfied by only one subsystem,

and not the other. ⊳
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3.2.3 Input Recovery

The input reconstructed using the measured output is given by (3.6b). Using the exact

expression for u in (3.5c), the input estimation error, ũ := u− û, is given by

ũ(t) = (−D−1

α Cα)σ(t)x̃(t) + (D
−1

α V )σ(t)(Ŷ (t)− Y (t)).

Using the notation dc := maxp∈P ‖(D−1

α Cα)p‖ and dv := maxp∈P ‖(D−1

α V )p‖, the maximal

error in the reconstruction of u at any time t is given by

|ũ(t)| ≤ dcδ(t) + dv̺. (3.28)

3.3 Minimum-Phase Systems

In the previous section, the results were stated for general linear systems. In classical lin-

ear systems theory, the stability of the inverse system is closely related to minimum-phase

property of the system. Using this idea, we derive conditions under which it is possible to

recover the switching signal over the interval [t0,∞).

For each subsystem Γp, the matrix Lp has rp rows and rank rp. So, there exists an

(n− rp)×n matrix T p such that Tp :=

[
Lp

T p

]
and LpT

−1
p = [Irp×rp 0rp×(n−rp)]. The matrix Tp

defines a coordinate transformation for the subsystem Γp and the transformed matrices are :

A∗
p = TpApT

−1
p , B∗

p = TpBp, C
∗
p = CpT

−1
p , D∗

p = Dp, and Lp = [Irp×rp 0rp×(n−rp)]. Apply the

structure algorithm in the new coordinates, and let Qp be the matrix formed from the last

n− rp rows and columns of (A∗
p−B∗

pD
∗−1
αp

C∗
αp
), let G1

p be the matrix formed from the first rp

columns and the last (n− rp) rows of (A∗
p − B∗

pD
∗−1
αp

C∗
αp
), and let G2

p be the matrix formed

by the last (n− rp) rows of B∗
pD

∗−1
αp

. If zp = Tpx denotes the new state variable, then

z1p := [(zp)1, · · · , (zp)rp]⊤ = [ỹ⊤0 , · · · , ỹ⊤αp−1],

and for the remaining (n− rp) state variables denoted by z2p , the dynamic equation is:

ż2p = Fpz
2
p +G1

pz
1
p +G2

pyαp
.

Let ẑp be an estimate of zp, and let z̃p(t) = ẑp(t) − zp(t) denote the error between actual
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state trajectory and the simulated one; then |z̃1p | ≤ ̺ and

˙̃z2p = Fpz̃
2
p +Gpw,

where Gp = [G1
p G

2
p] and |w| ≤ ̺.

Definition 3.17 (Minimum-phase system). The subsystem Γp is called minimum-phase if

Fp is Hurwitz. ⊳

Our next goal is to obtain a uniform bound on the reachable sets of switched systems

in Proposition 3.20. This is done using the following lemma, which basically states how

the level sets of a Lyapunov function (associated to one subsystem) could be tightly packed

inside the level set of another Lyapunov function (possibly associated to another subsystem).

Lemma 3.18. Given two positive definite functions V1 = x⊤P1x and V2 = x⊤P2x with P1

and P2 symmetric positive definite matrices, the minimal level set of V2 that contains the

set {x | V1(x) ≤ c} is given by {x | V2(x) ≤ λmax(H
−1⊤P2H

−1)c}, where the matrix H is an

upper triangular matrix obtained from Cholesky decomposition of P1.

Proof. The matrix P1 admits Cholesky decomposition given by P1 = H⊤H , where H is

an upper triangular matrix. It follows that H−1⊤P1H
−1 = I. Let z = Hx; in the new

coordinates defined by z, the level sets of V1 are spheres of dimension n − 1 embedded in

R
n. Consider the region R = {z | z⊤H−1⊤P2H

−1z ≤ λmax(H
−1⊤P2H

−1)c}. If |z|22 ≤ c, then

z ∈ R. Moreover, if z is in the span of eigenvector corresponding to λmax(H
−1⊤P2H

−1) with

|z|22 = c, then z is also on the boundary of R, implying that the bounding region R wraps

the level sets of V1 tightly. Applying the coordinate transformation, x = H−1z gives the

desired result.

Remark 3.19. In the literature on dynamical systems that involves Lyapunov based anal-

ysis, we often encounter the inequality

V1(x) ≤
λmax(P1)

λmin(P2)
V2(x), P1, P2 > 0,

to bound the values of the positive definite function V1(x) := x⊤P1x in terms of the values

of another positive definite function V2(x) := x⊤P2x. However, Lemma 3.18 serves the same

purpose by providing the following tighter bound:

V1(x) ≤ λmax(H
−1⊤P1H

−1)V2(x), P1 > 0, H⊤H = P2 > 0.
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This way, Lemma 3.18 has the potential to be useful in several other results for switched

systems; see for example [11, Chapter 5] for the utility of this result. ⊳

We now use Lemma 3.18 to derive a bound on the reachable sets under the dwell-time

assumption in the following proposition. The result conceptually relates to the incremental

input-to-state stability (ISS) property of the system (3.7). Incremental stability properties

for switched systems have been studied in [98] for homogenous systems, but here, the formu-

lation takes into account the disturbances due to measurement uncertainties and the bounds

on input-to-state gains are also computed.

Proposition 3.20. Consider the system (3.1) and assume that Γp is minimum-phase for

each p ∈ P and that the maximum disturbance in the measurement of output and its deriva-

tives is bounded by ̺ > 0. Then there exist constants5 δ > 0 and τd > 0 such that

x(t) ∈ B∆(x̂(t)) for some ∆ > 0 and all t ≥ t0, provided the initial state x(t0) is contained

in Bδ(x̂0) and ti+1 − ti ≥ τd, for every switching instant ti.

Proof. For each subsystem Γp, there exists an (n − rp) × (n − rp) matrix Pp such that

Vp : R
rp → R defined as Vp(z̃

2
p) = z̃2⊤p Ppz̃

2
p is a Lyapunov function for z̃2p and there exists a

positive definite matrix Qp such that F⊤
p Pp + PpFp = −Qp. Also,

V̇p = −z̃2⊤p Qpz̃
2
p + 2z̃2⊤p PpRpw

≤ −λmin(Qp)|z̃2p |2 + 2|z̃2p |‖PpRp‖̺
= −|z̃2p |λmin(Qp)(|z̃2p | −Θp̺),

where

Θp :=
2‖PpRp‖
λmin(Qp)

.

For a small enough ε > 0, we have

|z̃2p | > Θp̺(1 + ε) ⇒ V̇p < −|z̃2p |λmin(Qp)Θp̺ε.

Next, for each p ∈ P, define P p :=

[
Irp 0

0 Pp

]
. Let Θ := minp∈P Θp; let δ̂ := min{̺,Θ̺(1+

ε)}.
Define δ := δ̂

‖T‖ , where ‖T‖ := maxp∈P ‖Tp‖. Let us consider the evolution of state

trajectory for the switched system with |z̃(t0)| ≤ δ. Let ti denote the i-th switching instant,

5There is an upper bound on δ and a lower bound on τd,∆ in the proof.
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and denote the active subsystem on [t0, t1) by Γp1 and the one on [t1, t2) by Γp2. Using

Fig. 3.3 as a guideline, consider the following region:

Rp1 := {x : x⊤P p1x ≤ ̺2 + λmax(Pp1)Θ
2
p1
̺2(1 + ε)2}.

Note that |z̃p1(t0)| ≤ ‖Tp1‖|z̃(t0)| < δ̂, so for each t ∈ [t0, t1), |z̃1p1(t)| ≤ ̺ and z̃2p1(t) ∈ {z ∈
R

(n−rp1 ) | z⊤Pp1z ≤ λmax(Pp1)Θ
2
p1
̺2(1 + ε)2}, the invariant set in R

(n−rp1) containing the ball

of radius Θp1̺(1+ε). This gives z̃
⊤
p1
P p1 z̃p1 = |z̃1p1|2+ z̃2p1Pp1 z̃2p1 ≤ ̺2+λmax(Pp1)Θ

2
p1
̺2(1+ε)2,

so that z̃p1(t) ∈ Rp1 for each t ∈ [t0, t1).

Let Tij := TpjT
−1
pi

, i, j = {1, 2}, i 6= j. At switching instant t1, we have z̃p2(t1) = T12z̃p1(t
−
1 ).

Substituting z̃p1(t
−
1 ) = T21z̃p2(t1) in the expression forR1, it follows that z̃p2(t1) ∈ R12, where

R12 := {x : x⊤T⊤
21P p1T21x ≤ ̺2 + λmax(Pp1)Θ

2
p1
̺2(1 + ε)2}.

Let H21 be an upper triangular matrix obtained from the Cholesky decomposition such

that T⊤
21P p1T21 = H⊤

21H21. So, z̃p2(t1) ∈ {x ∈ R
n | x⊤P p2x ≤ λmax(H

−1⊤P p2H
−1)(̺2 +

λmax(Pp1)Θ
2
p1
̺2(1 + ε)2)} =: Ro

p2
.

The structure of the problem reveals that for all t ≥ t1, |z̃1p2(t)| ≤ ̺, and for t ≥ t1

large enough, z̃2p2(t) ∈ {z ∈ R
(n−rp2) | z⊤Pp2z ≤ λmax(Pp2)Θ

2
p2
̺2(1 + ε)2}, the invariant set in

R
(n−rp2 ) containing the ball of radius Θp2̺(1+ ε), and consequently z̃p2(t) is contained in the

invariant region Rp2 , where

Rp2 := {x : x⊤P p2x ≤ ̺2 + λmax(Pp2)Θ
2
p2
̺2(1 + ε)2}.

Bδ

Rp1

Rp2

R12

Figure 3.3: The regions used in the proof of Proposition 3.20.
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The maximum time z̃p2(t1) takes to reach Rp2 , starting from Ro
p2
, is:

τ12 :=
λmax(H

−1⊤

21 P p2H
−1
21 )̺

2 + ̺2(1 + ε)2(λmax(H
−1⊤

21 P p2H
−1
21 )λmax(Pp1)Θ

2
p1
− λmax(Pp2)Θ

2
p1
)

Θ2
p2
̺2(1 + ε)λmin(Qp2)ε

·

This shows that |z̃(t)|2 is bounded by the following constant term:

λmax(H
−1⊤

21 P p2H
−1
21 )

λmin(P p2)
(̺2 + λmax(Pp1)Θ

2
p1
̺2(1 + ε)2),

for each t in the time interval [t0, t1 + τ12]. The argument can now be repeated for future

switching instants. Let Hqp denote an upper triangular matrix that satisfies T⊤
qpP pTqp =

H⊤
qpHqp, where Tqp := TpT

−1
q . If the dwell time between the switching times is defined as

τd := max
p,q∈P

λmax(H
−1⊤

qp P qH
−1
qp )̺

2 + ̺2(1 + ε)2(λmax(H
−1⊤

qp P qH
−1
qp )λmax(Pp)Θ

2
p1
− λmax(Pq)Θ

2
p)

Θ2
q̺

2(1 + ε)λmin(Qq)ε
,

(3.29)

then, for all times, the error vector is contained in a ball of radius ∆ which is defined as:

∆ := max
p,q∈P

λmax(H
−1⊤

qp P qH
−1
qp )

λmin(P q)
(̺2 + λmax(Pp)Θ

2
p̺

2(1 + ε)2). (3.30)

This completes the proof.

The result in Proposition 3.20 can now be used to develop a statement parallel to Theo-

rem 3.15 for switched systems with minimum-phase subsystems.

Theorem 3.21. For system (3.1), if each subsystem Γp is minimum-phase and moreover,

the following holds:

1. For each p, q ∈ P, rank
[
Lp Wp

Lq Wq

]
= rank

[
Lp

Lq

]
+ rank

[
Wp

Wq

]
(i.e., Lpq ∩Wpq = {0}),

2. Measured output ŷ is such that mint≥t0 |WpŶ (t)| ≥ β > ̺ for each p ∈ P,

3. For each p, q ∈ P, ∆ <
α(Lpq,Wpq)β − (‖Wp‖+ ‖Wq‖)̺

(‖Lp‖+ ‖Lq‖)
, where ∆ is given by (3.30),

4. The switching signal σ has the dwell-time τd given in (3.29),

then σ(t) = {p : |Lpx̂(t) − WpŶ (t)| ≤ ‖Lp‖∆ + ‖Wp‖̺} for all t ∈ [t0,∞). Moreover,

‖ũ‖∞ = dc∆+ dv̺.
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Proof. The result of proposition 3.20 guarantees that x(t) ∈ B∆(x̂(t)). Condition 3 of the

theorem statement implies that the inequality (3.21) in the proof of Theroem 3.15 is violated

for all times and this in turn implies that x̂(t) does not form (B∆(x̂(t)), ̺) switch-singular

pair with ŷ(t) for any t ≥ t0. Thus, the index-matching function of (3.27) is well-defined

and reconstructs the original switching signal. The uniform upper bound on ũ is obtained

from (3.28).

Thus, we have arrived at a result parallel to Theroem 3.15 with the additional benefit

of being able to reconstruct the switching signal at all times. The development inherently

relied on the stability of minimal order inverses (the minimum-phase assumption) in order

to generate stable error dynamics. These dynamics were then shown to converge to zero

under dwell-time assumption.
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Chapter 4

Observability of Switched Linear Systems

The problem of observability deals with extracting information about the state of the system

from the measured output while the input and the switching signal are assumed to be

known. This property plays a fundamental role in state estimation as the construction of

state estimators, or observers, requires the actual system to be observable. Even though the

basic problem of observability has been well studied for non-switched systems, the presence

of the switching signal and the hybrid nature of switched systems make the problem more

significant. In general, the individual subsystems of a switched system may not be observable,

so the information about the state cannot be estimated in arbitrarily fast time using the

classical methods, such as Luenberger observers. Thus, an interesting question is how the

partial information about the state, that is available from each mode, can be combined to

recover the complete information about the state even though the individual subsystems are

unobservable. Moreover, if the system is observable, how can one go about designing the state

estimators that are feasible for implementation on digital computers? Fundamental questions

of this sort, i.e., seeking observability of the entire system especially with unobservable

modes and constructing asymptotic observers for estimating state are not only theoretically

interesting but also possess significant applicability.

For our work, we seek a unified approach in which the geometric conditions lead to the

design of asymptotic observers without any restrictive assumptions. Also, by tackling the

problem for a larger class of systems such as nonlinear ODEs and switched DAEs, a lot more

breadth could be seen in our work.

This chapter presents a characterization of observability and an observer design method

for switched linear systems with state jumps. A necessary and sufficient condition is pre-

sented for observability, globally in time, when the system evolves under predetermined mode

transitions. Because this characterization depends upon the switching signal under consid-

eration, the existence of singular switching signals is studied alongside the development of

a sufficient condition that guarantees uniform observability with respect to switching times.

Furthermore, while taking state jumps into account, a relatively weaker characterization is
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given for determinability, the property that is concerned with recovery of the original state

at some time rather than at all times. Assuming determinability of the system, a hybrid

observer is designed for the most general case to estimate the state of the system, and it

is shown that the estimation error decays exponentially. Since the individual modes of the

switched system may not be observable, the proposed strategy for designing the observer

is based upon a novel idea of accumulating the information from individual subsystems.

Contrary to the usual approach, dwell-time between switchings is not necessary, but the

proposed design does require persistent switching. For practical purposes, the calculations

also take into account the time consumed in performing computations.

4.1 Introduction

This chapter studies observability conditions and observer construction for switched linear

systems described as

ẋ(t) = Aσ(t)x(t) +Bσ(t)u(t), t 6= {tq}, (4.1a)

x(tq) = Eσ(t−q )x(t
−
q ) + Fσ(t−q )vq, q ≥ 1, (4.1b)

y(t) = Cσ(t)x(t) +Dσ(t)u(t), t ≥ t0, (4.1c)

where x(t) ∈ R
n is the state, y(t) ∈ R

dy is the output, vq ∈ R
dv and u(t) ∈ R

du are the inputs,

and u(·) is a locally bounded measurable function. For some index set I, the switching signal

σ : R 7→ I is a piecewise constant and right-continuous function that changes its value at

switching times {tq}, q ∈ N. In our notation, if a function exhibits discontinuity at time

instant tq, we evaluate that function at t−q to represent its value prior to discontinuity, and

at tq to indicate its value right after the jump. It is assumed that there are a finite number

of switching times in any finite time interval; thus we rule out the Zeno phenomenon in

our problem formulation. The switching mode σ(t) and the switching times {tq} may be

governed by a supervisory logic controller, or determined internally depending on the system

state, or considered as an external input. In any case, it is assumed in this chapter that the

signal σ(·) (and thus, the active mode and the switching times {tq} as well) is known over

the interval of interest. For estimation of the switching signal σ(t), one may refer to, e.g.,

[60, 52, 99, 65].

In the past decade, the structural properties of switched systems have been investigated by

many researchers and observability along with observer construction has been one of them.

72



In switched systems, the observability can be studied from various perspectives. If we allow

for the use of the differential operator in the observer, then it may be desirable to determine

the continuous state of the system instantaneously from the measured output and inputs.

This in turn requires each subsystem to be observable, and the problem becomes nontrivial

when the switching signal is treated as an unknown discrete state and simultaneous recovery

of the discrete and continuous state is desired. Some results on this problem are published

in [52, 53, 54].

On the other hand, if the mode transitions are represented by a known switching signal,

then, even though the individual subsystems are not observable, it is still possible to recover

the initial state x(t0) by appropriately processing the measured signals over an interval

[t0, T ) that involves multiple switching instants. This phenomenon is of particular interest

for switched systems or systems with state jumps as the notion of instantaneous observability

and observability over an interval coincide for non-switched linear time invariant systems.

This variant of the observability problem in switched systems has been studied most notably

by [46, 55, 13]. The authors in [56, 57] have studied the similar problem for the systems

that allow jumps in the states, but they do not consider the change in the dynamics that is

introduced by switching to different matrices associated with the active mode. The observer

design has also received some attention in the literature [58, 59, 60], where the authors have

assumed that each mode in the system is in fact observable admitting a state observer,

and have treated the switching as a source of perturbation effect. This approach not only

has limited applicability but it also incurs the need of a common Lyapunov function for

the switched error dynamics, or a fixed amount of dwell-time between switching instants,

because it is intrinsically a stability problem of the error dynamics.

The main contribution of this chapter is to present a characterization of observability and

an observer design for the systems represented by (4.1), where the subsystems are no longer

required to be observable. So the notion of observability adopted in this chapter is related

to [55, 46] in the sense that we also consider observability over an interval. However, the

authors in [55] only present a coordinate-dependent sufficient condition that leads to the

construction of an observer; and the work of [46] only focuses on a necessary and sufficient

condition under which there exists a switching signal that makes it possible to recover x(t0),

without any discussion on design of observers. This chapter fills the void by constructing

an asymptotic observer based on a necessary and sufficient condition. To the best of the

author’s knowledge, the considered class of linear systems is the most general for this purpose

in the literature.
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Similar to our recent work in [100], the switching signal is considered to be known and

fixed, so that the trajectory of the system satisfies a time-varying linear differential equation

with state jumps. Then for that particular trajectory, we answer the question whether it is

possible to recover x(t0) from the knowledge of measured inputs and outputs. We present

a necessary and sufficient condition for observability over an interval, which is independent

of coordinate transformations. Since this condition depends upon the switching times, we

study the denseness property of a set of switching signals with a fixed mode sequence such

that system (4.1) satisfies the observability condition for each switching signal in that set.

Furthermore, sufficient conditions guaranteeing uniform observability with respect to switch-

ing times are developed. For the sake of completeness, a necessary condition, which can be

verified independently of switching times, is derived as a corollary to the main result. Also,

with a similar tool set, the notion of determinability, which is more in the spirit of recovering

the current state based on the knowledge of inputs and outputs in the past, is developed.

Moreover, a hybrid observer for system (4.1) is designed based on the proposed necessary

and sufficient condition. Since the observers are useful for various engineering applications,

their utility mainly lies in their online operation method. This thought is essentially rooted

in the idea for observer construction adopted in this chapter: the idea of combining the

partial information available from each mode and processing this collected information at

one instance of time to get the estimate of the state. For real-time implementation, the time

required for processing this information is also taken into account in our design. We show

that under mild assumptions, such an estimate converges to the actual state of the plant

and the state estimation error satisfies an exponentially decaying bound.

More emphasis will be given to the case when the individual modes of system (4.1) are not

observable (in the classical sense of linear time-invariant systems theory) since it is obvious

that the system becomes immediately observable when the system switches to an observable

mode. In such cases, the switching signal plays a pivotal role as the observability of the

switched system depends upon not only the mode sequence but also the switching times. In

order to facilitate our understanding of this matter, let us begin with an example.

Example 4.1. Consider a switched system characterized by:

Aa =

[
0 0

0 0

]
, Ab =

[
ǫ 1

−1 ǫ

]
,

Ca =
[
1 0

]
, Cb =

[
0 0

]
,
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with Ei = I, Fi = 0, Bi = 0, Di = 0 for i ∈ I := {a, b}, and ǫ is a constant. It is noted

that neither of the two pairs, (Aa, Ca) or (Ab, Cb), is observable. However, if the switching

signal σ(t) changes its value in the order a→ b→ a at times t1 and t2, then we can recover

the state. In fact, it turns out that at least two switchings are necessary and the switching

sequence should contain the subsequence of modes (a, b, a). For instance, if the switching

happens as a → b → a, the outputs at time t−1 and t2 are: y(t−1 ) = Cax(t
−
1 ) = x1(t0), and

y(t2) = Cae
Abτx(t0) = eǫτ cos τ · x1(t0) + eǫτ sin τ · x2(t0), where x(t0) = [x1(t0), x2(t0)]

⊤ is

the initial condition and τ = t2 − t1. Then, it is obvious that x(t0) can be recovered from

two measurements y(t−1 ) and y(t2) if τ 6= kπ with k ∈ N. On the other hand, any switching

signal whose duration for the mode b is an integer multiple of π is a ‘singular’ switching

signal (whose precise meaning will be given in Section 4.2.2). ⊳

Notations: For a square matrix A and a subspace V, we denote by 〈A|V〉 the smallest A-

invariant subspace containing V, and by 〈V|A〉 the largest A-invariant subspace contained in

V. (See Property 7 in Appendix B for their computation.) With a matrix A, R(A) denotes
the column space (range space) of A. The sum of two subspaces V1 and V2 is defined as

V1+V2 := {v1+ v2 : v1 ∈ V1, v2 ∈ V2}. For a possibly non-invertible matrix A, the pre-image

of a subspace V under A is given by A−1V = {x : Ax ∈ V}. Let kerA := A−1{0}; then it

is seen that A−1 kerC = ker(CA) for a matrix C. For convenience of notation, let A−⊤V :=

(A⊤)−1V where A⊤ is the transpose of A, and it is understood that A−1
2 A−1

1 V = A−1
2 (A−1

1 V).
Also, we denote the products of matrices Ai as

∏k

i=j Ai := AjAj+1 · · ·Ak when j < k, and∏k
i=j Ai := AjAj−1 · · ·Ak when j > k. The notation col(A1, . . . , Ak) means the vertical stack

of matrices A1, · · · , Ak, that is, [A⊤
1 , . . . , A

⊤
k ]

⊤.

4.2 Geometric Conditions

To make precise the notions of observability and determinability considered in this chapter,

let us introduce the formal definitions.

Definition 4.2. Let (σi, ui, vi, yi, xi), for i = 1, 2, be the signals that satisfy (4.1) over

an interval1 [t0, T
+). We say that the system (4.1) is [t0, T

+)-observable if the equality

1The notation [t0, T
+) is used to denote the interval [t0, T + ε), where ε > 0 is arbitrarily small. In fact,

because of the right-continuity of the switching signal, the output y(T ) belongs to the next mode when T

is the switching instant. Then, the point-wise measurement y(T ) is insufficient to contain the information
for the new mode, and thus, it is imperative to consider the output signal over the interval [t0, T + ε) with
ε > 0. This definition implicitly implies that the observability property does not change for sufficiently small
ε (which is true, and becomes clear shortly).
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(σ1, u1, v1, y1) = (σ2, u2, v2, y2) implies that x1(t0) = x2(t0). Similarly, the system (4.1) is

said to be [t0, T
+)-determinable if the equality (σ1, u1, v1, y1) = (σ2, u2, v2, y2) implies that

x1(T ) = x2(T ).

Since the initial state x(t0), the switching signal σ, and the inputs (u, v) uniquely determine

x(t) on [t0, T
+) by (4.1), observability is achieved if and only if the state trajectory x(t), for

each t ∈ [t0, T
+), is uniquely determined by the inputs, the output, and the switching signal.

Obviously, observability implies determinability by forward integration of (4.1), but the

converse is not true due to the possibility of non-invertible matrices Eσ. In case there is no

jump map (4.1b), or each Eσ is invertible, observability and determinability are equivalent.

The notion of determinability has also been called reconstructability in [13].

The use of Definition 4.2 leads to the following proposition which will be useful in deriving

conditions for observability.

Proposition 4.3. For a switching signal σ, the system (4.1) is [t0, T
+)-observable (or, de-

terminable) if, and only if, zero inputs and zero output on the interval [t0, T
+) imply that

x(t0) = 0 (or, x(T ) = 0).

Proof. Since the zero solution with the zero inputs yields the zero output, the necessity

follows from the fact that x(t0) (or, x(T )) is uniquely determined from the inputs and

the outputs. For the sufficiency, suppose that the system (4.1) is not [t0, T
+)-observable (or

determinable); that is, there exist two different states x1(t0) and x
2(t0) (or, x

1(T ) and x2(T ))

that yield the same output y over the interval [t0, T
+), under the same inputs (u, v). Let

x̃(t) := x1(t)−x2(t), where xi(t), i = 1, 2, is the solution of (4.1) which takes the value xi(t0)

at initial time t0 (or, x
i(T ) at terminal time T ). Then, by linearity, it follows that ˙̃x = Aσx̃,

x̃(tq) = Eσx̃(t
−
q ), and Cσx̃ = Cσx

1−Cσx2 = y−y = 0, which is the same as system (4.1) with

zero inputs and zero outputs; but x̃(t0) = x1(t0)−x2(t0) 6= 0 (or, x̃(T ) = x1(T )−x2(T ) 6= 0).

Hence, zero inputs and zero output do not imply x(t0) = 0 (or, x(T ) = 0), and the sufficiency

holds.

Because of Proposition 4.3, we are motivated to introduce the following homogeneous

switched system, which has been obtained by setting the inputs (u, v) equal to zero in (4.1):

ẋ(t) = Aσ(t)x(t), y(t) = Cσ(t)x(t), t ∈ [tq−1, tq) (4.2a)

x(tq) = Eσ(t)x(t
−
q ). (4.2b)
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If this homogeneous system is observable (or, determinable) with a given σ, then y ≡ 0

implies that x(t0) = 0 (or, x(T ) = 0), and in terms of description of system (4.1), this means

that zero inputs and zero output yield x(t0) = 0 (or, x(T ) = 0); hence, (4.1) is observable (or,

determinable) because of Proposition 4.3. On the other hand, if the system (4.1) is observable

(or, determinable), then it is still observable (or, determinable) with zero inputs, which is

described as system (4.2). Thus, the observability (or, determinability) of systems (4.1)

and (4.2) are equivalent.

Before going further, let us rename the switching sequence for convenience. For system

(4.1), when the switching signal σ(t) takes the mode sequence {q1, q2, q3, · · · }, we rename

them as increasing integers {1, 2, 3, · · · }, which is ever increasing even though the same mode

is revisited; for convenience, this sequence is indexed by q and not by σ(t). Moreover, it is

often the case that the mode of the system changes without the state jump (4.1b), or the

state jumps without switching to another mode. In the former case, we can simply take

Eq = I and Fq = 0, and in the latter case, we increase the mode index by one and take

Aq = Aq+1, Bq = Bq+1 and so on. In this way various situations fit into the description of

(4.1) with increasing mode sequence. The switching time tq is the instant when transition

from mode q to mode q + 1 takes place.

4.2.1 Necessary and Sufficient Condition for Observability

In this section, we present a characterization of the unobservable subspace for system (4.2)

with a given switching signal. Towards this end, let Nm
q (m ≥ q) denote the set of states

at t = tq−1 for system (4.2) that generate identically zero output over [tq−1, t
+
m−1). Then,

for fixed switching times, it is easily seen that Nm
q is actually a subspace due to linearity

of (4.2), and we call Nm
q the unobservable subspace for [tq−1, t

+
m−1). It can be seen that

the system (4.2) is an LTI system between two consecutive switching times, so that its

unobservable subspace on the interval [tq−1, tq) is simply given by the largest Aq-invariant

subspace contained in kerCq, i.e., 〈kerCq|Aq〉 = kerGq where

Gq := col(Cq, CqAq, · · · , CqAn−1
q ).

So it is clear that N q
q = kerGq. Now, when the measured output is available over the interval

[tq−1, t
+
m−1) that includes switchings at tq, tq+1, . . . , tm−1, more information about the state

is obtained in general so that Nm
q gets smaller as the difference m − q gets larger, and we
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claim that the subspace Nm
q can be computed recursively as follows:

Nm
m = kerGm,

Nm
q = kerGq ∩ e−AqτqE−1

q Nm
q+1, 1 ≤ q ≤ m− 1,

(4.3)

where τq := tq − tq−1. The following theorem presents a necessary and sufficient condition

for observability of the system (4.1) while proving the claim in the process.

Theorem 4.4. For system (4.2) with a switching signal σ[t0,t+m−1)
, the unobservable subspace

for [t0, t
+
m−1) at t0 is given by Nm

1 from (4.3). Therefore, system (4.1) is [t0, t
+
m−1)-observable

if, and only if,

Nm
1 = {0}. (4.4)

From (4.3), it is not difficult to arrive at the following formula for Nm
q :

Nm
q = kerGq ∩

(
m⋂

i=q+1

i−1∏

j=q

e−AjτjE−1
j kerGi

)
(4.5a)

= kerGq ∩
(

m⋂

i=q+1

ker

(
Gi

q∏

l=i−1

Ele
Alτl

))
. (4.5b)

In order to inspect the observability of the system (4.2), one can compute Nm
1 using (4.3),

(4.5a), or (4.5b). It is easily seen that Nm1
1 ⊇ Nm2

1 if m1 ≤ m2 (with arbitrary τi > 0,

i ∈ N).

Proof of Theorem 4.4. Sufficiency. Using the result of Proposition 4.3, it suffices to

show that the identically zero output of (4.2) implies x(t0) = 0. Assume that y ≡ 0 on

[t0, t
+
m−1). Then, it is immediate that x(tm−1) ∈ Nm

m = kerGm. We next apply the inductive

argument to show that x(tq−1) ∈ Nm
q for 1 ≤ q ≤ m − 1. Suppose that x(tq) ∈ Nm

q+1, then

x(tq−1) ∈ e−AqτqE−1
q Nm

q+1 since x(t) is the solution of (4.2). Zero output on the interval

[tq−1, tq) also implies that x(tq−1) ∈ kerGq. Therefore,

x(tq−1) ∈ kerGq ∩ e−AqτqE−1
q Nm

q+1.

From (4.3), it follows that x(tq−1) ∈ Nm
q . This induction proves the claim that Nm

q is given

by (4.3). With q = 1, it is seen that x(t0) ∈ Nm
1 = {0}, which proves the sufficiency.

Necessity. Assuming that Nm
1 6= {0}, we show that a non-zero initial state x(t0) ∈ Nm

1

yields the solution of (4.2) such that y ≡ 0 on [t0, t
+
m−1), which implies unobservability. First,
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we show the following implication:

x(tq−1) ∈ Nm
q ⇒ x(tq) ∈ Nm

q+1, q < m. (4.6)

Indeed, assuming that x(tq−1) ∈ Nm
q with q < m, it follows that x(tq) = Eqe

Aqτqx(tq−1),

which further gives

x(tq) ∈ EqeAqτqNm
q = Eqe

Aqτq
(
kerGq ∩ e−AqτqE−1

q Nm
q+1

)

⊆ Eq kerGq ∩ EqE−1
q Nm

q+1 = Eq kerGq ∩ Nm
q+1 ∩R(Eq) ⊆ Nm

q+1

by using (4.3) and Properties 2, 3, and 11 in Appendix B. Therefore, for 0 ≤ q ≤ m − 1,

x(tq) ∈ Nm
q+1 ⊆ kerGq+1, and the solution x(t) = eAq+1(t−tq)x(tq) for t ∈ [tq, tq+1) satisfies

that y(t) = Cq+1x(t) = 0 for t ∈ [tq, tq+1) due to Aq+1-invariance of kerGq+1.

4.2.2 Denseness of Regular Switching Signals

The observability condition (4.4) given in Theorem 4.4 is dependent upon a particular switch-

ing signal under consideration, and it is entirely possible that the system is observable for

certain switching signals and unobservable for others (cf. Example 4.1). However, it would

be more useful to know whether the observability property holds for a particular class of

switching signals. While addressing this issue in the current section, we show that if there is

a switching signal that satisfies (4.4), then the set of switching signals, with the same mode

sequence, for which (4.4) does not hold, is nowhere dense.

To formalize this argument, consider the set S consisting of all switching signals σ (over

a possibly different time domain) with a fixed mode sequence (1, 2, · · · , m) and switching

times ti such that t0 < t1 < · · · < tm−1. Then, for each σ ∈ S, there is a corresponding

vector τ = col(τ1, · · · , τm−1) ∈ T := {τ ∈ R
m−1 : τi > 0} with τi = ti − ti−1 being the

activation period for mode i under σ. We now introduce the metric d(·, ·) on the set S as

follows: for any σ1, σ2 ∈ S,

d(σ1, σ2) := ‖τ 1 − τ 2‖1 =
m−1∑

i=1

|τ 1i − τ 2i |,

where τ 1, τ 2 ∈ T and ‖ · ‖1 denotes the usual ℓ1 norm in R
m−1. It can be shown that

d(·, ·) indeed satisfies all the hypotheses of a metric, that is, positive definiteness, symmetry,
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and triangle inequality. Note that an ε-neighborhood of σ is obtained by perturbing the

activation period of each mode, τi, by εi ≥ 0 such that
∑m−1

i=1 εi < ε; that is, the set of σ′

whose corresponding τ ′ ∈ Bε(τ) := {τ ′ ∈ T : ‖τ ′ − τ‖1 < ε}. From now on, we denote Nm
1

by Nm
1 (τ) for τ ∈ T to emphasize the dependence of Nm

1 on the switching times.

Theorem 4.5. Let S∗ := {σ ∈ S : system (4.1) is [t0, t
+
m−1)-observable with σ}. If the set

S∗ is non-empty, then it is an open and dense subset of S under the topology induced by the

metric d(·, ·).

A consequence of Theorem 4.5 is that if there exists σ′ ∈ S\S∗, then we can find an element

σ′′ ∈ S∗ by introducing arbitrarily small perturbations in the vector τ ′ that corresponds to

σ′. We call such σ′ a singular switching signal and the ones contained in the set S∗ are called

regular switching signals.

Proof of Theorem 4.5. It is first shown that, for any σ∗ ∈ S∗, a neighborhood of σ∗ is

also contained in S∗. Recalling the expression for Nm
1 from (4.5b), introduce the following

matrix:

W (τ) := col(G1, G2E1e
A1τ1 , · · · , Gm

1∏

l=m−1

Ele
Alτl),

and let W (τ) := W⊤(τ)W (τ). Note that Nm
1 (τ) = kerW (τ), so that Nm

1 (τ) = {0} if, and
only if, W (τ) has full column rank, or equivalently ψ(τ) 6= 0, where ψ : T → R denotes

the determinant of the matrix W (τ). Since W (τ) comprises analytic functions of τ , the

determinant ψ(τ) is also an analytic function. It is well-known that an analytic function

is either identically zero, or the set comprising zeros of an analytic function has an empty

interior [101, Chapter 4]. Therefore, the set Z := {τ ∈ T : ψ(τ) = 0} has an empty interior

(with respect to the topology induced by ℓ1 norm), and is closed. Hence, the set T \ Z is

open and there exists an ε > 0 such that ψ(τ) 6= 0 for each τ ∈ Bε(τ ∗) where τ ∗ is associated
with σ∗ and satisfies ψ(τ ∗) 6= 0 since σ∗ ∈ S∗. Now pick any σ ∈ S such that d(σ, σ∗) < ε.

Then, the corresponding τ belongs to Bε(τ ∗), which implies σ ∈ S∗ showing that S∗ is open.

Next, to show the denseness of S∗, we pick σ′ ∈ S \S∗, and show that σ′ is the limit point

of S∗. In this case, ψ(τ ′) = 0, and τ ′ ∈ Z. Since Z has an empty interior, for every ε > 0,

there exists τ ′′ ∈ Bε(τ ′) such that ψ(τ ′′) 6= 0. Let σ′′ be the switching signal corresponding

to τ ′′; then σ′′ ∈ S∗, proving that every neighborhood of σ′, with respect to metric d(·, ·),
has a non-empty intersection with S∗.

80



4.2.3 Conditions Independent of Switching Times

Existence of singular switching signals naturally raises the question whether, under certain

conditions, observability holds uniformly with respect to switching times. In other words, it

is desirable to know whether the observability could be verified for a given mode sequence

independently of the switching times. For this, we again consider the sets S and T for a

given mode sequence (1, 2, · · · , m). Then, the following corollary is immediate.

Corollary 4.6. The switched system (4.1) is uniformly observable for all switching signals

σ ∈ S (i.e., S∗ = S) if, and only if,

Vm1 := ∪τ1>0 ∪τ2>0 · · · ∪τm−1>0 Nm
1 (τ) = {0}. (4.7)

By using the distributive property of intersection over union of sets, one can compute Vm1
by proceeding in the sequential manner as before:

Vmm := kerGm

Vmq := kerGq ∩ (∪τq>0e
−AqτqE−1

q Vmq+1), 1 ≤ q ≤ m− 1.
(4.8)

However, in order to check condition (4.7) in practice, a difficulty arises due to the fact

that Vm1 is not a subspace in general. (This is because the set ∪τ>0e
AτV is not necessarily

a subspace although V is.) To avoid this difficulty, an over-approximation of each Vmq is

considered, so that a sufficient condition is obtained for uniform observability with respect

to switching times.

Corollary 4.7. Let Nm

1 be defined as follows:

Nm

m := kerGm,

Nm

q :=
〈
Aq| kerGq ∩ E−1

q N
m

q+1

〉
, 1 ≤ q ≤ m− 1.

Then, Nm

1 is an over-approximation of Vm1 , and thus, the system (4.1) is uniformly observable

for all σ ∈ S if Nm

1 = {0}.

By construction, the subspace Nm

1 is also an over-approximation of Nm
1 so that it serves

a sufficient condition for (4.4) as well as for (4.7).

Proof. The proof is completed by showing that Vmq ⊆ N
m

q for 1 ≤ q ≤ m. First, note that

Vmm = Nm

m. Assuming that Vmq+1 ⊆ N
m

q+1 for 1 ≤ q ≤ m− 1, we now claim that Vmq ⊆ N
m

q .
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Indeed, by Properties 3, 9, and 11 in Appendix B, and the recursion equation (4.8), we

obtain

Vmq = kerGq ∩ (∪τq>0e
−AqτqE−1

q Vmq+1)

= ∪τq>0e
−Aqτq

(
kerGq ∩ E−1

q Vmq+1

)
(4.9)

⊆
〈
Aq| kerGq ∩ E−1

q Vmq+1

〉

⊆
〈
Aq| kerGq ∩ E−1

q N
m

q+1

〉
= Nm

q , 1 ≤ q ≤ m− 1.

Therefore, the condition Nm

1 = {0} implies (4.7).

Since Nm

1 is an over-approximation of Vm1 , it would be of interest to investigate how far

the statement of Corollary 4.7 is from necessity.

Lemma 4.8. For each 1 ≤ q ≤ m − 1, if Vmq+1 = Nm

q+1, then N
m

q is the smallest subspace

containing the set Vmq .

Proof. From the inclusion relation of (4.9), it suffices to show that 〈Aq|V〉 is the smallest

subspace containing ∪τq>0e
−AqτqV where V := kerGq ∩ E−1

q Vmq+1 = kerGq ∩ E−1
q N

m

q+1. Let

W denote the smallest subspace containing ∪τq>0e
−AqτqV. Then, since 〈Aq|V〉 is a subspace

containing ∪τq>0e
−AqτqV by Property 9 in Appendix B, it follows that W ⊆ 〈Aq|V〉. Next,

pick any x ∈ W⊥ and let V be a matrix such that V = R(V ). From the definition of W,

it follows that x⊤e−AqτqV = 0 for all τq > 0, but by continuity, it also holds for all τq ≥ 0.

Repeated differentiation of both sides at τq = 0 leads to x⊤AiqV = 0 for i = 0, 1, . . . , n− 1,

or equivalently x ∈ 〈Aq|V〉⊥ by Property 7 in Appendix B. This shows that W⊥ ⊆ 〈Aq|V〉⊥,
and hence, W = 〈Aq|V〉.
The above discussion can be summarized as follows, which suggests when the condition in

Corollary 4.7 becomes necessary.

Corollary 4.9. If each Vmq , for 1 ≤ q ≤ m−1, is a subspace, then system (4.1) is uniformly

observable with respect to the switching times if and only if Nm

1 = {0}.

Example 4.10. The switched system considered in Example 4.1, with the mode sequence

(a, b, a) and an arbitrary constant ǫ, serves an example for Corollary 4.9. It is seen that

each Vmq is a subspace as N 3

3 = V3
3 = span{col(0, 1)}, N 3

2 = V3
2 = R

2, and N 3
1 = V3

1 =

span{col(0, 1)} 6= {0}. Indeed, the switched system in Example 4.1 is not uniformly ob-

servable for the mode sequence (a, b, a), as seen by the existence of the singular switching

signals.
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Now, let us consider an additional subsystem indexed by c, where Ac := [ 0 1
0 0 ], Ec = I2×2,

and Bc, Cc, Dc, Fc are zero matrices with appropriate dimensions. For the switched system

with the mode sequence (a, c, a), and m = 3, we get N 3

3 = span{col(0, 1)}, N 3

2 = R
2, and

N 3

1 = span{col(0, 1)} 6= {0}. The sufficient condition in Corollary 4.7 is violated but the

resulting switched system is observable for all τ1, τ2 > 0 (which can be seen from Theorem

4.4). The source of this gap is the fact that the set V3
2 = ∪τ2>0e

−Acτ2(kerGc ∩ kerGa) =

∪τ2>0e
−Acτ2 span{col(0, 1)} is not a subspace. It is seen that the smallest subspace containing

V3
2 , in this case, is N 3

2 = R
2. ⊳

Having studied the uniform observability for the switching times, we also discuss existence

of switching times for observability under a given mode sequence. This is to see whether the

set S∗ is empty or not when the mode sequence is given (or, the set S is given). Regarding

this question, the idea of under-approximating Nm
1 yields the following necessary condition.

Corollary 4.11. Let Nm
1 be defined as follows:

Nm
m := kerGm,

Nm
q :=

〈
kerGq ∩ E−1

q Nm
q+1|Aq

〉
, 1 ≤ q ≤ m− 1.

Then, Nm
1 is an under-approximation of Nm

1 (τ) for all τ ∈ T , and thus, if there exists

a vector τ ∈ T such that Nm
1 (τ) = {0}, that is, system (4.1) is [t0, t

+
m−1)-observable (or,

equivalently S∗ is non-empty), then Nm
1 = {0}.

Proof. For each τ ∈ T , the proof proceeds similar to Corollary 4.7. With Nm
m = Nm

m,

we assume that Nm
q+1 ⊇ Nm

q+1 for 1 ≤ q ≤ m − 1, and claim that Nm
q ⊇ Nm

q . Again by

Properties 3, 9, and 11 in Appendix B, and employing equation (4.3), we obtain

Nm
q = e−Aqτq

(
kerGq ∩ E−1

q Nm
q+1

)

⊇
〈
kerGq ∩ E−1

q Nm
q+1|Aq

〉
(4.10)

⊇
〈
kerGq ∩ E−1

q Nm
q+1|Aq

〉
= Nm

q , 1 ≤ q ≤ m− 1.

The condition Nm
1 = {0} is then implied by Nm

1 (τ) = {0}.
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As a matter of fact, it can be shown that2

Nm
1 = ∩τ1>0 · · · ∩τm−1>0 Nm

1 (τ). (4.11)

Since the right-hand side of (4.11) can become {0} even though Nm
1 (τ) 6= {0} for any τ ∈ T ,

it is clear that the condition Nm
1 = {0} is much weaker than requiring the existence of τ

having the property that Nm
1 (τ) = {0}. This can also be seen in the following example, but

Corollary 4.11 is still useful when verifying unobservability of a given switched system with

a mode sequence for arbitrary switching times.

Example 4.12. Suppose that, for the switched system of Example 4.1, the mode sequence

(b, a) is given. Then, with m = 2, we obtain that N 2
2 = kerGa = span{col(0, 1)} and N 2

1 =

〈kerGb ∩ kerGa|Ab〉 = {0}. However, it is verified that N 2
1 (τ1) = ker [eǫτ1 cos τ1, e

ǫτ1 sin τ1] =

col(cos τ,− sin τ) 6= {0}, so that (4.4) does not hold for any τ1 > 0, showing that the system

is not observable even though the necessary condition of Corollary 4.11 is satisfied. On the

other hand, if we consider a different mode sequence (a, b), then N 2
2 = kerGb = R

2 and

N 2
1 = span{col(0, 1)}. This indicates that there is no possibility of having a set of switching

times that yields observability with mode sequence (a, b). Indeed, this is the case since

N 2
1 (τ1) = span{col(0, 1)} 6= {0} for all τ1 > 0. ⊳

Remark 4.13. By taking orthogonal complements of Nm
q , Nm

q and Nm
q , respectively, we

get dual conditions for observability, using Properties 5, 6, 8, and 10 in Appendix B, as

follows. System (4.1) is [t0, t
+
m−1)-observable if and only if Pm1 = R

n where

Pm1 := (Nm
1 )⊥ = R(G⊤

1 ) +
m∑

i=2

i−1∏

j=1

eA
⊤
j τjE⊤

j R(G⊤
j ).

Similarly, one can state Corollaries 4.7 and 4.11 in alternate forms. System (4.1) is uniformly

observable if Pm1 = R
n, where Pm1 is computed as:

Pmm = (Nm

m)
⊥ = R(G⊤

m)

Pmq = (Nm

q )
⊥ =

〈
R(G⊤

q ) + E⊤
q Pmq+1|A⊤

q

〉
, 1 ≤ q ≤ m− 1.

2Indeed, this follows from (4.10) and from the claim that ∩τ>0e
−AτV = 〈V|A〉 for any subspace V and a

matrix A, which is proved as follows. Since e−AτV ⊇ 〈V|A〉 for all τ , we have that ∩τ>0e
−AτV ⊇ 〈V|A〉. On

the other hand, since (∩τ>0e
−AτV)⊥ is a subspace containing ∪τ>0e

A⊤τV⊥, it holds that (∩τ>0e
−AτV)⊥ ⊇〈

A⊤|V⊥
〉
because

〈
A⊤|V⊥

〉
is the smallest subspace containing ∪τ>0e

A⊤τV⊥ (see Lemma 4.8). Taking
orthogonal complement, we get ∩τ>0e

−AτV ⊆ 〈V|A〉 (by Property 10 in Appendix B), which proves the
claim.
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Also, if system (4.1) is [t0, t
+
m−1)-observable with a switching signal, then Pm1 = R

n, where

Pm1 is defined sequentially as:

Pmm = (Nm
m)

⊥ = R(G⊤
m)

Pmq = (Nm
q )

⊥ =
〈
A⊤
q |R(G⊤

q ) + E⊤
q P

m

q+1

〉
, 1 ≤ q ≤ m− 1. ⊳

4.2.4 Necessary and Sufficient Conditions for Determinability

In order to study determinability of system (4.1) and arrive at a result parallel to Theo-

rem 4.4, our first goal is to develop an object similar to Nm
q . So, for system (4.2) with

a given switching signal, let Qmq be the set of states at time tm−1 (or t+m−1) such that its

corresponding solution x(t) produces zero output on the interval [tq−1, t
+
m−1). We call Qmq

the undeterminable subspace for [tq−1, t
+
m−1). Then, it can be shown that Qmq is computed

recursively as follows:

Qqq := kerGq

Qkq := kerGk ∩ Ek−1e
Ak−1τk−1Qk−1

q , q + 1 ≤ k ≤ m.
(4.12)

These sequential definitions lead to another equivalent expression for Qmq :

Qmq = kerGm ∩ Em−1 ker(Gm−1) ∩
(
m−2⋂

i=q

i+1∏

l=m−1

Ele
AlτlEi kerGi

)
. (4.13)

In fact, the subspace Πi+1
l=m−1Ele

AlτlEi kerGi indicates the set of states obtained by propagat-

ing the unobservable states of the mode i (where q ≤ i ≤ m− 2) to the time tm−1 under the

dynamics of system (4.2). Intersection of these subspaces with Em−1 kerGm−1 and kerGm

shows that Qmq is the set of states that cannot be determined at time tm−1 from the zero

output for the interval [tq−1, t
+
m−1). Therefore, the determinability of system (4.2) can now

be characterized as in the following theorem.

Theorem 4.14. For system (4.2) and a given switching signal σ[t0,t+m−1)
, the undeterminable

subspace for [t0, t
+
m−1) at tm−1 is given by Qm1 of (4.13). Therefore, system (4.1) is [t0, t

+
m−1)-

determinable if and only if

Qm1 = {0}. (4.14)

The condition (4.14) is equivalent to (4.4) when all Eq matrices, q = 1, . . . , m − 1, are
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invertible because of the relation

Qm1 =

1∏

l=m−1

Ele
AlτlNm

1 .

Example 4.15. If any of the jump maps Eq of (4.2), q = 1, . . . , m − 1, is a zero matrix,

then (4.14) trivially holds regardless of whether (4.4) holds or not. This is intuitively clear

because we can uniquely determine x(tm−1) = 0 even if x(t0) cannot be determined. ⊳

Recalling that S is the set of switching signals σ with mode sequence (1, 2, . . . , m) and

τ ∈ T , the following two corollaries parallel Corollaries 4.7 and 4.11, and are given for

completeness. Proofs are omitted but can be done based on the property that Qq1 ⊆ Q
q
1(τ) ⊆

∪τ∈TQq1(τ) ⊆ Q
q

1.

Corollary 4.16. System (4.1) is uniformly determinable for all σ ∈ S, i.e., Qm1 (τ) = {0}
for all τ ∈ T , if Qm1 = {0}, where Qm1 is computed by

Q1

1 := kerG1

Qq1 := Eq−1

〈
Aq−1|Qq−1

1

〉
∩ kerGq, 2 ≤ q ≤ m.

Corollary 4.17. If there exists a vector τ ∈ T such that Qm1 (τ) = {0}, i.e., system (4.1) is

[t0, t
+
m−1)-determinable for some σ ∈ S, then Qm

1
= {0}, where Qm

1
is computed by

Q1
1
:= kerG1

Qq1 := Eq−1

〈
Qq−1

1 |Aq−1

〉
∩ kerGq, 2 ≤ q ≤ m.

Remark 4.18. An alternative dual characterization of determinability is possible by inspect-

ing whether the complete state information is available while going forward in time. This

is achieved in terms of the subspaceMm
q , obtained by taking the orthogonal complement of

Qmq . Using Properties 5, 6, 8, and 10 in Appendix B, it follows from (4.13) that

Mm
q := (Qmq )⊥ =

m−2∑

i=q

i+1∏

l=m−1

E−⊤
l e−A

⊤
l
τlE−⊤

i R(G⊤
i ) + E−⊤

m−1R(G⊤
m−1) +R(G⊤

m).

Note that, with m > q, the set-valued map
∏m−1

j=q e
−AjτjE−1

j x pulls the state x at tm−1 back

in time at tq−1. This map was used in (4.5a) to pull Nm
m back at tq−1. Since the dual of

R
n is also R

n, the adjoint of this map pushes the row vectors forward in time from tq−1
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to tm−1. In other words, Mm
q is the set of states at time instant t = tm−1 that can be

identified, modulo the unobservable subspace at tm−1, from the information of y over the

interval [tq−1, t
+
m−1). Therefore, the dual statement for determinability is that system (4.1)

is [t0, t
+
m−1)-determinable if and only if

Mm
1 = R

n. (4.15)

It is noted that a recursive expression forMm
1 is given by

M1
1 = R(G⊤

1 )

Mq
1 = E−⊤

q−1e
−A⊤

q−1τq−1Mq−1
1 +R(G⊤

q ), 2 ≤ q ≤ m,

and the dual statements of Corollaries 4.16 and 4.17, that are independent of switching times,

are given as follows: system (4.1) is uniformly determinable for all σ ∈ S ifMm
1 = R

n, where

M1
1 := (Qm1 )⊥ = R(G⊤

1 ),

Mq
1 := (Qq1)⊥ = E−⊤

q−1

〈
Mq−1

1 |A⊤
q−1

〉
+R(G⊤

q ), 2 ≤ q ≤ m.

Similarly, if there exists a σ ∈ S such that system (4.1) is [t0, t
+
m−1)-determinable then

Mm

1 = R
n, whereMm

1 is computed as follows:

M1

1 := (Qm
1
)⊥ = R(G⊤

1 ),

Mq

1 := (Qq
1
)⊥ = E−⊤

q−1

〈
A⊤
q−1|M

q−1

1

〉
+R(G⊤

q ), 2 ≤ q ≤ m. ⊳

4.3 Observer Design

In engineering practice, an observer is designed to provide an estimate of the actual state

value at current time. In this regard, determinability (weaker than observability according

to Definition 4.2) is a suitable notion for switched systems. Based on the conditions obtained

for determinability in the previous section, an asymptotic observer is designed for system

(4.1) in this section. By asymptotic observer, we mean that the estimate x̂(t) converges to

the plant state x(t) as t→∞.
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4.3.1 Observer Overview

In order to construct an observer for system (4.1), we introduce the following assumptions.

Assumption 4.1. 1. The switching is persistent in the sense that there exists a TD > 0

such that a switch occurs at least once in every time interval of length TD; that is,

tq − tq−1 ≤ TD, ∀ q ∈ N. (4.16)

In addition, there are a bounded number of switchings in any finite time interval; i.e.,

there is a function Jmax(·) such that the number of switchings in any time interval of

duration T is less than or equal to Jmax(T ).

2. The system is persistently determinable in the sense that there exists an N ∈ N such

that

dimMq
q−N = n, ∀ q ≥ N + 1. (4.17)

(The integer N is interpreted as the minimal number of switches required to gain de-

terminability.)

3. There are constants bA and bE such that ‖Aq‖ ≤ bA and max{1, ‖Eq‖} ≤ bE for all

q ∈ N (which is always the case when Aq and Eq belong to a finite set).

The observer we propose is a hybrid dynamical system of the form

˙̂x(t) = Aqx̂(t) +Bqu(t), t ∈ [tq−1, tq), t 6= t̂k, (4.18a)

x̂(tq) = Eqx̂(t
−
q ) + Fqvq, q ≥ 1, (4.18b)

x̂(t̂k) = x̂(t̂−k )− ξk, k ≥ 1, (4.18c)

with an arbitrary initial state x̂(t0) ∈ R
n. Here, t̂k is the time for the k-th estimation

update (see Fig. 4.2), and we assume that t̂k 6= tq for any k and q because these updates

(4.18b) and (4.18c) are executed sequentially in a digital computer. Figure 4.1, together

with Fig. 4.2, provides an illustration of how the proposed observer (4.18) is executed in

practice. It is seen that the observer consists of a system copy and an estimate update

law by a correction vector ξk. The vector ξk can be thought of as an approximation of

the state estimation error and our goal is to design ξk such that x̂(t)→ x(t). In order to

construct ξk, external signals available from the actual plant are gathered and stored over a

time interval encompassing N switches. This is in contrast with the conventional observers
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where the observer usually runs in parallel with the actual plant and the information is

not stored. In our case, however, not only is there a dynamic part of the observer running

synchronously with the plant, but in addition the stored knowledge is processed to update the

state estimates; see Fig. 4.1. The processing of the information starts with running another

dynamic observer for partial states of the most recent N +1 active modes. The partial state

information, thus accumulated, is used in getting an approximation of the estimation error

at switching times using some inversion formula. This approximation is then transported

to the current time through a catch-up process. Execution of these procedures needs some

time for computation, and unlike our conference paper [102] we no longer assume that these

computations are performed instantaneously; rather the calculations required to update the

state estimate are carried out over an interval and the length of that interval is assumed to

be no longer than a computation time TC > 0. For example, in Fig. 4.2, having gathered

the information of external signals over the interval [t0, t3), the aforementioned computation

starts at t3 and the update in state estimate is introduced at t̂1 ≤ t3 + TC . This process

continues every time some new information appears from the new mode after a switch. In the

case that some switches occur while performing computation, we just look at the past N +1

active modes when performing the next update. In particular, if the number of switches

exceeds N while computing the state update based on the past information, then we ignore

some switches; see the information processed after t̂3 in Fig. 4.2.

We remark that the idea of post-processing the stored information is really significant

for switched systems with unobservable modes. It will turn out that the gains for partial

System
Data:

σ, u, v, y

over
[tq−N−1, tq)

Partial Observers
˙̂zi = Siẑ

i + Li(ỹ −Riẑ
i)

with possible update
of ẑi at t̂k∗(i) for
i = q −N, . . . , q

+

Inversion Logic
ˆ̃x(t−q ) = (Θ⊤

q )
†Ξq(ẑ

−, ξ)

+

Catch-up Process
ξk = Φ(t̂−k , t

−
q )ˆ̃x(t

−
q )

˙̂x = Aqx̂+Bqu

x̂(tq) = Eqx̂(t
−
q ) + Fqvq

x̂(t̂k) = x̂(t̂−k )− ξk
ξk

x̂

Synchronized Observer

Estimate Update

Figure 4.1: The flow diagram of the proposed observer. The stored information is
processed in the Estimate Update block to generate the updating signal ξk, which is passed
on to the Synchronized Observer running parallel to the plant.
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t
t0 t1 t2 t3 t4 t5 t6 t7t8 t12...t11

t
t̂1 t̂2 t̂3 t̂4 t̂5

Figure 4.2: Assuming that N = 2 in this figure, the computation of ξ1 begins at time t3.
By processing the data between t0 and t3, the computation completes at t̂1 and the
estimate x̂(t̂1) is updated by (4.18c). By assuming that TC is the maximum computation
time, t̂1 ≤ t3 + TC . The computation for ξ3 begins at t̂2 which is delayed because the
previous computation for ξ2, having started at t4, does not finish when the new switchings
occur at t5 and t6. While computing ξ4, only the data between t8 and t11 is processed.

observers of individual modes cannot be computed a priori since they require the knowledge

of some switching times from the past.

4.3.2 Observer Implementation

In the sequel, the above thought process is formalized by setting up a machinery to compute

the correction vector ξk as indicated in Fig. 4.1. Based on these computations, a procedure

for implementing the hybrid observer, according to the scheme shown in Fig. 4.2, is outlined

in Algorithm 3. It is then shown in Theorem 4.19 that the state estimate computed according

to the parameter bounds given in Algorithm 3 indeed converges to the actual state of the

system.

With x̃ := x̂− x, the error dynamics are described by

˙̃x(t) = Aqx̃(t), (4.19a)

x̃(tq) = Eqx̃(t
−
q ), (4.19b)

x̃(t̂k) = x̃(t̂−k )− ξk. (4.19c)

The output error is defined as ỹ(t) := Cqx̂(t) +Dqu(t)− y(t) = Cqx̃(t). Since estimating x̃

is equivalent to the estimation of x (obtained by subtracting x̃ from x̂ of (4.18)), our design

begins with the estimation of x̃ at time t−q , when there is enough information available at

t−q . In order to estimate the observable part of x̃ from each mode q, let us design partial

observers using the Kalman observability decomposition [19] and the dynamics in (4.19).

Choose a matrix Zq such that its columns are an orthonormal basis of R(G⊤
q ), that is,

R(Zq) = R(G⊤
q ). Further, choose a matrix W q such that its columns are an orthonormal
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basis of kerGq. From the construction, there are matrices Sq ∈ R
rq×rq and Rq ∈ R

dy×rq ,

where rq = rankGq, such that Zq⊤Aq = SqZ
q⊤ and Cq = RqZ

q⊤, and the pair (Sq, Rq) is

observable. Let zq := Zq⊤x̃ and wq := W q⊤x̃, so that zq (resp. wq) denotes the observable

(resp. unobservable) states of the mode q. Thus, for zq ∈ R
rq , the error dynamics in (4.19)

satisfy

żq(t) = Sqz
q(t), ỹ(t) = Rqz

q(t), t ∈ [tq−1, tq)

zq(t̂k) = zq(t̂−k )− Zq⊤ξk, if t̂k ∈ (tq−1, tq)
(4.20)

with the initial condition zq(tq−1) = Zq⊤x̃(tq−1). Since zq is observable over the interval

[tq−1, tq), a standard Luenberger observer, whose role is to estimate zq(t−q ) at the end of the

interval, is designed as:

˙̂zq(t) = Sqẑ
q(t) + Lq(ỹ(t)− Rqẑ

q(t)), t ∈ [tq−1, tq)

ẑq(t̂k) = ẑq(t̂−k )− Zq⊤ξk, if t̂k ∈ (tq−1, tq)
(4.21)

with the initialization ẑq(tq−1) = 0, where Lq is a matrix such that (Sq − LqRq) is Hurwitz.

Note that we have fixed the initial condition of the estimator to be zero for each interval.

Now let us define the state transition matrix Φ(s, r), s > r, that results in x̃(s) =

Φ(s, r)x̃(r) along the dynamics (4.19a) and (4.19b) (but not (4.19c)). For example, when

s = t−j and r = t−i (j > i) are switching instants, we have that

Φ(t−j , t
−
i ) = eAjτjEj−1e

Aj−1τj−1Ej−2 · · · eAi+1τi+1Ei =: Ψj
i (4.22)

in which Ψj
i is defined for convenience in the future. Note that Ψj

i is computed using the

knowledge of the switching periods {τi+1, · · · , τj} which will be denoted simply by τ{i+1,j},

and note also that Ψi
i := I.

We now define a matrix Θq
i with i ≤ q whose columns form a basis of the subspace

R(Ψq
iW

i)⊥; that is,

R(Θq
i ) = R(Ψq

iW
i)⊥, i = q −N, · · · , q.

By construction, each column of Θq
i is orthogonal to the subspace kerGi that has been

transported from t−i to t−q along the error dynamics (4.19a) and (4.19b). This matrix Θq
i will

be used for filtering out the unobservable component in the state estimate obtained from

the mode i after being transported to the time t−q . As a convention, we take Θq
i to be a null

matrix whenever R(Ψq
iW

i)⊥ = {0}. Using the determinability of the system (Assumption
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4.1.2), it will be shown later in the proof of Theorem 4.19 that the matrix

Θq := [Θq
q

... · · · ... Θq
q−N ] (4.23)

has rank n. Equivalently, Θ⊤
q has n independent columns and is left-invertible, so that

(Θ⊤
q )

† = (ΘqΘ
⊤
q )

−1Θq, where † denotes the left-pseudo-inverse. Introduce the notation,

Kji := {k ∈ N : t̂k ∈ (ti, tj)}, ξ{i,j} := {ξk : k ∈ Kji}, and ẑ−{i,j} := {ẑi(t−i ), . . . , ẑj(t−j )}.

Let us also define the vector Ξq as

Ξq(ẑ
−
{q−N,q}, ξ{q−N,q}) :=




Θq⊤

q Ψq
qZ

qẑq(t−q )

Θq⊤

q−1

(
Ψq
q−1Z

q−1ẑq−1(t−q−1)−
∑

k∈Kq
q−1

Φ(t−q , t̂
−
k )ξk

)

...

Θq⊤

q−N

(
Ψq
q−NZ

q−N ẑq−N (t−q−N)−
∑

k∈Kq
q−N

Φ(t−q , t̂
−
k )ξk

)



.

The matrices M q
i with i = q −N, · · · , q are defined such that M q

i is a null matrix when Θq
i

is null, and the following holds:

[M q
q ,M

q
q−1, · · · ,M q

q−N ] := (Θ⊤
q )

† × blockdiag
(
Θq⊤

q Ψq
q,Θ

q⊤

q−1Ψ
q
q−1, · · · ,Θq⊤

q−NΨ
q
q−N

)
. (4.24)

Each non-empty M q
i is an n by n matrix whose argument is τ{q−N+1,q} in general (due to the

inversion of Θ⊤
q ), while the argument of both Θq

i and Ψq
i is τ{i+1,q}.

Finally, let TB := max{TD, TC}, where TC is the upper bound on computation time, and

define

b̄ := ebA·(2TC+TB) · bJmax(2TC )+Jmax(TB)
E . (4.25)

Pick any number α ∈ (0, 1) and compute the injection gain Li such that

b̄‖M q
i (τ{q−N+1,q})Z

ie(Si−LiRi)τiZ i⊤‖ ≤ α

N + 2
. (4.26)

(One constructive way to compute such an Li is from the squashing lemma [103, Lemma 1].)

Using the information over the interval [tq−N−1, tq), the error correction vector ξk in (4.18c)

is now computed as:

ξk = Φ(t̂−k , t
−
q )ˆ̃x(t

−
q ), (4.27)
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where

ˆ̃x(t−q ) = (Θ⊤
q )

†Ξq(ẑ
−
{q−N,q}, ξ{q−N,q}). (4.28)

The following algorithm summarizes these calculations for ξk and also illustrates how the

schematics of Fig. 4.1 and Fig. 4.2 could be implemented. We remark that if the computation

time is to be ignored, then the implementation becomes much simpler and for that case we

refer to the conference version [102].

Algorithm 3: Implementation of the hybrid observer

Input: σ, u, v, y

Initialization: x̂(t0) ∈ R
n, q = N , k = 0, Update = idle, swCount = 0

Synchronized Observer Loop1

Run the observer (4.18) synchronously to plant (4.1).2

if switching occurs then increment swCount.3

if Update == idle and q < swCount then4

q ← swCount and call Estimate Update.5

Loop end6

Estimate Update1

Update ← active2

for i = q −N to q do3

Compute the gains Li satisfying (4.26).4

Obtain ẑi(t−i ) by running the individual observer (4.21) for the i-th mode.5

Compute ˆ̃x from (4.28).6

Increment k and set t̂k ← CurrentTime.7

Set ξk ← Φ(t̂−k , t
−
q )ˆ̃x(t

−
q ) and update x̂ by (4.18c).8

Update ← idle9

end10

Algorithm 3 comprises two processes running in parallel, Synchronized Observer and Es-

timate Update. Whenever the switching happens, the Synchronized Observer calls the Esti-

mate Update if the latter is not already occupied with computation from previous switch. If

the switch occurs while the Estimate Update is active, we wait for it to finish the previous

computation and then look at the information from last N + 1 active modes for the next

update.
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4.3.3 Analysis of Error Convergence

The following theorem shows that the above implementation indeed guarantees the conver-

gence of the state estimation error to zero.

Theorem 4.19. Under Assumption 4.1, consider the hybrid observer (4.18) in which the

estimate update ξk is computed through (4.27) and introduced at t̂k, according to Algorithm 3.

If the gains Li, for each i = q −N, · · · , q, are chosen so that (4.26) holds for any choice

of α ∈ (0, 1), then lim
t→∞
|x̂(t) − x(t)| = 0. Furthermore, the estimation error satisfies the

following exponential convergence rate:

|x̃(t)| ≤ h(α)e−γ ln(α
−1)(t−t0)|x̃(t0)|, ∀ t ≥ t0, (4.29)

where γ is a positive constant and the function h : (0, 1)→ R has the property that h(α)→∞
when α→ 0.

Proof. From Assumption 4.1 and Algorithm 3 it can be seen that

t̂k+1 − t̂k ≤ max{TD, TC} = TB, ∀k ≥ 1.

Hence, it suffices to show that limk→∞ |x̃(t̂k)| = 0 because Assumptions 4.1.1 and 4.1.3 imply

that

|x̃(t)| ≤ ebATB · bJmax(TB)
E |x̃(t̂k)|, ∀t ∈ [t̂k, t̂k+1). (4.30)

In the remainder of this proof, an expression for x̃(t̂k) is derived whose norm is shown

to converge to zero. For this purpose, fix k > N + 3 and suppose that the k-th estimate

update process for ξk completes at time t̂k after having processed the data on the interval

[tq−N−1, tq) (where it is possible that there is another switch between tq and t̂
−
k ).

The error at t−q , x̃(t
−
q ), can be written as

x̃(t−q ) =

[
Zq⊤

W q⊤

]−1 [
zq(t−q )

wq(t−q )

]
= Zqzq(t−q ) +W qwq(t−q ). (4.31)

The matrix Ψj
i with j > i, defined in (4.22), transports x̃(t−i ) to x̃(t

−
j ) along (4.19) by

x̃(t−j ) = Ψj
i x̃(t

−
i )−

∑

k∈Kj
i

Φ(t−j , t̂
−
k )ξk. (4.32)
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We now have the following series of equivalent expressions for x̃(t−q ):

x̃(t−q ) = Zqzq(t−q ) +W qwq(t−q )

= Ψq
q−1Z

q−1zq−1(t−q−1) + Ψq
q−1W

q−1wq−1(t−q−1)−
∑

k∈Kq
q−1

Φ(t−q , t̂
−
k )ξk

= Ψq
q−2Z

q−2zq−2(t−q−2) + Ψq
q−2W

q−2wq−2(t−q−2)−
∑

k∈Kq
q−2

Φ(t−q , t̂
−
k )ξk

...

= Ψq
q−NZ

q−Nzq−N (t−q−N) + Ψq
q−NW

q−Nwq−N(t−q−N )−
∑

k∈Kq
q−N

Φ(t−q , t̂
−
k )ξk.

(4.33)

To appreciate the implication of this equivalence, we first note that for each q − N ≤
i ≤ q, the term Ψq

iZ
izi(t−i ) transports the observable information of the i-th mode from the

interval [ti−1, ti) to the time instant t−q . This observable information is corrupted by the

unknown term wi(t−i ), but since the information is being accumulated at t−q from modes

i = q −N, · · · , q, the idea is to combine the partial information from each mode to recover

x̃(t−q ). This is where we use the notion of determinability. By Properties 1, 5, and 6 in

Appendix B, and the fact that R(W i)⊥ = (kerGi)
⊥ = R(G⊤

i ) and e
−A⊤

q τqR(G⊤
q ) = R(G⊤

q ),

it follows under Assumption 4.1.2 that

R(W q)⊥ +R(Ψq
q−1W

q−1)⊥ + · · ·+R(Ψq
q−NW

q−N)⊥

= e−A
⊤
q τq

(
R(G⊤

q ) + E−⊤
q−1R(G⊤

q−1) +

q−2∑

i=q−N

i+1∏

l=q−1

E−⊤
l e−A

⊤
l
τlE−⊤

i R(G⊤
i )
)

= e−A
⊤
q τqMq

q−N = R
n.

This equation shows that the matrix Θq defined in (4.23) has rank n, and is left-invertible.

Keeping in mind that the range space of each Θq
i is orthogonal to R(Ψq

iW
i), each equality

in (4.33) leads to the following relation:

Θq⊤
i x̃(t−q ) = Θq⊤

i


Ψq

iZ
izi(t−i )−

∑

k∈Kq
i

Φ(t−q , t̂
−
k )ξk


 (4.34)

for i = q−N, · · · , q. Stacking (4.34) from i = q to i = q−N , and employing the left-inverse
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of Θ⊤
q , we obtain that

x̃(t−q ) = (Θ⊤
q )

†Ξq(z
−
{q−N,q}, ξ{q−N,q}) (4.35)

where z−{q−N,q} denotes {zq−N (t−q−N), . . . , zq(t−q )}. It is seen from (4.35) that, if we were able

to estimate z−{q−N,q} without error, then the plant state x(t−q ) would be exactly recovered by

(4.35) because x(t−q ) = x̂(t−q )− x̃(t−q ) and both entities on the right side of the equation are

known. However, since this is not the case, z−{q−N,q} is replaced with its estimate ẑ−{q−N,q} in

(4.28), and ˆ̃x(t−q ) is set as an estimate of x̃(t−q ), as done in (4.28).

Using the linearity of Ξq in its arguments, and substituting ξk from (4.27) in (4.19c), we

get

x̃(t̂k) = x̃(t̂−k )− Φ(t̂−k , t
−
q )ˆ̃x(t

−
q )

= Φ(t̂−k , t
−
q )(Θ

⊤
q )

†
(
Ξq(z

−
{q−N,q}, ξ{q−N,q})− Ξq(ẑ

−
{q−N,q}, ξ{q−N,q})

)

= −Φ(t̂−k , t−q )(Θ⊤
q )

†Ξq(z̃
−
{q−N,q}, 0)

(4.36)

where z̃−{q−N,q} denotes {z̃q−N(t−q−N), . . . , z̃q(t−q )} with z̃i(t−i ) = ẑi(t−i ) − zi(t−i ). It follows

from (4.20) and (4.21) that ˙̃zi = (Si − LiRi)z̃
i for t ∈ [ti−1, ti) with

z̃i(ti−1) = ẑi(ti−1)− zi(ti−1) = 0− Z i⊤x̃(ti−1),

which implies that

z̃i(t−i ) = e(Si−LiRi)τi z̃i(ti−1) = −e(Si−LiRi)τiZ i⊤x̃(ti−1).

Plugging this expression in (4.36), and using the definition of M q
i (i = q − N, . . . , q) from

(4.24), we get

x̃(t̂k) = Φ(t̂−k , t
−
q )

q∑

i=q−N
M q

i (τ{q−N+1,q})Z
ie(Si−LiRi)τiZ i⊤x̃(ti−1). (4.37)

For each i = q −N − 1, . . . , q − 1, let k∗(i) := max{k : t̂k < ti}. Then it follows that

x̃(ti) = Φ(ti, t̂k∗(i))x̃(t̂k∗(i)).
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From Fig. 4.2 and Algorithm 3, it is seen that

t̂−k − t−q ≤ 2TC and ti − t̂k∗(i) ≤ TB.

Thus, ‖Φ(t̂−k , t−q )‖ · ‖Φ(ti, t̂k∗(i))‖ ≤ b̄, ∀ i = q−N − 1, . . . , q− 1, where b is defined in (4.25).

Moreover, with k and q considered above, it can be seen that, for each i = q − N −
1, . . . , q − 1, it holds that k −N − 3 ≤ k∗(i) ≤ k − 2 (since k∗(q − 1) either equals k − 2 or

k − 3). Then, from the selection of gains Li’s satisfying (4.26), it is seen that

|x̃(t̂k)| ≤
α

N + 2

q−1∑

i=q−N−1

|x̃(t̂k∗(i))| ≤ α max
k−N−3≤i≤k−2

|x̃(t̂i)|, (4.38)

where 0 < α < 1. Finally, applying the statement of Lemma 4.20 to (4.38) aids us in the

completion of the proof as it shows that |x̃(t̂k)| → 0 as k →∞.

In order to compute the exponential decay bound, note that equation (4.44) in the state-

ment of Lemma 4.20, with ai = x̃(t̂i), leads to the following inequality:

|x̃(t̂i)| ≤
1

α
exp

(
− ln(α−1)

(N + 3)TB
(t̂i − t̂1)

)
max

1≤i≤N+3
|x̃(t̂i)|, i ≥ 1, (4.39)

because t̂k+1 − t̂k ≤ TB and 0 < α < 1. And, since exp
(
− ln(α−1)

(N+3)TB
(t− t̂i)

)
≥ α for t ≥ t̂i, it

follows from (4.30) that

|x̃(t)| ≤ ebATB · bJmax(TB)
E · 1

α
exp

(
− ln(α−1)

(N + 3)TB
(t− t̂i)

)
|x̃(t̂i)|, t ∈ [t̂i, t̂i+1). (4.40)

Combining (4.39) and (4.40), it holds that

|x̃(t)| ≤ ebATB · bJmax(TB)
E · 1

α2
exp

(
− ln(α−1)

(N + 3)TB
(t− t̂1)

)
max

1≤i≤N+3
|x̃(t̂i)|, t ≥ t̂1. (4.41)

On the other hand, since tN+1 < t̂1 ≤ tN+1 + TC , an over-approximation of the error on the

interval [t0, t̂N+3] is obtained, by ignoring error updates, as

max
t∈[t0,t̂N+3]

|x̃(t)| ≤ ebA((N+1)TD+TC+(N+2)TB) · bN+1+Jmax(TC+(N+2)TB)
E · |x̃(t0)| =: c̃ · |x̃(t0)|. (4.42)
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From (4.41) and (4.42), we arrive at

|x̃(t)| ≤ ebATB · bJmax(TB)
E · 1

α2
exp

(
− ln(α−1)

(N + 3)TB
(t− t̂1)

)
· c̃ · |x̃(t0)|, t ≥ t0, (4.43)

in which it should be noted that the inequality holds for all t ≥ t0 because the right-

hand side is greater than c̃|x̃(t0)| for t ∈ [t0, t̂1]. Taking γ = 1/((N + 3)TB) and h(α) =

(ebATBb
Jmax(TB)
E c̃)/α2 · e−γ ln(α−1)(t0−t̂1), the proof is completed.

Lemma 4.20. Suppose that the sequence {ak} satisfies

|ak| ≤ α max
k−N−3≤i≤k−2

|ai|, k > N + 3,

where 0 < α < 1. Then the following holds:

max
k≤i≤k+N+2

|ai| ≤ α max
k−N−3≤i≤k−1

|ai|, k > N + 3, (4.44)

which implies that the maximum value of the sequence {ak} over a window of length N + 3

is strictly decreasing and converging to zero, and thus, lim
k→∞

ak = 0.

Proof of Lemma 4.20. By putting |ak−1| into the right-hand side it is clear that

|ak| ≤ α max
k−N−3≤i≤k−1

|ai|. (4.45)

Similarly, it follows that

|ak+1| ≤ α max
k−N−2≤i≤k

|ai| ≤ αmax

{
|ak−N−3|, max

k−N−2≤i≤k−1
|ai|, |ak|

}

≤ α max
k−N−3≤i≤k−1

|ai|,

where the last inequality follows from (4.45). By induction, this leads to

max
k≤i≤k+N+2

|ai| ≤ α max
k−N−3≤i≤k−1

|ai|.

Example 4.21. We demonstrate the operation of the proposed observer for the switched

system considered in Example 4.1 with ǫ > 0. We assume that each mode is activated for τ
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seconds and τ 6= κπ for any κ ∈ N, so that the persistent switching signal is:

σ(t) =




a if t ∈ [2mτ, (2m+ 1)τ),

b if t ∈ [(2m+ 1)τ, (2m+ 2)τ),
m : nonnegative integer. (4.46)

As mentioned earlier, the system is observable (and thus, determinable) with this switching

signal if the mode sequence a→ b→ a is contained in a time interval. Hence, we pick N = 3

in order to include both sequences (a, b, a, b) and (b, a, b, a), so that Assumption 4.1.2 holds.

For simplicity, it is assumed that 0 < TC < τ and that the computations always end at

t̂k = tq + TC with q = k +N (because t̂1 = t4 + TC). Let us call [2mτ, (2m+ 1)τ), the odd

interval, and [(2m + 1)τ, (2m+ 2)τ), the even interval. With an arbitrary initial condition

x̂(0), the observer to be implemented is:

˙̂x(t) = Aax̂(t)

ŷ(t) = Cax̂(t)

}
, t ∈ [2mτ, (2m+ 1)τ), (4.47a)

˙̂x(t) = Abx̂(t)

ŷ(t) = Cbx̂(t)

}
, t ∈ [(2m+ 1)τ, (2m+ 2)τ), (4.47b)

x̂(t̂k) = x̂(t̂−k )− ξk, t̂k = tk+3 + TC , k ∈ N. (4.47c)

In order to determine the value of ξk, we start off with the estimators for the observable

part of each subsystem, denoted by zq in (4.20). Note that mode a has a one-dimensional

unobservable subspace whereas for mode b, the unobservable subspace is R2. Since mode a is

active on every odd interval and mode b on every even interval, zq for every odd q represents

the partial information obtained from mode a, and zq for every even q is a null vector as no

information is gathered from mode b. So the one-dimensional partial observer in (4.21) is

implemented only for odd intervals. For odd q, we compute from the mode a

Gq =

[
1 0

0 0

]
,R(G⊤

q ) = span

{[
1

0

]}
,W q =

[
0

1

]
, Zq =

[
1

0

]
,

so that Sq = 0 and Rq = 1, which yields the observer in (4.21) as

˙̂zq = −lq ẑq + lqỹ, t ∈ [(q − 1)τ, qτ), q: odd,

ẑq(t̂k) = ẑq(t̂−k )− ξ1k, t̂k ∈ [(q − 1)τ, qτ),
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with the initial condition ẑq((q− 1)τ) = 0, and ỹ being the difference between the measured

output and the estimated output of (4.47). The notation ξ1k denotes the first component of

the vector ξk. The gain lq will be chosen later by (4.48). For q even, we take W q = I2×2,

and Gq = 02×2, so that Zq, Sq, and Rq are null-matrices.

The next step is to use the value of ẑq(t−q ) to compute ξk. The matrices appearing in the

computation of ξk are given as follows. For every even q > 3:

Ψq
q−3 = e2ǫτ

[
cos 2τ sin 2τ

− sin 2τ cos 2τ

]
⇒R

(
Ψq
q−3W

q−3
)⊥

= R
([

cos 2τ

− sin 2τ

])
,

Ψq
q−2 = eǫτ

[
cos τ sin τ

− sin τ cos τ

]
⇒R

(
Ψq
q−2W

q−2
)⊥

= {0},

Ψq
q−1 = eǫτ

[
cos τ sin τ

− sin τ cos τ

]
⇒R

(
Ψq
q−1W

q−1
)⊥

= R
([

cos τ

− sin τ

])
,

Ψq
q = I2×2 ⇒ R

(
Ψq
qW

q
)⊥

= {0}.

These subspaces directly lead to the expressions for Θq
j , j = q − 3, . . . , q, so that

Θq =
[
Θq
q−1 Θq

q−3

]
=

[
cos τ cos 2τ

− sin τ − sin 2τ

]
, and Θ−⊤

q =

[
sin 2τ
sin τ

−1
cos 2τ
sin τ

− cos τ
sin τ

]

for q = 4, 6, 8, . . ., where, as a convention, we have taken Θq
i as a null matrix whenever

R(Ψq
iW

i)⊥ = {0}. Hence, the error correction term can be computed recursively for every

even q > 3 by the formula:

ˆ̃x(t−q ) = Θ−⊤
q

[
eǫτ ẑq−1(t−q−1)− [cos τ − sin τ ]eAb(τ−TC)ξq−4

e2ǫτ ẑq−3(t−q−3)− [cos 2τ − sin 2τ ](eAb(τ−TC)ξq−4 + eAbτξq−5 + eAb(2τ−TC )ξq−6)

]

with ξk = 0 for k ≤ 0. Since for every even q, Φ(t̂−k , t
−
q ) = I2×2 with k = q − 3, we get

ξk = ˆ̃x(t−k+3). Also, for even q, we obtain that M q
q , M

q
q−2 are null matrices, and

M q
q−1 = eǫτ

[
sin 2τ
sin τ

0
cos 2τ
sin τ

0

]
and M q

q−3 = e2ǫτ

[
−1 0

− cos τ
sin τ

0

]
.
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Next, for every odd q > 3, we repeat the same calculations to get:

Ψq
q−3 = eǫτ

[
cos τ sin τ

− sin τ cos τ

]
⇒R

(
Ψq
q−3W

q−3
)⊥

= {0},

Ψq
q−2 = eǫτ

[
cos τ sin τ

− sin τ cos τ

]
⇒R

(
Ψq
q−2W

q−2
)⊥

= R
([

cos τ

− sin τ

])
,

Ψq
q−1 = I2×2 ⇒R

(
Ψq
q−1W

q−1
)⊥

= {0},

Ψq
q = I2×2 ⇒R

(
Ψq
qW

q
)⊥

= R
([

1

0

])
.

Once again, using the expressions for Θq
j , j = q − 3, . . . , q, based on these subspaces, one

gets

Θq =
[
Θq
q Θq

q−2

]
=

[
1 cos τ

0 − sin τ

]
, Θ−⊤

q =

[
1 0

cos τ
sin τ

− 1
sin τ

]

so that, for q = 5, 7, 9, . . .,

ˆ̃x(t−q ) = Θ−⊤
q

[
ẑq(t−q )

eǫτ ẑq−2(t−q−2)− [cos τ − sin τ ](ξq−1 + eAb(τ−TC)ξq−2)

]
,

and ξk = eAbTC ˆ̃x(t−k+3). Again, we obtain for odd q that M q
q−1 and M q

q−3 are null matrices,

and

M q
q =

[
1 0

cos τ
sin τ

0

]
, and M q

q−2 =

[
0 0

− eǫτ

sin τ
0

]
.

By taking lj equal to l for every odd j, and computing the induced 2-norm of the

matrix, it is seen that, maxq−3≤j≤q,j:odd,q>3 ‖M q
j Z

je(Sj−lRj)τZj⊤‖ = e(2ǫ−l)τ/| sin τ |. Also,

b = e
√
1+ǫ2(2TC+τ). So, the lower bound for the gain l, is obtained as follows:

b
e(2ǫ−l)τ

| sin τ | <
1

N + 2
=

1

5
⇒ l > 2ǫ+

1

τ
ln

5b

|sin τ | . (4.48)

Once again it can be seen that the singularity occurs when τ is an integer multiple of

π. Moreover, if τ approaches this singularity, then the gain required for convergence gets

arbitrarily large. This shows that, although the condition sin τ 6= 0 guarantees observability,

it may cause some difficulty in practice if sin τ ≈ 0. This also explains why the knowledge

of the switching signal is required in general to compute the observer gains.

The results of simulations with τ = 1, TC = 0.5τ , ǫ = 0.1 and l = 20, are illustrated
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Figure 4.3: Size of state estimation error and the switching signal.

in Fig. 4.3. The error initially evolves according to the unstable system dynamics as no

correction is applied till t4 + TC . The figure clearly shows the hybrid nature of the proposed

observer, which is caused by the jump discontinuity in the error signal. The error grows

between the error updates because the subsystem at mode b has unstable dynamics, but

maxk≤i≤k+N+2 |x̃(t̂i)| indeed gets smaller as k increases. ⊳

4.4 Conclusion

This chapter addressed the characterization of observability and determinability in switched

linear systems with state jumps. It was shown that, for a fixed mode sequence, the set of

switching signals over which these properties hold is either empty or dense under a certain

metric topology. To study when the properties hold uniformly with respect to switching

times, we derived separate sufficient and necessary conditions as corollaries to the main

result. Later, using the property of determinability, an asymptotic observer was constructed

that combines the partial information obtained from each mode to get an estimate of the

state vector. For practical considerations, the proposed observer takes into account the time

consumed in processing the information. Under the assumption of persistent switching, the

error analysis shows that the estimate indeed converges to the actual state exponentially.

As an extension to the current work, it may be interesting to investigate how far these

ideas carry over to nonlinear systems. The proposed method for observer design relies on

102



the linearity of the system (4.1). In fact, it is seen in (4.33) that the transportation of the

partially observable state information (represented by z), obtained at each mode, can be

computed even with some unobservable information (by w). Since linearity guarantees that

the observable information is not altered by this transportation process, the unobservable

components are simply filtered out after the transportation. We emphasize that this idea

may not be transparently applied to nonlinear systems, and may need a different approach

as in [104].
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Chapter 5

Observability of Switched Nonlinear Systems

Continuing with the observability problem, we now address another class of switched systems

where the continuous dynamics are modeled by first order nonlinear differential equations.

The tool set adopted in Chapter 4 to solve the linear case is not so easy to generalize for

the nonlinear case; however, at a conceptual level we will try to extend the same idea.

This chapter first presents a sufficient condition for observability of switched systems that

involve state jumps and comprise nonlinear dynamical subsystems affine in control. Without

assuming observability of individual modes, the sufficient condition is based on gathering

partial information from each mode so that the state is recovered completely after some

time. Based on the sufficient condition, an observer is designed which employs a novel

‘back-and-forth’ technique to generate state estimates. Under the assumption of persistent

switching, analysis shows that the estimate converges asymptotically to the actual state of

the system.

Towards the end of the chapter, we try to work out a condition which is both necessary

and sufficient for observability in nonlinear switched systems. At the moment our findings

are presented in the form of a conjecture, with a sketch of proof and we highlight some of

the issues involved in obtaining such characterization.

5.1 Introduction and Background

We study observability conditions and an observer design for a class of switched nonlinear

systems Σ, described as

ẋ(t) = fσ(t)(x(t)) + gσ(t)(x(t))u(t), t 6= {tq}, (5.1a)

x(tq) = pσ(t−q )(x(t
−
q )), (5.1b)

y(t) = hσ(t)(x(t)), (5.1c)
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where x : R 7→ R
n is the state trajectory, y : R 7→ R

dy is the output, the measurable function

u : R 7→ R
du is the input belonging to some input class U of interest, and σ : R 7→ N is the

switching signal that is right-continuous and changes its value at switching times {tq}, q ∈ N.

Let t0 be the initial time and the jump map (5.1b) applies at t = tq, q ≥ 1. It is assumed

that there are a finite number of switching times in any finite time interval. The switching

mode σ and the switching times {tq} may come from a supervisory logic controller, or may

be determined internally depending on the system state. In any case, we treat them as a

known, external input in this chapter, leaving aside the study for estimating the switching

signal to [105]. It is assumed that the solution x(t) remains in a compact set X ⊂ R
n on the

time interval of interest. This is because the observer design that we are going to present is

not a global one, and capturing the solution within the set X is a control problem, which

is not of our concern. All the vector fields and functions are assumed to be smooth, and

therefore, the existence and uniqueness of the solution, for all times, are guaranteed by the

fact that the solution remains in a compact set.

When dealing with observability of nonlinear systems, there are different notions that are

involved. The works [18, 106] talk about observability in local neighborhoods of the state

space. The authors in [73] describe the notion of ‘large-time’ versus ‘small-time’ observability

where the difference lies in whether it is possible to recover the state instantaneously in time

or the system becomes observable after certain time interval. If the system description has

exogenous inputs acting on it, then the question arises whether observability holds for all

inputs [107, 108]; if it does, the system is called uniformly observable.

The concept of observability studied in this chapter is a refinement of the ‘large-time ob-

servability’ already considered in the literature (e.g., [73]) and the ‘uniform observability’

studied in [107, 108]. Switched systems can be thought of as a family of dynamical subsys-

tems, where a switching signal determines the active subsystem at each time instant. It is

entirely possible that none of these subsystems is observable in the sense that information

about the full state is not immediate in the output signal [106, 18]. But the information

available from each mode can be combined in a certain manner so that under some condi-

tions, it is possible to recover the state vector completely after some time. This explains

how the concept of ‘large-time’ comes into the picture when dealing with switched systems,

and our goal is to derive conditions that make the system large-time observable on a given

set X . Moreover, since we are interested in an observer construction at the end, the observ-

ability for all inputs (i.e., uniform observability) is of concern in order for the observer to be

independent of particular inputs.
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For switched systems, among other structural properties, observability and observer design

for linear case have been actively studied during the past decade. Some initial observer

results on switched systems, such as [58, 59] for linear case and [109] for nonlinear case, have

assumed that each mode in the system is in fact observable admitting a state observer, and

have treated the switching as a source of perturbation effect. This approach immediately

incurs the need of a common Lyapunov function for the switched error dynamics, or a

fixed amount of dwell-time between switching instants, because it is intrinsically a stability

problem of the error dynamics. More relaxed approaches do not assume observability of the

individual modes, and the notion of gaining observability for linear systems by switching

has appeared in, e.g., [52, 54, 46]. The sufficient conditions proposed in [52] imply that the

full state information is recovered after one switching, which is extended in [54] where the

conditions for recovery of state after multiple switches are proposed. Both papers use outputs

and their derivatives to recover the state. The work of [46] gives geometric conditions under

which there exists at least one switching signal that makes the system observable. Even

though limited to the linear case, it is not clear how the conditions in [46, 52, 54] can

lead to feasible observer design. On the other hand, there is not much literature on the

observability of switched nonlinear systems. We mention [110] treating this topic but the

notions of observability considered in that chapter is entirely different than ours.

The main contribution of this chapter lies in the unified treatment of observability condi-

tions and observer design which has not been discussed in literature for nonlinear systems,

to the author’s knowledge. For the observer design, our approach shares the same spirit

with [55], and the results in this chapter can be regarded as an extension of [55], in the sense

that a coordinate-independent condition is derived for observability and nonlinear systems

are treated with a new observer design strategy.

In Chapter 4, while deriving the conditions for observability and designing observers for

switched linear systems, we used the knowledge of flow of linear systems and the results

were dependent on the switching signal. In nonlinear systems, however, it is difficult to

compute the analytical expression for flow of the system. This observation motivates us to

seek sufficient conditions which guarantee large-time observability without having to solve

the nonlinear differential equations so that the result holds independently of switching times.

Consequently, the proposed observer design based on this condition allows arbitrary inputs

u and all switching signals with particular mode sequence regardless of switching times, in

order to generate converging estimates. In this chapter, we present such a sufficient condition,

as well as an observer design technique based on the proposed condition. This means that
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observability with respect to our sufficient condition is uniform with respect to the switching

times. In this way, we can deal with the design of observers allowing arbitrary inputs u and

switching signals with particular mode sequence, which is more suitable (than asking for

observability to be uniform both in the input u and the switching signal σ) for engineering

needs in practice.

For development of the results related to observability, we recall some basic definitions

from [111, 18]:

Definition 5.1 (Distribution). A k-dimensional distribution ∆ on an n-dimensional man-

ifold M is an assignment of a k-dimensional subspace ∆(x) of TxM for each x ∈ M, where

TxM denotes the tangent space to M at x. A vector field f on M is said to belong to (or lie

in) the distribution ∆ (f ∈ ∆) if f(x) ∈ ∆(x) for each x ∈ M. ⊳

Definition 5.2 (Involutive Distribution). A distribution ∆ is called involutive if the Lie

bracket [ν1, ν2] ∈ ∆ whenever ν1 and ν2 belong to ∆. ⊳

Definition 5.3 (Integral Manifold of a Distribution). A submanifoldM of M is an integral

submaifold of the distribution ∆ if, for every x ∈ M, the tangent space TxM to M at x

coincides with the subspace ∆(x) of TxM. ⊳

Definition 5.4 (Integrable Distribution). A nonsingular d-dimensional distribution ∆, de-

fined on an open set U ⊂ M, is said to be completely integrable if, for each point xo of U ,

there exist a neighborhood Uo of xo, and n− d real-valued smooth functions λ1, λ2, · · · , λn−d,
all defined on Uo, such that

span{dλ1, . . . , dλn−d} = ∆⊥

on Uo. ⊳

Definition 5.5 (Invariant Distribution). A distribution ∆ is said to be invariant under a

vector field f if the Lie bracket [f, ν] of f with every vector field ν of ∆ is again a vector

field of ∆, i.e., if

ν ∈ ∆⇒ [f, ν] ∈ ∆. ⊳

We will be using the notation 〈ν1, . . . , νq|∆〉 to denote the smallest distribution which

contains ∆ and is invariant under the vector fields ν1, . . . , νq.
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Definition 5.6 (Differential). Let Φ : M 7→M
′ be a smooth mapping between smooth mani-

folds M and M
′. The differential of Φ at a point x ∈M is a linear mapping

Φ∗x : TxM 7→ TΦ(x)M
′

defined as:

Φ∗x

(
dγ

dt

∣∣∣∣
t=0

)
=

d

dt

∣∣∣∣
t=0

Φ(γ(t)),

where

γ : (−ε, ε) 7→M, γ(0) = x,

is a smooth curve in M starting at the point x. ⊳

Moving on from the basic definitions of differential geometry, we define the notion of

observability that is considered in the nonlinear case.

Definition 5.7. A system Σ with a switching signal σ(·) is large-time uniformly observable

on a set X ⊂ R
n if there exist a finite time T > t0 and an operator E yielding the state

x(T ) = E(y[t0,T ], u[t0,T ], σ[t0,T ]) for any measurable input u[t0,T ], when the state x(t) remains

in X for [t0, T ]. If the time T can be chosen arbitrarily with T > t0, then the system Σ is

called small-time uniformly observable on a set X . ⊳

In case of no jump map (5.1b), knowledge of x(T ), σ[t0,T ], and u[t0,T ] determines x[t0,T ]

uniquely. This is not the case in general because the jump map (5.1b) may not be reversible.

The notion of observability studied in this chapter is also referred to as ‘determinability’

in [46, 102] and ‘reconstructability’ in [13], where the systems considered are linear. From

the definition, if a certain mode of system Σ is small-time observable and the switching

signal activates that mode at certain time, then the system is automatically large-time

observable. Note that the operator E in the definition may include differentiation (although

differentiation should be not used in the observer construction).

It is noted that, although the observability in Definition 5.7 is uniform with respect to the

input u, uniformity with respect to the switching signal σ is not required. To appreciate its

implication, let us first observe the effect of the switching signal on the observability.

Notation: The notation used in this chapter is summarized as follows. R(A) implies the

range space of the columns of matrix A, and A⊤ is the transpose of A. We denote [x⊤1 , x
⊤
2 ]

⊤

simply by col(x1, x2), and λ1∼k := col(λ1, . . . , λk). The time interval {t : t1 < t < t2}
and {t : t1 ≤ t ≤ t2} are expressed by (t1, t2) and [t1, t2], respectively. And, for signal
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x(t), x[t1,t2] means {(x(t), t) : t1 ≤ t ≤ t2}. The differential of a map p acting on the

vector field v is denoted by p∗v. For a distribution W, p∗W = {p∗v | v ∈ W}. We call a

distribution W at xo ‘nonsingular’ when dimW is constant in a neighborhood of xo. The

notation l.com {λ1(x), . . . , λk(x)} means a set of linear combinations of the functions λi with

constant coefficients, i.e., {∑k
i=1 ciλi(x) : ci ∈ R}. Now let X be a set in R

n, and whenever

we say a property holds ‘on X ,’ we mean that it holds for every x ∈ X . Smooth functions

λ1(x), . . . , λk(x), defined on X , are said to be independent on X if their differential one-forms,

dλ1(x), . . . , dλk(x) are linearly independent on X . In addition, if there exist n − k smooth

functions λk+1, . . . , λn such that col(λ1(x), . . . , λn(x)) becomes a diffeomorphism from X to

R
n, then we say that λ1, . . . , λk are potentially diffeomorphic on X .

5.2 Motivating Example

Example 5.8. Let X := {x ∈ R
3 : x1, x3 ≥ 0} ⊂ R

3 and consider that the state x, with

initial condition x0 := col(x10, x20, x30) in X , evolves according to the following dynamics:

Γ1 :





ẋ = f1(x) :=




0.1x3

x21 − x23 + 2x1

0.1(x1 + 1)




y = h1(x) := x2

; Γ2 :





ẋ = f2(x) :=




x3

−(x21 − x23 + 2x1)x2

x1 + 1




y = h2(x) := x21 − x23 + 2x1

;

Γ3 :





ẋ = f3(x) :=




x22

−1
2
x2

0




y = h3(x) := x1 + x22.

Also, the state jumps at t1 according to the following equation:

x(t1) = p1(x(t
−
1 )) := col(x(t−1 ), 2x2(t

−
1 ), x3(t

−
1 )).

Each of the three modes is large-time unobservable. For mode 1, Lf1h1(x) = x21 −
x23 + 2x1, and Lkf1h1(x) = 0, ∀k ≥ 2. This gives, dO1 = span{col(dh1(x), dLf1h1(x))} =

span

{[
0 1 0

x1 + 1 0 −x3

]}
. So that we recover information about the state up to a one-

dimensional manifold from this mode. Similarly, for mode 2 and mode 3, we can compute
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the following:

dO2 = span
{[
x1 + 1 0 −x3

]}
,

dO3 = span
{[

1 2x2 0
]}

.

Once again, it can be seen that the complete information about the state is not obtained from

either mode 2 or mode 3 as both of them confine the state to a two-dimensional manifold.

Next, it is claimed that the switching between these three modes, 1 → 2 → 3, makes it

possible to recover complete information about the state. Assume that a particular execution

of this switched system with mode sequence {1, 2, 3} has been observed on some time interval

[0, T ), 0 < t1 < t2 < T . At time t−1 , y(t
−
1 ) = h1(x(t

−
1 )), and ẏ(t

−
1 ) = Lf1h1(x(t

−
1 )), so that

the state at time t−1 is constrained by the following equations:

y(t−1 ) = x2(t
−
1 ), (5.2a)

ẏ(t−1 ) = x21(t
−
1 )− x23(t−1 ) + 2x1(t

−
1 ). (5.2b)

Similarly, at t−2 , the only constraint on the state is that y(t−2 ) = x21(t
−
2 )− x23(t−2 ) + 2x1(t

−
2 ).

It is noted that ÿ(t) = 0, for 0 ≤ t < t1 and ẏ(t) = 0, for t1 ≤ t < t2, and also that

y(t1) = ẏ(t−1 ). This way y(t−2 ) = ẏ(t−1 ) = ẏ(t0) = x210 − x230 + 2x10. Since there is no state

jump at t2 we can rewrite the constraint imposed in (5.2b) as

ẏ(t0) = x21(t2)− x23(t2) + 2x1(t2). (5.3)

When mode 3 is activated, the information obtained from the output is:

y(t+2 ) = x1(t2) + x22(t2), (5.4)

where x(t+2 ) has been replaced by x(t2) as the state is continuous at t2. Combining (5.2a), (5.3),

and (5.4), alongside the fact that x2(t2) = 2e−ẏ(t0)τ2x2(t
−
1 ), the only possible solutions for

x1(t2), x2(t2), and x3(t2) are:

x2(t2) = 2e−ẏ(t0)τ2y(t−1 ), (5.5a)

x1(t2) = y(t2)− x22(t2), (5.5b)

x3(t2) = ±
√
x21(t2) + 2x1(t2)− ẏ(t0) . (5.5c)
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Figure 5.1: Intersection of three unobservable manifolds that combines the information
available from each mode at t2. These manifolds are represented by the solution sets of
equations (5.3), (5.4), and (5.5a). Since their intersection is a point, the vector x(t2) is
recovered completely.

To see that the solution exists and is well-defined, note that x21(t2)+2x1(t2)− ẏ(t0) is strictly
positive if x1(t2) > x10. This indeed follows from the system dynamics as x10, x30 ≥ 0, and

solving the differential equations for Γ1,Γ2 gives

x1(t2) = (x10 + 1) cosh(0.1τ1 + τ2) + x30 sinh(0.1τ1 + τ2)− 1,

so that x1(t2) > x10, ∀ t2 > 0. Similarly,

x3(t2) = (x10 + 1) sinh(0.1τ1 + τ2) + x30 sinh(0.1τ1 + τ2),

so that x3(t2) > 0, ∀ t2 > 0. Graphically, the solution of (5.5) has been verified through

simulation in Fig. 5.1. This shows that there is a unique solution for each component of the

state at time t2. Furthermore, since there is only one invertible jump map, the values of the

state obtained at time t2 can be propagated forward and backward in time to obtain the

values of state trajectory at all times. ⊳

Let us highlight some interesting aspects of this example in order to motivate the technical

details that follow:

1. The main idea of the example was to illustrate that even though the individual modes
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of the system are not observable, it is possible to extract partial information about the

state from these modes. Under certain constraints on the dynamics of the system, it

is then possible to accumulate all the information at some time instant in future so

that it becomes possible to determine complete knowledge of the state of the system.

In this example, we saw that information from mode 1 and mode 2 is combined with

that of mode 3 at time t2 to recover the state at that time instant.

2. The information about x2 (one of the observable components of mode 1) obtained at t−1
is preserved at time t−2 only because Lf2dx2 = span{[2x2(x1+1) x21−x23+2x1 −2x2x3]} ∈
dO2+dx2; that is, the evolution of x2(t) along the dynamics of mode 2 depends on the

past values of x2 and the observable components of mode 2. Also, the initial condition

for x2 at t1 is obtained directly from the knowledge of x2(t
−
1 ) which is one of the

observable components of mode 1. In other words, even though x2 is unobservable for

mode 2, it does not interact with other unobservable components of mode 2, and hence

the information recovered about x2 from mode 1 is preserved under the new dynamics

after switching.

3. The jump map at first switching instant does not combine the known (x2) and unknown

information (x1, x3) about the state. If, after the jump, x2(t1) were a function of x1(t
−
1 )

and x3(t
−
1 ) (say, p1(x) := col(x1, x1 + x3, x3)), then it would have been not possible to

preserve the information about x2 till time t2 and consequently the solution would not

exist.

The above mentioned arguments underline the basic ideas behind our solution to the

observability problem. This approach of combining the available information from various

modes and preserving parts of it which do not interact with unknown components of the

state, leads to a sufficient condition for observability, which will be formalized in Section 5.4.3,

Theorem 5.12. Also, in the above example, we arrived at the solution by solving differential

equations and a set of algebraic equations. As this approach is highly impractical and

unfruitful, more often than not, our main goal is to design appropriate dynamical observers.

Apart from guaranteeing the existence of solution to observability problem, the most useful

aspect of Theorem 5.12, however, is that the proposed sufficient condition renders a particular

canonical structure to the system dynamics at every mode. This structure is presented in

the next section, and we show how it leads to designing the observers.
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5.3 Observer Synopsis

In this section, we discuss our primary approach towards designing observers that would

be detailed in Section 5.5. The key aspect of our approach is the transformation of each

subsystem’s dynamics to particular canonical structure and then use that structure to con-

struct appropriate observers. Existence of such a structure in each subsystem is presented

as an assumption here in order to highlight the underlying idea of observer design. Later, in

Section 5.4.3, a sufficient condition that leads to this particular structure is presented.

5.3.1 Property of Individual Modes

Before dealing with the switched case, let us consider the system (5.1a) and (5.1c) for a fixed

mode q, without the jump map (5.1b) for now. In particular, we note that the individual

subsystems may not be observable, which calls for the classical Kalman decomposition [18]:

changing the coordinates so that the system is explicitly split into the observable part and

the unobservable part. Then, we assume the following for each mode q.

Assumption 5.1. There exist potential coordinate functions λq,1∼n(x) that yield a diffeo-

morphism λq := col(λq,1(x), . . . , λq,n(x)) on X and that the system (5.1a) and (5.1c) for

mode q is represented in the new coordinates col(ξ′q, ξq) with ξ
′
q = λq,(kq+1)∼n(x) ∈ R

n−kq and

ξq = λq,1∼kq(x) ∈ R
kq as follows:

ξ̇′q = F ′
q(ξ

′
q, ξq) +G′

q(ξ
′
q, ξq)u, (5.6a)

ξ̇q = Fq(ξq) +Gq(ξq)u, (5.6b)

y = Hq(ξq). (5.6c)

Furthermore, this representation is valid on the set λq(X ). ⊳

Assumption 5.2. For each mode q, the reduced-order subsystem (5.6b) and (5.6c) is small-

time uniformly observable on the set Ξq := λq,1∼kq(X ), which is the projection of λq(X ) onto
the ξq-coordinates. ⊳

5.3.2 Canonical Structure for the Switched System

Assumption 5.3. There exists a diffeomorphism (λ1∼kq , w1∼lq , λkq+lq+1∼n), such that with

the new coordinates ξq := λ1∼kq(x) ∈ R
kq , zq := w1∼lq(x) ∈ R

lq , and ξ′q := λkq+lq+1∼n(x) ∈
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R
n−kq−lq , the dynamics of system (5.1) take the following form:

ξ̇q = Fq(ξq) +Gq(ξq)u, ξq ∈ R
kq , (5.7a)

y = Hq(ξq), (5.7b)

żq = F ∗
q (zq, ξq) +G∗

q(zq, ξq)u, zq ∈ R
l̄q , (5.7c)

zq(tq−1) = S∗
q

(
ξq(tq−1), Pq−1

(
ξq−1(t

−
q−1), zq−1(t

−
q−1), ξq(tq−1)

))
, (5.7d)

ξ̇′q = F ′
q(ξ

′
q, ξq, zq) +G′

q(ξ
′
q, ξq, zq)u, ξ′q ∈ R

n−kq−lq , (5.7e)

where z1 is taken as a null vector. ⊳

In equation (5.7), ξq denotes the observable component of subsystem q as introduced in

Assumption 5.1 and 5.2. The vector zq represents the additional information accumulated

from other modes over the interval [t0, tq−1). The corresponding dynamics indicate that

the vector zq propagates under the dynamics of subsystem q without interacting with its

unobservable components. Also, since the initial condition, zq(tq−1) is a function of known

components, it becomes possible to know the value of zq(tq) and pass it onto the next mode.

This way, we keep accumulating uncorrupted information from the past modes.

If for some m ≥ 1, km + lm = n, then it means that sufficient information about the

state is available from system dynamics. The state can now be recovered using the observers

for (5.7a) and (5.7c) and then using the corresponding inverse transformation.

If system (5.1) admits the structure (5.7), then we construct separate observers for the

component ξq and zq. Since ξq is observable for each mode, it is possible to get a good

estimate of ξq. The variable zq, on the other hand, is not an observable quantity for the mode

q. Intuitively speaking, the role of zq-observer is not to reduce the error z̃q(t) := ẑq(t)−zq(t),
but to deliver the estimates ξ̂q−1(t

−
q−1) and ẑq−1(t

−
q−1), that are obtained from the previously

active mode and are encoded in the initial condition (5.7d), to the next mode through ẑq(t).

Suppose that, seen at time t = t−m, an ideal observer provides the exact information of

ξq(t) on each interval [tq−1, tq), q = 1, . . . , m, using the stored input u and the output y

with the model (5.7a) and (5.7b). For example, with exact values of ξ̂1(t
−
1 ) = ξ1(t

−
1 ) and

ξ̂2(t1) = ξ2(t1), we obtain the exact value of ẑ2(t1) = z2(t1) by (5.7d). Then, integration of

(5.7c) for q = 2 results in exact values of ẑ2(t) = z2(t) on [t1, t2). This process repeats until

we get ξ̂m(t
−
m) = ξm(t

−
m) and ẑm(t

−
m) = zm(t

−
m). Assuming that km + lm = n, x(t−m) is now
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determined uniquely from ξm(t
−
m) and zm(t

−
m), as the map

x(t−m) 7→
[
χ(ξm(t

−
m))

zm(t
−
m)

]
(5.8)

is invertible, for some known potential coordinate function χ. The details of the implemen-

tation of this idea will be given in Section 5.5.

5.4 Geometric Conditions

5.4.1 Useful Lemmas

The following lemmas will be frequently used in the chapter.

Lemma 5.9. Consider a codistribution W generated by exact one-forms, that is, W =

span{dλ1, . . . , dλk} with 1 ≤ k ≤ n, where λ1, . . . , λk are potentially diffeomorphic smooth

functions defined on a set X ⊂ R
n.

1. If the codistribution W is invariant with respect to a smooth vector field f(x), i.e.,

LfW ⊂W

on the set X , then there exists a smooth vector field F on the set λ1∼k(X ) such that
∂λ1∼k

∂x

∣∣∣
x
· f(x) = F (λ1∼k(x)) on X .

2. If a smooth function h : X → R satisfies

dh ∈ W

on X , then there exists a smooth function H : λ1∼k(X ) → R such that h(x) =

H(λ1∼k(x)) on X .

3. LetW ′ be another codistribution such that dim(W+W ′) is constant on X , and suppose

that W +W ′ = span{dλ1∼k, dµ′
j : j = 1, . . . , r̄′} where r̄′ = dim(W +W ′) − dimW

and the elements of {λ1∼k, µ′
1∼r̄′} are smooth and potentially diffeomorphic on X . If a

smooth map p : X → p(X ) satisfies

p∗(kerW ∩ kerW ′) ⊂ kerW
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on X , then there exists a smooth map P : λ1∼k(X ) × µ′
1∼r̄′(X ) → R

k such that the

relation λ1∼k(p(x)) = P (λ1∼k(x), µ′
1∼r̄′(x)) holds, while x and p(x) are contained in X .

Proof. Since λi, i = 1, . . . , k, are potentially diffeomorphic on X , we can find λk+1, . . . , λn

such that zi = λi(x), i = 1, . . . , n, becomes a diffeomorphism on X , and let λ(x) = λ1∼n(x)

for simplicity. In the z-coordinates, it is seen that W = span{dz1, . . . , dzk}, and thus,

kerW = span

{
∂

∂zk+1
, · · · , ∂

∂zn

}
. (5.9)

Also, the vector field f(x) is represented in z-coordinates as:

∂λ

∂x

∣∣∣
x=λ−1(z)

· f(λ−1(z)) = f̄(z) =

[
f̄a(za, zb)

f̄b(za, zb)

]
,

where za = [z1, . . . , zk]
⊤, zb = [zk+1, . . . , zn]

⊤, f̄a(z) ∈ R
k, and f̄b(z) ∈ R

n−k. Then, since W
is invariant w.r.t. f , the distribution kerW is also invariant w.r.t. f on X .1 Since kerW is

invariant w.r.t. f on X , or equivalently w.r.t. f̄ on λ(X ), it follows that
[
f̄ ,

∂

∂zi

]
= −

n∑

j=1

∂f̄j
∂zi

∂

∂zj
∈ kerW, i = k + 1, . . . , n.

Hence,
∂f̄j
∂zi

= 0, ∀j = 1, . . . , k, i = k + 1, . . . , n.

This implies f̄a(za, zb) = f̄a(za). Taking F = f̄a proves the item 1.

For proving the item 2, the function h is represented in the z-coordinates as h̄(z) =

h ◦ λ−1(z). Since

dh̄ =
∂h̄

∂z1
dz1 + · · ·+

∂h̄

∂zn
dzn ∈ W, on λ(X ),

it is seen that ∂h̄
∂zi

= 0, i = k + 1, . . . , n. Taking H = h̄ proves the item 2.

For the item 3, we find λk+r̄′+1, . . . , λn such that

z = λ(x) := col(λ1∼k(x), µ
′
1∼r̄′(x), λk+r̄′+1(x), . . . , λn(x))

becomes a diffeomorphism on X . Then, in z-coordinate, we obtain W = span{dz1, . . . , dzk}
1By the equality Lf (σ · v) = (Lfσ) · v + σ · [f, v], it is seen with σ ∈ W and v ∈ kerW that σ · v = 0 and

(Lfσ) · v = 0. Hence, σ · [f, v] = 0 [63].
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andW+W ′ = span{dz1, . . . , dzk+r̄′} so that kerW and kerW∩kerW ′ = (W+W ′)⊥ can be

equivalently written as span{ek+1, . . . , en} and span{ek+r̄′+1, . . . , en}, respectively, on λ(X ),
where ej is the elementary basis vector (i.e., all elements are zero except the j-th element

which is one). With p̄(z) = λ ◦ p ◦ λ−1(z), the condition p∗(kerW ∩ kerW ′) ⊂ kerW implies

that for j = k + r̄′ + 1, . . . , n,

∂p̄

∂z
ej =

∂λ

∂x

∣∣∣
x=p(λ−1(z))

◦ ∂p
∂x

∣∣∣
x=λ−1(z)

◦ ∂λ
−1

∂z
ej

∈ span{ek+1, . . . , en},

on λ(X ). This implies that the upper k functions of p̄ do not depend on zk+r̄′+1, . . . , zn, so

that we obtain P (z1, . . . , zk+r̄′) = p̄1∼k(z); that completes the proof.

5.4.2 Assumption on Individual Modes

Let the observation space Oq be the linear space of functions over R containing hq,i (where

hq,i is the i-th element of hq) and all repeated Lie derivatives Lv1Lv2 · · ·Lvkhq,i with vl ∈
{fq, gq,1, . . . , gq,du} (where gq,j is the j-th column of gq).

Proposition 5.10. Assume that the codistribution dOq = span{dλ : λ ∈ Oq} has constant

dimension kq; dim dOq = kq on the set X . In addition, there are potentially diffeomorphic

kq smooth functions λq,j, j = 1, . . . , kq, such that

dOq = span{dλq,1, . . . , dλq,kq} on X .

Then, for mode q, there exist functions λq,1∼n(x) such that under the transformation given

by col(ξq, ξ
′
q) := col(λq,1∼kq(x), λq,kq+1∼n(x)), for some kq ≥ 0, the system dynamics (5.1a)

and (5.1c) admit the structure in (5.6).

Remark 5.11. As a matter of fact, the simple condition that dim dOq(x) = kq in a neighbor-

hood of some xo ∈ X guarantees, by Frobenius theorem, that there exists a local neighborhood

X ′ ⊂ X of xo such that Assumption 5.1 holds. Compared to this local observability (stud-

ied in, e.g., [106, 63, 18]), Assumptions 5.1 and 5.2 may be thought of as global versions

(“global” in the sense of the whole region X ). ⊳

As long as we restrict our attention to (5.6b) and (5.6c) for each mode, Assumption 5.2

becomes the standard uniform observability assumption that has often been studied in the
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literature (see [112] and references therein). Assumption 5.2 can be checked in various ways;

for instance, if the class of inputs U consists of smooth functions only, then one may try to

find a function E such that

ξq = E(y, ẏ, . . . , y(ny−1), u, u̇, . . . , u(nu−1)),

where ny ∈ N and nu ∈ N, and that the function E( · , u, u̇, . . . , u(nu−1)) is surjective onto

Ξq for all u(·) ∈ U . The existence of such a function E is used as the definition of uniform

observability in [113, 18].

5.4.3 Sufficient Condition for Observability

In deriving the sufficient condition for observability, we do not assume the individual modes of

the system to be observable. So, in order to recover the system state x(t), partial information

obtained from each mode is accumulated. This partial information is quantified in terms of

the maximal integral submanifold of the distribution dO⊥
q which has the property that the

states on the slices of this submanifold are not distinguishable by the output of mode q. As

soon as a switch occurs, the indistinguishable states must be contained in the intersection of

the integral submanifolds of the corresponding modes, which in turn reduces the uncertainty

in the state. Continuing in this manner, with subsequent switching, we expect to reduce the

size of submanifold that contains the state. Eventually, if the corresponding intersections

reduce to a point, we can recover the state completely. However, while the intersections are

taken at the same time, the information contained in the integral submanifolds is scattered

in time because each one of them becomes available sequentially as time goes on. This

suggests that the partial information, obtained at each mode, should evolve along the system

dynamics uncorrupted until all the information is gathered to compute the state. Inspired

by this intuition, we present structural conditions which guarantee that the evolution of the

partial information is feasible without being affected by the unknown quantities of subsequent

modes.

Before presenting the condition, let us rename the switching sequence for convenience.

That is, when the switching signal σ(t) takes the mode sequence {q1, q2, · · · }, we rename

them as increasing integers {1, 2, 3, · · · } which is ever increasing even though the same mode

is revisited. This description also incorporates cases where there is a state jump without

change in dynamics or the mode change does not involve state jumps.
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Theorem 5.12. Suppose that Assumptions 5.1 and 5.2 hold, and define dO′
q := span{d(λq,i◦

pq−1) : i = 1, . . . , kq} for each q ≥ 2. On X , define a sequence of codistributions Wq, with

W0 := {0}, as:

Wq is the largest nonsingular and involutive2 codistribution, invariant with respect

to fq and gq, contained in (dOq +Wq−1) such that (pq)∗(kerWq ∩ ker dO′
q+1) ⊂

kerWq.

If

1. there exists m ≥ 1 such that, on X ,

dim(dOm +Wm−1) = n,

with Wm := dOm +Wm−1.

2. The codistributions Wq (1 ≤ q ≤ m), dOq +Wq−1 (2 ≤ q ≤ m), and Wq + dO′
q+1

(1 ≤ q ≤ m− 1) are nonsingular on X . Moreover,

(a) there exist potentially diffeomorphic smooth functions {φq,i, ωq,j : i = 1, . . . , k̄q, j =

1, . . . , l̄q, k̄q + l̄q = dimWq} on X such that

Wq = span{dφq,1, · · · , dφq,k̄q , dωq,1, · · · , dωq,l̄q},
dφq,i ∈ dOq, dωq,j 6∈ dOq, (5.10)

(b) there exist potentially diffeomorphic smooth functions {µq,i : i = 1, . . . , r̄q, r̄q =

dim(dOq +Wq−1)} on X such that

dOq +Wq−1 = span{dµq,1, . . . , dµq,r̄q}, (5.11)

µq,i ∈ l.com {λq,1, . . . , λq,kq , φq−1,1, · · · ,
φq−1,k̄q−1

, ωq−1,1, · · · , ωq−1,l̄q−1
},

(5.12)

(c) there exist potentially diffeomorphic smooth functions {µ′
q,j : j = 1, . . . , r̄′q, r̄

′
q =

2Nonsingularity and involutivity are implied by item 2(a). In fact, involutivity of a codistribution is
determined by the involutivity of its kernel which is a distribution. A codistribution generated by the exact
one-forms is always involutive.
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dim(Wq + dO′
q+1)− dimWq} on X such that

Wq + dO′
q+1 = span{dφq,1, · · · , dφq,k̄q ,

dωq,1, · · · , dωq,l̄q , dµ′
q,1, . . . , dµ

′
q,r̄′q
},

(5.13)

µ′
q,j ∈ l.com {λq+1,1 ◦ pq, . . . , λq+1,kq+1 ◦ pq}, (5.14)

then the system (5.1) is large-time uniformly observable on X for all the switching signals

containing the consecutive subsequence {1, 2, . . . , m}. ⊳

The following observations are immediate: (a) dOq itself is invariant with respect to fq

and gq by construction, (b) if pq(x) = x, so that there is no state jump, then the condition

(pq)∗(kerWq ∩ ker dO′
q+1) ⊂ kerWq automatically holds, (c) involutivity and invariance of a

codistribution generated by exact one-forms is closed under the addition, and if two smooth

nonsingular codistributions Wa and Wb satisfy p∗(kerWi ∩D) ⊂ kerWi where i ∈ {a, b} for
any differentiable map p and any distribution D, then p∗(ker(Wa+Wb)∩D) ⊂ ker(Wa+Wb).

3

Therefore, the “largest” codistribution in the assumption of Theorem 5.12 is well-defined.

The compactness of the set X guarantees the solution without finite escape time, and

will be used for observer construction in the next section. If all the assumptions hold with

X = R
n, then the observability property becomes global in case the solution has no finite

escape time. On the other hand, if local observability is of interest, then the assumptions

get simpler by removing the items 2(a), 2(b), and 2(c).

Corollary 5.13. Suppose that Assumptions 5.1 and 5.2 hold in a neighborhood of a point

xo ∈ X . If each of the codistributions Wq, dOq +Wq−1, and Wq + dO′
q+1 are nonsingular

at xo, Wq is smooth and involutive at xo, and dim(dOm +Wm−1)(x
o) = n, then the system

is large-time uniformly observable in some neighborhood of xo for all the switching signals

containing the consecutive subsequence {1, 2, . . . , m}.

Proof. Since the smooth codistribution Wq is nonsingular and involutive, Frobenius the-

orem provides, in a local neighborhood of xo, independent smooth functions φq,1∼k̄q and

ωq,1∼l̄q of the item 2(a) of Theorem 5.12. With those functions for Wq, we can pick more

independent functions in dOq+1 and dO′
q+1, by which the items 2(b) and 2(c) are satisfied,

respectively, in a neighborhood of xo.

3For each i ∈ {a, b}, ker(Wa +Wb) ⊆ kerWi, so that (ker(Wa +Wb) ∩ D) ⊆ kerWi ∩ D, which in turn
implies that p∗(ker(Wa +Wb) ∩ D) ⊆ p∗(kerWi ∩ D) ⊆ kerWi by the assumption. Therefore, we have that
p∗(ker(Wa +Wb) ∩ D) ⊆ kerWa ∩ kerWb = ker(Wa +Wb).
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Now we present the proof of Theorem 5.12, which is constructive in the sense that a

technique to recover x(t) at some time t = T > tm−1 is revealed (rather than discussing the

indistinguishability of two different states). This way paves the road to the observer design

in the next section.

Proof of Theorem 5.12. Consider the interval prior to the first switching [t0, t1). Since

W1 ⊂ dO1, we have that

W1 = span{dφ1,1, dφ1,2, . . . , dφ1,k̄1}, k̄1 ≤ k1.

Because dφ1,i, for each i = 1, . . . , k̄1, is an element of dO1 that is generated by the differentials

of λ1,l, l = 1, . . . , k1, and λ1,l’s are potentially diffeomorphic on X (by Assumption 5.1),

the function φ1,i is a function of λ1,1∼k1 only (by Lemma 5.9.2). Since ξ1 := λ1,1∼k1(x) is

small-time uniformly observable on λ1,1∼k1(X ) (by Assumption 5.2), the value of the vector

ξ1(t) = λ1,1∼k1(x(t)), and thus, φ1,1∼k̄1(x(t)) are recovered for t ∈ [t0, t1).

Now Lemma 5.9.3, with the item 2(c) and (p1)∗(kerW1 ∩ ker dO′
2) ⊂ kerW1, implies the

existence of a function P̆1 (and then P1 below, since φ1,i is a function of λ1,1∼k1) such that

φ1,1∼k̄1(x(t1)) = φ1,1∼k̄1(p1(x(t
−
1 )))

= P̆1(φ1,1∼k̄1(x(t
−
1 )), µ

′
1,1∼r̄′1(x(t

−
1 )))

= P1(λ1,1∼k1(x(t
−
1 )), λ2,1∼k2 ◦ p1(x(t−1 )))

= P1(λ1,1∼k1(x(t
−
1 )), λ2,1∼k2(x(t1))),

(5.15)

where the third equality follows from (5.10) and (5.14). Next, consider the interval [t1, t2).

For i = 1, . . . , k̄2, using Lemma 5.9.2, the condition dφ2,i ∈ dO2 = span{dλ2,1, . . . , dλ2,k2}
guarantees that φ2,i is a function of λ2,1∼k2 only. Again by Assumption 5.2, the vector

ξ2(t) := λ2,1∼k2(x(t)), and thus, φ2,1∼k̄2(x(t)) are known for the interval [t1, t2).

Now observing that W2 = span{dφ2,1, . . . , dφ2,k̄2, dω2,1, . . . , dω2,l̄2 : k̄2 + l̄2 = dimW2} is

invariant w.r.t. f2 and g2, and {φ2,1∼k̄2, ω2,1∼l̄2} are potentially diffeomorphic on X , we apply
Lemma 5.9.1 and obtain smooth vector fields F ∗

2 and G∗
2 such that, with z2 := ω2,1∼l̄2(x),

ż2 =
∂ω2,1∼l̄2
∂x

(x) · (f(x) + g(x)u)

= F̆ ∗
2 (z2, φ2,1∼k̄2(x)) + Ğ∗

2(z2, φ2,1∼k̄2(x))u

= F ∗
2 (z2, λ2,1∼k2(x)) +G∗

2(z2, λ2,1∼k2(x))u

= F ∗
2 (z2, ξ2) +G∗

2(z2, ξ2)u,

(5.16)
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over [t1, t2). In this interval, the vector ξ2(t) = λ2,1∼k2(x(t)) is known. Hence, if the initial

condition of z2(t1) = ω2,1∼l̄2(x(t1)) is known, then the vector z2(t) on the interval [t1, t2) is

also available by solving the differential equation (5.16).

Note that dω2,j ∈ W2 ⊂ (dO2 + W1) = span{dµ2,1, . . . , dµ2,r̄2}, j = 1, . . . , l̄2, by the

definition of W2 and the item 2(b). Therefore, by Lemma 5.9.2, ω2,j can be written as a

function of µ2,i’s, which leads to

z2(t1) = ω2,1∼l̄2(x(t1)) = S̆∗
2(µ2,1∼r̄2(x(t1)))

= S∗
2(ξ2(t1), φ1,1∼k̄1(x(t1)))

= S∗
2(ξ2(t1), P1(λ1,1∼k1(x(t

−
1 )), λ2,1∼k2(x(t1))))

= S∗
2(ξ2(t1), P1(ξ1(t

−
1 ), ξ2(t1))),

(5.17)

in which the third equality uses (5.12) with µ1 being null, and the fourth equality follows

from (5.15).

This process is repeated to find F ∗
q , G

∗
q, S

∗
q , and Pq. For instance, we can find P2 such

that

[
φ2,1∼k̄2(x(t2))

ω2,1∼l̄2(x(t2))

]
=

[
φ2,1∼k̄2(p2(x(t

−
2 )))

ω2,1∼l̄2(p2(x(t
−
2 )))

]

= P̆2(φ2,1∼k̄2(x(t
−
2 )), ω2,1∼l̄2(x(t

−
2 )), µ

′
2,1∼r̄′2(x(t

−
2 )))

= P2(λ2,1∼k2(x(t
−
2 )), ω2,1∼l̄2(x(t

−
2 )), λ3,1∼k3 ◦ p2(x(t−2 )))

= P2(ξ2(t
−
2 ), z2(t

−
2 ), ξ3(t2)),

and find S∗
3 such that

z3(t2) = ω3,1∼l̄3(x(t2)) = S̆∗
3(µ3,1∼r̄3(x(t2)))

= S∗
3(ξ3(t2), φ2,1∼k̄2(x(t2)), ω2,1∼l̄2(x(t2)))

= S∗
3(ξ3(t2), P2(ξ2(t

−
2 ), z2(t

−
2 ), ξ3(t2))).

In summary, for each time interval [tq−1, tq), q = 1, . . . , m, we have the following differential
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equations (with z1 being null):

ξ̇q = Fq(ξq) +Gq(ξq)u, ξq ∈ R
kq , (5.18a)

y = Hq(ξq), (5.18b)

żq = F ∗
q (zq, ξq) +G∗

q(zq, ξq)u, zq ∈ R
l̄q , (5.18c)

zq(tq−1) = S∗
q

(
ξq(tq−1), Pq−1

(
ξq−1(t

−
q−1), zq−1(t

−
q−1), ξq(tq−1)

))
, (5.18d)

in which ξq(t) and zq(t) are completely known. The above equations match the structure

proposed initially in (5.7).

At any time t = T > tm−1, it follows under the assumption in item 1, i.e. dimWm =

n, that the vectors ξm(T ) and zm(T ) are completely known or equivalently the vector

col(φm,1∼k̄m(x(T )), ωm,1∼l̄m(x(T ))) is known. This way x(T ) is recovered uniquely from the

inverse mapping because of the potential diffeomorphic property in item 2(a).

Example 5.14. For the switched system considered in Example 5.8, it is seen that

k1 = 2; λ1,1(x) = x2; λ1,2 = x21 − x23 + 2x1,

k2 = 1;λ2,1 = x21 − x23 + 2x1; dO′
2 = dO2,

k3 = 1;λ3,1 = x1 + x22; dO′
3 = dO3.

Starting withW0 = {0}, and (p1)∗ =
[
1 0 0
0 2 0
0 0 1

]
, we can pickW1 = dO1. So thatW1+dO′

2 =W1

as dO′
2 ⊆ dO1. Also, let µ1,i = φ1,i = λ1,i, i = 1, 2, and µ′

1 is null.

In the next step, W2 = W1 satisfies the required assumptions. This time, we may pick

φ2,1 = λ2,1, w2,1 = λ1,1 = x2, µ2,1 = λ2,1, µ2,2 = φ1,1, and µ
′
2,1 = λ3,1.

Finally, W3 = dO3+W2 has constant rank 3 on X and the switched system is observable.

For the sake completeness, we may pick µ3,1 = φ3,1 := λ3,1; µ3,2 = w3,1 := w2,1, µ3,3 = w3,2 :=

φ2,1. ⊳

5.5 Observer Design

Based on the study of large-time observability, let us now discuss the design of an asymptotic

observer for the system (5.1). By asymptotic observer, we mean that the estimate x̂(t) that

it generates converges to the plant state x(t) as time tends to infinity. In order to achieve

this, we introduce the following assumptions.
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Assumption 5.4. In the construction of observer, we assume that the following hold:

1. The switching is persistent and happens within the duration D; that is,

tq − tq−1 ≤ D, ∀q ∈ N, (5.19)

where tq is the switching time.

2. The solution x(t) of the plant (5.1) remains in a compact set X ∈ R
n, and the input

u(t) is uniformly bounded; |u(t)| ≤Mu.

3. The plant (5.1) is large-time observable on X̄ , properly containing X , in the sense that

there is an m ∈ N such that the assumption of Theorem 5.12 holds, and the mode

sequence repeats the particular modes {1, 2, . . . , m}; that is, σ(t) = ((q−1) mod m)+1

for [tq−1, tq), q ∈ N. ⊳

We do not consider the time consumed for computation by assuming that the data pro-

cessor is fairly fast compared to the plant process. The computation time, however, needs

to be considered in real-time application if the plant itself is fast.

The observer we propose is of hybrid-type, and has the form

˙̂x(t) = f̄q(x̂(t)) + ḡq(x̂(t))u(t), t ∈ [tq−1, tq),

x̂(tq) =




p̄q(x̂(t

−
q )), (q mod m) 6= 0,

p̄q(Lq(y[tq−m,tq), u[tq−m,tq))), (q mod m) = 0,

(5.20)

with an initial condition x̂(t0) ∈ X ⊂ X̄ , where f̄q, ḡq, and p̄q are globally Lipschitz and they

have the same values as fq, gq, and pq, respectively, inside the compact set X . Their global
Lipschitz property can always be obtained by modifying them outside the set X , using the

so-called ‘Lipschitz extension’.4 It is seen that the observer consists of a plant copy with

an estimate update law by some operator Lq, which we design in this section. In fact, we

present a design of Lq, using some dynamic observers for partial states at each mode and an

inversion algorithm logic in order to achieve

|x̃(tm)| ≤ γ|x̃(t0)|, (5.21)

4Since the plant state x(t) remains in X , this modification can also be applied to the plant model (5.1).
This modification can be found in [107] to obtain globally Lipschitz vector fields for observer construction.
Detailed procedures to the modification have been discussed in [114, 115].
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where 0 < γ < 1 and x̃ := x̂−x. The Lipschitz property of (5.20), the fact that x(t) ∈ X , and
Assumption 5.4.1 guarantee that supt∈[t(j−1)m,tjm) |x̃(t)| ≤ Γ|x̃(t(j−1)m)| with a constant Γ and

j ∈ N. In this way, if (5.21) holds then its repeated application leads to limt→∞ |x̃(t)| = 0.

The proposed observer construction is based on the representation (5.7) of the plant (5.1).

The idea is that, for each interval [tq−1, tq), q = 1, . . . , m, a conventional nonlinear observer,

which we call ξq-observer, is employed to obtain the estimate ξ̂q(t) for that interval. At the

same time, a zq-observer, replicating (5.7c) and (5.7d), is constructed as follows:

˙̂zq = F̄ ∗
q (ẑq, ξ̂q) + Ḡ∗

q(ẑq, ξ̂q)u, 2 ≤ q ≤ m, (5.22)

with the initial condition given by:

ẑq(tq−1) = S̄∗
q

(
ξ̂q(tq−1), P̄q−1

(
ξ̂q−1(t

−
q−1), ẑq−1(t

−
q−1), ξ̂q(tq−1)

))
,

and ẑ1 := 0 for convenience. Here F̄ ∗
q is the Lipschitz extension of F ∗

q with respect to the

set Zq × Ξq and so on (Zq is the image of X through ωq,1∼l̄q , and Ξq through λq,1∼kq). In

fact, the variable zq is not an observable quantity for the mode q. Intuitively speaking,

the role of zq-observer is not to reduce the error z̃q(t) := ẑq(t) − zq(t), but to deliver the

estimates ξ̂q−1(t
−
q−1) and ẑq−1(t

−
q−1), that are obtained from the previously active mode and

are encoded in the initial condition (5.5), to the next mode through ẑq(t). Suppose that,

seen at time t = t−m, an ideal observer provides the exact information of ξq(t) on each interval

[tq−1, tq), q = 1, . . . , m, using the stored input u and the output y with the model (5.7a) and

(5.7b). For example, with exact values of ξ̂1(t
−
1 ) = ξ1(t

−
1 ) and ξ̂2(t1) = ξ2(t1), we obtain

the exact value of ẑ2(t1) = z2(t1) by (5.5). Then, integration of (5.22) for q = 2 results in

exact values of ẑ2(t) = z2(t) on [t1, t2). This process repeats until we get ξ̂m(t
−
m) = ξm(t

−
m)

and ẑm(t
−
m) = zm(t

−
m). With Assumption 5.4.3, i.e. dimWm = n, x(t−m) is now determined

uniquely from ξm(t
−
m) and zm(t

−
m), as the map

x(t−m) 7→
[
φm,1∼k̄m(x(t

−
m))

ωm,1∼l̄m(x(t
−
m))

]
=

[
χ(ξm(t

−
m))

zm(t
−
m)

]
(5.23)

is invertible; here χ is a function such that χ(λm,1∼km(x)) = φm,1∼k̄m(x) whose existence is

guaranteed by Lemma 5.9.2. For convenience let us denote the inverse map by Ψ, so that

x(t−m) = Ψ(ξm, zm). As a result, we choose the estimate update law in (5.20) to be:

x̂(t−m) = Ψ̄(ξ̂m(t
−
m), ẑm(t

−
m)) =: Lq(y[t0,tm), u[t0,tm)), (5.24)
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where Ψ̄ is Lipschitz extension of Ψ. Through this relation, the plant state is recovered as

x̂(t−m) = x(t−m) with exact information ξ̂m(t
−
m) = ξm(t

−
m) and ẑm(t

−
m) = zm(t

−
m).

However, asymptotic observers in practice inevitably introduce some error in ξ̂q(t) while

estimating ξq(t). Moreover, the estimation of ξq(t) on the entire interval [tq−1, tq) needs

more attention because the conventional observers, initiated at the time t = tq−1, often

experience the transient overshoot before they converge to the proper estimates. Reducing

the transient period by increasing observer gain may worsen the situation because of the

peaking phenomenon [116]; that is, the peaking in ξ̂q(t) may damage the role of (5.22)

because large error in |ẑq(t−q )−zq(t−q )| may occur in spite of small error in |ẑq(tq−1)−zq(tq−1)|.
We overcome this obstacle by employing the so-called back-and-forth observer technique [117].

Suppose that the ξq-observer over the interval [tq−1, tq) is written as

˙̂
ξfq = Fq(ξ̂

f
q ) +Gq(ξ̂

f
q )u+Kf

q (ξ̂
f
q , u, y)(y −Hq(ξ̂

f
q )),

ξ̂fq (tq−1) = λ̄q,1∼kq(x̂(tq−1)), 1 ≤ q ≤ m,
(5.25)

where λ̄q,1∼kq is the Lipschitz extension of λq,1∼kq and superscript ‘f ’ indicates ‘forward’, the

meaning of which will soon become clear from the context.

Assumption 5.5. Under the assumption that ξq(t) ∈ Ξq for [tq−1, tq), q = 1, . . . , m, the

subsystem (5.7a) and (5.7b) admits an observer of the form (5.25), which can be made to

converge to the state ξq(t) arbitrarily fast; that is, for arbitrarily small constants b > 0 and

c > 0, there exist an injection gain Kf
q (·) and a class-KL function βf,q satisfying

βf,q(a, t) < ca for all a > 0 and b ≤ t ≤ τq, (5.26)

|ξ̂fq (t)− ξq(t)| ≤ βf,q(|ξ̂fq (tq−1)− ξq(tq−1)|, t− tq−1), (5.27)

for t ∈ [tq−1, tq). ⊳

Remark 5.15. Many results in the literature, such as [118, 107], yield an observer satisfying

Assumption 5.5 with βf,q being an exponential function. ⊳

Now consider another (backward) observer described as

˙̂
ξbq = −Fq(ξ̂bq)−Gq(ξ̂

b
q)u(tq − t)−Kb

q(ξ̂
b
q, u(tq − t), y(tq − t))(y(tq − t)−Hq(ξ̂

b
q)),

ξ̂bq(0) = ξ̂fq (t
−
q ), t ∈ (0, τq], 1 ≤ q ≤ m.

(5.28)
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Actually, the trajectory ξbq(t) := ξq(tq − t) satisfies the differential equation

ξ̇bq = −Fq(ξbq)−Gq(ξ
b
q)u(tq − t), y(tq − t) = Hq(ξ

b
q),

with ξbq(0) = ξq(t
−
q ), for t ∈ (0, τq], and therefore, (5.28) can be thought of as one possible

observer for it. We further assume that Assumption 5.5 holds for this case as well, with ξ̂fq ,

ξq, β
f,q and Kf

q replaced by ξ̂bq, ξ
b
q, β

b,q and Kb
q , respectively. Once Assumption 5.5 holds for

(5.25), this additional requirement is mild. For example, the designs of [118] and [107] readily

satisfy this requirement. Then, using the input u and the output y stored over the interval

[tq−1, tq), we run the observer (5.25) first from the initial condition ξ̂fq (tq−1) = λ̄q,1∼kq(x̂(tq−1)),

followed by integrating (5.28) from 0 to τq. After that, we take our final estimate ξ̂q(t) as

ξ̂q(t) =




ξ̂bq(tq − t), t ∈ [tq−1, tq−1 + τq/2),

ξ̂fq (t), t ∈ [tq−1 + τq/2, tq).
(5.29)

From Assumption 5.5 let us assume that, with b = τ/2 and a given c ∈ (0, 1), both Kf
q and

Kb
q are designed. With ξ̃q := ξ̂q − ξq, ξ̃fq := ξ̂fq − ξq, and ξ̃bq := ξ̂bq − ξbq, it is seen that

sup
t∈[tq−1+

τq
2
,tq)

|ξ̃q(t)| = sup
t∈[tq−1+

τq
2
,tq)

|ξ̃fq (t)| ≤ sup
t∈[tq−1+

τq
2
,tq)

βf,q(|ξ̃fq (tq−1)|, t− tq−1) ≤ c|ξ̃fq (tq−1)|,

and

sup
t∈[tq−1,tq−1+

τq
2
)

|ξ̃q(t)| = sup
t∈[tq−1,tq−1+

τq
2
)

|ξ̃bq(tq − t)|

≤ sup
t∈[tq−1,tq−1+

τq
2
)

βb,q(βf,q(|ξ̃fq (tq−1)|, τq), tq − t)

≤ c2|ξ̃fq (tq−1)| ≤ c|ξ̃fq (tq−1)|.

Therefore, implementation of the observers in (5.25) and (5.28) leads to

sup
t∈[tq−1,tq)

|ξ̃q(t)| ≤ c|ξ̃fq (tq−1)| = c|λ̄q,1∼kq(x̂(tq−1))− λq,1∼kq(x(tq−1))|. (5.30)

We now claim that, with sufficiently small c > 0, the inequality (5.21) holds. Let Lf be

the maximum Lipschitz constant of f̄q, q = 1, . . . , m, and Lg and Lp be defined similarly

for ḡq and p̄q. Then, it can be shown by Gronwall-Bellman’s inequality and the Lipschitz
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property of (5.20) that

|x̃(tq)| ≤ (Lp)
q exp

(
(Lf +MuLg)

q∑

j=1

τj

)
|x̃(t0)| =:Mq|x̃(t0)|, q = 1, . . . , m− 1. (5.31)

This in turn implies from (5.30) that

sup
t∈[tq−1,tq)

|ξ̃q(t)| ≤ cLλMq−1|x̃(t0)|, q = 1, . . . , m, (5.32)

whereM0 := 1 for convenience, Lλ is the maximum Lipschitz constant of λ̄q,1∼kq , and we used

the fact that λq,1∼kq(x) = λ̄q,1∼kq(x) if x ∈ X . Let LF ∗ and LG∗ be the maximum Lipschitz

constants of F̄ ∗
q and Ḡ∗

q, respectively. Then, it follows from (5.22) that | ˙̃zq| ≤ Lz(|z̃q|+ |ξ̃q|),
where Lz := LF ∗ +MuLG∗ . For q = 2, . . . , m, this leads to

|z̃q(t−q )| ≤ eLzτq |z̃q(tq−1)|+ (eLzτq − 1) sup
t∈[tq−1,tq)

|ξ̃q(t)|

≤ eLzτq |z̃q(tq−1)|+ (eLzτq − 1)cLλMq−1|x̃(t0)|. (5.33)

From (5.5) and (5.32), for q = 2, . . . , m, with z̃1 ≡ 0,

|z̃q(tq−1)| ≤ (LS∗ + LS∗LP )|ξ̃q(tq−1)|+ LS∗LP |ξ̃q−1(t
−
q−1)|+ LS∗LP |z̃q−1(t

−
q−1)|

≤ c[(LS∗ + LS∗LP )LλMq−1 + LS∗LPLλMq−2]|x̃(t0)|+ LS∗LP |z̃q−1(t
−
q−1)|. (5.34)

Putting (5.34) into (5.33), we obtain, for q = 2, . . . , m,

|z̃q(t−q )| ≤ LS∗LP e
Lzτq |z̃q−1(t

−
q−1)|+ cM̄q−1|x̃(t0)|,

where M̄q−1 = (eLzτq−1)LλMq−1+e
Lzτq [(LS∗ +LS∗LP )LλMq−1+LS∗LPLλMq−2]. From this,

and z̃1 ≡ 0, it is not difficult to derive that

|z̃q(t−q )| ≤ cMq|x̃(t0)|, (5.35)

where

Mq = M̄q−1 +

q−2∑

i=1

LiS∗LiP exp

(
Lz

i−1∑

j=0

τq−j

)
M̄q−i−1.

So far, we have obtained |ξ̃m(t−m)| ≤ cLλMm|x̃(t0)| and |z̃m(t−m)| ≤ cMm|x̃(t0)| from (5.32)
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and (5.35), which finally leads to

|x̃(tm)| ≤ Lp|Ψ̄(ξ̂m(t
−
m), ẑm(t

−
m))−Ψ(ξm(t

−
m), zm(t

−
m))|

≤ LpLΨ(|ξ̃m(t−m)|+ |z̃m(t−m)|)
≤ cLpLΨ(LλMm +Mm)|x̃(t0)|.

Taking c less than 1/(LpLΨ(LλMm +Mm)), while x̂(tm) ∈ X̄ , we arrive at (5.21).

Example 5.16. Let us continue with the system given in Example 5.8 and apply the observer

design scheme. We first arrive at the canonical form proposed in Assumption 5.3. For mode 1,

let ξ1,1 := h1(x), ξ1,2 := Lf1h1(x), and ξ
′
1 := x1 − x3; then we get:

ξ̇′1 = −0.1(ξ′1 + 1),

ξ̇1,1 = ξ1,2,

ξ̇1,2 = 0,

y = ξ1,1.

Similarly, for mode 2, we can introduce the following coordinates: ξ2 := λ2,1 = h2(x),

z2 := ξ1,1 = x2, and ξ
′
2 = x1 − x3. The dynamics of mode 2 then take the following form:

ξ̇′2 = −ξ′2 − 1,

ξ̇2 = 0,

ż2 = −z2ξ2 z2(t1) = 2ξ1,1(t
−
1 ),

y = ξ2.

Finally, for the third mode, the new coordinates are ξ3 := h3(x), z3,1 := ξ1,1 = x2, z3,2 :=

ξ2,1 = x21 − x23 + 2x1; and the resulting system dynamics become:

ξ̇3 = 0,

ż3,1 = −
1

2
z3,1, z3,1(t2) = z2(t

−
2 ),

ż3,2 = 2(ξ3 − z23,1 + 1)z23,1, z3,2(t2) = ξ2(t
−
2 ),

y = ξ3.

It is seen that the system dynamics in the new coordinates indeed follow the structure
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prescribed in (5.7).

Using this canonical form, the forward and backward observers for each of the mode are

designed as follows:

Mode 1:

( ˙̂
ξf1,1
˙̂
ξf1,2

)
=

(
ξ̂f1,2

0

)
+Kf

1 (y − ξ̂f1,1),
( ˙̂
ξb1,1
˙̂
ξb1,2

)
= −

(
ξ̂b1,2

0

)
−Kf

1 b(y − ξ̂b1,1).

Mode 2:
˙̂
ξf2 = Kf

2 (y − ξ̂f2 ), ˙̂
ξb2 = −Kb

2(y − ξ̂b2).

Mode 3:
˙̂
ξf3 = Kf

3 (y − ξ̂f3 ), ˙̂
ξb3 = −Kb

3(y − ξ̂b3).

The estimates of the corresponding z-components are obtained by simulating the following

dynamics:

Mode 2:
˙̂z2 = −ẑ2ξ̂2, ẑ2(t1) = 2ξ̂1,1(t

−
1 ).

Mode 3:

˙̂z3,1 = −
1

2
ẑ3,1, ẑ3,1(t2) = ẑ2(t

−
2 ),

˙̂z3,2 = 2(ξ̂3 − ẑ23,1 + 1)ẑ23,1, ẑ3,2(t2) = ξ̂2(t
−
2 ).

With these observer dynamics, we generate estimates of the state in (ξ, z) coordinates. As

a final step, the inverse of the map (ξ, z) 7→ x, denoted by χ(ξ, z) and defined as follows, is

used at time instant tk to update the state estimate,

x̂2(tk) = ẑ3,1(tk),

x̂1(tk) = ξ̂3,1(tk)− x̂22(tk),

x̂3(tk) =
√
x̂21(tk) + 2x̂1(tk)− ẑ3,2(tk) ,

where k is such that k mod 3 = 0.

The results of the simulation are given in Fig. 5.2, where we have taken Kf
1 = col(2, 1),

Kf
2 = 2, Kf

3 = 2, and Kb
1 = col(−2, 1), Kf

2 = −2, Kf
3 = −2. ⊳
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Figure 5.2: Simulation results for observer design in switched nonlinear systems. The top
figure shows the actual states of the system. The middle figure shows the state simulated
by the observer. And the bottom plot quantifies the state estimation error over time.

5.6 Conjecture for Characterization

So far in this chapter, we derived a sufficient condition for observability which led to the

design of an observer. And, just like the linear systems, we are now interested in deriv-

ing conditions that are both necessary and sufficient for observability of switched nonlinear

systems. But the tool set adopted to solve the linear case is not so easy to generalize for

nonlinear case; however, at a conceptual level we will try to extend the same idea. Our first

step is to use the tools from differential geometry to arrive at conjecture for characterization

of observability. One drawback of the results derived in this section is that they require

analytical solution of the flow of the nonlinear ODEs which comprise subsystem dynamics.

Because of this requirement, it is not clear how one can proceed with designing the ob-

servers. These limitations restrict the applicability of the results proposed in this section,

but nonetheless, they are interesting from theoretical standpoint.
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In the current section, we limit ourselves to the systems without inputs and jump maps:

ẋ = fσ(x), (5.36a)

y = hσ(x). (5.36b)

The state space is a smooth differentiable manifold M, the function x : R 7→ M is the

state trajectory, the measurable function y : R 7→ R
dy is the output, and σ : R 7→ N is

the switching signal that is right-continuous; the vector fields fp and the functions hp are

assumed to be smooth, and they determine the active subsystem over the interval [ti−1, ti),

where ti is the i-th switching instant. Also, the activation time of each subsystem is denoted

by τi = ti − ti−1.

Let Φft denote the flow of the vector field f , i.e. the smooth function of t and x with the

property that x(t) = Φft (x0) solves the differential equation

ẋ = f(x),

with initial condition x(0) = x0. In other words, Φft (x) is a smooth function of t and x

satisfying
∂

∂t
Φft (x) = f(Φft (x)), Φf0(x) = x.

Under the smoothness assumption, for any fixed x0, there is a sufficiently small t > 0 such

that the mapping

Φft : x 7→ Φft (x),

is defined for all x in the neighborhood of x0, and is a local diffeomorphism (onto its image).

5.6.1 Necessary and Sufficient Condition for Observability

In this section, we first give a characterization of the unobservable submanifold, comprising

indistinguishable states, for one particular execution of a switched system (5.36) when the

mode sequence and the transition times are fixed. While arriving at a characterization

for observability, we do not assume the individual modes of the system to be observable.

So, in order to recover the system state x(t), partial information obtained from each mode

is accumulated. This partial information is quantified in terms of the maximal integral

submanifold of the distribution Qp := 〈fp|dhp〉⊥ which has the property that the states on the

slices of this submanifold are not distinguishable by the output of mode p, as Lkfphp(x), k =
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0, 1, 2, · · · , remains constant for all x contained in that submanifold [18, Chapters 1 and 2].

We will call the integral submanifold of Qp an unobservable submanifold for mode p. As

soon as a switch occurs, the indistinguishable states must be contained in the intersection of

the integral submanifolds of the corresponding modes, which in turn reduces the uncertainty

in the state. Continuing in this manner, with subsequent switching, we expect to reduce the

size of the submanifold that contains the state. Eventually, if the corresponding intersections

reduce to a point, we can recover the state completely. Inspired by this intuition, we present

a structural condition that characterizes the unobservable manifold of a switched system for

a fixed switching signal. The statement and the proof make use of the following notation:

for each m ∈ N, define

Nm
m = Qm (5.37a)

Nm
k−1 = Qk−1 ∩ (Φfk−τk)∗(Nm

k ), k = m, · · · , 2. (5.37b)

Note that Nm
m−1 = Qm−1∩Qm because Qm is invariant under fm. The motivation for defining

Nm
k in this manner is that the output y and its derivatives remain constant if, and only if,

x(tk) is contained in the integral manifold of Nm
k . In order to avoid technicalities, we will

work under the assumption that each element of the sequence N k
m for a fixed m has constant

rank over the domain of interest.

Assumption 5.6. For each k, Nm
k in (5.37) has constant rank on some set X ⊂M.

Remark 5.17. It may be the case that the intersection of two smooth distributions, denoted

by ∆, is non-smooth. We will replace such non-smooth distributions by the largest smooth

distribution contained in ∆ without any change of notation. Note that this distribution is well

defined as the family of all smooth distributions contained in ∆ has a unique maximal element

with respect to addition of distributions. For example, the intersection of ∆1 =

{(
1

1

)}
and

∆2 =

{(
1 + x1

1

)}
is given by ∆(x) =

{
{0} if x1 6= 0

∆1(x) = ∆2(x) if x1 = 0
, which is non-smooth.

The smooth distribution spanning the intersection of ∆1 and ∆2 is the identically zero vector

field. ⊳

Conjecture 5.18 (Characterization of Observability). Consider the switched system (5.36)

with a fixed switching signal σ, and the sequence of distributions defined in (5.37) on a set

X . The system is large-time observable on a set U ⊂ X if, and only if, there exists an integer
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m such that

dimNm
1 (x) = 0 ∀ x ∈ X. (5.38)

Sketch of Proof. Sufficiency : Assume that y(t) for t ∈ [t0, T
′) is given and there exists an

m ∈ N, such that (5.38) holds. We show that the set of initial conditions that can produce

this output are contained in a zero-dimensional manifold (a set of isolated points). By

assumption, x(tm−1) belongs to the integral submanifold Qm of Qm that is determined by the

value of the output and its derivatives at time instant tm−1, that is, Qm = {x |Lkfmhm(x) =
y(k)(t+m−1), k = 1, · · · , n − 1}. Similarly, the active subsystem on the interval [tm−2, tm−1)

determines that x(tm−1) is contained in the integral submanifold of Qm−1, defined as Qm−1 =

{x |Lkfm−1
hm−1(x) = y(k)(t−m−1), k = 1, · · · , n − 1}. This implies that x(tm−1) is contained

in one of the connected components of Qm−1 ∩ Qm, which we denote by Qm−1. Note that

Qm−1 coincides with the integral submanifold of Nm
m−1 that passes through x(tm−1). This

way, x(tm−2) ∈ Φ
fm−1

−τm−1
(Qm−1), which is again a connected component of Φ

fm−1

−τm−1
(Qm−1) ∩

Φ
fm−1

−τm−1
(Qm). We claim that the integral submanifold of Qm−1∩(Φfm−1

−τm−1
)∗Qm passing through

x(tm−2) coincides with Φ
fm−1

−τm−1
(Qm−1). Since Qm−1 is fm−1 invariant, Φ

fm−1

−τm−1
(Qm−1) is also

an integral submanifold of Qm−1, but it is determined by the value of the outputs at time

instant tm−2. That is,

Φ
fm−1

−τm−1
(Qm−1) = {x |Lkfm−1

hm−1(x) = y(k)(t+m−2), k = 1, · · · , n− 1},

and also, the space tangent to Φ
fm−1

−τm−1
(Qm) at x(tm−2) = Φ

fm−1

−τm−1
(x(tm−1)) is given by

(Φ
fm−1

−τm−1
)∗Qm. Continuing this argument inductively, we deduce that x0 = x(t0) is contained

in one of the connected components of Φf1−τ1(Q1∩Φf2−τ2(Q2∩· · ·∩Φfm−1

−τm−1
(Qm−1)∩Qm) · · · )),

the dimension of which is zero if (5.38) holds. Zero-dimensional manifolds are isolated points,

so there exists an open set around every such point which does not contain the other point

and if the trajectories of the system remain in this set, then after time T = tm−1, the system

becomes observable.

Necessity: Suppose that (5.38) does not hold for any m ∈ N. We compute a set such that

each pair of states in that set is indistinguishable. Note that Nm+1
k ⊆ Nm

k for all m ∈ N

and 1 ≤ k ≤ m− 1. Let Nk :=
⋂

m>k

Nm
k = N k+1

k ∩N k+2
k ∩ · · · ; then by finite dimensionality

of M, it follows that N1 6= {0}. IfMk denotes the integral manifold of Nk passing through

x(tk), then we show that the nonzero-dimensional submanifold Φf1−τ1(M1) is the required set

of indistinguishable states.

First, note that eachMk is contained in the integral submanifold of Qk+1. So for each x ∈

134



Mk, the output y(t) = hk+1(x(t)) is identical for all t ∈ [tk, tk+1). Moreover, the implication

x(tk) ∈Mk ⇒ x(tk+1) ∈Mk+1 holds because if x(tk) ∈Mk, then x(tk+1) = Φ
fk+1
τk+1x(tk), and

using the fact that Φ
fk+1
τk+1 (Mm

k ) ⊂Mm
k+1, it follows that x(tk+1) ∈Mm

k+1.

SinceM1 is contained in the integral submanifold of Q1, each x0 ∈ Φf1τ1 (M1) produces the

identical output and x(t1) ∈ M1. From the above implication, x(tk) ∈ Mk for each k > 0

which in turn leads to same output on each interval [tk, tk+1).

Let us apply the results of this conjecture to a couple of examples.

Example 5.19. Consider the switched system with following two modes:

Γ1 :





ẋ1 = exp(x2),

ẋ2 = 1,

y = x1 − exp(x2) + 1,

; Γ2 :





ẋ1 = x2,

ẋ2 = −x1,
y = x21 + x22.

For these subsystems, 〈f1|dh1〉 = span{(1 − exp (x2))}, and 〈f2|dh2〉 = span{(2x1 2x2)}.

So that, Q1 = span

{(
exp (x2)

1

)}
, and Q2 = span

{(
x2

−x1

)}
. This implies that

Q2 ∩Q1 =

{
{0} if x2 + x1 exp(x2) 6= 0,

Q1(x) = Q2(x) if x2 + x1 exp(x2) = 0.

Choose X = {x ∈ R
2 | x2+x1 exp(x2) > 0}; then the switched system is large-time observable

on every open subset ofX , provided the switching signal involves at least one mode transition.

Geometrically, one can verify that the output of Γ2 reveals the radius of the circle that

contains the state. The unobservable submanifold of Γ1 intersects these circles transversally

and hence the resultant intersection is a set of two points on either side of the curve x2 +

x1 exp(x2) = 0. If the solution is known to lie on one side of that curve, then the intersection

would be a unique point as shown in Fig. 5.3. This unique point can now be computed from

the flow equations of individual subsystems. ⊳

Example 5.20. Consider the switched system considered in Example 5.8. It was claimed

that the switching between the three modes, 1 → 2 → 3, makes it possible to recover

complete information about the state. Assume that a particular execution of this switched

system with mode sequence {1, 2, 3} has been observed on some time interval [0, T ), 0 <

t1 < t2 < T . In order to verify observability using Conjecture 5.18, let us take
{(

0
1
0

)}
,

{(
x3
0

x1+1

)
,
(

0
1
0

)}
, and

{(
0
0
1

)
,
(

2x2
1
0

)}
as the basis for Q1 = 〈f1|dh1〉⊥ , Q2 = 〈f2|dh2〉⊥ and
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x2 + x1 exp(x2) > 0

x1

x2

y = 1

y = 1.75

y = 2.5

y = 0y = 2

y = 5

Figure 5.3: Intersection of unobservable submanifolds of two subsystems in Example 5.19.
The green curves indicate the unobservable manifold for Γ1 and the blue circles indicate
the unobservable manifold for Γ2. The output of the corresponding subsystem remains
constant on these submanifolds. In the shaded region, a green curve intersects a blue circle
at most once, which makes it possible to determine the value of the state completely.

Q3 = 〈f3|dh3〉⊥ respectively. Also, we can compute the differentials of the flow maps for

mode 1 and mode 2 as follows:

(Φf2−τ1)∗ =




cosh 0.1τ1 0 − sinh 0.1τ1

0 e−τ2 0

− sinh 0.1τ1 0 cosh 0.1τ1


 , (Φf2−τ2)∗ =




cosh τ2 0 − sinh τ2

0 e−cτ2 0

− sinh τ2 0 cosh τ2


 ,

where c is a constant depending on the initial conditions. It can then be verified that condi-

tion (5.37) holds true as long as x1(t) > 0, x3(t) > 0, for each t ≥ 0, which actually follows

from the system dynamics. Thus, according to Conjecture 5.18 the system is observable,

which was verified directly by computing the solution analytically in Example 5.8. ⊳
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5.7 Discussion and Conclusion

This chapter presented a sufficient condition for large-time observability of nonlinear switched

systems. Compared to the existing literature on linear systems, this condition is indepen-

dent of switching times and depends primarily on the mode sequence determined by the

switching signal, and the proof reveals how the partial information available from each mode

can be combined to recover the state. The observer construction, based on the proof of

Theorem 5.12, generates an estimate that converges to the actual state of the system.

Although some ideas are inspired by our recent paper [102], the observability conditions

and the observer design in this chapter are quite different from the linear case in [102]. This

is because, for the linear system, some partial knowledge of the plant state, say xo, obtained

from a particular mode, can be transported over time simply by multiplying with the easily

computable state-transition matrix. Although xo is transported in combination with some

unknown quantity xu, as x0 + xu, the unknown part xu can easily be filtered out by using a

matrix whose range-space is orthogonal to xu. This is possible because the linear dynamics

preserves the structural relation between xo and xu, which is not the case for nonlinear

systems.

In order to verify the condition proposed in Conjecture 5.18, and compute the distributions

given in (5.37), one must be able to compute the flow of the vector field fk analytically,

which may not always be obtainable. Also, if we continue in the manner similar to the linear

systems for the design of observer, then once again, the analytical solution of nonlinear

ODEs is required to propagate the partial information obtained from one mode under the

dynamics of another mode to accumulate all the information at one time instant. Thus,

Conjecture 5.18 has some limitations with regards to applicability, but nonetheless it reveals

some ideas on solving the state estimation problem in switched nonlinear systems.
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Chapter 6

Observability of Switched DAEs

Continuing with observability, we deal with another class of switched systems where the

dynamical subsystems are modeled as differential-algebraic equations (DAEs). So far we

have only used ordinary differential equations to model the dynamical behavior of a system.

However, the evolution of the states in a physical system may be constrained, e.g., current and

voltage in electrical circuits due to Kirchoff’s laws, or position variables in coupled mechanical

systems. In the modeling of physical systems, it is important to take into account the

algebraic constraints imposed on the state variables alongside some differential equations that

govern the evolution of these state variables. One such framework is the complementarity

modeling of the hybrid systems, discussed in [119], which deals with certain types of algebraic

inequalities and equalities. The algebraic equalities are more generally studied under the

framework of DAEs. Such constraints are defined by certain algebraic equations and thus

the complete model of such systems consists of differential and algebraic equations. And if the

system involves interaction between several sets of differential-algebraic equations (DAEs),

then it is natural to consider switched DAEs. The most general form of a switched DAE is

Fσ(t, x, ẋ) = 0, y = hσ(x).

Switched DAEs are an important class of mathematical models and because of their rich

solution framework, they need to be treated separately. Structural properties of switched

DAEs have not been investigated in much detail; and continuing on our recent work related to

structural properties of switched systems [105, 102, 65], we propose to study the observability

and observer design in switched DAEs. In this chapter, we consider the switched DAEs of

the following form:

Eσẋ = Aσx+Bσu,

y = Cσx,
(6.1)
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where σ : R → N is the switching signal, and Ep, Ap ∈ R
n×n, Bp ∈ R

n×du , Cp ∈ R
dy×n,

for p ∈ N. In general, a switched DAE (6.1) exhibits jumps (or even impulses) in the

solution, so it cannot be expected that a classical solution exists; therefore we adopt the

piecewise-smooth distributional solution framework introduced in [120]; i.e., the state x and

the external signals u and y are assumed to be piecewise-smooth distributions. We study

observability of the switched DAE (6.1) where we call (6.1) observable when the knowledge

of the external signals, σ, u and y, allows for a unique reconstruction of the state x.

DAEs arise naturally in modeling physical systems where the state variables satisfy certain

algebraic constraints alongside some differential equations that govern the evolution of these

state variables. It is a common practice to eliminate the algebraic constraints to arrive

at a system description given by ordinary differential equations (ODEs). However, these

eliminations are in general different for each subsystem of a switched system, so a description

as a switched ODE with common state variables is in general not possible. This problem can

be overcome by studying the switched DAE (6.1) directly. The motivation for studying DAEs

in a distributional framework is the fact that the distributional solution of state variables

provides more knowledge about the system, one application of which can be seen in [121].

Switched DAEs are a fairly new topic and not many papers investigate the properties of

such systems. Results on stability of switched DAEs have been published very recently in

[122], and the only ones (to the best knowledge of the author) related to controllability and

observability are reported in [123] and [124], respectively.

In the non-switched case, observability of DAEs has been studied by [125, 126]. As pointed

out in [120, Thm. 5.2.5], the observability definitions from [125, 126] can be characterized by

a certain pointwise observability definition if the problem is embedded into the piecewise-

smooth distributional framework. Hence, the non-switched framework discussed so far only

focuses on pointwise observability. This is very different from the approach adopted in the

switched framework because the switch itself might provide more information about the state

trajectory. So, even if the individual subsystems are not observable pointwise in time, it may

be possible to achieve global observability due to switching.

Our approach for solving the problem of observability of switched DAEs is in principle

different to the existing approach of [124]. In [124], a switched DAE is considered observable if

there exists at least one switching signal that makes it possible to recover the state trajectory.

In our approach, we consider the switching signal to be known and fixed, which makes the

system time-varying. For this time-varying system, we answer the question whether it is

possible to recover the state trajectory.
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The first result discussed in this section provides a complete characterization for global

observability of a switched DAE with two subsystems where the switching signal is restricted

to comprise a single switching instant to highlight the difference between switched ODEs and

switched DAEs. The distributional framework allows us to incorporate the knowledge pro-

vided by the jump and the impulsive part of the output for obtaining information about the

state trajectory. This result is then generalized to obtain necessary and sufficient conditions

for the general class of switched DAEs with multiple switching instants. If it is not possible

to recover the value of the state trajectory at all times, a weaker characterization is provided

for determinability, where we only aim to recover the state trajectory after the switching

instant in the single switch case. Moreover, the observability conditions are given in terms of

differential and impulse projectors, which present a novel concept of characterizing impulses

and derivatives of state trajectories. The definition of these projectors not only makes the

development of results parallel to the ODE case but also leads to conditions that are easily

verifiable in terms of original system matrices.

6.1 Preliminaries

6.1.1 Properties and Definitions for Regular Matrix Pairs

In the following, we collect important properties and definitions for matrix pairs (E,A). We

only consider regular matrix pairs, i.e. for which the polynomial det(sE−A) is not the zero
polynomial. A very useful characterization of regularity is the following well-known result.

Proposition 6.1 (Regularity and quasi-Weierstrass form). A matrix pair (E,A) ∈ R
n×n ×

R
n×n is regular if, and only if, there exist invertible matrices S, T ∈ R

n×n such that

(SET, SAT ) =

([
I 0

0 N

]
,

[
J 0

0 I

])
, (6.2)

where J ∈ R
n1×n1, 0 ≤ n1 ≤ n, is some matrix and N ∈ R

n2×n2, n2 := n− n1, is a nilpotent

matrix. ⊳

In view of [127], we call the decomposition (6.2) quasi-Weierstrass form. An easy way

to calculate the transformation matrices S and T for (6.2) is to use the following so-called
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Wong sequences [128, 127]1:

V0 := R
n, Vi+1 := A−1(EVi), i = 0, 1, · · ·

W0 := {0}, Wi+1 := E−1(AWi), i = 0, 1, · · ·

The Wong sequences are nested and get stationary after finitely many steps. The limiting

subspaces are defined as follows:

V∗ :=
⋂

i

Vi, W∗ :=
⋃

i

Wi.

For any full rank matrices V,W with imV = V∗ and imW =W∗, the matrices T := [V,W ]

and S := [EV,AW ]−1 are invertible and (6.2) holds.

Based on the Wong-sequences we define the following “projectors”.

Definition 6.2 (Consistency, differential and impulse projectors). Consider the regular ma-

trix pair (E,A) with corresponding quasi-Weierstrass form (6.2). The consistency projector

of (E,A) is given by

Π(E,A) = T

[
I 0

0 0

]
T−1,

the differential projector is given by

Πdiff
(E,A) = T

[
I 0

0 0

]
S,

and the impulse projector is given by

Πimp
(E,A) = T

[
0 0

0 I

]
S. ⊳

Note that only the consistency projector is a projector in the usual sense (i.e. Π(E,A) is an

idempotent matrix); the differential and impulse projectors are not projectors in the usual

1The problem of finding a canonical form for a pair of matrices simultaneously is also considered in [129].
We choose to work with quasi-Weierstrass form not only because it is easier to compute and work with, but
also because the Wong sequences have some useful properties with regard to the solution and structure of
the system that are discussed in [120].
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sense, because, in general, Πdiff
(E,A)Π

diff
(E,A) 6= Πdiff

(E,A) and the same holds for Πimp
(E,A). Let

C(E,A) :=
{
x0 ∈ R

n
∣∣ ∃x ∈ C1 : Eẋ = Ax ∧ x(0) = x0

}

be the consistency space of the DAE Eẋ = Ax, where C1 is the space of differentiable

functions x : R→ R
n. Then the following observations hold [127]:

1. All solutions x ∈ C1 of Eẋ = Ax evolve within C(E,A),

2. C(E,A) = V∗, i.e. the first Wong-sequence converges to the consistency space,

3. imΠ(E,A) = V∗ = C(E,A), hence the consistency projector maps onto the consistency

space.

The following lemma motivates the name of the differential projector.

Lemma 6.3. Consider the DAE Eẋ = Ax with regular matrix pair (E,A). Then any

solution x ∈ C1 of Eẋ = Ax fulfills

ẋ = Πdiff
(E,A)Ax =: Adiffx.

Proof. Let the variables in the quasi-Weierstrass form (6.2) be denoted by v and w, i.e.

x = T ( vw ). Using the fact that all solutions evolve within the consistency space, we obtain

w = ẇ = 0, and hence

ẋ = T

(
v̇

ẇ

)
= T

(
Jv

0

)
= T

[
I 0

0 0

][
J 0

0 I

](
v

w

)

= T

[
I 0

0 0

]
T−1T

[
J 0

0 I

]
T−1T

(
v

w

)

= Π(E,A)TSAx = Πdiff
(E,A)Ax.

For studying impulsive solutions, we consider the space of piecewise-smooth distributions

DpwC∞ from [130] as the solution space; that is, we seek a solution x ∈ (DpwC∞)n to the

following initial-trajectory problem (ITP):

x(−∞,0) = x0(−∞,0)

(Eẋ)[0,∞) = (Ax)[0,∞),
(6.3)
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where x0 ∈ (DpwC∞)n is some initial trajectory, and fI denotes the restriction of a piecewise-

smooth distribution f to an interval I. In [130], it is shown that the ITP (6.3) has a unique

solution for any initial trajectory if, and only if, the matrix pair (E,A) is regular. It is also

shown there, that the ITP for the pure DAE Nẇ = w, where N ∈ R
n2×n2 is a nilpotent

matrix, has the unique solution

w =

n2−1∑

i=0

(N[0,∞)
d
dt
)i(w0

(−∞,0)).

Using the calculus of piecewise-smooth distributions, the expression for the impulsive part

of w at t = 0, denoted by w[0], is obtained as follows:

w[0] = −
n2−2∑

i=0

N i+1w0(0−)δ(i) =
n2−2∑

i=0

N i+1∆0(w)δ
(i)
0 ,

where δ
(i)
0 denotes the i-th derivative of the Dirac-impulse at zero and ∆0(w) := w(0+) −

w(0−). To express the impulsive part of the distributional solution x of the ITP (6.3) we

need the impulse projector:

Lemma 6.4 (Impulses). Consider the ITP (6.3) with regular matrix pair (E,A) and corre-

sponding impulse projector Πimp
(E,A) with rank n2 ∈ N. Let Eimp := Πimp

(E,A)E; then any solution

x ∈ DpwC∞ of (6.3) fulfills

x[0] =

n2−2∑

i=0

(Eimp)i+1∆0(x)δ
(i)
0 .

Proof. First note that all solutions v ∈ (DpwC∞)n1 of the ITP for the ODE v̇ = Jv fulfill

v[0] = 0 and ∆0(v) = 0; hence

x[0] = T

(
v[0]

w[0]

)
= T

n2−2∑

i=0

[
0 0

0 I

][
I 0

0 N i+1

](
∆0(v)

∆0(w)

)
δ
(i)
0

=

n2−2∑

i=0

T

[
0 0

0 N i+1

]
T−1∆0(x)δ

(i)
0

=

n2−2∑

i=0

(Πimp
(E,A)E)

i+1∆0(x)δ
(i)
0 ,

143



where the last equality follows from the fact that E = S−1 [ I 0
0 N ]T−1 and

T

[
0 0

0 N i

]
T−1 =

(
T

[
0 0

0 I

]
SS−1

[
I 0

0 N

]
T−1

)i

.

Since the consistency projector specifies the jump from x(0−) to x(0+) for any solution

x ∈ (DpwC∞)n of the ITP (6.3), we have the following corollary.

Corollary 6.5. From the notation in Lemma 6.4 and the corresponding consistency projector

Π(E,A), it follows that

x[0] =
n−1∑

i=0

(Eimp)i+1(Π(E,A) − I)x(0−)δ(i)0 . ⊳

6.2 Observability Conditions

The concepts introduced in the previous section are now utilized to obtain necessary and

sufficient conditions for observability and determinability of switched DAEs. In order to use

the piecewise-smooth distributional solution framework and to avoid technical difficulties in

general, we only consider switching signals that are right continuous with a locally finite

number of jumps; i.e., we exclude an accumulation of switching times.

As was the case in switched ODEs, instead of pointwise observability, we adopt the notion

of global obervability in order to extract information from the switching.

Definition 6.6 (Observability). The switched DAE (6.1) with some fixed switching signal σ,

is called (globally) observable if for every pair of inputs and outputs (y, u) ∈ (DpwC∞)dy+du

there exists at most one x ∈ (DpwC∞)n which solves (6.1). ⊳

The following proposition will be helpful in developing the main result.

Proposition 6.7 (Observability of zero). The switched DAE (6.1) is observable if, and only

if, y ≡ 0 and u ≡ 0 implies x ≡ 0.

Proof. Necessity is obvious. Assume now that (6.1) is not observable; hence, there exists

an external signal (y, u) for which there exist different solutions x1, x2 ∈ (DpwC∞)n of (6.1).

By linearity, it follows that x = x1 − x2 6= 0 solves Eσẋ = Aσx and Cσx = Cσx1 − Cσx2 =

y − y = 0; hence, y ≡ 0 and u ≡ 0 does not imply x ≡ 0.
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The above result justifies that we can ignore the input when studying observability of

(6.1); hence in what follows, the following homogeneous switched DAE is considered:

Eσẋ = Aσx, y = Cσx. (6.4)

Furthermore, in order to highlight the major difference between switched ODEs and switched

DAEs, we restrict our attention in the remainder of the section to the special switching signal

given by:

σ(t) = 1 for t < 0 and σ(t) = 2 for t ≥ 0. (6.5)

That is, we only consider one switch from some initial subsystem given by (C−, E−, A−) :=

(C1, E1, A1) – active before the switch – to some other subsystem given by (C+, E+, A+) :=

(C2, E2, A2) that is active after the switch. Denote the corresponding consistency projectors

by Π−,Π+ and analogs for the differential and impulse projectors. Let C± := C(E±,A±) be the

consistency spaces of the corresponding subsystems; then y ≡ 0, in particular y(i)(0±) = 0

for all i ∈ N, together with Lemma 6.3 implies

x(0−) ∈ C− ∩
⋂

i∈N
kerC−(Π

diff
− A−)

i

and

x(0+) ∈ C+ ∩
⋂

i∈N
kerC+(Π

diff
+ A+)

i.

Define the observability matrices

O± := col(C±, C±A
diff
± , C±(A

diff
± )2, · · · , C±(A

diff
± )n−1), (6.6)

where Adiff
± := Πdiff

± A± for any two matrices M1,M2 of suitable sizes. Invoking the Cayley-

Hamilton-Theorem, see e.g. [131, Thm. X.2.3], the above conditions can be rewritten as

x(0−) ∈ C− ∩ kerO− and x(0+) ∈ C+ ∩ kerO+ .

Invoking regularity of the matrix pairs (E±, A±), a sufficient condition for observability of

(6.4) is that C− ∩ kerO− = {0}, but the following simple example shows that this condition

is not necessary.

Example 6.8. Consider (C−, E−, A−) = (0, 1, 0) and (C+, E+, A+) = (1, 1, 0) which reads

as ẋ ≡ 0 with output y ≡ 0 on (−∞, 0) and y ≡ x on [0,∞). Although C− ∩ kerO− = R,
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the switched DAE is observable. ⊳

On the other hand, the condition C+ ∩ kerO+ = {0} is not sufficient for observability,

because in general x(0+) = 0 does not imply x(0−) = 0. A characterization of observability

has to take into account the possible jumps from x(0−) to x(0+) as well as the induced

impulses x[0]. Using the additional information y[0] = 0 and y(0+) = 0 we can find stronger

sufficient conditions for observability. These and the above sufficient conditions can be

summarized as follows:

1. In general, x(0−) ∈ C−, so C− = {0} is sufficient for observability.

2. If y(i)(0−) = 0 for all i ∈ N, then x(0−) ∈ kerO−, so kerO− = {0} is sufficient for

observability.

3. If y(i)(0+) = 0 for all i ∈ N, then x(0+) ∈ kerO+ together with x(0+) = Π+x(0−)
implies that x(0−) ∈ Π−1

+ kerO+; hence, Π
−1
+ kerO+ = {0} is sufficient for observability.

4. If y[0] = 0, then Lemma 6.4 implies that ∆0x is in the null space of the matrix given

by col(C+E
imp
+ , C+(E

imp
+ )2, · · · , C+(E

imp
+ )n2−1) and Corollary 6.5 yields that x(0−) is

in the null space of col(C+E
imp
+ , C+(E

imp
+ )2, · · · , C+(E

imp
+ )n2−1)(Π+ − I); a sufficient

condition for observability is therefore that the latter kernel is trivial.

Of course, the condition that the intersection of the above mentioned four “unobservable”

subspaces for x(0−) be trivial is another sufficient condition encompassing all four from

above. Actually, it turns out that this condition is also necessary.

Theorem 6.9 (Characterization of observability). Consider the switched DAE (6.1) with

the switching signal given by (6.5). Use the notation O± as given by (6.6), let O−
+ := O+Π+,

Oimp
+ := col(C+E

imp
+ , C+(E

imp
+ )2, · · · , C+(E

imp
+ )n−1),

where Eimp
+ := Πimp

+ E+, and let Oimp−
+ := Oimp

+ (Π+ − I). Then (6.1) is observable if, and

only if,

{0} = C− ∩ kerO− ∩ kerO−
+ ∩ kerOimp−

+ . (6.7)

Proof. Because of Proposition 6.7, it suffices to consider (6.4) with zero output.

Sufficiency. Let x ∈ (DpwC∞)n be a solution of the switched DAE (6.4) with y ≡ 0. In general

x(0−) ∈ C−; furthermore, 0 = y(0−) = ẏ(0−) = ÿ(0−) = · · · implies x(0−) ∈ kerO−. From

0 = y(0+) = ẏ(0+) = ÿ(0+) = · · · , it follows that x(0+) ∈ kerO+, which together with
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x(0+) = Π+x(0−) yields x(0−) ∈ kerO−
+. Finally, y[0] = 0 implies ∆0(x) ∈ kerOimp

+ and

since ∆0(x) = x(0+) − x(0−) = (Π+ − I)x(0−), it follows that x(0−) ∈ kerOimp−
+ . Hence

(6.7) yields x(0−) = 0, and regularity of the matrix pairs (E−, A−) and (E+, A+) implies

x ≡ 0.

Necessity. Let 0 6= x0 ∈ C−∩kerO−∩kerO−
+∩kerOimp−

+ ; then by regularity of the switched

DAE (6.4) there exists a unique, non-trivial solution x ∈ (DpwC∞)n of (6.4) with x(0−) = x0.

From x(0−) ∈ kerO− it follows that y(i)(0−) = 0 for all i ∈ N, and hence by analyticity of

y on (−∞, 0) it follows that y ≡ 0 on (−∞, 0). Corollary 6.5 and x(0−) ∈ kerOimp−
+ imply

that y[0] = 0. Finally, x(0−) ∈ kerO−
+ implies that x(0+) = Π+x(0−) ∈ kerO+; hence,

y(i)(0+) = 0 for all i ∈ N and hence y ≡ 0 on (0,∞). Altogether this shows that there exists

a nontrivial solution x with zero output, so the switched DAE (6.4) is not observable.

The following corollary is an immediate consequence of Theorem 6.9 (in particular the

necessity part of the proof).

Corollary 6.10. The subspaceM := C− ∩ kerO− ∩ kerO−
+ ∩ kerOimp−

+ is the unobservable

subspace, i.e. for every solution x of (6.4) it holds that x(0−) ∈ M if, and only if, the

corresponding output is zero. ⊳

Remark 6.11. (The switched ODE special case) If the system in (6.1) is a switched ODE

with E± = In×n, then C± = R
n,Π± = In×n, kerO

imp−
+ = R

n, and the condition (6.7) reduces

to

{0} = kerO− ∩ kerO+ .

This result also appears in [52] as a sufficient condition for observability of switched ODEs.

However, for the class of switching signals considered here, this condition is also shown to

be necessary. ⊳

Remark 6.12. (Order of subsystems important) The condition (6.7) is not symmetric; i.e.,

observability of the switched system (6.1) with the switching signal (6.5) does not, in general,

imply observability of (6.1) with the reversed mode sequence. This is in stark contrast to

results on switched ODEs, which are in general symmetric [52]. The underlying reason for

this difference is the presence of jumps in the solutions of switched DAEs. Consider for

example (C−, E−, A−) = (1, 0, 1) and (C+, E+, A+) = (0, 1, 0) which reads as y ≡ x ≡ 0 on

(−∞, 0) and ẋ = 0 with y ≡ 0 on [0,∞). Hence the unique solution is given by x ≡ 0, which

makes the switched DAE trivially observable. The converse switching signal, i.e. switching

from (C+, E+, A+) to (C−, E−, A−), yields an unobservable switched DAE because the jump

at zero “destroys” all information from the past. ⊳
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The utility of Theorem 6.9 is now demonstrated with the help of an example.

Example 6.13. Consider a switched DAE with two modes:

Γ− :








1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1



ẋ =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0



x+




1

0

1

1



u,

y =
[
0 0 0 1

]
x,

Γ+ :








0 0 0 0

0 1 0 0

0 0 1 0

1 0 0 0



ẋ =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



x+




0

1

1

0



u,

y =
[
0 1 0 1

]
x.

Neither subsystem is observable in the classical sense. But we show that because of switching,

it is possible to determine the exact value of the state trajectory. To write Γ−,Γ+ in quasi-

Weierstraß form, we use the following transformation matrices which are obtained from the

Wong sequences:

S− =




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



, T− =




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



,

S+ =




0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1



, T+ =




0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 1



.
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The consistency, differential, and impulse projectors for each of these subsystems are:

Π− = Πdiff
− =




1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1



, Πimp

− =




0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0



, O− =




0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0



,

Π+ = Πdiff
+ =




0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0



, Πimp

+ =




1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1



, O+ =




0 1 0 1

0 1 0 0

0 1 0 0

0 1 0 0



,

and the subspaces indicated in Theorem 6.9 are:

C− = span{e1, e2, e4}, kerO− = span{e1, e2, e3},
kerO−

+ = span{e1, e3, e4}, kerOimp−
+ = span{e2, e3, e4},

where ei ∈ R
4, i = 1, 2, 3, 4, is the corresponding natural basis vector.

Clearly, C− ∩ kerO− ∩ kerO−
+ ∩ kerOimp−

+ = {0} and the switched system is observable

according to Theorem 6.9. Note that each of the four subspaces C−, kerO−, kerO
−
+ and

kerOimp−
+ is necessary to obtain a trivial intersection. If even one of them is not taken into

account, then the intersection would be nontrivial. In fact, each of the subspaces restricts

exactly one state variable. In view of Remark 6.12, note that the switched system with

subsystem Γ+ active on (−∞, 0) and Γ− active on [0,∞), is not observable because (with

the corresponding notation)

{0} 6= C+ ∩ kerO+ ∩ kerO+
− ∩ kerOimp+

− .

As an illustration of constructing state trajectories from the knowledge of the output and

the input, let us consider an input given by the following expression2:

u(t) = e2t + δ−1 + δ0,

and assume that the following output is produced by the switched system with σ(t) specified

2Note that, for simplicity, we are misusing the notation by writing u(t) = e2t + δ−1 + δ0 because u is
a piecewise-smooth distribution and therefore only the evaluations u(t−), u(t+), u[t] are well defined. The
correct way of writing would be to write û(t) = e2t and u = ûD + δ−1 + δ0.
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in (6.5):

y(t) =





−1, t ∈ (−∞,−1),
0, t ∈ [−1, 0),
et + e2t + δ0, t ∈ [0,∞).

The closed form solution for the state variables, parameterized by a, b, c ∈ R, is given as

follows:

x1(t) =





e2t − et+1 + (a− 1)et, t ∈ (−∞,−1),
(a− 1)et + e2t, t ∈ [−1, 0),
0, t ∈ [0,∞),

; x3(t) =




−e2t − δ−1, t ∈ (−∞, 0),
−et + e2t, t ∈ [0,∞),

x2(t) =




etb, t ∈ (−∞, 0),
et + e2t + (b− 1)et, t ∈ [0,∞),

; x4(t) =





1
2
e2tc− 1, t ∈ (−∞,−1),

1
2
e2tc, t ∈ [−1, 0),
−aδ0, t ∈ [0,∞).

First note that x3(0−) = −1, which corresponds to the fact that in the homogeneous case

the consistency space C− restricts x3(0−) to be zero. Since O− restricts x4(0−), we would

expect that y(0−), ẏ(0−), . . . , determine x4(0−). In fact, 0 = y(0−) = x4(0−). The space

O−
+ restricts x2(0−), and hence by using the values for y(i)(0+), we are able to reconstruct

x2(0−): 2 = y(0+) = x2(0+) + x4(0+) = 1 + b = 1 + x2(0−), i.e. x2(0−) = 1. Finally,

Oimp−
+ restricts x1(0−); therefore, the information from the impulse of y at zero can be used

to determine x1(0−): δ0 = y[0] = x2[0] + x4[0] = −aδ0, and hence −1 = a = x1(0−).
Altogether, we were able to determine x(0−) which together with the knowledge of u and

the regularity of the matrix pairs (E±, A±) makes it possible to uniquely reconstruct the

whole state x. ⊳

6.2.1 Systems with Multiple Switching Instants

So far, we have studied switched DAEs with a single switching instant. For switched DAEs

with more than two subsystems and multiple switchings, we build on the results of the pre-

vious section to obtain a characterization for the general case. We consider global solutions

over the interval (−∞,∞). If t0 = 0 is the initial time, then over the interval (−∞, 0),
the active subsystem is denoted by the matrices (E0, A0, C0), and for k ≥ 1, the triplet

(Ek, Ak, Ck) represents the active subsystem over the interval [tk−1, tk), so that tk is the time
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instant at which transition occurs from mode k − 1 to mode k. With O−
k := OkΠk, and

Oimp−
k := Oimp

k (Πk − I), we defineMk as:

Mk := Ck ∩ kerOk ∩ kerO−
k+1 ∩ kerOimp−

k+1 .

For a given m ∈ N, define the following sequence of subspaces:

Nm
m := Mm (6.8a)

Nm
k−1 := Mk−1 ∩ Π−1

k (exp (−Adiff
k τk)Nm

k ); 1 ≤ k ≤ m. (6.8b)

Theorem 6.14 (Observability Characterization). Consider the switched system formed by

family of DAEs (6.1) with switching signal σ comprising M switchings. For each positive

integer m < M , define the sequence Nm
k , for 0 ≤ k ≤ m, according to (6.8). The switched

system is globally observable if, and only if, there exists an m < M such that

Nm
0 = {0}. (6.9)

Proof. Sufficiency. We show that the identically zero output can only be produced by

x(·) ≡ 0. Fix m such that (6.9) holds. Assume that y ≡ 0 on (−∞,∞); then according to

Corollary 6.10, x(t−m) ∈ Mm = Nm
m . We next apply the inductive argument to show that

x(t−k−1) ∈ Nm
k−1 for 2 ≤ k ≤ m. Assume that x(t−k ) ∈ Nm

k ; then x(t+k−1) ∈ exp (−Adiff
k τk)Nm

k .

This implies that x(t−k−1) ∈ Π−1
k exp (−Adiff

k τk)Nm
k . Zero output on the interval (tk−2, tk)

implies that x(t−k−1) ∈ Mk−1 and thus x(t−k−1) ∈ Mk−1 ∩ exp (−Adiff
k τk)Nm

k = Nm
k−1. As a

result, x(t−0 ) ∈ Nm
0 = {0}, i.e., x(t−0 ) = 0; regularity of of the DAE (E0, A0, C0) implies that

x(·) ≡ 0.

Necessity. Assume that Nm
0 6= {0} for each m < M . Since Nm+1

m ⊆ Nm
m it follows that

Nm+1
k ⊆ Nm

k for 1 ≤ m < M and 0 ≤ k ≤ m. Let Nk :=
⋂
m≥kNm

k , then, by finite

dimensionality of Rn,

N0 6= {0}.

We will show that for all initial values x0 ∈ N0 the unique solution x ∈ D
n
pwC∞ of the switched

DAE

Eσẋ = Aσx, x(t0−) = x0

fulfills y = Cσx = 0, which implies unobservability. To this end, we first show the following
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implication, 0 ≤ k ≤ m:

x(t−k ) ∈ Nk ⇒ x(t−k+1) ∈ Nk+1. (6.10)

Assume x(t−k ) ∈ Nk. Since x(t+k ) = Πk+1x(t
−
k ) and x(t−k ) ∈ Nm

k for any m ≥ k + 1, using

Properties 2 and 3 in Appendix B, it follows that

x(t−k+1) = eA
diff
k+1τk+1x(t+k ) = eA

diff
k+1τk+1Πk+1x(t

−
k )

∈ eAdiff
k+1τk+1Πk+1Nm

k

⊆ eA
diff
k+1τk+1

(
Πk+1Mk ∩ e−A

diff
k+1τk+1Nm

k+1 ∩ Ck+1

)
⊆ Nm

k+1 .

This conclusion is true for all m ≥ k + 1, so x(t−k+1) ∈ Nk+1. The implication (6.10) is

therefore shown and an inductive argument gives x(t−k ) ∈ Nk for 0 ≤ k < M .

For any 0 ≤ k < M , x(t−k ) ∈ Nk ⊆ Mk ⊆ kerOk and x(t) = eA
diff
k

(t−tk)x(tk), for all

t ∈ (tk−1, tk), 0 ≤ k < M (by convention, t−1 = −∞), which implies y(t) = Ckx(t) = 0 for

all t ∈ (tk−1, tk). Finally, y[tk] = 0 because x(tk−) ∈ Nk ⊆Mk ⊆ kerOimp−
k .

Example 6.15. Consider a switched DAE where the two modes

Γ1 =







0 0 0

0 1 0

1 0 0


 ẋ =



1 0 0

0 1 0

0 0 1


 x

y =
[
0 0 1

]
x

, Γ2 =







1 0 0

0 1 0

0 0 0


 ẋ =




0 1 0

−1 0 0

0 0 1


 x

y =
[
0 0 1

]
x

are excited by the switching signal

σ(t) =





1, t ∈ (−∞, 0),
2, t ∈ [0, π

2
),

1, t ∈ [π
2
,∞).

Total number of switches isM = 2, and in the revised notation, (E0, A0, C0) and (E2, A2, C2)

are specified by Γ1, and Γ2 determines (E1, A1, C1); letting {e1, e2, e3} denote the natural

basis vectors for R3, it can be verified that

C0 = C2 = span{e2}; kerO0 = kerO2 = span{e1, e2}; kerO−
1 = R

3;

C1 = span{e1, e2}; kerO1 = span{e1, e2}; kerO−
2 = R

3.
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Similarly, kerOimp−
1 = R

3 and kerOimp−
2 = span{e2, e3}. It follows that:

M0 = C0 ∩ kerO0 ∩ kerO−
1 ∩ kerOimp−

1 = span{e2},

and

N 1
1 =M1 = C1 ∩ kerO1 ∩ kerO−

2 ∩ kerOimp−
2 = span{e2}.

Also, Adiff
1 =

[
0 1

−1 0

]
, so that eA

diff
1

π
2M1 = {e1}, from which it is clear that,

N 1
0 =M0 ∩Π−1

1 (e−A
diff
1

π
2 )M1

1 = span{e2} ∩ span{e1, e3} = {0}.

Hence the condition (6.9) holds. To see this explicitly, consider the closed form solution of

the state trajectories, parameterized by a scalar a:

x1(t) =





0, t ∈ (−∞, 0)
a sin t, t ∈ [0, π

2
)

0, t ∈ [π
2
,∞)

; x2(t) =





ae2t, t ∈ (−∞, 0)
a cos t, t ∈ [0, π

2
)

0, t ∈ [π
2
,∞)

;

x3(t) =





0, t ∈ (−∞, 0)
0, t ∈ [0, π

2
)

−aδπ
2
, t ∈ [π

2
,∞).

For an identically zero output, the impulsive part of the output at second switching instant

yields a = x2(0−) = 0 and this makes x(t) = 0, ∀ t. ⊳

As shown in the above example, even though the individual switchings between the sub-

systems do not make the system observable, a combination of multiple switches makes the

system observable. However, as was the case with switched ODEs, these conditions depend

on switching times and are not uniform over the class of switching signals. In the sequel, we

give corollaries to Theorem 6.14 from which observability or unobservability of a switched

system can be determined independently of the switching signal, and thus the results hold

for all switching signals that have the same mode sequence.

Corollary 6.16 (Sufficient condition for observability of switched DAEs). Consider the

family of DAEs (6.1) with a switching signal σ comprising M switchings. For each m < M ,
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define the following sequence of subspaces:

Nm

m :=Mm

Nm

k−1 :=Mk−1 ∩ Π−1
k

〈
Adiff
k |N

m

k

〉
, k = m, · · · , 1.

The switched DAE (6.1) is observable if there exists an m such that

Nm

0 = {0}.

Proof. It suffices to show that Nm
k ⊆ N

m

k for 0 ≤ k ≤ m. First, note that Nm
m = Nm

m.

Assuming that Nm
k ⊆ N

m

k for 0 ≤ k ≤ m−1, we claim that Nm
k ⊆ N

m

k . Indeed, by Property

9 in Appendix B, and the recursion equation (6.8), we get

Nm
k−1 =Mk−1 ∩ Π−1

k (exp (−Adiff
k τk)Nm

k )

⊆Mk−1 ∩Π−1
k

〈
Adiff
k |N

m

k

〉
= Nm

k−1,

whence the desired result follows.

The condition in Corollary 6.16 is not necessary as the following (ODE) example shows:

Example 6.17. Consider a switched DAE with mode sequence indexed as follows:

(E0, A0, c0) =

(
I,

[
0 0

1 −1

]
, (1,−1)

)
,

(E1, A1, c1) =

(
I,

[
0 1

0 0

]
, (0, 0)

)
,

(E2, A2, c2) =

(
I,

[
0 0

0 0

]
, (1, 0)

)
.

Easy calculations show that M0 = span {( 1
1 )}, M1 = span {( 0

1 )} and N 1

0 = M0. Any

solution x with zero output fulfills x(t−0 ) = x(t+0 ) = (xo1, x
o
1)

⊤ for some xo1 ∈ R. Furthermore

x(t1) = x(t−1 ) =

[
1 τ1

0 1

]
x(t+0 ) = (xo1(1 + τ1), x

o
1)

⊤ ∈ M1. Hence, either xo1 = 0 or τ1 = −1.

The latter is not possible, because we assumed that the switching times are in order, so

xo1 = 0 must hold. But this implies x ≡ 0, so all switched systems induced by the example

are observable. ⊳

The above example, however, satisfies the following necessary condition obtained as a
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corollary to Theorem 6.14

Corollary 6.18 (Necessary condition for observability of switched DAEs). Consider the

family of DAEs (6.1) with a switching signal σ comprising M switchings. For each m < M ,

define the following sequence of subspaces:

Nm
m :=Mm

Nm
k−1 :=Mk−1 ∩ Π−1

k

〈
Nm

k |Adiff
k

〉
, k = m, · · · , 1.

The switched DAE (6.1) is observable only if there exists an m such that

Nm
0 = {0}.

Proof. The proof proceeds similarly to Corollary 6.16, and we show that Nm
k ⊇ Nm

k for

0 ≤ k ≤ m. Noting that Nm
m = Nm

m, and assuming that Nm
k ⊇ Nm

k for 0 ≤ k ≤ m − 1, it

follows, using Property 9 in Appendix B and the recursion equation (6.8), that

Nm
k−1 =Mk−1 ∩ Π−1

k (exp (−Adiff
k τk)Nm

k )

⊇Mk−1 ∩Π−1
k

〈
Nm

k |Adiff
k

〉
= Nm

k−1,

which proves the desired result.

Once again, in order to show that there is enough gap between the necessary condition

and the sufficient condition, consider the example where a system satisfies the necessary

condition but not the sufficient condition and is unobservable.

Example 6.19. Consider a switched DAE with mode sequence indexed as follows:

(E0, A0, c0) =

(
I,

[
0 0

0 0

]
, (0, 0)

)
,

(E1, A1, c1) =

(
I,

[
0 1

−1 0

]
, (0, 0)

)
,

(E2, A2, c2) =

(
I,

[
0 0

0 0

]
, (1, 0)

)
.

Easy calculations show that M0 = R
2, M1 = span {( 0

1 )} and N 1
0 = {0}. Any solution

x with zero output fulfills x(t−0 ) = x(t+0 ) = (xo1, x
o
2)

⊤ for some (xo1, x
o
2)

⊤ ∈ R, and x(t1) =
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x(t−1 ) =

[
cos τ1 sin τ1

− sin τ1 cos τ1

]
x(t+0 ) = (xo1 cos τ1 + xo2 sin τ1, x

o
2 cos τ1 − xo1 sin τ1)⊤ ∈ M1. Hence,

xo1 cos τ1 + xo2 sin τ1 = 0 is the only constraint that specifies x(t−0 ), which makes it impossible

to recover x(·). ⊳

6.3 Determinability Conditions

In Theorem 6.9 and Theorem 6.14, we derived conditions which restrict x(0−) to a single

point. Since there are no switches over the interval (−∞, 0), and we have a unique solution

over the interval (−∞, 0). Regularity assumption guarantees that the solution is also well

defined over the interval [0,∞). It is possible that (6.9) does not hold for a given system but

x(tk ,∞) could still be determined uniquely from the knowledge of the output. This motivates

the following definition.

Definition 6.20 (Determinability). The switched DAE (6.1) is called determinable if for

every pair of triplets (x1, u1, y1), (x2, u2, y2) ∈ (DpwC∞)n+du+dy which solve (6.1), the implica-

tion (u1, y1) = (u2, y2)⇒ x1(ti,∞)
= x2(ti,∞)

holds for some ti ≥ 0. ⊳

If we consider only the switching signal given by (6.5), then the Definition 6.20 essentially

requires the state trajectory to be unique over the interval (0,∞). However, for a general

switching signal, because no new information is accumulated in between the switching in-

tervals, the definition of determinability requires the solution to be unique over an interval

(tk,∞) for some tk.

Just like for switched ODEs, the notion of determinability is, in general, weaker than

observability. The reason is that, by regularity of the corresponding matrix pairs, knowledge

of x(t−k ) yields knowledge of x(t+k ). In particular, observability implies determinability, but

the converse is not true in general.

As an illustration of a system which is determinable but not observable, we consider the

following example:

Example 6.21. Let (E−, A−, C−) =
(
I2×2, I2×2,

[
1 0

])
be the subsystem prior to the

switching, and (E+, A+, C+) =

([
1 0

0 0

]
, I2×2,

[
0 1

])
be the subsystem after the switching.

It can be checked that equation (6.7) does not hold, so x(0−) cannot be determined from

the output. But x(0+) =
[
y(0−) 0

]⊤
is completely specified by the output. Consequently,

x(0,∞) can be determined uniquely for this switched system. ⊳
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Proposition 6.22 (Determinability of zero). The switched DAE (6.1) is determinable if,

and only if, y ≡ 0 and u ≡ 0 implies x(tk ,∞) ≡ 0 for some tk ≥ 0. ⊳

Proof. The proof is analogous to the proof of Proposition 6.7.

As was the case in observability, we first discuss the simple switching case and then gener-

alize the result to multiple switchings case. The following result is derived from Theorem 6.9

and gives a characterization for systems that are determinable with switching signal (6.5).

Corollary 6.23. Consider the switched DAE (6.1) with the switching signal given by (6.5).

Then (6.1) is determinable if, and only if,

Π+(C− ∩ kerO− ∩ kerO−
+ ∩ kerOimp−

+ ) = {0}. (6.11)

Proof. Because of Proposition 6.22 it suffices to consider (6.4) with zero output. Let

M := C− ∩ kerO− ∩ kerOimp−
+ ∩ kerO+.

Sufficiency: Let x ∈ (DpwC∞)n be a solution of the switched DAE (6.4) with y ≡ 0.

According to Corollary 6.10, x(0−) ∈ M. If (6.11) holds, then x(0+) = Π+x(0−) = 0.

Regularity of each subsystem implies that x(0,∞) ≡ 0.

Necessity: If (6.11) does not hold, then there exists 0 6= x0,+ ∈ Π+(M). Choose x0,− ∈M
with x0,+ = Π+x0,−. By regularity of the switched DAE (6.4) there exists a unique, non-

trivial solution x ∈ (DpwC∞)n of (6.4) with x(0−) = x0,−. Corollary 6.10 yields that y ≡ 0 and

x(0,∞) 6≡ 0 because x(0+) = x0,+ 6= 0. Hence the switched DAE (6.4) is not determinable.

Remark 6.24. For subspaces R1, R2, and a linear map Π, Π(R1 ∩ R2) = Π(R1) ∩ Π(R2)

if, and only if

(R1 +R2) ∩ kerΠ = R1 ∩ ker Π +R2 ∩ kerΠ.

Using this and the fact that ker Π+ ⊆ kerO+Π+, the condition (6.11) can be simplified to

Π+(C− ∩ kerO− ∩ kerOimp−
+ ) ∩ kerO+ = {0}. ⊳

Next we consider the determinability of switched DAEs with multiple switchings. Let the

subspace indicated in (6.11) be denoted as follows:

Pk := Πk+1(Ck ∩ kerOk ∩ kerOimp−
k+1 ) ∩ kerOk+1 .
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The main result requires is developed using following sequence of subspaces:

Q0
0 = P0 (6.12a)

Qk0 = Pk ∩Πk+1(exp(Ak+1τk+1)Qk−1
0 ), k ≥ 1. (6.12b)

Theorem 6.25 (Determinability Characterization). Consider the switched system formed

by family of DAEs (6.1) with switching signal σ comprising M switchings. For each posi-

tive integer m < M , define the sequence Qm0 , according to (6.12). The switched system is

determinable if, and only if, there exists an m < M such that

Qm0 = {0}. (6.13)

Corollaries can be derived from this main result in which conditions for determinability

are independent of switching times and depend only on the mode sequence.

Corollary 6.26 (Sufficient Condition for Determinability). Consider the family of DAEs

(6.1) with a switching signal σ comprising M switchings. For each m < M , define the

following sequence of subspaces:

Q0

0 := P0

Qk0 := Pk ∩ Πk+1

〈
Adiff
k+1|Q

k−1

0

〉
, k = m, · · · , 1.

The switched DAE (6.1) is determinable if there exists an m such that

Qm0 = {0}. ⊳

Corollary 6.27 (Necessary Condition for Determinability). Consider the family of DAEs

(6.1) with a switching signal σ comprising M switchings. For each m < M , define the

following sequence of subspaces:

Q0
0
:= P0

Qk
0
:= Pk ∩ Πk+1

〈
Qk−1

0
|Adiff

k+1

〉
, k = m, · · · , 1.

The switched DAE (6.1) is determinable if there exists an m such that

Qm
0
= {0}. ⊳
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So far we have looked at the conditions that lead to observability/determinability of

switched DAEs. It is natural to design the observers based on these conditions, and we

intend to do so in the future.
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Chapter 7

Application to Fault Detection in Electrical
Networks

This chapter proposes a framework for fault detection and isolation (FDI) in electrical en-

ergy systems based on invertibility and observability techniques developed in the context

of switched systems. In the absence of faults—the nominal mode of operation—the system

behavior is described by one set of linear differential equations, or more in the case of systems

with natural switching behavior, e.g., power electronics systems. Faults are categorized as

hard and soft. A hard fault causes abrupt changes in the system structure, which results in

an uncontrolled transition from the nominal mode of operation to a faulty mode governed by

a different set of differential equations. A soft fault causes a continuous change over time of

certain system structure parameters, which results in unknown additive disturbances to the

set(s) of differential equations governing the system dynamics. In this setup, the dynamic

behavior of an electrical energy system (with possible natural switching) can be described

by a switched state-space model where each mode is driven by possibly known and unknown

inputs. The problem of detection and isolation of hard faults is equivalent to uniquely re-

covering the switching signal associated with uncontrolled transitions caused by hard faults.

The problem of detection and isolation of soft faults is equivalent to recovering the unknown

additive disturbance caused by the fault. Uniquely recovering both switching signal and

unknown inputs is the concern of the (left) invertibility problem in switched systems, and

we are able to adopt theoretical results on that problem, developed earlier, to the present

FDI setting. The application of the proposed framework to fault detection and isolation

in switching electrical networks is illustrated with several examples. Also, to overcome the

limitations of the invertibility framework that requires exact knowledge of the initial condi-

tion and derivates of the output, we then propose an alternate observer based approach for

detection of soft faults, while assuming the switching signal is known.
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7.1 Inversion Based Fault Detection and Isolation

Fault-tolerance (self-healing) may be defined as the ability of a system to adapt and compen-

sate in a planned, systematic way to random component faults and keep delivering completely

or partially the functionality for which it was designed [132]. Two main elements should be

engineered into an electrical energy system to ensure fault-tolerance: (i) component redun-

dancy, and (ii) fault detection and isolation mechanisms. Choosing the appropriate level

of redundancy impacts other metrics, e.g., cost and weight. In this regard, the problem of

optimal redundancy allocation has been addressed before [133]. The task of fault detection

and isolation (FDI) is indispensable to ensure that component redundancy is managed ap-

propriately. Failure to remove the faulty component from the system, even with sufficient

redundant resources to tackle the fault, may entail further damage in other components and

eventually bring the system down. A fault detection and isolation (FDI) system executes

two actions: (i) detection makes a binary decision whether or not a fault has occurred, (ii)

isolation determines the fault location, i.e., which component is faulty.

The literature in FDI is extensive [134, 135, 136, 137], and the methods used for the

implementation of FDI can be broadly classified into three different categories: (i) model-

based, which uses control-theoretic methods to design residual generators that can point

to specific faults; (ii) artificial intelligence, which uses neural networks and fuzzy logic to

develop expert systems that once trained can point to specific faults; and (iii) empirical and

signal processing, which use spectral analysis to identify specific signatures of a certain fault.

The following are a few references of each category application to FDI in electrical energy

systems. The work in [138, 139, 140, 141, 142] is model-based, artificial intelligence methods

are used in [143, 144, 145, 146], and empirical and signal processing methods in [147, 148].

The focus of this work is on model-based FDI methods, the foundations of which are built

on control-theoretic concepts. Model-based methods include observer-based and parameter

estimation approaches [149]. As the proposed work is closer to observer-based FDI, funda-

mental ideas behind this approach to FDI will be reviewed. Observer-based FDI was first

introduced by Beard in [20] and further developed by Jones in [21]. The idea is based on

using a Luenberger observer (see, e.g., [150]). In a non-switched linear system, it can be used

to estimate the system states, given some output measurements and the inputs to the sys-

tem. In the absence of faults, the state estimates obtained from the observer converge to the

actual state values asymptotically. If a fault occurs, the state predicted with the Luenberger

observer no longer converges to the true state of the system. By appropriately choosing the

observer gain, the estimation error in the presence of a certain fault has certain geometrical
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characteristics that make the fault identifiable. The Beard-Jones approach is only applicable

to deterministic linear time-invariant systems (LTI). The idea of using observers for FDI was

extended to stochastic systems, where a Kalman filter approach was used to formulate the

FDI problem [151]. This overcame the limitations of the Beard-Jones approach. There has

been some work on FDI for nonlinear systems (see, e.g., [152]), where linearization around

the system operating point, together with FDI techniques for linear systems, is used. The

limitations of this approach are obvious. The Beard-Jones approach cannot handle systems

with inherent switching behavior, e.g., power electronics systems. The goal of this research

is to overcome these limitations by developing methods that apply to both non-switched

and switched linear systems. To address this problem, the application of recent results in

invertibility of switched systems will be investigated [65, 67].

In our framework, the system behavior in the absence of faults is described by a set of linear

dynamical equations. Faults are categorized as hard, which cause an abrupt change in the

system structure, and soft, which result in continuous variation of certain parameters of the

system structure. When a hard fault occurs, the system trajectories follow a different set of

linear dynamical equations and it is assumed that the dynamics of the system in the presence

of such faults are known. If there is a finite number of hard faults under consideration, then

we have a finite number of dynamical subsystems describing each possible system operational

mode, including the nominal modes and all possible faulty modes. The occurrence of a hard

fault results in the transition from a non-faulty mode to a faulty mode. The occurrence

of soft faults will result in additional unknown forces driving the system dynamics. In this

regard, the system can be thought of as a switched system where the switching signal and

inputs are possibly unknown. In this setup, detecting and isolating a hard fault is equivalent

to uniquely recovering the switching signal associated with the transition caused by the

fault. Detection and isolation of soft faults is equivalent to recovering the unknown inputs

that arise from the fault occurrence. To achieve this, we will use the notion of invertibility

for switched systems. The problem of (left) invertibility of switched systems, introduced in

Chapter 2, concerns the recovery of switching signal and input using the knowledge of the

output and the initial state. The realization of FDI using invertibility can be summarized as

follows. For hard faults, detection is equivalent to determining that the non-faulty mode can

no longer produce the observed outputs, and isolation is equivalent to uniquely recovering

the switching signal by identifying which faulty mode can produce the observed output. For

soft faults, detection is equivalent to detecting the presence of an input disturbance, and

isolation is equivalent to uniquely identifying the parameter change that causes this input
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disturbance to appear.

In the framework of non-switched systems, the problem of FDI using classical invertibil-

ity techniques has been studied before in [22]. In this work, the authors consider faults as

additive unknown inputs to the system, and recover them as outputs of another dynamic

system—the inverse system. Since the initial values of the state variables are not assumed

to be known, the authors require the inverse system to be minimum-phase, which is possible

for non-switched systems. Also, minimal realization is considered to save excessive compu-

tational effort. In this chapter, we also model soft faults as additive unknown inputs to the

system. As the systems under consideration are switched systems, classical inversion tech-

niques can no longer be used for detection of such faults and hence we use newly developed

tools of invertibility for switched systems [65]. Also, we assume the initial conditions to be

known and hence do not require stability of the inverse system. Furthermore, we do not con-

sider using a minimal realization of the inverse system because the state variables of these

minimal realizations for different modes might not coincide and therefore mode detection

would not be possible.

The remainder of this chapter proceeds as follows. In Section 7.1.1, the system dynamical

model, the notations, and the formulae that lead to the construction of an inverse switched

system are presented. In Section 7.1.2, the notions introduced in Section 7.1.1 are used to

construct the proposed FDI framework. Section 7.1.3 presents several case-studies that illus-

trate the ideas presented in Section 7.1.2, followed by some simulation results in Section 7.1.4.

Concluding remarks are presented in Section 7.3.

7.1.1 Preliminaries: Inversion of Dynamical Systems

In the context of this work, it is assumed that, without loss of generality, the dynamic

behavior of switching electrical systems can be described by a switched state-space model of

the form

Γ :

{
ẋ = Aσx+Bσu+ Eσv,

y = Cσx,
(7.1)

where x ∈ R
n, u(t) ∈ R

m, v(t) ∈ R
r, y(t) ∈ R

l, and the switching signal takes values in the

index set P, that is, σ : [0,∞) → P. The input u is assumed to be unknown, whereas the

input v is assumed to be known.

For a fixed p ∈ P and known v, denote by Γp,x0(u) the trajectory of the correspond-

ing subsystem with the initial state x0 and the input u, and the corresponding output by
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ΓOp,x0(u). Since switching signals are right-continuous, the outputs are also right-continuous,

and whenever we take derivative of the output, we assume it is the right derivative.

Invertibility of Non-Switched Linear Systems

Consider affine linear systems of the form:

ẋ = Ax+Bu+ Ev, (7.2a)

y = Cx, (7.2b)

where u is assumed to be unknown and v is assumed to be known.

As indicated in Chapter 2, the invertibility problem for linear systems is concerned with

finding conditions for a linear time-invariant (LTI) system so that for a given initial state

x0 and known input v, the input-output map Hx0,v : U → Y is injective (left-invertibility)

or surjective (right-invertibility), where U is the space of input functions u and Y is the

corresponding output function space. The main computational tool for studying the problem

in an algebraic setting is the structure algorithm, introduced in [75] and [88]. In the original

formulation of this algorithm, it was assumed that all inputs were unknown. In this section,

we tailor this formulation to the system (7.2), where some inputs are known, which is a more

appropriate formulation for the FDI framework to be discussed in Section 7.1.2. Before

proceeding with the formal formulation of the structure algorithm, we introduce an example

that will help illustrating the main ideas behind it.

Example 7.1. Consider the circuit of Fig. 7.1, where it is assumed that the input voltage vs

is known, the load current iload is unknown, and both the states iL and vC are measurable.

By using the notation of (7.2), x = [iL vC ]
⊤, u = iload, v = vs, y = [y1 y2]

⊤ = [iL vC ]
⊤, and

C 

i
L
 L 

R
1
 

v
C
    v

s
 i

load
 

R
2
 

Figure 7.1: RLC circuit.
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A =

[
− R1R2

(R1+R2)L
− 1
L

1
C

0

]
, B =

[
0

− 1
C

]
, E =

[
1
L

0

]
, C =

[
1 0

0 1

]
. (7.3)

The main idea behind the structure algorithm is that by differentiating the output, it is

possible under certain conditions to invert the system, i.e., to find a one-to-one mapping

between the output (and its derivatives) and the unknown input. In this example, it is

straightforward to find such a mapping by differentiating the second output, ẏ2 =
[

1
C

0
]
x−

1
C
iload, from which it follows that the unknown input iload can be uniquely recovered from

the output and its derivatives, iload = iL − Cẏ2. Another important observation for solving

the problem of inversion in switched affine linear systems, and later formalized in the form of

the so-called range theorem [88], can be made regarding the outputs that can be generated

by the system from all possible initial conditions. To explore the idea behind the generation

of such an output set, consider the state-space description of a system without inputs which

is not necessarily observable. For such a system, higher order derivatives of the output can

be written as a linear combinations of its lower order derivatives. Similarly, for the system of

Fig. 7.1, it is easy to verify that the outputs produced by this system satisfy the constraint

ÿ1+
1
L
ẏ2+

R1R2

(R1+R2)L
ẏ1 =

1
L
v̇s. The construction is later formalized in this section. To determine

how the outputs in this set are related to the state variables, consider the relation between

outputs and states given by the observation equation y = Cx and differentiate the first

output as ẏ1 =
[
− R1R2

(R1+R2)L
− 1
L

]
x + 1

L
vs. It follows that the output and the state are

related by the following functional relation:



1 0

0 1
d
dt

0


 y =




1 0

0 1

− R1R2

(R1+R2)L
− 1
L


 x+



0

0
1
L


 vs. (7.4)

Such relations are useful in mode identification of switched systems especially when the

subsystems have the same output sets. ⊳

The Structure Algorithm

We now proceed to formalize the ideas introduced in Example 7.1. The structure algoritm

developed here is different from that given in Appendix A as we cover the more general

case of partially known and partially unknown inputs. Consider the linear system (7.2).
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Differentiate y to get ẏ = Cẋ = CAx+CBu+CEv. Let q1 = rank(CB); then there exists a

nonsingular l×l matrix S1 such thatD1 := S1CB =

[
D1

0

]
, whereD1 has q1 rows and rank q1.

Let y1 = S1ẏ; C1 := S1CA, and E1 := S1CE. Thus, we have y1 = C1x+D1u+E1v1, where

v1 = v. Suppose that at step k, we have yk = Ckx+Dku+Ekvk, where Dk has the form

[
Dk

0

]
;

Dk has qk rows and is full rank. Let the partition of Ck, Ek be

[
Ck

C̃k

]
,

[
Ek

Ẽk

]
respectively, where

Ck, Ek are the first qk rows; yk is partitioned as

[
yk

ỹk

]
, where yk has the first qk elements;

and vk has the form col(v, v̇, · · · , v(k−1)). If qk < l, let Mk be the differential operator

Mk :=

[
Iqk 0

0 Il−qk(d/dt)

]
. Then Mkyk =

[
Ck

C̃kA

]
x+

[
Dk

C̃kB

]
u+

[
Ek 0qk×r

C̃kE Ẽk

]
vk+1, where

vk+1 := col(v, v̇, · · · , v(k)). Let qk+1 = rank

[
Dk

C̃kB

]
; then there exists a nonsingular

l × l matrix Sk+1 such that Dk+1 := Sk+1

[
Dk

C̃kB

]
=

[
Dk+1

0

]
, where Dk+1 has qk+1 rows

and rank qk+1. Let yk+1 := Sk+1Mkyk, Ck+1 := Sk+1

[
Ck

C̃kA

]
, Ek+1 := Sk+1

[
Ek 0qk×r

C̃kE Ẽk

]
.

Then yk+1 = Ck+1x + Dk+1u + Ek+1vk+1 and we can repeat the procedure. Let Nk :=∏k
i=0 Sk−iMk−i−1, k = 1, 2, · · · (M−1 := I;S0 := I), Nk := [Iqk 0qk×(l−qk)]Nk and Ñk :=

[0(l−qk)×qk Il−qk ]Nk. Then yk = Nky, yk = Nky, and ỹk = Ñky. Using these notations,

y = y0 = ỹ0 = C̃0x = Cx, E0 = 0 and D0 = 0. Notice that since Dk has l rows and m

columns, qk ≤ min{l, m} for all k and since qk+1 ≥ qk, using the Cayley-Hamilton theorem,

it was shown in [88] that there exists a smallest integer α ≤ n such that qk = qα, ∀k ≥ α. If

qα = m, the system is left-invertible and the inverse is

Γ−1 =





yα = Nαy,

ż = (A−BD−1

α Cα)z −BD−1

α Eαvα + Ev +BD
−1

α yα,

u = −D−1

α Cαz −D−1

α Eαvα +D
−1

α yα,

(7.5)

with the initial state z(0) = x0.
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The Range Theorem

From the structure algorithm, it can be seen that Ñky = ỹk = C̃kx + Ẽkvk, for each k and

hence,

Ỹk = Lkx+ Jk−1vk−1, (7.6)

where Ỹk =




ỹ0
...

ỹk−1


 =




Ñ0

...

Ñk−1


 y, Lk =




C̃0

...

C̃k−1


, and Jk =




0(l−q0)×kr

Ẽ1 0(l−q1)×(k−1)r

...
...

Ẽk 0(l−qk)×0



.

Using the Cayley-Hamilton theorem, Silverman and Payne have shown in [88] that there

exists a smallest number β, α ≤ β ≤ n, such that rank(Lk) = rank(Lβ), ∀k ≥ β. There also

exists a number δ, β ≤ δ ≤ n such that C̃δ =
∑δ−1

i=0 Pi
(∏δ

j=i+1 R̃j

)
C̃i for some matrices R̃j

from the structure algorithm and some constant matrices Pi (see [88, p.205] for details). The

number δ is not easily determined as α and β. The significance of α, β and δ is that they

can be used to characterize the set of all outputs of a linear system as in the range theorem

[88, Theorem 4.3]. We include the range theorem from [88] below in a modified form because

of the presence of known input v. The proof, however, follows the same argument and is

not repeated here. Define the differential operators M1 :=
(
dδ

dtδ
−∑δ−1

i=0 Pi
di

dti

)∏α
j=0 R̃j and

M2 :=
∑δ

j=0

(∏α
l=j+1 R̃l

)
Kj

dδ−j

dtδ−j −
∑δ−1

j=0

∑j
k=0

(∏α
l=k+1 R̃l

)
Kj

dj−k

dtj−k for some matrices Ki

from the structure algorithm. The notation |t means “evaluating at t”.

Theorem 7.2. [88] A function f : [t0, T )→ R
l is in the range of Γx0 if and only if

(i) f is such that Nδf is defined and continuous;

(ii) Ñkf |t0 = C̃kx0 + Ẽkvk|t0 , k = 0, · · · , δ − 1;

(iii) (M1 −M2Nα)f(t) = Ẽδvδ(t)−
∑δ−1

i=0 Pi

(∏α

j=0 R̃j

)
Ẽivi(t) for all t ∈ [t0, T ). ⊳

Compared to Theorem 4.1 in [88], condition (ii) in Theorem 7.2 (given above) has addi-

tional δ − β equations due to the presence of inhomogeneity v which, unlike [88], make the

additional δ − β constraints linearly independent of the first β equations. Condition (iii)

also gets modified.

With the help of extra notations, the range theorem is paraphrased in the following propo-

sition for better understanding. Let N := col(Ñ0, · · · , Ñδ−1), L := Lδ, J := Jδ−1, ν = vδ−1,

C0 be the class of continuous functions, and denote by Ŷ the set of functions f : D → R
l for

all D ⊆ [0,∞) which satisfy (i) and (iii) of Theorem 7.2.
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Proposition 7.3. For a linear system Γ, using the structure algorithm on the system ma-

trices, construct a set Ŷ of functions, a differential operator N : Ŷ → C0, and the matrices

L, J . There exists an input u ∈ C0 such that y = ΓOx0,v(u) if and only if y ∈ Ŷ and

Ny|t+0 = Lx0 + Jν|t+0 . ⊳

For square invertible systems with qα = l = m, condition (iii) in Theorem 7.2 always holds

and the set Ŷ is simplified to the set of functions f for which Nδf is defined and continuous.

In particular, any Cn function will be in Ŷ . Also, note from the structure algorithm that

regardless of what the unknown input is, the output, the state, and the known input are

related by the equation Ny|t = Lx(t) + Jν(t), for all t ≥ t0, not just at the initial time t0.

It is important to note that Proposition 7.3 provides the necessary and sufficient condition

in terms of a differential operator N, some matrices L, J and some set of functions Ŷ .
Roughly speaking, the set Ŷ characterizes continuous functions that can be generated by

the system from all initial positions (the components of the output must be related to the

system matrices A,B,C in some sense). This relation will be used later to identify the mode

of operation in a switched system as the condition Ny|t+0 = Lx0 + Jν|t+0 guarantees that the

particular y can be generated starting from the particular initial state x0 and v at time t0.

We evaluate Ny and ν at t+0 , to reflect that y, ν do not need to be defined for t < t0. This is

especially useful later when we consider switched systems where inputs and outputs can be

piecewise right-continuous.

Switched Linear Systems

For switched linear systems (7.1), the map under consideration is a (switching signal ×
input)-output map Hx0,v : S × U → Y , where S is the space of switching signals. We

are interested in knowing whether the preimage (σ, u) = H−1
x0,v

(y) is unique. The issue of

left-invertibility is of central importance in detection and isolation of hard faults because

occurrence of a hard fault is the same as the transition of the system from nominal mode to

a faulty mode. Thus, recovering the unknown switching signal is equivalent to identifying

the hard fault in the system.

It was mentioned earlier that because of switch-singular pairs, if a subsystem is invertible,

then it is possible that another subsystem might produce the same output starting from the

same initial condition. This means that the pre-image of Hx0,v at such (x0, y) is not unique.

We recall the simplified definition for the class of systems considered in this chapter.
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Definition 7.4. Let x0 ∈ R
n and y ∈ C0 on some time interval. The pair (x0, y) is a

switch-singular pair of the two subsystems Γp, Γq if there exist u1, u2 such that ΓOp,x0(u1) =

ΓOq,x0(u2) = y. ⊳

Based on the discussion in Chapter 3 (Section 3.1), one can arrive at the formula for

checking if (x0, y) is a switch-singular pair of Γp,Γq, utilizing the range theorem by Silverman

and Payne (Theorem 7.2 in this Chapter). We will use our notations in Proposition 7.3. For

the subsystem indexed by p, denote by Np, Lp, Jp, νp and Ŷp the corresponding objects of

interest as in Proposition 7.3. It follows from Definition 7.4 and Proposition 7.3 that (x0, y)

is a switch-singular pair if and only if y ∈ Ŷp ∩ Ŷq and
[
Np

Nq

]
y
∣∣
t+0

=

[
Lp

Lq

]
x0 +

[
Jpνp|t+0
Jqνq|t+0

]
, (7.7)

where t0 is the initial time of y. For a given (x0, y), the condition (7.7) can be directly

verified as all entities are known. One special case is x0 = 0, v ≡ 0, y ≡ 0. It is obvious that

with u = 0 and any switching signal, we always have y ≡ 0, i.e. H0,0(σ, u) = 0 ∀σ regardless

of the subsystem dynamics, and therefore the map Hx0,v is not one-to-one if the function

0 ∈ Y . So, whenever
[
Np

Nq

]
y
∣∣
t+0

= 0, there exists an x0 that forms switch-singular pair with

such outputs.

Essentially, if a state and an output function (the time domain can be arbitrary) form a

switch-singular pair, then there exist inputs for the two systems to produce that same output

starting from that same initial state. Stated otherwise, if there are no switch-singular pairs

between any of the subsystems, then the active subsystem is determined uniquely. From

fault detection viewpoint, the absence of switch-singular pairs guarantees the detection and

isolation of faults as demonstrated in Example 7.7 in Section 7.1.2.

Similar to Theorem 2.5, it has been shown in [65] that a switched system is invertible if

and only if all subsystems are invertible and subsystem dynamics are such that there exist

no switch-singular pairs among them. If these conditions are satisfied and the switched

system is invertible, a switched inverse system can be constructed to recover the input u and

switching signal σ from the knowledge of given x0, y and v. For the switched inverse system,

let Y be the set of piecewise smooth functions such that, if y ∈ Y and y[t0,t0+ε) ∈ Ŷp ∩ Ŷq for
some p 6= q, p, q ∈ P, ε > 0, then (7.7) does not hold. Define the index inversion function
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Σ
−1

: Rn × Y → P as:

Σ
−1
(x0, y) = p : y[t0,t0+ε) ∈ Ŷp and Npy

∣∣
t+0

= Lpx0 + Jpνp|t+0 , (7.8)

where t0 is the initial time of y, and x0 = x(t0). The function Σ
−1

is well-defined since p is

unique by the fact that there are no switch-singular pairs. The existence of p is guaranteed

if it is assumed that y ∈ Y is an output from the modeled switched system.

7.1.2 Inversion-Based Fault Detection and Isolation

We categorize faults in electrical energy systems as hard faults and soft faults. Hard faults

often result in an abrupt change of the system structure; examples include component open-

and short-circuits or certain switching elements getting stuck in an open or closed position.

We assume that the system configuration resulting from the hard faults can be modeled.

Then in the context of the switched state-space description (7.1) discussed in the previous

section, a hard fault can be thought of as an uncontrolled transition between two modes in

P. Soft faults, on the other hand, refer to a continuous variation—as opposed to an abrupt

change—in certain parameters over the period of time; they may occur due to graceful

degradation of the capacitance or the equivalent series resistance (ESR) of a capacitor. In

the context of the switched state-space description (7.1), a soft fault can be thought of as

an unknown additive disturbance and therefore can be naturally included in the vector of

unknown inputs u.

The problem of detection and isolation of hard faults is equivalent to uniquely recovering

the switching signal associated with the uncontrolled transition caused by the fault. The

problem of detection and isolation of soft faults is equivalent to recovering the unknown

additive disturbance caused by the fault. The theoretical concepts discussed in Section 7.1.1

are the foundations to develop the framework introduced in this section for detection and

isolation of hard and soft faults in systems with inherent switching.

Generalized System Model

The state-space description given in (7.1) can be tailored to describe the non-faulty behavior

of an electrical energy system with inherent switching and the faulty features described above.

In this regard, the index set P of (7.1) is partitioned into two sets such that P = N ∪F . The
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first set N contains the non-faulty modes among which transitions occur due to the possible

inherent system switching, e.g., the different physical configurations of a buck or a boost

converter dictated by the controlled position of the switches. The second set F contains the

faulty modes that result from hard faults. Since the transitions from a mode in N to a mode

in F are caused by a fault, these transitions are uncontrolled and, in general, unknown.

The unknown system input u of (7.1) is also partitioned into two vectors as u = [µ φ]⊤.

The first vector µ contains unknown inputs, e.g., a load in a buck converter modeled as a

randomly varying current source, the measures of which are not available. The second vector

φ contains unknown disturbances that arise due to soft faults.

Thus, formalizing the above ideas, system dynamic behavior under both non-faulty and

faulty conditions can be described by a generalized switched state-space model of the form

Γ :

{
ẋ = Aσx+Bσu+ Eσv,

y = Cσx,
(7.9)

where x ∈ R
n, u(t) = [µ(t) φ(t)]⊤ ∈ R

m, v(t) ∈ R
r, y(t) ∈ R

l, σ : [0,∞)→ N ∪ F , and Ap,
Bp, Cp, Ep with p ∈ N ∪ F defining the subsystems in (7.9).

Example 7.5. Consider again the circuit of Fig. 7.1 and assume the resistors R1 and R2 are

subject to faults that can abruptly cause an open circuit across their terminals. Γ1 represents

the nominal mode of operation without any faults, Γ2 describes the dynamics of the system

when R2 fails open, and Γ3 corresponds to the case where R1 fails open. Additionally, the

capacitor is subject to graceful degradation, so its capacitance is given by C(t) = C +λC(t),

where C is the nominal capacitance, and the unknown function λC(t) ≤ 0 captures the

decrease in capacitance over time. Now, it is assumed that both the input voltage vs and

the load current iload are known and both states iL and vc are measurable. In this scenario,

following the notation of (7.9), x = [iL vC ]
⊤, u(t) = φ(t) = − 1

C+λC(t)

(
λC(t)
C

(iL−iload)+vC dλCdt
)
,

v = [vs iload]
⊤, and σ : [0,∞)→ P, where P = {1, 2, 3} and

Γ1 : A1 =

[
− R1R2

(R1+R2)L
− 1
L

1
C

0

]
, B1 =

[
0

1

]
, E1 =

[
1
L

0

0 − 1
C

]
, C1 =

[
1 0

0 1

]
, (7.10)

Γ2 : A2 =

[
−R1

L
− 1
L

1
C

0

]
, B2 =

[
0

1

]
, E2 =

[
1
L

0

0 − 1
C

]
, C2 =

[
1 0

0 1

]
, (7.11)

Γ3 : A3 =

[
−R2

L
− 1
L

1
C

0

]
, B3 =

[
0

1

]
, E3 =

[
1
L

0

0 − 1
C

]
, C3 =

[
1 0

0 1

]
, (7.12)
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where A1, B1 describe the non-faulty circuit dynamics; A2, B2 describe the circuit dynamics

after an open circuit in R2; and A3, B3 describe the circuit dynamics after an open circuit in

R1. It is important to note that the disturbance φ(t) due to capacitor degradation in reality

arises as a perturbation of the state-space representation matrices. However, as was shown

in [21], and without loss of generality, it is always possible to rewrite this perturbation as an

unknown additive disturbance as shown here. ⊳

It should be noted that, in the above example, φ denotes the degradation in the value

of capacitance which is varying with time and is unknown. The capacitance can also be

regarded as one of the model parameters, and in the case of Example 7.5 this parameter is

time varying and the variation in this parameter is unknown. So, in general, uncertainties

in model parameters may also be included as part of the unknown vector u in (7.9).

Fault Detection and Isolation

The first step in designing a fault detection and isolation system is to obtain the system

generalized model (7.9), which includes non-faulty modes, faulty modes arising from hard

faults and unknown disturbances caused by soft faults.

Once this generalized model (7.9) is obtained, the problem of fault detection and isolation

is equivalent to finding (σ, u) such that Hx0,v(σ, u) = y, where Hx0,v is the input-output

operator for a given initial state x0 and a known input v, and y is the observed output. For

(7.1), denote by H−1
x0,v

(y) the preimage of a function y,

H−1
x0,v

(y) := {(σ, u) : Hx0,v(σ, u) = y}. (7.13)

If the set in (7.13) reduces to a singleton, then the switched system is left-invertible1, that

is, there is a unique switching signal and input that generates the given output.

It is entirely possible that the preimage H−1
x0,v

(y) is not unique. It happens because: (i)

there is a subsystem that can produce the same output with more than one input u, or (ii)

there is more than one subsystem that can produce the measured output. In the first case,

there exist infinitely many inputs that can produce a given output on any compact interval

with same initial and terminal state [65, Lemma 4] and therefore, it is not possible to detect

and isolate the occurrence of a particular soft fault. In the second case, it is the existence

of switch-singular pairs that prevents the mode identification. If such pairs exist among the

1An algebraic characterization of conditions under which a switched linear system is left-invertible appears
in [65, Lemma 3].
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faulty modes, then the occurrences of hard faults can still be detected but such faults cannot

be isolated. In practice, in order to compute H−1
x0,v

(y), it is necessary to (i) conduct mode

identification, and (ii) recover the unknown input u.

Mode Detection or Hard Fault Detection and Isolation

The first step to obtain the inverse system is to conduct mode identification using the index-

inversion function which is defined as follows:

Σ
−1
(x0, y) = p : y[t0,t0+ε) ∈ Ŷp and Npy

∣∣
t+0

= Lpx0 + Jpνp
∣∣
t+0
, p ∈ N ∪ F . (7.14)

If the resulting mode p is unique and belongs to N , then the occurrence of a hard fault

is ruled out. However, if p belongs to F , then a hard fault occurrence has been detected.

If (7.14) results in more than one p that belongs to F but does not belong to N , then a

fault has occurred and it can be detected; however, it is not possible to isolate the fault as

the faulty mode that is producing the observed output cannot be identified. In case (7.14)

results in modes that belong to N and F , then there is a switch-singular pair between a

faulty and non-faulty mode, so one cannot conclude whether or not a fault has occurred.

It is true that the detection of hard faults depends upon the modeling of faulty modes

and there may be cases where an unmodeled fault has occurred. In this case, the observed

output of the system is not related to any of the modes, and the index-inversion function

in (7.14) is ill-defined as the system is operating with unknown dynamics. So, in case the

active mode cannot be identified, then the system has switched to a faulty mode that has

not been modeled. Hence, the detection is still possible but one cannot identify where the

fault has occurred.

Input Recovery or Soft Fault Detection and Isolation

Once the mode has been identified, and perhaps a hard fault has been detected and isolated,

it is still necessary to check for the presence of soft faults, which can be accomplished by

inverting the particular subsystem associated to the mode identified in (7.14), and then

recovering u from the inverse of that particular subsystem. Practically, this can be achieved
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by running the following inverse switched system:

Γ−1
σ =





σ(t) = Σ
−1
(z(t), y[t,t+ε)),

ż = (A−BD−1

α Cα)σ(t)z − (BD
−1

α Eα)σ(t)vα + Ev + (BD
−1

α Nα)σ(t)y,

u = (−D−1

α Cα)σ(t)z − (D
−1

α Eα)σ(t)vα + (D
−1

α Nα)σ(t)y,

with the initial condition z(t0) = x0. For each particular mode, the matrices Cα, Dα, Eα,

Nα are obtained similarly as explained in Section 7.1.1. The notation (·)σ denotes the object
in the parenthesis calculated for the subsystem with index σ(t). The initial condition σ(t0)

determines the initial active subsystem at the initial time t0, from which time onwards, the

active subsystem indexes and the input as well as the state are determined uniquely and

simultaneously.

Remark 7.6. Ideally, for hard fault detection, one may only be interested in knowing

whether any mode in F is active, and not necessarily the exact value of the switching

signal at all times. But note that the value of state trajectory is required to determine the

transition between modes, and the state trajectory can only be simulated if the exact value

of the switching signal is known. However, to find relaxed conditions for hard fault detection

without requiring the exact knowledge of state trajectories is a topic of ongoing research.

Another similar direction of future work is to find less restrictive conditions which allow us

to detect nonzero values of the unknown inputs induced by soft faults without necessarily

recovering the soft fault exactly. ⊳

Example 7.7. Consider again the circuit in Fig. 7.1 with the same assumptions as in

Example 7.5, which resulted in (7.10), (7.11), (7.12). In this case, mode detection is possible

since

N1 = N2 = N3 =



1 0

0 1
d
dt

0


 , J1ν1 = J2ν2 = J3ν3 =



0 0

0 0
1
L

0



[
vs

iload

]
,

L1 =




1 0

0 1

− R1R2

(R1+R2)L
− 1
L


 , L2 =




1 0

0 1

−R1

L
− 1
L


 , L3 =




1 0

0 1

−R2

L
− 1
L


 ,

and Ŷ1 = {y | ÿ1 + 1
L
ẏ2 + R1R2

(R1+R2)L
ẏ1 = 1

L
v̇s}, Ŷ2 = {y | ÿ1 + 1

L
ẏ2 + R1

L
ẏ1 = 1

L
v̇s}, Ŷ3 =

{y | ÿ1 + 1
L
ẏ2 +

R2

L
ẏ1 =

1
L
v̇s}. If y1(t) = iL(t) = 0 for some t, then ẏ1(t) = − 1

L
y2(t) +

1
L
vs(t),

so that for each y[t,t+ε) contained in Ŷ1, Ŷ2, or Ŷ3, we must have ẏ1 = 0, implying that

y[t,t+ε) ∈ ∩3i=1Ŷi. Further, the expressions for Li, Ji,Ni, i = 1, 2, 3, suggest that the mode
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cannot be identified using the index inversion function in (7.14). Conversely, if iL 6= 0 at

any time, then the mode can always be recovered using (7.14). It follows that there are no

switch-singular pairs as long as iL is not identically zero. Therefore the occurrence of a fault

in either R1 or R2 can be detected. However, if R1 = R2, even if a fault in either R1 or R2

can be detected, it cannot be isolated, i.e., we cannot determine whether the fault occurred

in R1 or R2. Thus, in this example, isolation of hard faults is only possible if and only if

R1 6= R2. Inversion of the individual subsystems is also possible and φ(t) is given by

φ(t) = ẏ2 −
[

1
C

0
] [ iL
vC

]
+

1

C
iload,

and therefore the detection of soft faults in the capacitor is also possible. It is important to

note that φ(t) = − λC(t)
C(C+λC (t))

(iL − iload), and since everything is known except λC(t), which

happens to be proportional to the magnitude of the fault, recovering φ(t) gives a measure of

the component degradation.

Assume now that apart from the measurements of both states, only vs is known, while iload

is unknown, so that v = vs, and u = [iload φ]
⊤. In this case, mode identification is possible

since

N1 = N2 = N3 =



1 0

0 1
d
dt

0


 , J1ν1 = J2ν2 = J3ν3 =



0

0
1
L


 vs,

L1 =




1 0

0 1

− R1R2

(R1+R2)L
− 1
L


 , L2 =




1 0

0 1

−R1

L
− 1
L


 , L3 =




1 0

0 1

−R2

L
− 1
L


 ,

and Ŷ1, Ŷ2, Ŷ3 remain unchanged. However, inversion of the individual subsystems is not

possible as, by taking derivatives of the outputs, we get

[
ẏ2

ÿ1

]
=

[
1
C

0
R2

L2 − 1
LC

R
L2

][
iL

vC

]
+

[
− 1
C

1
1
LC

− 1
L

][
iload

φ

]
+

[
0
R
L2

]
vs,

and since the matrix multiplying [iload φ]⊤ is not invertible, it is not possible to uniquely

recover φ.

Finally, assume that apart from the measurements of both states, only iload is known,

while vs is unknown. In this case, N1 = N2 = N3 = I2×2, J1 = J2 = J3 = 02×2, L1 =

L2 = L3 = I2×2. The operators in this case are of dimension lower than the previous two
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cases because the first derivative of each output is affected by a different unknown input.

Since the system now has two unknown inputs and two outputs, Ŷ1, Ŷ2, Ŷ3 consists of set

of differentiable outputs. Thus, it is not possible to do mode identification, and therefore

hard faults in resistors will go undetected. In terms of soft faults in the capacitor, it is still

possible to detect them even if it is not possible to detect the mode as for all p = 1, 2, 3, it

results that

φ(t) = ẏ2 −
[

1
C

0
] [ iL
vC

]
+

1

C
iload.

This is not true in general; i.e., the expression for inverting each subsystem is usually dif-

ferent, so to detect and isolate soft faults, it is necessary to identify the mode in which the

system is operating. ⊳

7.1.3 Analytical Case-Studies

In this section, the application of the framework developed in Section 7.1.2 is illustrated

by analyzing several power electronics circuits. Due to temperature variations, very high

frequencies, and other variable conditions at which power electronics systems operate, the

parameters of the components that comprise these systems may drift away over time from

their nominal value. In this regard, we consider soft faults in capacitors and inductors and

analyze how these faults affect typical power electronics circuits such as boost, buck, and

boost-buck, and the conditions under which these faults can be detected and isolated in

these circuits. We leave the illustration of hard fault detection to the simulation examples of

Section 7.1.4. It is important to note that both hard and soft faults may cause performance

degradation if not detected and accounted for. Although not discussed here, the system

controller could be reconfigured to account for these variations so as to maintain a prescribed

level of performance.

Boost Converter

Consider the boost converter of Fig. 7.2 where we assume both iL and vC can be measured,

and the voltage vs is perfectly known. Letting x = [iL vC ]
⊤, then the two modes of operation
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Figure 7.2: Boost converter.

of this converter are

Γ1 :





ẋ =

[
−RL

L
0

0 − 1
RC

]
x+

[
1
L

0

]
vs,

y = x,

(7.15)

which corresponds to the case when SW is closed and D is open, and

Γ2 :





ẋ =

[
−RL

L
− 1
L

1
C

− 1
RC

]
x+

[
1
L

0

]
vs,

y = x,

(7.16)

which corresponds to the case when SW is open, the diode D is conducting. We will assume

that the switching signal is not available to the FDI system.

Capacitor Soft Faults

We can assume that as the capacitor degrades, its capacitance will decrease. Thus, without

loss of generality, the capacitance of the capacitor can be described as C(t) = C + λC(t),

where C is the nominal capacitance, with λC(t) ≤ 0 describing the fault magnitude. Then,

the system dynamics can be described in a more general form to account for this fault as

follows:

Γ1 :





ẋ =

[
−RL

L
0

0 − 1
RC

+ ρC(t)

]
x+

[
1
L

0

]
vs,

y = x,

(7.17)

where ρC(t) =
1

C+λC(t)

(
λC(t)
RC
− dλC(t)

dt

)
, and

Γ2 :





ẋ =

[
−RL

L
− 1
L

1
C
+ µC(t) − 1

RC
+ ρC(t)

]
x+

[
1
L

0

]
vs,

y = x,

(7.18)
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where µC(t) =
−λC(t)

C(C+λC(t))
. Define φC as

φC(t) :=

{
ρC(t)vC(t) if σ(t) = 1,

µC(t)iL(t) + ρC(t)vC(t) if σ(t) = 2.
(7.19)

Then (7.17) and (7.18) can be rewritten as:

Γ1 :





ẋ =

[
−RL

L
0

0 − 1
RC

]
x+

[
1
L

0

]
vs +

[
0

1

]
φC(t),

y = x,

(7.20)

Γ2 :





ẋ =

[
−RL

L
− 1
L

1
C

− 1
RC

]
x+

[
1
L

0

]
vs +

[
0

1

]
φC(t),

y = x.

(7.21)

Note that φC(t) basically represents the unknown degradation in the value of the capacitor.

We now use the tools from Section 7.1.2 to recover the switching signal σ(t) and the unknown

function φC(t). It is important to note that there might be cases in which the switching

signal is available to the fault detection and isolation system, in which case, it would only

be necessary to recover φC(t).

Mode Identification

Following the notation used in Section 7.1.2, it results that the operators N1, N2, J1, J2,

L1, L2 are:

N1 = N2 =



1 0

0 1
d
dt

0


 , J1ν1 = J2ν2 =



0

0
1
L


 vs, L1 =




1 0

0 1

−RL

L
0


 , L2 =




1 0

0 1

−RL

L
− 1
L


 .

Also, Ŷ1 = {y | ẏ1 + RL

L
y1 = 1

L
vs}, and Ŷ2 = {y | ÿ1 + 1

L
ẏ2 +

RL

L
ẏ1 = 1

L
v̇s}. The active

mode can then be identified using (7.8), and the only possibility of switch-singular pair is

if −RL

L
iL(t) = −RL

L
iL − 1

L
vC(t), or equivalently vC(t) = 0. Thus, if the original system

has switching when vC(t) = 0, then it would not be observable in the output and in that
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case σ(t) cannot be recovered uniquely2. However, this would mean that the voltage across

the load becomes zero, which is not possible without a large variation on the capacitance;

but before this occurs, since the capacitor degrades gracefully, the voltage vC(t) will remain

greater than zero, and therefore the existence of a switch-singular pair is ruled out. Thus,

other than the particular case described, the switching signal can be recovered using the

following formula:

σ(t) =

{
1 if y[t,t+ε) ∈ Ŷ1 and N1y(t) = L1x(t) + J1vs(t),

2 if y[t,t+ε) ∈ Ŷ2 and N2y(t) = L2x(t) + J2vs(t).
(7.22)

Having recovered the switching signal σ(t), one can activate the corresponding inverse sub-

system to compute φC(t) and hence the change in the nominal value of the capacitor.

Unknown Input Recovery

In this case, both subsystems are invertible, so the detection and isolation of capacitor soft

faults is possible. Applying the structure algorithm to Γ1 and differentiating the output, we

obtain:

ẏ =

[
−RL

L
0

0 − 1
RC

]
x+

[
1
L

0

]
vs +

[
0

1

]
φC(t),

from which it follows that S1 = I and therefore D1 = [0 1]⊤. Furthermore, q1 = rank(D1) =

1, which is equal to the dimension of the input space and thus qα = q1. Then following the

notation used in Section 7.1.2, it results that Nα =
[
0 d
dt

]
, Cα =

[
0 − 1

RC

]
, and Dα = 1;

hence, the inverse system is described by

Γ−1
1 =





yα =
[
0 d

dt

]
y,

ż =

[
−RL

L
0

0 0

]
z +

[
1
L

0

]
vs + yα,

φC =
[
0 1
RC

]
z + yα .

(7.23)

2To recover non-unique switching signals in the presence of switch-singular pairs, see the algorithm pro-
posed in [65]. A conceptually similar algorithm tailored for FDI framework appears in Section 7.1.4. It must
be noted that these algorithms are non-causal and require the knowledge of future outputs to recover the
value of switching signal in the past.
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The similar procedure can be applied to Γ2 to get dynamic representations for Γ−1
2 :

Γ−1
2 =





yα =
[
0 d

dt

]
y,

ż =

[
−RL

L
− 1
L

0 0

]
z +

[
1
L

0

]
vs + yα,

φC =
[
− 1
C

1
RC

]
z + yα .

(7.24)

The inverse switched system, comprising these inverse subsystems, produces φC as an output

provided the initial condition is z(t0) = x(t0),

Inductance Soft Faults

Following the same procedure as in the case of capacitor faults, the variation of the inductance

over time can be described by L(t) = L+ λL(t), and the system dynamics is then given by

Γ1 :





ẋ =

[
−RL

L
0

0 − 1
RC

]
x+

[
1
L

0

]
vs +

[
1

0

]
φL(t),

y = x,

(7.25)

Γ2 :





ẋ =

[
−RL

L
− 1
L

1
C

− 1
RC

]
x+

[
1
L

0

]
vs +

[
1

0

]
φL(t),

y = x.

(7.26)

where

φL(t) :=

{
1

L+λL(t)

(
(RL

L
λL(t)− dλL(t)

dt
)iL − λL(t)

L
vs
)

if σ(t) = 1,
1

L+λL(t)

(
(RL

L
λL(t)− dλL(t)

dt
)iL + λL(t)

L
(vC − vs)

)
if σ(t) = 2.

(7.27)

Mode Identification

Following the notion used in Section 7.1.2, it results that the operators N1, N2, J1, J2, L1,

L2 are:

N1 = N2 =



1 0

0 1

0 d
dt


 , J1 = J2 = 0, L1 =



1 0

0 1

0 − 1
RC


 , L2 =



1 0

0 1
1
C
− 1
RC


 .
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Also, Ŷ1 = {y | ẏ2 + 1
RC
y2 = 0}, and Ŷ2 = {y | ÿ2 + 1

C
ẏ1 +

1
RC
ẏ2 = 0}. Note that Ŷ1 ⊆ Ŷ2,

so the mode identification can only be carried out using (7.8) and the switch-singular pairs

exist when iL = 0, but this is only possible in discontinuous conduction mode (DCM), and

before DCM is reached, iL will remain greater than zero for certain amount of time, so it

is possible to recover the unknown input and therefore identify the fault. Thus, other than

this case, the switching signal can be recovered by using:

σ(t) =

{
1 if y[t,t+ε) ∈ Ŷ1 and N1y(t) = L1x(t),

2 if y[t,t+ε) ∈ Ŷ2 and N2y(t) = L2x(t).
(7.28)

Unknown Input Recovery

In this case, both subsystems are also invertible, so the detection and isolation of inductor

soft faults is possible. The inverse subsystems are described by

Γ−1
1 =





yα =
[
d
dt

0
]
y,

ż =

[
0 0

0 − 1
RC

]
z + yα,

φL =
[
RL

L
0
]
z − 1

L
vs + yα ,

; Γ−1
2 =





yα =
[
d
dt

0
]
y,

ż =

[
0 0
1
C
− 1
RC

]
z + yα,

φL =
[
RL

L
1
L

]
z − 1

L
vs + yα .

Buck Converter

Consider the buck converter of Fig. 7.3 where we assume both iL and vC can be measured,

and the voltage vs is perfectly known. Let x = [iL vC ]
⊤. The case of capacitance soft-faults

is similar to the boost converter case, so we omit the analysis and we focus on the more

interesting case of inductor soft faults.

v
s
 

R
L
 

C 

L 

D R 

SW 

+

- 

+

- 

v
C
 

i
L 

Figure 7.3: Buck converter.
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Inductor Soft Faults

Assuming as before that the inductance variation over time can be described by L(t) =

L+ λL(t), the converter dynamics are described by

Γ1 :





ẋ =

[
−RL

L
−1
L

1
C

−1
RC

]
x+

[
1
L

0

]
vs +

[
1

0

]
φL(t),

y = x,

; Γ2 :





ẋ =

[
−RL

L
−1
L

1
C

−1
RC

]
x+

[
1

0

]
φL(t),

y = x,

(7.29)

where

φL(t) =

{
1

L+λL(t)

(
(RL

L
λL(t)− dλL(t)

dt
)iL + λL(t)

L
(vC − vs)

)
if σ(t) = 1,

1
L+λL(t)

(
(RL

L
λL(t)− dλL(t)

dt
)iL + λL(t)

L
vC
)

if σ(t) = 2.

So to recover the value of φL(t), one must first recover the switching signal using (7.14).

For the subsystems in (7.29), the operators involved in mode identification are J1 = J2 = 0,

and

N1 = N2 =



1 0

0 1

0 d
dt


 , L1 = L2 =



1 0

0 1
1
C
− 1
RC


 ,

and Ŷ1 = Ŷ2 = {y | ÿ2− 1
C
ẏ1+

1
RC
ẏ2 = 0}. Since for any output produced by the system it is

true that either N1y = L1x or N2y = L2x, it follows that the equality in (7.7) always holds.

In other words, every output produced by the switched system forms a switch-singular pair

and the mode detection is not possible in this case. Since the recovery of the mode is the

first step in the recovery of the unknown signal φL(t), it is not possible to detect the faults in

the inductor using this approach. If the switching signal were already available to the FDI

system, then we could bypass this problem and it would be possible to recover the unknown

disturbance introduced by the inductance soft faults. The corresponding inverse subsystems

would be described by

Γ−1
1 =





yα =
[
d
dt

0
]
y,

ż =

[
0 0
1
C
− 1
RC

]
z + yα,

φL =
[
RL

L
1
L

]
z − 1

L
vs + yα ,

; Γ−1
2 =





yα =
[
d
dt

0
]
y,

ż =

[
0 0
1
C
− 1
RC

]
z + yα,

φL =
[
RL

L
1
L

]
z + yα .

(7.30)

182



Boost-Buck Converter

Consider a boost-buck converter given in Fig. 7.4, the dynamics of which are governed by

Γ1 :





dx

dt
=



−Rin+rs

Lin

rs
Lin

− 1
Lin

rs
Lout

− (R+rs)
Lout

0
1
C

0 0


 x+




1
Lin

0

0


 vs +




0

− 1
Lout

0


 vload,

y = x,

and

Γ2 :





dx

dt
=



−Rin

Lin
0 0

0 − R
Lout

− 1
Lout

0 1
C

0


 x+




1
Lin

0

0


 vs +




0

− 1
Lout

0


 vload,

y = x,

where x = [iin iout vC ]
⊤. We assume that the switching signal and the load voltage vload are

both unknown and that measurements of all state variables are available. In the absence

of faults, it is possible to recover both the switching signal and vload. We show that in the

presence of soft faults in Lin or C, it is still possible to recover the unknown input vload

as well as the input disturbance introduced by the corresponding soft fault. In contrast,

in the presence of soft faults in Lout, it is not possible to recover both vload and the input

disturbance introduced by the fault. We just discuss the case of capacitor soft faults as the

case of soft faults in Lin is very similar.

Figure 7.4: Boost-buck converter.
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Capacitor Soft Faults

Introducing the faults as in previous examples, it follows that

Γ1 :





dx

dt
=



− (Rin+rs)

Lin

rs
Lin

− 1
Lin

rs
Lout

− (R+rs)
Lout

0
1
C

0 0


 x+




1
Lin

0

0


 vs +




0 0

− 1
Lout

0

0 1



[
vload

φC

]
,

y = x,

and

Γ2 :





dx

dt
=



−Rin

Lin
0 0

0 − R
Lout

− 1
Lout

0 1
C

0


 x+




1
Lin

0

0


 vs +




0 0

− 1
Lout

0

0 1



[
vload

φC

]
,

y = x,

where

φC(t) =

{
1

C+λC(t)

(
λC(t)
C
iin − dλC(t)

dt
vC
)

if σ(t) = 1,
1

C+λC(t)

(
λC(t)
C
iout − dλC(t)

dt
vC
)

if σ(t) = 2.

Mode Identification

Applying the structure algorithm to each subsystem, we obtain: N1 = N2 =

[
I3×3

d
dt

0 0

]
,

L1 =

[
I3×3

− (Rin+rs)
Lin

rs
Lin

− 1
Lin

]
, L2 =

[
I3×3

−Rin

Lin
0 0

]
, J1 = J2 =

[
03×1

1
Lin

]
, and Ŷ1 =

{y | ÿ1 − rs
Lin
ẏ2 +

1
Lin
ẏ3 +

(Rin+rs)
Lin

ẏ1 =
1
Lin
v̇s}, Ŷ2 = {y | ẏ1 + Rin

Lin
y1 =

1
Lin
vs}.

Thus, the switching signal can be recovered in exactly the same manner as in (7.22).

Unknown Input Recovery

In this case, there are two unknown inputs to be recovered, the load voltage vload and the

input disturbance introduced by the capacitor soft fault. For each mode, the corresponding
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inverse subsystems are:

Γ−1
1 :





dz

dt
=



− (Rin+rs)

Lin

rs
Lin

− 1
Lin

0 0 0

0 0 0


 z +




1
Lin

0

0


 vs +



0 0

1 0

0 1



[
ẏ2

ẏ3

]
,

[
vload

φC

]
=

[
−Lout 0

0 1

][
ẏ2

ẏ3

]
+

[
rs −(R + rs) 0
1
C

0 0

]
z,

and

Γ−1
2 :





dz

dt
=



−Rin

Lin
0 0

0 0 0

0 0 0


 z +




1
Lin

0

0


 vs +



0 0

1 0

0 1



[
ẏ2

ẏ3

]
,

[
vload

φC

]
=

[
−Lout 0

0 1

][
ẏ2

ẏ3

]
−
[
0 R 1

0 1
C

0

]
z,

with z(t0) = x(t0).

7.1.4 Computer Implementation and Simulation Results

In this section, we provide an algorithm amenable for computer implementation that au-

tomates the necessary tasks of FDI discussed in previous sections. The effectiveness of the

algorithm to detect and isolate both hard and soft faults was tested in a computer simulation.

In this regard, MATLAB/Simulink were used as the platform to implement the algorithm.

The boost converter case-study presented in Section 7.1.3 was simulated numerically using

Simulink and PLECS [153], and random soft faults were injected in the simulation models

to assess whether or not the algorithm implementation could successfully detect and isolate

the corresponding injected faults. Additionally, a network of buck converters serving sev-

eral loads was also simulated to test the effectiveness of the algorithm for detecting hard

faults. The FDI algorithm was also successfully tested in a boost-buck converter, although

the results are not included.

Algorithm for Automatic FDI

Based upon the concepts introduced in Section 7.1.2, we present Algorithm 4 that takes the

parameters x0 ∈ R
n, measured output y (defined over a finite interval) and returns the set
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A, that contains the switching signal σ, the unknown inputs u = [µ φ]⊤ , and the decision

variables H fault and S fault that represent hard and soft faults respectively.

Algorithm 4: Fault Detection and Isolation in Switched Linear Systems

begin FDI(y[t0,T )], x0)1

Let P := {p ∈ P : y[t0,t0+ε) ∈ Ŷp for some ε > 0 }.2

Let t∗ := min{t ∈ [t0, T ) : y[t,t+ε) /∈ Ŷp for some p ∈ P , ε > 0} otherwise t∗ = T .3

Let P∗ := Σ−1(x0, y[t0,t∗)).4

if P∗ 6= ∅ then5

Let A := ∅6

foreach p ∈ P∗ do7

if p ∈ F then H fault(p) = 18

Let u = Γ−1,O
p,x0

(y[t0,t∗))9

if ‖φ(i)‖ > δ then S fault(i) = 110

T := {t ∈ (t0, t
∗); (x(t), y[t,t∗)) is a switch-singular pair of Γp, Γq for some11

q 6= p}.
if T is a finite set then12

foreach τ ∈ T do13

let ξ := Γp(u)(τ)14

A ← A∪ {(σ[t0,τ), u[t0,τ),H fault, S fault)⊕ FDI(y[τ,T ), ξ)}15

else if T = ∅ and t∗ < T then16

let ξ := Γp(u)(t
∗)17

A ← A∪ {(σ[t0,t∗), u[t0,t∗),H fault, S fault)⊕ FDI(y[t∗,T ), ξ)}18

else if T = ∅ and t∗ = T then19

A ← A∪ {(σ[t0,T ), u[t0,T ),H fault, S fault)}20

else21

A := ∅22

else23

A := ∅24

end25

Since the occurrence of a hard fault is indicated by a switching signal taking values over a

finite set, it is natural to associate a Boolean decision variable for its detection. A soft fault,

on the other hand, is related to a real valued signal φ, and it may be undesirable to take any

action when the value of φ is considerably smaller. Therefore, we declare a soft fault only

when φ has crossed a certain threshold value, denoted by δ in the algorithm. Now, H fault

(respectively S fault) is a vector and a value 1 in any of the entries indicates a hard (resp.

soft) fault in the corresponding component. In case of multiple faults or switch-singular
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pairs, these decision vectors can have multiple 1’s. In the algorithm, Σ−1(x0, y) denotes

the index-inversion map which returns the indices of the modes that can produce the given

output and thus it may be multi-valued. If the returned set is empty, no subsystem is able to

generate that y starting from x0. The symbol ⊕ is used for concatenation and by convention

S⊕∅ = ∅ for any set S. Further, Γ−1,O
p,x0

indicates the output of the inverse subsystem p when

initialized at x0.

If the return is a non-empty set, the set must be finite and contains pairs of switching

signals and inputs that generate the measured y starting from x0. If the return is an empty

set, it means that there is no switching signal and input that generate y. This may be the

case if the system is operating in a configuration/faulty mode which has not been modeled or

there is an infinite number of possible switching times. Also by our concatenation notation:

if at any instant of time, the return of the procedure is an empty set, then that branch of

the search will be empty because η ⊕ ∅ = ∅.

Boost Converter

We show simulation results for the boost converter case-study discussed in Section 7.1.3, the

parameter values of which are given in Table 7.1. Note that although we are considering

the converter that is operating in open-loop with a fixed duty ratio D = 0.79, the proposed

FDI framework is independent of the type of control. Figure 7.5 shows the time evolution

of the capacitor and inductor fault flags. For scaling purpose, we plot the capacitor fault

flag FC = CφC , which is obtained by multiplying the nominal capacitance value and the

input disturbance introduced by the capacitor soft fault (7.19). Similarly, the inductor fault

flag FL = LφL results from multiplying the nominal inductance value and the disturbance

introduced by the inductor soft fault (7.27). Note that the fault flags FC and FL are indicators

of soft faults and the actual error profile can be obtained by solving ODEs (7.19) and (7.27)

for λC and λL respectively. Figure 7.6 shows the actual value of time varying capacitance

C(t) = C + λC(t), and the (recovered) value of λC(t) obtained as a solution of (7.19). We

choose to work with the fault flags instead of actual error profile because in some cases the

underlying ODE solved to obtain λC or λL may be unstable and the small noise accumulated

in the recovery of φC or φL may lead to inaccurate profiling of the error.
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(b) Fault flag for an inductor soft fault starting at
t = 3 · 10−3s.

Figure 7.5: Time evolution of boost converter capacitor fault flag FC , and inductor fault
flag, FL.

Capacitor Soft Fault

In the simulation, the capacitor is described by a time-varying capacitance

C(t) =

{
C if t < 4 · 10−3 s,

Ce−100(t−4·10−3) if t ≥ 4 · 10−3 s.
(7.31)

Thus, this is equivalent to assuming that the capacitor remains fault-free up to t = 4 ·10−3

s and then it starts gracefully degrading, causing its capacitance to decrease. The FDI

system captured this fault occurrence as can be seen in Fig. 7.5(a), where the capacitor fault

flag FC remains zero until t = 4 · 10−3 s and then it suddenly jumps indicating the presence

of the soft fault. It is important to note that inductor fault flag FL remains at zero, which

Table 7.1: Boost converter parameter values.

RL [Ω] L [H] C [F] R [Ω] vs [V] f [kHz] D
0.2 5 · 10−5 2 · 10−4 24 12 200 · 103 0.79
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(b) Recovered soft fault in capacitor.

Figure 7.6: Time varying capacitance and degradation from nominal value.
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Figure 7.7: Boost converter real switching signal σ(t) and recovered version σ̂(t).

is consistent with the fact that no soft fault has occurred in the inductor. In Fig. 7.5(a),

both FC and FL are curves oscillating at very high frequency, which is difficult to observe at

a first glance due to the time scale used in the representation. Also, the degradation time

constant chosen in the example is 0.01 s. In reality, degradation time constants are much

larger; however, we chose this value to make the fault occurrence apparent in Fig. 7.5(a).

This is by no means a limitation of the FDI system, which should be able to detect degrading

faults with slower constant, but a limitation of the way the results are displayed.

Inductor Soft Fault

Similarly, to model inductor soft faults, the inductance is described by

L(t) =

{
L if t < 3 · 10−3 s,

Le−200(t−3·10−3) if t ≥ 3 · 10−3 s.
(7.32)

As shown in Fig. 7.5(b), the FDI system captured this fault and at time t = 3 · 10−3 s, the

inductor fault flag FL starts drifting from its previous zero value, indicating the presence

of a soft fault in the inductor. As expected, the capacitor fault flag does not change after

3 · 10−3 s.

Mode Detection

For completion, we show in Fig. 7.7 the real converter switching signal σ(t), and the recovered

switching signal σ̂(t) using the structure algorithm around the time of fault occurrence of
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both the capacitor and inductor. It is clear that the mode detection part, which is key for

input recovery, works fine (consistent with the soft fault recovery results shown in Fig. 7.5).

DC Network

Consider the DC network of Fig. 7.8. The purpose of this system is to reliably provide DC

power to three dispersed loads (described by resistors R1, R2 and R3). Instead of using a

single power supply, three distributed DC power supplies (buck converters) are used so as

to ensure that a single fault (on the supply side) does not cause all the loads to lose power.

The three power supplies and the three loads are connected through a network, where each

transmission line linking two nodes is modeled as a resistor.
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A

Am3

g(u)

L3

V_dc3

V_dc2

R35

R_L3

R26

L2

R14

R15

4

v_load1

L1

2

i_l2

3

i_L3

C1

5

v_load2

1

i_L1

3

switching signal 3

1

switching signal 1

S1

R_L1

Vm4 V

V_dc1

A

Am1

C2

C3

R_L2

A

Am2

switching signal 2

2

g(u)

R36

g(u)

R_1

D3

v_load3

6

D2

R_2 R_3VVm6

S2

S3

D1

VVm5

Figure 7.8: DC network implementation in PLECS.
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We will focus on the problem of detecting hard and soft faults in this system. In particular,

we will consider hard faults that cause an open circuit in a transmission line between two

nodes. This also covers the case of short-circuits if the transmission elements are fused or

they have some sort of relay protection. Soft faults considered include degradation of buck

converter capacitors. We assume that the currents iL1, iL2, iL3 through the buck converter

inductors are measured as well as the voltages vload1 , vload2 , vload3 at the load buses. We

assume the converters always work in a continuous conduction mode and therefore that

there are eight possible nominal modes. For the parameter values given in Table 7.2, the

resulting state-space description matrices are

Ap = 104 ·




-0.83 0 0 -8.33 0 0

0 -0.83 0 0 -8.33 0

0 0 -0.83 0 0 -8.33

0.07 0 0 -6.72 3.30 3.31

0 0.06 0 3.30 -6.72 3.30

0 0 0.07 3.31 3.31 -6.71




, Ep = 104 ·




8.33p1 0 0

0 8.33p2 0

0 0 8.33p3

0 0 0

0 0 0

0 0 0




,

Cp =




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0.495 0.495 0

0 0 0 0.497 0 0.497

0 0 0 0 0.496 0.496




, (7.33)

where pi ∈ {0, 1}, with i = 1, 2, 3, and p = dec(p1p2p3), where dec(·) is the decimal repre-

sentation of the binary number within the brackets.

Hard Faults in Transmission Lines

Consider a hard fault occurrence causing the transmission line linking buses 1 and 4 to

open, which will result in eight new modes p = 9 . . . 16. For clarity of presentation, we just

Table 7.2: DC network parameter values, where i = 1, 2, 3.

Li [H] Ci [F] Vi [V] f [kHz] Di

1.2 · 10−5 1.5 · 10−3 12 250 · 103 0.49

RLi
[Ω] R1 [Ω] R2 [Ω] R3 [Ω] R14(5), R24(6), R35(6) [Ω]

0.1 0.5 0.8 0.6 0.01
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Figure 7.9: Time evolution of DC network hard fault flags in transmission lines and soft
fault flags in buck converter capacitors for a hard fault in transmission line R14 starting at
t = 2 · 10−3.

provide the elements of the matrices in (7.33) that will get modified as a result of this fault.

A9(4, 4) = · · · = A16(4, 4) = −3.35 · 104; A9(4, 5) = · · · = A16(4, 5) = 0; A9(5, 5) = · · · =
A16(5, 5) = −3.49 · 104; A9(5, 4) = · · · = A16(5, 4) = 0; C9(4, 4) = · · · = C16(4, 4) = 0;

C9(4, 5) = · · · = C16(4, 5) = 0.98.

In the simulation environment, this fault was injected at t = 2 · 10−3. The output of

the FDI system is displayed in Fig. 7.9. As can be seen in Fig. 7.9(a), at the time of fault

occurrence, t = 2 · 10−3, the flag F14, which indicates a hard fault in transmission line R14,

changes from zero to one, whereas the flags for the remaining transmission elements remain

at zero, as expected; i.e., there is no false alarm. Figure 7.9(b) shows the fault flags for soft

faults in the buck converter capacitors; as expected, they remain at zero even after the hard

fault occurrence, so there is no false alarm in this case either.

Soft Faults in Buck Converter Capacitors

In the simulation environment, these faults will be modeled in a similar fashion as in (7.31)

for the boost converter numerical example. To illustrate the ability of the FDI system to

detect and isolate two faults, we assume capacitor C1 starts degrading at t = 1.5 · 10−3

and capacitor C2 starts degrading at t = 3 · 10−3. The degradation is exponential as in

(7.31), with a rate of 100 s−1. The FDI system captured both fault occurrences as can be

seen in Fig. 7.10(b), where the fault flag FC1 corresponding to capacitor C1 remains at zero

until t = 1.5 · 10−3 and then starts increasing. The other two fault flags remain at zero
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Figure 7.10: Time evolution of DC network hard fault flags in transmission lines and soft
fault flags in buck converter capacitors for a soft fault in capacitor C1 starting at
t = 1.5 · 10−3 and a soft fault in capacitor C2 starting at t = 3 · 10−3.

until t = 2 · 10−3, when FC2 starts increasing, which means capacitor C2 starts gracefully

degrading. Flag FC3 remains at zero at all times, which indicates capacitor C3 does not

degrade in the simulation period considered. It is important to note that the flags for hard

faults displayed in Fig. 7.10(a) remain at zero, indicating no hard faults occurrences.

7.2 Fault Detection using Observers

This section proposes a novel framework for model based fault detection in switching elec-

trical systems based on a geometric approach and the design of reduced order asymptotic

observers. We introduce the concept of conditioned invariant subspaces and generalized un-

observable subspaces in switched linear systems, which are utilized in deriving a sufficient

condition to solve the problem of fault detection. Based on these conditions, reduced or-

der observers are designed for the switched system without assuming observability of the

individual modes. For a certain class of switching signals, it is shown that the state esti-

mates obtained from the proposed observer converge to the observable component of the

actual state asymptotically. The outputs of these observers are designed to be sensitive to a

particular fault, thus acting as residual signals for detection and isolation of faults.

In our earlier work on fault detection in electrical systems, we used the invertibility tech-

niques to recover the hard faults and soft faults. In detecting the soft faults, the mapping

between the output and the corresponding fault was assumed to be invertible, which allowed
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us to exactly reconstruct the fault using the derivatives of the output and the initial condi-

tion of the state variable. However, in practice, the initial condition may not be available

and the computation of derivatives of the output is not always feasible due to noise in the

measurements. In order to relax these two assumptions, this section proposes an observer

based technique for detecting faults in electrical systems. Because the initial condition is

not assumed to be known, an asymptotic observer is first designed for the switched system

to estimate the actual state. We no longer require the derivatives of the output because we

do not aim to reconstruct the fault; rather, we are just interested in knowing whether the

fault has some nonzero value. The observers we thus design do not require knowledge of

the initial condition, and using the output feedback, the state estimates generated by these

observers converge to the actual state. If we now look at the difference between the actual

output and the estimated output, then we require certain linear combination of this output

estimation error to be sensitive to the faults in the system. This way the faults could be

detected by monitoring the nonzero values of the output estimation error.

Earlier similar approaches on fault detection involve modeling the faults in actuators and

sensors as unknown functions of time [154, 155]. In order to detect a particular fault, the

goal is to generate a residual signal corresponding to each fault such that the residual is

non-zero if and only if the corresponding fault has occurred. Such residuals are generated

as the output of an auxiliary dynamical system. The residual generator for each fault must

be designed in such a way that the output of this auxiliary system is nonzero for one fault

only and identically zero for the remaining ones. Thus, we require the mapping between

the output of the residual generator and its corresponding fault to be invertible or input

observable. Moreover, with the initial condition unknown, it is desirable that the resulting

transients from the state estimation die down quickly; this can be achieved by requiring the

states affected by that particular fault to be observable.

However, this problem has mainly been studied for linear time-invariant systems only.

With switching being an inherent component of power electronic systems, it becomes vital

to study the problem of fault detection for a richer class of systems that comprises switch-

ing between a family of dynamical subsystems. Using our recent work on observability

of switched linear systems [102] as an additional motivation, this section investigates the

problem of fault detection in switched systems whose subsystems are comprised of linear

dynamics. The objective is to first formalize the conditions on subsystem dynamics under

which the problem can be solved and then design the residual generators for each fault by

using the idea of constructing asymptotic observers for switched systems.
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The geometric conditions proposed for the solution of fault detection and filter design

are inherently based on the concept of controlled-invariant and conditioned-invariant sub-

spaces. These notions were introduced by Basile and Maro, along with some applications

in dynamical systems [156, 157]. Several others, such as [158], studied the applications of

these invariant subspaces in the design of compensators and regulators. Willems [159, 160]

then generalized these notions to give various versions of the disturbance decoupling problem

using feedback. Later, this notion of invariant subspaces was extended to a certain class of

parameter varying subsystems in [161], and their application was studied in fault detection

problems [162]. Very recently, the concept of invariant subspaces has found its application

in the disturbance decoupling problem for switched linear systems [163, 164].

Using similar ideology, we extend these fundamental ideas for fault detection in switched

systems by proposing a solution based on the concept of conditioned-invariant subspaces and

designing asymptotic observers which act as residual generators.

7.2.1 Preliminaries

Non-Switched Systems

Let us first review the basic ideas adopted in the literature on fault detection of linear time-

invariant non-switched systems. Although we will generalize these concepts to switched

systems, the extension is non-trivial and is developed based on the notions of observability

and invertibility of switched systems from our work in Chapter 2 and Chapter 4.

Consider a non-switched linear time-invariant system subjected to two faults m1(t) and

m2(t):

ẋ = Ax+Bu+ J1m1 + J2m2, (7.34)

y = Cx. (7.35)

The state estimator for such a system is designed as:

˙̂x = (A+ LC)x̂+Bu− Ly, (7.36)

ŷ = Cx̂. (7.37)

In the absence of faults, the error ỹ(t) := ŷ(t) − y(t) will converge to zero if the designed

observer is stable. However, when a fault occurs, say m1(t) 6= 0, then the observer no longer
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estimates the actual state of the plant; as a result, the error ỹ(t) grows with time and by

assigning an appropriate threshold, faults can be detected. A rather interesting problem

is whether we can use the properties of the innovation ỹ to isolate the faulty component

in the system. Beard [20] and Jones [21] suggested that it is possible to confine ỹ(t) to a

fixed direction by appropriately choosing the feedback gain matrix L. Looking more into the

directional properties of the innovation ỹ, define the following two linear transformations:

r1(t) = H1ỹ(t) = H1(y(t)− ŷ(t)),
r2(t) = H2ỹ(t) = H2(y(t)− ŷ(t)).

For fault detection the purpose is to find L,H1, H2 such that the failure of the first actuator

shows up in r1(t) but has no effect on r2(t), and the failure of the second actuator shows

up in r2(t) and has no effect on r1(t). Clearly, if the growth of ỹ(t) is constrained to inde-

pendent subspaces, then H1 and H2 can simply be taken as projection matrices onto these

independent subspaces, as done by Beard and Jones. However, a more general approach,

adopted by Massoumnia [155], is to design the matrices H i, along with the matrix L, as a

part of the design process. Proceeding further, the error dynamics for the state estimation

error x̃(t) := x̂(t)− x(t) are given by:

˙̃x = (A+ LC)x̃− J1m1 − J2m2, (7.38)

r1 = H1Cx̃, r2 = H2Cx̃. (7.39)

Now, for nonzero m2(t) not to effect r1(t), the transfer function between m2 and r1 should

be zero, that is, the image of J2 should be contained in the unobservable subspace of the

pair (H1C,A + LC). Also, for a nonzero m1(t) to show up in r1(t), the image of J1 should

not intersect the unobservable subspace of (H1C,A+LC). Similar reasoning holds for r2(t)

and the unobservable subspace of (H2C,A + LC). Thus, the goal of fault detection is to

design L, H1, and H2 that achieve this objective. On the other hand, instead of looking

for these matrices, the problem can be formulated in terms of existence of certain subspaces

W1 and W2 that contain the images of J2 and J1 respectively and that can be assigned as

unobservable subspaces of (H1C,A+LC) and (H2C,A+LC) respectively for some H1, H2,

and L. If such subspaces W1 and W2 exist and can be computed directly from the system

data, then we can also compute the required H1, H2, and L to solve the fault detection

problem; see [155] for details. This is the essence of the geometric approach that we shall

generalize to switched systems in our work. The subspaces W1 and W2 are termed as
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unobservability subspaces in classical literature. We will first develop similar objects for

switched systems and design the residual generators using these concepts.

Switched Systems

We consider the problem of fault detection in switched linear systems represented by the

following set of equations:

ẋ = Aσx+Bσu, (7.40a)

y = Cσx, (7.40b)

where we assume that the switching signal σ takes values in the finite index set {1, . . . , p}.
Due to the actuator and sensor faults, the dynamics of (7.40) get modified as follows:

ẋ(t) = Aσ(t)x(t) +Bσ(t)u(t) +

k∑

i=1

Jimi(t) (7.41a)

y(t) = Cσ(t)x(t), (7.41b)

where mi(t) denotes the magnitude of i-th fault, at time instant t, acting in the direction

given by Ji. Each Ji is assumed to be a non-zero vector in R
n and its range space is denoted

by Ji.

Problem Formulation

In order to detect a particular fault, our goal is to generate a residual signal ri(t) corre-

sponding to each fault mi(t) such that ri(t) 6= 0 if and only if mi(t) 6= 0. Each residual

signal is generated as an output of an auxiliary dynamical system. This is achieved by first

determining the observable part of the switched system, which we denote by z. The goal is

then to estimate the observable part of the system and generate residues as a function of this

observable part. In the absence of fault, z is estimated perfectly and the corresponding ri

stays near zero. In the presence of fault, state estimation error in z must manifest in ri. Since

the system under consideration involves switches, it is not a trivial matter to define how the

observable space is defined and how to construct asymptotic observers for these observable

components. Furthermore, only certain types of structural constraints would allow for the

state estimation error to appear in the residues. To better explain our ideas, we assume that

197



the system is subjected to two faults only, i.e., m1(t) and m2(t). For definiteness, we design

the residual generating auxiliary dynamical system with output r1(t) which is sensitive to

m1(t) and is not affected by m2(t). The same technique could be reciprocated to design fault

detection mechanism for m2(t). In case of multiple faults, see Remark 7.17 on how these

techniques could be generalized.

In the sequel, we first introduce some new geometric tools for a switched system and derive

conditions on geometric structure of the switched system that allow for the solution to fault

detection problem to exist. Later we use them in the construction of asymptotic observers

and residual generators.

7.2.2 Geometric Tool Set

Notations: Let ⊕ denote the external direct sum of two subspaces, so that we use V⊕p as

shorthand for V ⊕ · · · ⊕ V. Also, let A1···p denote the matrix [A1, A2, . . . , Ap]. The largest

A-invariant subspace contained in a subspace V is denoted by 〈V|A〉, whereas the 〈A|V〉
denotes the smallest A-invariant subspace containing the subspace V. With a matrix A,

R(A) denotes the column space (range space) of A. The sum of two subspaces V1 and V2 is

defined as V1+V2 := {v1+ v2 : v1 ∈ V1, v2 ∈ V2}. For a possibly non-invertible matrix A, the

pre-image of a subspace V under A is given by A−1V = {x : Ax ∈ V}. Let kerA := A−1{0};
then it is seen that A−1 kerC = ker(CA) for a matrix C. For convenience of notation, let

A−⊤V := (A⊤)−1V where A⊤ is the transpose of A, and it is understood that A−1
2 A−1

1 V =

A−1
2 (A−1

1 V). Also, we denote the products of matrices Ai as
∏k

i=j Ai := AjAj+1 · · ·Ak when

j < k, and
∏k

i=j Ai := AjAj−1 · · ·Ak when j > k. The notation col(A1, . . . , Ak) means the

vertical stack of matrices A1, · · · , Ak, that is, [A⊤
1 , . . . , A

⊤
k ]

⊤.

Conditioned-Invariant Subspaces

The concept of conditioned-invariant subspace was introduced in [156] for non-switched linear

time invariant systems. Some of the properties of these subspaces appear in Appendix B.

The basic utility of conditioned-invariant subspace V is that if x(t0)/V is known, then there

exists a dynamic observer that generates x(t)/V at each time t. In other words, if the output

feedback gain matrix L is chosen such that V is invariant under the resulting closed loop

dynamics, i.e., (A + LC)V ⊆ V, then it is possible to construct a reduced order subsystem

with state space R
n/V that generates x(t)/V as output. Motivated by this idea, we now
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extend the concept of conditioned-invariant subspace to switched systems.

Definition 7.8 (Conditioned-invariant subspace). A subspace V ⊆ R
n is said to be conditioned-

invariant if there exist maps Li such that

(Ai + LiCi)V ⊆ V, ∀ i = 1, . . . , p. (7.42)

Proposition 7.9. A subspace V is conditioned-invariant if, and only if,

A1···p(kerC1 ⊕ kerC2 ⊕ · · · ⊕ kerCp ∩ V⊕p) ⊆ V. (7.43)

Proof. (Sufficiency). If (7.43) holds, then

A1(kerC1 ∩ V) + · · ·+ Ap(kerCp ∩ V) ⊆ V,

and it follows that for each i = 1, . . . , p,

Ai(kerCi ∩ V) ⊆ V.

From Proposition B.2 in Appendix B, it follows that for each i = 1, . . . , p there exists Li

such that (Ai + LiCi)V ⊆ V.
(Necessity). Conversely, if there exist Li satisfying (7.42), then, using Proposition B.2,

Ai(kerCi ∩ V) ⊆ V for each i = 1, . . . , p, whence the desired result follows.

Let V(J ) denote a conditioned-invariant subspace that contains the subspace J , and let

V∗(J ) := inf V(J ); then a recursive algorithm for computing V∗(J ) using Proposition 7.9

is given below:

V0 = J (7.44a)

Vk+1 = J + A1···p(kerC1 ⊕ kerC2 ⊕ · · · ⊕ kerCp ∩ V⊕p
k ). (7.44b)

It is easy to see that V0 ⊆ V1 ⊆ · · · , and since Vk is contained in R
n for each k, there exists

a k∗ such that Vk∗+1 = Vk∗ and we let V∗ = Vk∗ .

Unobservable Subspaces

While introducing the conditioned-invariant subspaces, it was assumed that the initial con-

dition is known modulo certain subspace in order to maintain the same information about

199



the state for all times using an observer. However, if the initial condition is absolutely un-

known, a desired property of the observer is that it generates an estimate that converges

to the actual state with time. This motivates the introduction of unobservable subspaces.

Roughly speaking, for a non-switched LTI system, a subspace W is called unobservable if

there exists a stable observer whose output x̂/W converges to x/W. Precisely speaking, for

a fixed mode q, ifWq is an unobservable subspace, then there exist matrices Hq and Lq such

that [23]:

Wq = 〈kerHqCq|Aq + LqCq〉 .

It turns out that Hq that satisfies the above equality is picked such that kerHqCq =

kerCq +Wq. A particular object of interest is the smallest unobservable subspace of the

i-th subsystem containing a subspace J which is denoted by W∗
i (J ), and is computed as

the limit of the following sequence:

Wi,0 = R
n (7.45a)

Wi,k+1 = V∗(J ) + (A−1
i Wi,k ∩ kerCi). (7.45b)

Unobservable subspaces are an important tool for state estimation as one can always design

a stable state estimator for the state vector modulo the unobservable subspace. Our goal is

now to define the unobservable subspace of the switched system such that a stable estimator

could be designed for its orthogonal complement.

Definition 7.10 (Unobservable Subspace). A subspace W is called unobservable if there

exist maps Li : Y 7→ R
n, and Hi : Y 7→ Y such that

W =
〈
∩pj=1 kerHjCj|Ai + LiCi

〉
, ∀ i = 1, . . . , p. (7.46)

From the definition, it is clear that every unobservability subspace is also a conditioned-

invariant subspace.

Proposition 7.11. If V is a conditioned-invariant subspace such that V ⊂ W∗
q , for some q,

then there exists a matrix Lq : R
dy → R

n that satisfies:

(Aq + LqCq)V ⊂ V and (Aq + LqCq)W∗
q ⊆ W∗

q ; (7.47)

that is, the output feedback matrix Lq renders both V and W∗
q invariant.

Proof. Let w1, w2, . . . , wk1 be the basis for W∗
q , and let w1, w2, . . . , wk2, k2 ≤ k1 be the
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basis for kerCq ∩ W∗
q . Since W∗

q is also conditioned invariant for mode i, it holds that

Aq(kerCq ∩W∗
q ) ⊆ W∗

q . Pick the gain Lq such that LqCqwj = −Aqwj, for j = k2+1, . . . , k1.

Then, for j = 1, . . . , k2, we get (Aq + LqCq)wj = Aqwj ∈ kerCq ∩ W∗
q ⊆ W∗

q . And for

j = k2 + 1, . . . , k1, we get (Aq + LqCq) = 0 ∈ W∗
q .

Also, let v1, v2, . . . , vl1 be the basis for V, and let v1, v2, . . . , vl2 , l2 ≤ l1 be the ba-

sis for kerCq ∩ V. Since V ⊆ W∗
q , then kerCq ∩ V ⊆ W∗

q ∩ kerCq, and it follows that

span{vl1+1, . . . , vl2} ⊆ span{wk1+1, . . . , wk2}. Hence, (Aq +LqCq)vj = 0 for j = l2 +1, . . . , l1.

Also, because V is conditioned invariant, Aq(kerCq∩V) ⊆ V, which gives (Aq+LqCq)vj = Avj

for j = 1, . . . , l2. Therefore, (Aq + LqCq)V ⊆ V.

For the switched system, we are interested in findingW(J ) which denotes an unobservable

subspace that satisfies (7.46) and contains the subspace J . Towards this end, we first find a

conditioned-invariant subspace that contains J using (7.44) and denote it by V∗(J ); then,
for each mode q, we find the smallest unobservable subspace using (7.45) that contains

V∗(J ) and denote it simply by W∗
q (J ); and for each of these subspaces we choose Lq that

satisfies (7.47). Let W∗(J ) := infW(J ); then the following algorithm is used to compute

W∗(J ):

W0 =W∗
1 (J ) ∩W∗

2 (J ) ∩ · · · ∩W∗
p (J ) (7.48a)

Wk+1 = 〈Wk|A1 + L1C1〉 ∩ 〈Wk|A2 + L2C2〉 ∩ · · · ∩ 〈Wk|Ap + LpCp〉 . (7.48b)

The sequence Wk is such thatW0 ⊇ W1 ⊇ · · · , and there exists a k∗ such thatWk∗+1 =Wk∗

and we let W∗(J ) =Wk∗ . Also note that V∗(J ) is contained in Wk for each k ≥ 0, so that

J ⊆ V∗(J ) ⊆ Wk∗ , and it also follows by construction thatW∗(J ) is (Aq+LqCq)-invariant,
for each q. Next we show that for a certain class of switching signals, it is possible to design

a stable estimator for the reduced state space R
n/W∗(J ) even though not every subsystem

is observable in that space.

Synopsis

As already mentioned, we are going to work with two faults only and design a filter which

detects the fault m1(t) and is unaffected by m2(t). The basic idea is to first compute the

smallest unobservability subspace that contains the image of J2 using (7.48). For brevity, we

denote the resulting subspace byW∗. We then construct an observer that estimates the state

moduloW∗, so that Rn/W∗ is the observable space and if P : Rn → R
n/W∗ is the canonical
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J1

W∗
1W∗

2 V∗(J2)

Figure 7.11: We seek a residual generator which is sensitive to faults along J1 and
insensitive to faults along J2. With W∗

1 and W∗
2 denoting the unobservable subspaces of

individual subsystems that contain V∗(J2), we find the output feedback matrices for
individual subsystems which limit the propagation of faults along J2 to a common
unobservable space (denoted by dots) of the system for a certain class of switching signals.
The remaining striped region is the observable subspace containing J1 for which a
switching observer is designed. The output of this observer is the residual error signal
which depends on the fault m1.

projection on to this observable space, then the estimator is constructed for z := Px. We

then pick the residual signal r1(t) to be a linear combination of the difference between the

estimated output Cẑ(t) and the measured output y(t). If there are no faults, then this

difference converges to zero and in the presence of any fault this error has significantly large

value. Under the added constraint that the image of J1 does not intersect W∗, it is shown

that r1(t) is only sensitive to m1(t) and remains unaffected by nonzero values of m2(t). See

Fig. 7.11 for the graphic illustration of the strategy adopted for fault detection.

In the next section, we give the construction of the observer that estimates the observable

component z = Px, followed by geometric conditions for fault detection in Section 7.2.4.

7.2.3 Observer Design

Our goal is to design an observer that estimates z = Px, where P : Rn → R
n/W∗ is the

canonical projection onto the observable space, so that kerP = W∗. Recall that we have

fixed W∗ to be the unobservable subspace that contains J2 and computed through (7.48).

In the process, the gain matrices Lq are picked such that (7.47) holds, where V∗ is taken

to be the smallest conditioned-invariant subspace containing J2. Also, in the sequel, the

smallest unobservable subspace of mode q that contains V∗ will be denoted simply by W∗
q .

It is seen that V∗ ⊆ W∗ ⊆ W∗
q , for each q ∈ {1, . . . p}, and the gain Lq renders V∗, W∗ and

W∗
q invariant. Next, for each q ∈ {1, . . . , p}, let us define Eq := −PLq and the matrix Fq as
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the map induced by (Aq + LqCq) on the factor space R
n/W∗, that is, FqP = P (Aq + LqCq);

also, let Gq := PBq.

In order to design an asymptotic observer, we first define a set of switching signals S
consisting of all periodic switching signals; that is, if σ ∈ S, then

σ(tk−1) = (k mod p) + 1, ∀ k ≥ 1,

so that σ is a periodic signal taking values in the set {1, . . . , p}; and from now onwards all

the entities associated with subscript, or superscript, k refer to the corresponding entity for

mode (k mod p) + 1. Furthermore, it is assumed that there exist a time TD such that, for

each σ ∈ S,
tk − tk−1 ≤ TD, ∀ k ≥ 1.

It is shown in Theorem 7.13 that if the actual system is executed for certain σ ∈ S, then the

observer design given below generates the desired converging state estimate.

Before proceeding with the construction of the observer, we recall a useful result from the

literature [44], which will be used in the proof of Theorem 7.13 and specifies the integer N

in (7.50).

Lemma 7.12. Let dz := n−dimW∗, and consider the insertion maps defined by the matrices

Wk :W∗
k/W∗ → R

n/W∗ with orthonormal column vectors which form the basis of W∗
k/W∗.

For σ ∈ S, there exists a positive number N ≤ ∑dz−1
i=0 p(pdz)

i − 1, such that for almost all

values of t1, t2, . . . , tN , the following holds:

R(Wk)
⊥ +R(Ψq

k−1Wk−1)
⊥ + · · ·+R(Ψq

k−NWk−N)
⊥ = R

n/W∗, (7.49)

where Ψj
i denotes the flow matrix from ti to tj, that is, Ψ

j
i := eFjτjeFj−1τj−1 · · · eFi+1τi+1. ⊳

Lemma 7.12 suggests that there exists an upper bound on the integer N such that (7.49)

holds. For our observer design proposed, we fix N to be the smallest positive integer that

satisfies (7.49).

The observer we now propose is a hybrid dynamical system of the form:

˙̂z(t) = Fkẑ(t) +Gku(t) + Eky, t ∈ [tk−1, tk), (7.50a)

ẑ(tk) = ẑ(t−k )− ξk(t−k ), k ≥ 1, (7.50b)

ξk(t
−
k ) =

{
Ok(y[tk−N−1,tk), u[tk−N−1,tk)), k > N,

0, 1 ≤ k ≤ N,
(7.50c)
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with an arbitrary initial state ẑ(t0) ∈ R
dz , dz := n− dimW∗. The hybrid observer proposed

in (7.50) consists of certain dynamics for the observable component of the system, whose

estimate is denoted by ẑ. Equation (7.50a) denotes the evolution of ẑ on the reduced space

R
n/W∗, where the matrices Fk, Gk and Ek are chosen in such a manner that the subspace

W∗ is invariant under the resulting output feedback. Equation (7.50b) introduces an error

correction term ξk at the switching instants tk which is computed through the operator Ok.
The basic idea is to design the operator Ok so that the parts of information available for z

from each subsystem are gathered and processed in such a manner that ẑ(t)→ Px(t). It will

turn out that the operator Ok includes dynamic observers for partial states at each mode,

and some inversion algorithm logic. In the sequel, we develop the structure of the operator

Ok and based on that, a procedure for implementation of hybrid observer is outlined in

Algorithm 5. It is then shown in Theorem 7.13 that the state estimates computed according

to the parameter bounds in Algorithm 5 indeed converge to the actual state of the system.

For the construction of observer, let us introduce the error term z̃ := ẑ − Px; then the

error dynamics due to (7.40a) and (7.50) are described by

˙̃z(t) = ˙̂z(t)− P ẋ(t) = Fkẑ(t)− P (Ak + LkCk)x(t)

= Fkz̃(t), t 6= tk, (7.51a)

z̃(tk) = z̃(t−k )− ξk(t−k ). (7.51b)

For each q ∈ {1, . . . , p}, we pick Hq such that W∗
q = 〈kerHqCq|Aq + LqCq〉, so that the

space R
n/W∗

q is observable under mode q if we choose the output for that mode to be

Hqy(t) = HqCqx(t). This motivates us to introduce the output estimation error ỹ(t) =

Rqẑ(t) − Hqy(t), where the matrix Rq is chosen such that RqP = HqCq which is possible

because kerP =W∗ ⊆ kerHqCq = kerCq +W∗
q (see Appendix B). It is observed that

ỹ(t) = Rqẑ(t)−Hqy(t) = Rqẑ(t)−HqCqx(t) = Rqẑ(t)− RqPx(t) = Rqz̃(t). (7.52)

Denote by wq the observable component of the error dynamics of mode q, and let Pq : R
n/

W∗ → R
n/W∗

q be a matrix with orthonormal row vectors such that wq = Pqz̃, so that Pq is

the canonical projection. Define Sq as the map induced by Fq on R
n/W∗

q , i.e., SqPq = PqFq.

Also, define Rq such that Rq = RqPq, (e.g. let Rq = RqP
⊤
q , where P

⊤
q is the right inverse of

Pq because Pq is an orthogonal matrix with full row-rank). Clearly, (Sq, Rq) is an observable
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pair. Thus, for the interval [tk−1, tk), we obtain

ẇ
k
= Pk ˙̃z = PkFkz̃ = SkPkz̃ = Skw

k, wk(tk−1) = Pkz̃(tk−1), (7.53a)

ỹ = Rkz̃ = RkPkz̃ = Rkw
k. (7.53b)

Since wk is observable over the interval [tk−1, tk), a standard Luenberger observer, whose role

is to estimate wk(t−k ) at the end of the interval, is designed as:

˙̂wk = Skŵ
k
+Kk(ỹ −Rkŵ

k
), t ∈ [tk−1, tk), (7.54a)

ŵ
k
(tk−1) = 0, (7.54b)

where Kk is a matrix such that (Sk −KkRk) is Hurwitz. Note that we have fixed the initial

condition of the estimator to be zero for each interval.

Let us denote the vector [τi+1, · · · , τj ] simply by τ{i+1,j} (where j > i), which will be

often dropped when used as an argument for succinct presentation. With j > i, define the

state-transport matrix

Ψj
i (τ{i+1,j}) := eFjτjeFj−1τj−1 · · · eFi+1τi+1 , (7.55)

and for convenience Ψi
i := I. We now consider the insertion maps Wi : W∗

i /W∗ → R
n/W∗

with orthonormal column vectors which form the basis ofW∗
i /W∗, and then define a matrix

Θk
i (τ{i+1,k}) whose columns form a basis of the subspace R(Ψk

i (τ{i+1,k})Wi)
⊥; that is,

R(Θk
i (τ{i+1,k})) = R(Ψk

i (τ{i+1,k})Wi)
⊥, i = k −N, · · · , k.

By construction, each column of Θk
i is orthogonal to the subspace W∗

i that has been trans-

ported from t−i to t−k along the error dynamics (7.51a). This matrix Θk
i will be used for

filtering out the unobservable component in the state estimate obtained from the mode i

after being transported to the time t−k . As a convention, we take Θk
i to be a null matrix

whenever R(Ψk
i (τ{i+1,k})Wi)

⊥ = {0}. From Lemma 7.12, it follows that the matrix

Θk := [Θk
k

... · · · ... Θk
k−N ] (7.56)

has rank n. Equivalently, Θ⊤
k has n independent columns and is left-invertible, so that
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(Θ⊤
k )

† = (ΘkΘ
⊤
k )

−1Θk, where † denotes the left-pseudo-inverse. Introduce the notation

ξ−{k−N,k−1} := col(ξk−N(t
−
k−N), . . . , ξk−1(t

−
k−1)),

ŵ
−
{k−N,k} := col(ŵ

k−N
(t−k−N), . . . , ŵ

k
(t−k )),

(7.57)

and define the vector Ξk as follows:

Ξk(ŵ
−
{k−N,k}, ξ

−
{k−N,k−1}) :=




Θk⊤

k Ψk
kP

⊤
k ŵ

k
(t−k )

Θk⊤

k−1

(
Ψk
k−1P

⊤
k−1ŵ

k−1
(t−k−1)−Ψk

k−1ξk−1(t
−
k−1)

)

...

Θk⊤

k−N

(
Ψk
k−NP

⊤
k−Nŵ

k−N
(t−k−N)−

∑k−1
l=k−N Ψk

l ξl(t
−
l )
)



.

We then compute ξk(t
−
k ) in (7.50c) as:

ξk(t
−
k ) = (Θ⊤

k )
†Ξk(ŵ

−
{k−N,k}, ξ

−
{k−N,k−1}), (7.58)

which corresponds to the operator Ok. Finally, as the last piece of notation, we define the

matrices Mk
j , j = k −N, · · · , k, as follows:

[Mk
k ,M

k
k−1, · · · ,Mk

k−N ] := (Θ⊤
k )

† × blockdiag
(
Θk⊤

k Ψk
k,Θ

k⊤

k−1Ψ
k
k−1, · · · ,Θk⊤

k−NΨ
k
k−N

)
. (7.59)

Each Mk
j (j = k − N, · · · , k) is a dz by dz matrix whose argument is τ{k−N+1,k} in general

(due to the inversion of Θ⊤
k ), while the argument of both Θk

j and Ψk
j is τ{j+1,k}.

With all the quantities defined so far, the proposed observer (7.50) is implemented accord-

ing to Algorithm 5.

The following theorem shows that the implementation in Algorithm 5 guarantees the

convergence of the estimation error to zero.

Theorem 7.13. Assume that, for each q in {1, . . . , p}, Lq is chosen such that ‖Fq‖ ≤ a;

then (7.49) holds for almost all σ ∈ S, and for such σ ∈ S the observer given by (7.50) and

implemeted according to Algorithm 5 generates a converging estimate for z = Px, |ẑ−z| → 0,

where x evolves according to system (7.41), and P : Rn → R
n/W∗ is the canonical projection.

Proof. Using (7.51), it follows for σ ∈ S that the estimation error z̃(t) for the interval

[tk, tk+1) is bounded by

|z̃(t)| = |eFk+1(t−tk)z̃(tk)| ≤ ea(t−tk)|z̃(tk)|,
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Algorithm 5: Implementation of hybrid observer

Input : σ, u, v, y.
Initialization: Run (7.50) for t ∈ [t0, tN+1) with some ẑ(t0).
foreach k ≥ N + 1 do1

for j = k −N to k do2

Compute the injection gain Kj such that3

‖Mk
j (τ{k−N+1,k})P

⊤
j e

(Sj−KjRj)τjPj‖ ≤ c (7.60)

where the constant c is chosen so that

0 < c <
1

N + 1
. (7.61)

Obtain ŵ
j
(t−j ) by running the individual observer (7.54) for the j-th mode.4

Compute ξk(t
−
k ) from (7.58), as an implementation of (7.50c).5

Compute ẑ(tk) using (7.50b) and run (7.50a) over the interval [tk, tk+1).6

where a is a constant such that ‖Fk‖ ≤ a for all Fk ∈ {F1, . . . , Fp}, and thus,

|z̃(t)| ≤ eaTD |z̃(tk)|.

Therefore, if |z̃(tk)| → 0 as k →∞, then we achieve that

lim
t→∞
|z̃(t)| = 0. (7.62)

The remainder of the proof shows that |z̃(tk)| → 0 as k →∞ under the conditions stated in

the theorem statement.

Note that, if wq := W⊤
q z̃ denotes the unobservable component of z̃ under mode q, then

z̃(t−k ) can be written as

z̃(t−k ) =

[
Pk

W⊤
k

]−1 [
wk(t−k )

wk(t−k )

]
= P⊤

k w
k(t−k ) +Wkw

k(t−k ). (7.63)

The matrix Ψj
i (τ{i+1,j}), defined in (7.55), transports z̃(t−i ) to z̃(t

−
j ) along (7.51a) by

z̃(t−j ) = Ψj
i (τ{i+1,j})z̃(t

−
i )−

j−1∑

l=i

Ψj
l (τ{l+1,j})ξl(t

−
l ). (7.64)
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We now have the following series of equivalent expressions for z̃(t−k ):

z̃(t−k ) = P⊤
k w

k(t−k ) +Wkw
k(t−k )

= Ψk
k−1P

⊤
k−1w

k−1(t−k−1) + Ψk
k−1Wk−1w

k−1(t−k−1)−Ψk
k−1ξk−1(t

−
k−1)

= Ψk
k−2P

⊤
k−2w

k−2(t−k−2) + Ψk
k−2Wk−2w

k−2(t−k−2)−Ψk
k−2ξk−2(t

−
k−2)−Ψk

k−1ξk−1(t
−
k−1)

...

= Ψk
k−NP

⊤
k−Nw

k−N(t−k−N) + Ψk
k−NWk−Nw

k−N(t−k−N)−
k−1∑

l=k−N
Ψk
l ξl(t

−
l ).

(7.65)

To appreciate the implication of this equivalence, we first note that for each k − N ≤ i ≤
k, the term Ψk

iP
⊤
i w

i(t−i ) transports the observable information of the i-th mode from the

interval [ti−1, ti) to the time instant t−k . This observable information is corrupted by the

unknown term wi(t−i ), but since the information is being accumulated at t−k from modes

i = k −N, · · · , k, the idea is to combine the partial information from each mode to recover

z̃(t−k ). This is done by making use of the Lemma 7.12. This lemma shows that the matrix

Θk defined in (7.56) has rank n− dw, and is left-invertible. Keeping in mind that the range

space of each Θk
i is orthogonal to R(Ψk

iW
i), each equality in (7.65) leads to the following

relation:

Θk⊤
i z̃(t−k ) = Θk⊤

i

(
Ψk
i P

⊤
i w

i(t−i )−
k−1∑

l=i

Ψk
l ξl(t

−
l )

)
, (7.66)

for i = k−N, · · · , k. Stacking (7.66) from i = k to i = k−N , and employing the left-inverse

of Θ⊤
k , we obtain that

z̃(t−k ) = (Θ⊤
k )

†Ξk(w
−
{k−N,k}, ξ

−
{k−N,k−1}), (7.67)

where w−
{k−N,k} is defined similarly as in (7.57). It is seen from (7.67) that, if we are able

to estimate w−
{k−N,k} without error, then the plant state z(t−k ) is exactly recovered by (7.67)

because z(t−k ) = ẑ(t−k )− z̃(t−k ) and both entities on the right side of the equation are known.

However, since this is not the case, w−
{k−N,k} has been replaced with its estimate ŵ

−
{k−N,k} in

(7.58), and ξk(t
−
k ) is set as an estimate of z̃(t−k ) there.
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Thanks to the linearity of Ξk in its arguments, it is noted that

z̃(tk) = z̃(t−k )− ξk(t−k )
= (Θ⊤

k )
†
(
Ξk(w

−
{k−N,k}, ξ

−
{k−N,k−1})− Ξk(ŵ

−
{k−N,k}, ξ

−
{k−N,k−1})

)

= −(Θ⊤
k )

†Ξk(w̃
−
{k−N,k}, 0),

(7.68)

where w̃
−
{k−N,k} := ŵ

−
{k−N,k}−w−

{k−N,k} = col(w̃
k−N

(t−k−N), . . . , w̃
k
(t−k )). It follows from (7.53)

and (7.54) that

w̃
i
(ti−1) = ŵ

i
(ti−1)− wi(ti−1) = 0− Piz̃(ti−1),

and

w̃
i
(t−i ) = e(Si−KiRi)τiw̃

i
(ti−1) = −e(Si−KiRi)τiPiz̃(ti−1).

Plugging this expression in (7.68), and using the definition of Mk
j (j = k − N, . . . , k) from

(7.59), we get

z̃(tk) =
k∑

j=k−N
Mk

j (τ{k−N+1,k})P
⊤
j e

(Sj−KjRj)τjPj z̃(tj−1).

Then, from the selection of gains Kj ’s satisfying (7.60), we have that

|z̃(tk)| ≤
k∑

j=k−N
c|z̃(tj−1)|. (7.69)

Finally, the statement of the following lemma aids us in the completion of the proof of

Theorem 7.13. Applying Lemma 7.14 to (7.69), we see that |z̃(tk)| → 0 as k → ∞, whence

the desired result follows.

Lemma 7.14. A sequence {ai} satisfying

|ai| ≤ c(|ai−1|+ |ai−2|+ · · ·+ |ai−N−1|), i > N,

with 0 ≤ c < 1/(N + 1) converges to zero: lim
i→∞

ai = 0.

Proof. Let c = α/(N + 1) with 0 < α < 1. Then it is obvious that, for i > N ,

|ai| ≤
α

N + 1

i−1∑

k=i−N−1

|ak| ≤ α max
i−N−1≤k≤i−1

|ak|. (7.70)
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Similarly, it follows that

|ai+1| ≤ α max
i−N≤k≤i

|ak|

≤ αmax

{
|ai−N−1|, max

i−N≤k≤i−1
|ak|, |ai|

}

≤ α max
i−N−1≤k≤i−1

|ak|,

where the last inequality follows from (7.70). By induction, this leads to

max
i≤k≤i+N

|ak| ≤ α max
i−N−1≤k≤i−1

|ak|.

That is, the maximum value of the sequence {ai} over the length of window N +1 is strictly

decreasing and converging to zero, which proves the desired result.

7.2.4 Conditions for Fault Detection

With our novel definitions for unobservability subspaces for switched systems and the ob-

server design proposed in the previous section, we can extend the ideas from [155] at an

abstract level to develop a similar condition for the solution of fault detection problem. It

is shown that the observer (7.50) along with the residual signal

r1(t) := Rkẑ(t)−Hky(t) (7.71)

serves as a filter for detecting the fault m1(t) under certain structural conditions. In the

sequel, we first discuss a sufficient condition for exact fault detection so that r1(t) is sensitive

to all real valued functions m1(t), followed by a weaker condition for generic fault detection

so that the residual r1(t) is sensitive to almost every real-valued function m1(t).

Exact Fault Detection

The condition given in the following theorem guarantees that (7.50) and (7.71) generate a

system that detects every possible fault m1(t).

Theorem 7.15. LetW∗
q (J2) denote the smallest unobservable subspace of mode q containing
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the conditioned-invariant subspace V∗(J2); then the fault detection problem is solvable if

W∗
q (J2) ∩ J1 = {0}, for all q = 1, . . . , p, (7.72)

i.e., the fault signature J1 intersects trivially with the smallest unobservable subspace con-

taining V∗(J2) for each mode.

Proof. Consider the observer given in (7.50). If, due to the presence of faults, the system

dynamics follow the equations given in (7.41), then instead of (7.51) the error dynamics

z̃ := ẑ − Px are given by:

˙̃z = Fkẑ − P (Ak − LkCk)x− PJ1m1(t)− PJ2m2(t),

= Fkz̃ − PJ1m1(t), (7.73)

where the second equality follows from the fact that the range of J2 is contained in W∗(J2)

and P is an orthogonal projection on R
n/W∗(J2), so that PJ2 = 0. Also,W∗(J2) ⊆ W∗

k(J2)

for each k, and because of (7.72), it follows that PJ1 ∈ J1. The residual signal is rewritten

as:

r1(t) = Rkẑ(t)−Hky(t) = ỹ(t) = Rkz̃(t), (7.74)

and we claim that r1(t) is sensitive tom1(t). Assume for the moment that
〈
kerRq|Fq

〉
⊆ W∗

q ;

then
〈
kerRq|Fq

〉
∩J1 = {0}, which in turn implies that the largest (Fq, J1)-invariant subspace

contained in kerRq is {0} (see Appendix B). Hence, for each mode q, the mapping m1 7→ r1

is invertible, which is the desired result.

It remains to show that
〈
kerRq|Fq

〉
⊆ W∗

q . This follows from the following set of inclusions:

〈
kerRq|Fq

〉
= kerRq ∩ kerRqFq ∩ · · · ∩ kerRqF

n−1
q

= P (kerHqCq) ∩ P (kerHqCq(Aq + LqCq)) ∩ · · · ∩ P (kerHqCq(Aq + LqCq)
n−1)

⊆ kerHqCq ∩ kerHqCq(Aq + LqCq) ∩ · · · ∩ kerHqCq(Aq + LqCq)
n−1

= 〈kerHqCq|Aq + LqCq〉 =W∗
q .

Since z̃(t)→ 0 when m1(t) ≡ 0 from our observer design, the condition (7.72) in theorem

statement indeed guarantees that nonzero values of m1(·) generate nonzero values r1(·).
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Generic Fault Detection

The condition given in Theorem 7.15 for exact fault detection basically requires each sub-

system to be invertible with respect to the designed output r1. This way r1 can detect the

presence of all possible non-zero real-valued functions m1(·). However, in general the faults

that can hide themselves from the output are very few and are of specific form. If those

kinds of functions are excluded from consideration, then weaker conditions can be derived

for detecting generic faults. Towards this end, a weaker condition is proposed in the following

theorem and in the proof we discuss the kinds of faults that are excluded for generic fault

detection.

Theorem 7.16. Consider the system (7.41) for which the observer (7.50) is designed. The

set of faults m1, which is detectable through the residual signal r1 in (7.71), forms a dense

subset in the space of all real-valued measurable functions over [t0,∞) if

W∗(J2) ∩ J1 = {0}. (7.75)

Sketch of Proof. For the system of equations given by (7.73) and (7.74), we need to show

that the set of functions m1(·) for which r1(·) ≡ 0 is nowhere dense. We consider two cases:

Case 1: There exists a mode q∗ such that W∗
q∗(J2)∩J1 = {0}. In that case, if a non-zero

m1(·) generates identically zero r1(·) and mode q∗ is activated during the interval [tk, tk+1),

then it must be true that m1[tk,tk+1)
≡ 0. Furthermore, m1 must bring z̃(tk) to zero because

the set of states that generate r1[tk,tk+1)
≡ 0 have trivial intersection with the set of states

that generate zero r1 under other modes. Clearly, such inputs form a nowhere dense set.

Case 2: ∩pq=1W∗
q (J2)∩J1 = {0}. In this case, if a dense set of inputs produces identically

zero r1, then it must be true that for each mode q ∈ {1, . . . , p}, the smallest (Aq,J1) invariant

subspace is contained in ∩pq=1W∗
q (J2). In particular, for each q, there is an Aq-invariant sub-

space ∩pq=1W∗
q (J2) whose intersection with J1 is nontrivial. This is a contradiction to (7.75).

Since J1 is assumed to have dimension one, only one of the two cases can hold, and we

showed that fault detection is possible for generic faults in the above two cases.

Remark 7.17. In case there are more than two faults, say m1, m2, . . . , mk, then one can

apply the same techniques to construct residual signals that are sensitive to one fault and

remain unaffected by other faults. For example, to design a fault detection filter for m1, we

replace J2 by
∑k

i=2 Jk and look at the unobservable subspaces containing
∑k

i=2 Jk. Thus,
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the condition (7.72) is replaced by

W∗
q (J2) ∩ J1 = {0}, for all q = 1, . . . , p, (7.76)

and (7.75) is replaced by

W∗(J2) ∩ J1 = {0}. (7.77)

Similar changes are made in the construction of the observer as well. ⊳

7.2.5 Case-Studies

Example 7.18. Consider the boost converter of Fig. 7.12 where we assume both iL and vC

can be measured, and the voltage vs is perfectly known. Letting x = [iL vC ]
⊤, then the two

modes of operation of this converter are

Γ1 :

{
ẋ =

[
−RL

L
0

0 − 1
RC

]
x+

[
1
L

0

]
vs, (7.78)

which corresponds to the case when S1 is closed and D is open, and

Γ2 :

{
ẋ =

[
−RL

L
− 1
L

1
C

− 1
RC

]
x+

[
1
L

0

]
vs, (7.79)

which corresponds to the case when S1 is open, and the diode D is conducting. We will

assume that the switching signal is not available to the FDI system.

We can assume that as the capacitor degrades, its capacitance will decrease. Thus, without

loss of generality, the capacitance of the capacitor can be described as C(t) = C + λC(t),

where C is the nominal capacitance, with λC(t) describing the fault magnitude. Similarly,

the inductance of the inductor can be described as L(t) = L+λL(t), where L is the nominal

vS

RL iL L

S1

D

vC R

Figure 7.12: A boost converter.

213



inductance, and λL(t) describes the fault magnitude. Then, the system dynamics can be

described in a more general form to account for these faults as follows:

Γ1 :

{
ẋ =

[
−RL

L
0

0 − 1
RC

]
x+

[
1
L

0

]
vs +

[
0

1

]
φC(t) +

[
1

0

]
φL(t), (7.80)

Γ2 :

{
ẋ =

[
−RL

L
− 1
L

1
C

− 1
RC

]
x+

[
1
L

0

]
vs +

[
0

1

]
φC(t) +

[
1

0

]
φL(t), (7.81)

where φC(t), φL(t) basically represent the unknown degradation in the value of the capacitor

and inductor, respectively, and have the following expressions (see [165] for details):

φC(t) :=





1
C+λC(t)

(
λC(t)
RC
− dλC(t)

dt

)
vC(t) if σ(t) = 1,

1
C+λC(t)

(
−λC(t)
C

iL(t) +
(
λC(t)
RC
− dλC(t)

dt

)
vC(t)

)
if σ(t) = 2,

and

φL(t) :=

{
1

L+λL(t)

(
(RL

L
λL(t)− dλL(t)

dt
)iL − λL(t)

L
vs
)

if σ(t) = 1,
1

L+λL(t)

(
(RL

L
λL(t)− dλL(t)

dt
)iL + λL(t)

L
(vC − vs)

)
if σ(t) = 2.

Let J1 = [1 0]⊤ be the signature flag for inductor fault and J2 = [0 1]⊤ correspond to the

capacitor fault. To better illustrate the theory, we consider different cases of observation

matrices.

Case 1: First consider the simple case, where C1 = C2 = [ 1 0
0 1 ]. We show that it is possible

to detect faults both in the inductor and capacitor. Note that W∗
1 (J1) =W∗

2 (J1) = J1, and

W∗
1 (J2) =W∗

2 (J2) = J2. It now follows from the conditioned-invariance subspace algorithm

that:

V∗(J2) =W∗(J2) = J2,

and therefore,

J1 ∩W∗(J2) = {0}.

Thus, it is possible to construct residual generator that is sensitive to J1, i.e., faults in the

inductor. Also, it can be verified that

V∗(J1) =W∗(J1) = J1,

so that

J2 ∩W∗(J1) = {0},
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and we can construct another residual generator that responds to faults corresponding to

J2, i.e., the capacitor. The construction of residual generator now follows:

For r1, pick H1
1 such that kerH1

1C1 = kerC1 +W∗(J2), and H1
2 such that kerH1

2C2 =

kerC2 +W∗(J2). One may pick H1
1 = H1

2 = [ 1 0
1 0 ].

For r2, pick H2
1 such that kerH2

1C1 = kerC1 +W∗(J1), and H2
2 such that kerH2

2C2 =

kerC2 +W∗(J1). One may pick H2
1 = H2

2 = [ 0 1
0 1 ].

Case 2: Next, we consider the case where C1 = C2 = [0 1]. In this case, it is not possible

to detect a fault either in the inductor or the capacitor. Note that V∗(J1) = R
2, and

V∗(J2) = J2. Also, W∗
1 (R

2) =W∗
1 (J2) =W∗

2 (J1) =W∗
2 (J2) = R

2.

Since W∗(J2) = R
2, we have J1 ∩W∗(J2) = J1 6= {0}, so fault detection in the inductor

is not possible.

Also, W∗(V∗(J1)) = R
2, so that J2 ∩ W∗(V∗(J1)) = J2 6= {0}, and hence the faults

occurring in the capacitor cannot be detected either.

Case 3: Now consider the case where C1 = [1 0], C2 = [0 1]; we show that it is possible to

detect faults in the inductor only. To see this, we compute V∗(J1) = R
2, and W∗(R2) = R

2,

so that J2∩W∗(V∗(J1)) = J2 6= {0} which implies that the fault in the capacitor cannot be

detected. However, V∗(J2) = J2, and W∗(J2) = J2 which in turn gives J1 ∩W∗(V∗(J2)) =

{0}. Hence, the faults in the inductor that appear in the system along J1 can be detected.

If we change the observation matrices to be C1 = [0 1], C2 = [1 0], then, using similar

computation, it can be shown that the faults in the capacitor could be detected but the ones

in the inductor cannot be detected.

The last case is of particular interest because it suggests that by processing information

from one sensor at a time, we can detect a fault either in the capacitor or the inductor. The

simultaneous processing of multiple measurements requires more computational power, and

by processing each measurement one at a time we can lighten the computational burden

while achieving the goal of fault detection. Moreover, if we combine the two subcases in

Case 3, it is seen that we only need to run a 1-dimensional observer and this is again a much

better option in practice. ⊳

Example 7.19. As another case-study, we consider a network of boost converters. A

Simulink schematic of such a circuit is given in Fig. 7.13. The network comprises three

boost converters, and since each of them can operate in two modes, there are 23 = 8 modes

of operation in total.

If we measure the current and voltage for each boost converter in the network, then

it is seen that the soft faults in each inductor and capacitor can be detected generically.
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Figure 7.13: A network of boost converters.

For example, if m1 denotes the faults in the inductor of the first boost converter, then

J1 := [1 0 0 0 0 0]⊤. Similarly, for other faults, the vector Ji has only one nonzero entry

corresponding to the fault it represents. It is verified that,

W∗
(

5∑

i=2

Ji
)
∩ J1 = {0},

so that an observer could be designed with a residual generator sensitive to m1 only. In

general for this system, for each k ∈ {1, . . . , 6}, we have

W∗

(
6∑

i=1,i 6=k
Ji
)
∩ Jk = {0},

where Jk denotes the direction of fault either in the capacitor or the inductor of one of the

constituent boost converters. ⊳
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7.3 Comparison

The method of the inversion-based FDI relies on differentiation of the outputs, so the ro-

bustness against output measurement noise is imperative. Also, the need for accurate fault

impact models could potentially hinder the effectiveness of the method. The inversion-based

FDI method is naturally suited for a distributed implementation, which can be accomplished

by appropriately breaking the system into smaller interconnected systems. Unlike observer-

based methods, where a bank of filters is required (each sensitive to a particular fault), with

the inversion-based method, it is unnecessary to have each faulty system model running

concurrently. To illustrate, using the system of Fig. 7.8, the system could be broken into

three interconnected subsystems, each roughly composed of a source, a load and the lines

linking these components. Each subsystem will have additional inputs (possibly unknown)

resulting from the interconnection with other subsystems. In this scenario, it is possible to

undertake FDI locally using the inversion approach. This would also allow the recovery of

those possibly unknown inputs introduced when partitioning the system. Additionally, if the

individual subsystems are invertible, these unknown inputs can also be uniquely recovered.

This would be of interest if such unknown inputs cannot be measured for reconfiguration

strategies in the system operation.

Even though the invertibility techniques help detect hard faults when the system configu-

ration changes, and yield greater information about the soft faults as they can be recovered

exactly, it does require the knowledge of initial condition and derivatives of the output.

Also, in most applications, the recovery of exact magnitude of faults is not desirable and

only their occurrence needs to be detected. To overcome these shortcomings, the observ-

ability techniques may be preferred at times. Investigating this application in detail would

surely provide more grounds to compare the two techniques.

It is natural to study the problem of fault detection and isolation for nonlinear switched

systems as has been done in [166] for actuator faults. The framework proposed in this chapter

can be extended to nonlinear systems in a conceptually similar manner using the results on

invertibility and observability of nonlinear switched systems. In this regard, preliminary

work based on the utilization of the results in [67] to FDI in nonlinear systems is illustrated

in [167], with specific application to detecting faults in transmission lines of electric power

systems.

217



Chapter 8

Conclusions and Future Work

8.1 Future Work: Synthesis Problems

The most significant aspect of the information-extracting structural properties, in addition

to being theoretically rich, is their utility in solving some of the prominent design problems.

Some of the earlier work on switched systems – relating to the properties of stability [28,

11, 27, 12], observability [102], and invertibility [65, 105] – addresses the problems from

an analytical perspective, and in this chapter we propose problems aiming towards the

transition from the analysis to system design. The observability property allows for state

estimation from the measured outputs by designing appropriately an auxiliary dynamical

system, called observer; and the concepts related to invertibility of switched systems are

utilized in designing switching signals and control inputs for generating the desired output

trajectories. We have already addressed the design of observers in Chapters 4 and 5, so in

this chapter we address the design problems based on invertibility tools. Studying the design

problems in the context of switched systems has not received much attention in the literature

and this chapter develops the framework for exploring some system design problems with

switching dynamics. It is noted that this chapter only provides a preliminary approach to

the development of these problems and their solution requires much further research.

From the viewpoint of system design and synthesis, system inversion tools could be utilized

in designing stabilizing state feedback laws, and generating inputs for exact output generation

and asymptotic output tracking. For nonswitched systems, it has been shown that the

dynamics of the inverse system are the same as dynamics of the actual plant when the

output is constrained to zero (also called zero dynamics). If, using the inversion techniques,

the input is now chosen to maintain the zero output, and the zero dynamics are assumed to

be stable, then such inputs act as stabilizing state feedback laws for systems with stable zero

dynamics (also called minimum-phase systems) [62, 61]. If the minimum-phase assumption is

not imposed, then usually the input constructed from the inverse system may be unbounded
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in its norm. Thus, it becomes relevant to investigate how the bounded outputs can be

produced from bounded inputs for the class of nonminimum-phase systems [64]. Another

application of invertibility techniques could be seen in asymptotic output tracking. The

invertibility problem setup requires the initial condition to be known; even though this

knowledge produces the desired output exactly, a more practical setup demands the initial

condition to be unknown. In such cases, it is useful to find methods that result in tracking

the desired output because the exact output generation is no longer possible. However, with

nonswitched systems, only a restricted set of outputs can be tracked as the prescribed output

trajectory is required to be sufficiently smooth. Classical system dynamics are not able track

outputs which exhibit discontinuities, or that are only piecewise smooth. Having already

developed invertibility tools in the context of switched systems, it would now be interesting

to investigate how one can design algorithms to track these richer and more general classes of

outputs. Also, in the process, it may be possible to discover new stabilization techniques for

switched systems. Thus, studying such problems in the context of switched systems provides

a richer and more useful framework to solve the aforementioned design problems, and below

we look ahead to our methodology towards developing the solution of these problems.

8.1.1 Exact Output Generation

Towards the end of Chapter 2, the problem of output generation was discussed which involved

computing the input u(·) and the switching signal σ(·) that reproduce a desired output

function yd(·). In general, the computed input u(·) need not be bounded even when the

given function yd(·) is bounded. From the applications standpoint, it is desirable to have

the norm of the input u (generated by the inverse system) to be bounded by some non-

decreasing function of the norm of the output and its derivatives, a problem which we call

bounded output generation.

Before we introduce the formal problem statement and related concepts, let us redefine

the class of systems considered for bounded output generation problem:

ẋ = fσ(x) +
m∑

i=1

gi,σ(x)ui, (8.1a)

y = hσ(x). (8.1b)

The following definitions are fundamental to the development in this section.
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Definition 8.1 (Class K,K∞,KL functions). A function χ : [0,∞) 7→ [0,∞) is said to be

of class K if it is continuous, strictly increasing, and χ(0) = 0. If χ is also bounded, then

it is said to be of class K∞. A function β : [0,∞) × [0,∞) 7→ [0,∞) is said to be of class

KL if β(·, t) is of class K for each fixed t ∈ [0,∞) and β(r, t) → 0 as t→ ∞ for each fixed

r ∈ [0,∞). ⊳

The problem of bounded output generation can now be formally stated as follows.

Problem 8.1 (Bounded Output Generation). Assume that x0 and yd(·) are given such that

the following holds for some p ∈ P:

ŷd(t0) = Zp
(
x0, ˙̃yd1(t0), · · · , ỹ(k)dk

(t0)
)
, ∀k = 0, 1, · · · , αp − 1, (8.2)

where ŷd and Z are defined in (2.21) and (2.20), respectively. Find the switching signal σ(·)
and the input u(·) that reproduce yd(·) exactly as the output of the system (8.1), i.e.,

y = Hx0(σ, u) = yd

and

|u(t)| ≤ β(|x(t0)|, t− t0) + χ
(∣∣Y N(t)

∣∣) , for each t ≥ t0, (8.3)

for some β ∈ KL, and χ ∈ K∞. ⊳

The condition (8.2) merely states that the initial value of the state and the desired output

must be related in such a manner that at least one subsystem can reproduce the desired

output trajectory exactly. With the implicit assumption that yd is reproducible by the

systems (8.1), we can then construct the switching signal σ(·) using the index-inversion

function and the output generation algorithm in Chapter 2. The additional requirement on

the size of the input in (8.3) does not always hold, and this section will focus on how this

property of bounded input can be achieved.

Since we use the inverse system to compute the input u that reproduces the output, the

stability of the inverse system is critical for bounded output generation. The full order inverse

subsystems obtained by the structure algorithm are not stable in general. Classically, the

constraints for the bounded output generation problem are imposed on the so-called reduced

order inverse system, which may have stable or unstable dynamics. In the former case, where

the state of the reduced order inverse system is stable (with zero inputs), the systems go

by the name of minimum-phase systems in the classic control literature. In dealing with
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nonlinear systems, however, the minimum-phase property – which can also be called the

stability of the system with output constrained to zero – may not be enough. The inverse

system may be stable with zero output (which acts as input to the inverse system) but

unstable under other outputs of bounded magnitude. Consider the following example as a

motivation:

Example 8.2. Consider the following system with its inverse:

Γ :





ẋ1 = x2,

ẋ2 = −x3x21 + u,

ẋ3 = −x3 + x3x1,

y = x1,

⇒ Γ−1 :





ż1 = z2,

ż2 = ÿ,

ż3 = −z3 + z3z1,

u = z3z
2
1 + ÿ.

The zero-dynamics obtained by setting y ≡ 0 are:

ẋ3 = −x3,

which are clearly asymptotically stable and hence the system is minimum-phase. Suppose

that the output to be tracked is given by yd ≡ 2; then ẏ ≡ ÿ ≡ 0. If the initial condition

is chosen such that z1(0) > 1, z2(0) = 0, and z3(0) 6= 0, then z3(t) → ∞ and consequently

u(t) → ∞ as t → ∞, even though the output y(t) and its derivatives remain bounded for

all t ≥ 0. ⊳

In the above example, even though the inverse system is stable under zero output (which is

actually acting as an input to the inverse system), the state may not be bounded in response

to the bounded output. So the example suggests that the bounded output generation problem

requires some property stronger than the minimum-phase. The notion of input-to-state

stability, introduced in [168], captures this phenomenon.

Definition 8.3 (Input-to-State Stability (ISS)). The system (8.1) is called input-to-state

stable with respect to the input u if for some functions χ ∈ K∞ and β ∈ KL, for every initial

state x(t0), and every input u, the corresponding solution satisfies the inequality

|x(t)| ≤ β(|x(t0)|, t− t0) + χ(‖u[t0,t]‖∞), (8.4)

for all t ≥ t0 ≥ 0. ⊳

The ISS property basically requires the state of the system to be bounded by a suitable

function of the input, modulo a decaying term depending on initial conditions. For the
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bounded output generation problem, we basically require the inverse system to be ISS with

respect to the output y and its derivatives, as they are acting as the inputs to this system.

This guarantees that bounded outputs result in bounded states and outputs converging to

zero generate states converging to zero. If we now assume invertibility, then u produced by

the inverse system also remains bounded because it is merely a bounded function of the state

and the output. We will make this argument precise shortly.

The above remarks suggest that we need to consider a stronger variant of the minimum-

phase property for the output generation problem. Note that the system considered in

Example 8.2 is actually in its normal form [18], so it is easy to compute its zero dynamics

which may not be the case in general. In order to bypass the step of computing the normal

forms and deriving conditions in terms of original system coordinates, we consider the dual

notion of ISS called output-to-state stability (OSS) introduced in [169]. It is shown in [170]

that the class of weakly uniform OSS (see Definition 8.5) systems includes the systems in

global normal form with ISS inverse dynamics. This result allows us to derive conditions for

the bounded output generation problem in terms of the OSS property of the actual subsys-

tems (rather than their inverses). As ISS can be seen as the robust version of asymptotic

stability with zero inputs, OSS can be regarded as the robust version of detectability for

nonlinear systems. Its definition basically requires the state of the system to be bounded by

a suitable function of the output plus a decaying term depending on initial conditions.

Definition 8.4 (Uniform Output-to-State Stability (OSS)). The system (8.1) is called uni-

formly output-to-state stable with respect to the output y if for some functions χ ∈ K∞ and

β ∈ KL, for every initial state x(t0), and every input u, the corresponding solution satisfies

the inequality

|x(t)| ≤ β(|x(t0)|, t− t0) + χ(‖y[t0,t]‖∞), (8.5)

for all t in the domain of the corresponding solution. ⊳

The OSS property, in general, requires the states to be bounded for all kinds of output;

in particular, it includes outputs that may have unbounded derivatives. This property is

stronger than what is required for bounded output generation as the inverse system is run

by output and its derivatives. Thus, we only require the system to be OSS with respect to

some derivative of the output which motivates us to define the following weaker notion.

Definition 8.5 (Weak Uniform OSS). The system (8.1) is called weakly uniformly output-

to-state stable of order N with respect to output y and its derivatives if there exists a positive
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integer N , a class K∞ function χ, and a class KL function β, such that for every initial

state x(0), and every input u ∈ Cn−1, the corresponding solution satisfies the inequality

|x(t)| ≤ β(|x(t0)|, t− t0) + χ
(∥∥Y N

[t0,t]

∥∥
∞

)
, (8.6)

for all t in the domain of the corresponding solution, and Y N := col
(
y, ẏ, · · · , y(N)

)
. ⊳

It is clear that if N = 0 in Definition 8.5, then we recover the OSS property of Defini-

tion 8.4. Also, if the system is weakly uniformly OSS of order N , then it is also weakly

uniformly OSS of order N + 1; however, the converse is not true in general.

Based on the OSS results developed in [171] and [169], we can attribute a Lyapunov

function to weakly uniformly OSS systems. A system is weakly uniformly OSS of order N

if there exists a smooth, positive definite, radially unbounded function V : Rn 7→ R that

satisfies
∂V

∂x

(
f(x) +

m∑

i=1

gi(x)ui

)
≤ −χ1(|x|) + χ2(|Y N |), (8.7)

for some functions χ1, χ2 ∈ K∞.

Our primary goal is to arrive at conditions that guarantee weak uniform OSS property of

system (8.1). Very recently, the results dealing with OSS of switched systems have been pub-

lished in [36], and we use this result to give a sufficient condition for the switched system (8.1)

to be weakly uniformly OSS.

In order to deal with the derivatives of the output and use existing results on OSS, we

associate an auxiliary output function H
αp
p with each mode p, where αp is the relative order

of the system defined in Chapter 2. The function H
αp
p is defined from the following recursion:

H0
p (x) := hp(x),

Hk
p (x, u, u̇, · · · , u(k−1)) :=

∂Hk−1
p

∂x

(
fp(x) +

m∑

i=1

gi,pui

)
+

k−2∑

i=1

∂Hk−1
p

∂u(i)
u(i+1), 1 ≤ k ≤ αp.

(8.8)

For SISO case, this auxiliary function comes out to be:

Hαp

p = col
(
hp(x), Lfphp(x), · · · , Lαp−1

fp
hp(x), L

αp

fp
hp(x) + LgpL

αp−1
fp

hp(x)u
)
,

where αp now denotes the relative degree of the subsystem p.

With this definition of auxiliary output function, we arrive at the following result.
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Theorem 8.6. Consider the switched system (8.1). Assume that there exist functions

ϕ1, ϕ2, χ ∈ K∞, smooth functions Vp : Rn 7→ R, constants λs > 0, µ ≥ 1 such that for

all x ∈ R
n and all p, q ∈ P the following holds:

ϕ1(|x|) ≤ Vp(x) ≤ ϕ(|x2|) (8.9)

|x| > χ(|Hαp

p (x, u, u̇, · · · , u(αp−1))|)⇒ ∂Vp
∂x

(
fp(x) +

m∑

i=1

gp,i(x)ui

)
≤ −λsVp(x) ∀ u (8.10)

Vp(x) ≤ µVq(x) (8.11)

If σ is the switching signal with average dwell time

τa ≥
lnµ

λs
, (8.12)

then the switched systems is weakly uniformly OSS of order k, where k = maxp∈P αp. ⊳

The result is built upon Theorem 1 in [36] and the proof proceeds in exactly the similar

manner.

Next, we claim that the weak uniform OSS property in conjunction with the left-invertibility

of the switched system leads to the solution of bounded output generation problem as the

inputs generated by the inverse system are then bounded. To see this, recall the expression

for the input u obtained from the structure algorithm (2.19), where u is expressed as a

function of state and the derivatives of the output, i.e.,

u = Υ(x, ẏ, ÿ, . . . , yαp−1). (8.13)

We can find a class K∞ function χ̃ such that, at each time instant, we get the following

bounds:

|Υ(x, ẏ, ÿ, . . . , yαp−1)| ≤ χ̃(|(x, ẏ, ÿ, . . . , yαp−1)|) (8.14a)

≤ χ̃(2|x|) + χ̃(2|Y αp−1|). (8.14b)

The result of Theorem 8.6 implies the existence of a class KL function β̂(·, ·) and a class

K∞ function χ̂ such that

|x(t)| ≤ β̂(x0, t− t0) + χ̂(‖Y k‖[t0,t]). (8.15)
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Combining (8.14b) and (8.15), we get

|u(t)| ≤ χ̃
(
2β̂(|x0|, t− t0) + χ̂(‖Y k‖[t0,t])

)
+ χ̃(2|Y αp−1(t)|)

≤ χ̃
(
4β̂(|x0|, t− t0)) + χ̃(2ψ̂(‖Y k‖[t0,t])

)
+ χ̃(2|Y αp−1(t)|)

=: β(|x0|, t− t0) + χ(|Y k(t)|),

where β(s1, s2) = χ̃(4β̂(s1, s2)), and χ(s) = χ̃(2χ̂(s) + χ̃(s)).

This idea of bounding the norm of the state with the output norm using OSS concept and

then using the left-invertibility to bound the size of the input was initially employed in the

study of output-input-stability of nonswitched nonlinear systems in [170].

8.1.2 Asymptotic Output Tracking

In Chapter 2, Section 2.5 and this chapter’s Section 8.1.1, we discussed the problem of output

generation where we construct a switching signal and an input function that reproduce exactly

a prescribed output function yd(·). As we have seen, this is possible when certain components

of the state of the system are fixed at time t = 0 based on the value of the desired output

yd(·) and its derivatives at that time instant. Moreover, this method implicitly assumes

that similar constraints are satisfied by the state during its evolution whenever the desired

output or its derivatives are not smooth, so that the exact output generation is possible

after switching to another subsystem. However, presetting the initial state to a prescribed

value is not a common practice and, in addition, the initial state may be different from

the desired one because of unknown perturbations. For practical considerations, we are now

interested in the problem of producing an output that, irrespectively of what the initial state

of the system is, converges asymptotically to the prescribed reference function yd(·). This

problem is called output tracking. Similar to the previous section, the term bounded output

tracking refers to finding bounded inputs for bounded output functions. It turns out that

this requirement can be naturally embedded in the original problem statement.

Problem 8.2 (Output Tracking). For a given reference function yd(·) and an arbitrary

initial state x(t0), find σ(·) and u(·) such that the solution of the differential equation (8.1a)

satisfies

y(t) = hσ(t)(x(t))→ yd(t) as t→∞,
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and

|u(t)| ≤ β(|x(t0)|, t− t0) + χ
(∣∣Y N(t)

∣∣) , for each t ≥ t0,

for some β ∈ KL, and χ ∈ K∞. ⊳

The problem of output tracking with switched nonlinear systems is an ongoing work and

this section only provides the motivation and basic approach we intend to adopt for the

solution of this problem. To motivate further discussion, consider the following example:

Example 8.7. (Tracking with x0 unknown) Consider two linear systems with equal relative

degrees in their normal forms:

Γ1 :





ẋ1 = x1 + x2 + u,

ẋ2 = −x2 + x1,

y = x1,

⇒ Γ−1
1 :





ẋ1 = ẏ,

ẋ2 = −x2 + y,

u = −x1 − x2 + ẏ.

Γ2 :





ẋ1 = −x1,
ẋ2 = x2 − x1 + u,

y = x2,

⇒ Γ−1
2 :





ẋ1 = −x1,
ẋ2 = ẏ,

u = x1 − x2 + ẏ.

Note that if the subsystems Γ1 and Γ2 are driven by the inputs generated by their corre-

sponding inverses, then the closed-loop systems are:

Γ1 :





ẋ1 = ẏd,

ẋ2 = −x2 + x1,

y = x1,

; Γ2 :





ẋ1 = −x1,
ẋ2 = ẏd,

y = x2.

If ey := y−yd, then ėy ≡ 0 which in turn gives ey(t) ≡ ey(t0). Thus, if the initial conditions

are not chosen in some particular manner that gives ey(t) = 0, the input generated by the

inverse system will not be able to reduce the error between the desired output and the system

output.

Assume for a moment that the switching signal is known. If the input u is modified by

introducing some damping terms, so that u takes the form

u(t) =

{
−x1 − x2 + ẏd − a1(y − yd) if σ(t) = 1,

x1 − x2 + ẏd − a2(y − ẏd) if σ(t) = 2,
(8.16)

226



where a1, a2 > 0, then the closed-loop dynamics are:

Γ1 :





ẋ1 = ẏd − a1(y − yd),
ẋ2 = −x2 + x1,

y = x1,

; Γ2 :





ẋ1 = −x1,
ẋ2 = ẏd − a2(y − yd),
y = x2.

This time the error dynamics are:

ėy(t) =




−a1ey(t) if σ(t) = 1,

−a2ey(t) if σ(t) = 2.

So the error dynamics switch between two stable modes and the error between the desired

output and system output asymptotically converges to zero. Since a1, a2 are design param-

eters, the stability may be obtained in the general case without imposing the slow switching

constraint.

In case the switching signal is not known, it would be interesting to design a switching

law that makes the error dynamics asymptotically stable. ⊳

In SISO nonswitched linear systems, every time the output is differentiated a pole is

introduced at the origin in the inverse system. So a full-order inverse of a system with

relative degree r has exactly r poles at the origin. From the structure of the inverse system

in normal form, it is clear that these poles are actually controllable. Thus, modifying the

input by including the damping terms enables us to move these poles in the left half-plane

to stabilize the system. The zero dynamics, on the other hand, are not controllable; that is

why we assume them to be stable.

In the general MIMO case, it is natural to ask: To what extent can the full-order inverse

system be stabilized? The early work on system inversion, e.g. [75, 76, 78, 79], was concerned

with the existence of inverses and algorithms for constructing inverses which were not neces-

sarily of minimal dimensions, although Silverman [75] did show that inverses of lower order

than that of the given system could be constructed. For the linear case, Bengtsson [172]

showed that the poles of a minimal order inverse of a system are unique and common to

all inverses of the system. In fact, by analogy with SISO systems, he defined the invariant

zeros of a MIMO system as the poles of its minimal order inverse.1 Since we are dealing

with full order inverses, an interesting question is whether we can construct these inverses

1If the minimal order inverse system is stable, then the actual system is minimum-phase.

227



such that the poles which are not the poles of a minimal order inverse can be specified ar-

bitrarily. Building on the work of [172], Patel [173] showed that whenever a system has a

stable minimal order inverse, then we can always construct inverses of higher order which

are also stable, and whose responses can be specified to some extent by assigning a subset of

the poles. This approach is also generalized for nonlinear case in applications such as output

tracking problems [18, 63] and feedback stabilization [62, 174].

Thus, with minimum-phase assumption, it is possible to introduce additional damping

terms in the control law which stabilize the inverse of each subsystem, and without any

switching this leads to asymptotic output tracking. Whenever the prescribed output involves

discontinuities, it is natural to have switching in order to have better tracking performance,

and because of switching, care must be taken on two fronts:

• Since the initial condition is no longer assumed to be known, we cannot use the output

generation algorithm scheme of section 2.5 to compute the switching signal. So we have

to come up with a new switching strategy in order to minimize the output tracking

error.

• Even though the dynamics of the output tracking error are Hurwitz for each subsystem,

they are of different dimension and heavily coordinate dependent.

Addressing these two questions is of primary concern in the study of output tracking when

the subsystems are assumed to be minimum-phase as we look for well-defined class of outputs

for which switching laws could be designed to achieve asymptotic tracking. An extension of

this problem is to consider the switched systems that comprise some minimum-phase and

some nonminimum-phase systems. In short, we are interested in solving the following two

sub-cases to Problem 8.2.

Sub-problem 8.2–A (Output Tracking with all Subsystems Minimum-phase). Assume that

each subsystem of the switched system (8.1) is left-invertible and minimum-phase. Determine

the class of outputs Y, so that for a given reference signal yd(·) ∈ Y and an arbitrary initial

state x(t0), one can find a switching signal σ(·) and an input u(·) such that the solution of

the differential equation (8.1a) satisfies

y(t) = hσ(t)(x(t))→ yd(t) as t→∞,

and

|u(t)| ≤ β(|x(t0)|, t− t0) + χ
(∣∣Y N(t)

∣∣) , for each t ≥ t0,
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for some β ∈ KL, and χ ∈ K∞. ⊳

Sub-problem 8.2–B (Output Tracking with some Subsystems Minimum-phase). Assume

that there are some subsystems in the family of subsystems considered in (8.1) that are

left-invertible and minimum-phase. Determine the class of outputs Y, so that for a given

reference signal yd(·) ∈ Y and an arbitrary initial state x(t0), one can find a switching signal

σ(·) and an input u(·) such that the solution of the differential equation (8.1a) satisfies

y(t) = hσ(t)(x(t))→ yd(t) as t→∞,

and

|u(t)| ≤ β(|x(t0)|, t− t0) + χ
(∣∣Y N(t)

∣∣) , for each t ≥ t0,

for some β ∈ KL, and χ ∈ K∞. ⊳

The inherent idea behind in solving Sub-problem 8.2–B is to design the switching law so

that the activation time for minimum-phase subsystems is large enough compared to the

total activation time of nonminimum-phase subsystems; see [41, 42], and [36] for exposition

of this idea in stabilization and IOSS framework, respectively.

The minimum-phase assumption is not necessary for bounded output tracking problems.

In nonswitched nonlinear systems, Devasia et al. [64] have shown that non-causal methods

can be employed to generate bounded outputs with bounded inputs with nonminimum-phase

systems. Their method essentially drives the state at time t0 to a stable manifold, and from

that point onwards the output keeps the state in that manifold. This method of presetting

the initial condition using noncausal methods seems infeasible for switched systems and

impossible when the switching signal is not known. Thus, an interesting direction of work

is to determine whether there exist any feasible methods for solving the output tracking

problem with switched systems when none of the constituent subsystems is required to be

minimum-phase.

Sub-problem 8.2–C (Output Tracking without Minimum-phase Subystems). Assume that

each subsystem of the switched system (8.1) is only left-invertible. Determine a class of

outputs Y; and for each yd(·) ∈ Y, find a switching signal σ(·), and an input u such that

y(t) = hσ(t)(x(t))→ yd(t) as t→∞,

and

|u(t)| ≤ β(|x(t0)|, t− t0) + χ
(∣∣Y N(t)

∣∣) , for each t ≥ t0,
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for some β ∈ KL, and χ ∈ K∞. ⊳

Note that the Sub-problem 8.2–C essentially requires us to seek a switching signal that

would stabilize a family of unstable systems. The work of [39, 40] suggests that one possible

way of achieving this objective is to look for a stable convex combination among the family of

unstable systems; and more recently the averaging methods for stability of switched systems

in [43] have been developed to solve this problem. Thus, it is safe to say that not much work

has been published concerning the stability of switched systems when all subsystems are

unstable. Nevertheless, preliminary research on Sub-problem 8.2–C shows that it is possible

to achieve bounded output tracking for certain classes of switching signals even when all the

subsystems are nonminimum-phase. Studying this issue in more depth is a topic of future

work.

8.2 Concluding Remarks

The thesis addressed the problems of invertibility and observability in switched systems.

The major portion of our work so far has focused on analyzing the structure of the systems

that reveal information about these properties, and with the exception of designing the

observers for switched systems with ODEs, these properties have not been studied from a

design perspective. Therefore, with the design of control systems as our central objective

for the future work, we conclude this document by quickly reviewing the work done while

highlighting the directions that can be pursued.

Invertibility of Switched Nonlinear Systems

We started off with invertibility of nonlinear switched systems. A necessary and sufficient

condition for the invertibility of switched systems was given which required the invertibil-

ity of individual subsystems and the nonexistence of switch-singular pairs. The concept of

switch-singular pairs introduced in [65] for linear systems was extended to nonlinear systems.

We then developed the formula for checking if (x0, y) is a switch-singular pair of two subsys-

tems. In the case of single-input single-output bilinear systems, the formula for checking the

existence of a switch-singular pair reduces to checking the rank of some matrices. Assuming

that all the subsystems are invertible, we developed an algorithm to recover the input and

switching signal that generate a desired output trajectory from given initial state.
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The work may be extended further by developing conditions for checking the existence of

switch-singular pairs which are more constructive, as it is in general not feasible to verify

(2.25) for every output and state. Another research direction is to approach the problem

geometrically and investigate characterizations equivalent to nonexistence of switch-singular

pairs to obtain geometric criteria for left-invertibility of switched systems. The geometric

criteria for invertibility may provide more useful conditions for system design because they

do not require us to look at the derivatives of the output. In doing so, one may look for

similarities among the subsystems which exhibit switch-singular pairs.

Invertibility with Uncertainties

The problem of robust invertibility dealt with the reconstruction of a switching signal in the

presence of disturbances in the output and uncertain initial conditions. The idea of the gap

between the subspaces was used to arrive at a conservative but easy-to-implement algorithm

for switching signal recovery. In the case of minimum-phase subsystems, we showed that

the switching signal can be recovered for all times under the dwell-time assumption. The

ongoing work is focused on developing better algorithms and obtaining tighter bounds for

reconstructing the switching signal. Relaxing the dwell-time assumption to average dwell-

time is also being considered.

Asymptotic Output Tracking is an interesting problem that was proposed at the

beginning of this chapter. Because of its practical utility and the theoretic concepts involved,

we will prioritize this problem in our future work. We presented a basic approach to the

solution of this problem. The first step is to work under the minimum-phase assumption and

classify the class of signals which can be tracked asymptotically with the help of a suitable

switching law. We can then build on this approach for a more general class of switched

systems whose subsystems are not necessarily minimum-phase, but the tracking may still be

possible by appropriate switching.

Observability and Observers

We presented conditions for observability of switched linear and nonlinear systems with state

jumps, and asymptotic observers were designed based on these conditions. For switched

DAEs, these characterizations are formulated in terms of consistency projectors and the

newly introduced differential and impulse projectors which are obtained by utilizing the
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so-called Wong sequences.

Observers for DAEs is a topic that has not received much attention in the literature.

For linear systems, based on the conditions developed, an observer was constructed that

combines the partial information obtained from each mode at some time instant to get an

estimate of the state vector. In case of DAEs, the major concern is to incorporate the

knowledge from the impulsive part of the output. This suggests that different designs for

observers are required for this class of systems. Building observers for such systems based

on the conditions already developed is an ongoing work.

Semi-global observability of switched nonlinear systems is a possible extension of

the results presented in Chapter 5. The conditions for observability of switched nonlinear

systems given in Chapter 5 are applicable locally because we assumed the existence of certain

functions whose gradients span a certain codistribution over a set X o. If the state trajectories

are contained in X o, then it was shown that the system is observable. However, in a more

practical setup, we want to determine the observability of the system over a given set X . It
may be the case that a particular codistribution of interest is nonsingular at each x ∈ X ,
and for semi-global extension of our results, we are interested in knowing whether we can

determine a set of functions with linearly independent 1-forms that span the codistribution

under consideration. It is seen that this is not always possible. To determine conditions for

semi-global extension of our observability results is a task of future work.
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Appendix A

Structure Algorithm for Linear Systems

The structure algorithm

Consider the dynamics of a non-switched linear systems, which are written as

Γ :

{
ẋ = Ax+Bu,

y = Cx+Du.
(A.1)

The main computational tool for studying the problem in algebraic setting is the structure

algorithm, introduced by [75] and [88]. We discuss this algorithm briefly, and the reader is

referred to [88] for further technical details and proofs. Consider the linear system (2). Let

n be the state dimension, m the input dimension, and l the output dimension. Let q0 =

rank(D); there exists a nonsingular l × l matrix S0 such that D0 := S0D =

[
D0

0

]
, where

D0 has q0 rows and rank q0. Let y0 = S0y and C0 := S0C. Thus, we have y0 = C0x+D0u.

Suppose that at step k, we have yk = Ckx + Dku, where Dk has the form

[
Dk

0

]
; Dk

has qk rows and is full rank. Let the partition of Ck be

[
Ck

C̃k

]
, where Ck is the first qk

rows, and the partition of yk be

[
yk

ỹk

]
, where yk is the first qk elements. If qk < l, let

Mk be the differential operator Mk :=

[
Iqk 0

0 Il−qk(d/dt)

]
. Then Mkyk =

[
Ck

C̃kA

]
x +

[
Dk

C̃kB

]
u. Let qk+1 = rank

[
Dk

C̃kB

]
; then there exists a nonsingular matrix l × l matrix

Sk+1 such that Dk+1 := Sk+1

[
Dk

C̃kB

]
=

[
Dk+1

0

]
, where Dk+1 has qk+1 rows and rank
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qk+1. Let yk+1 := Sk+1Mkyk, Ck+1 := Sk+1

[
Ck

C̃kA

]
. Then yk+1 = Ck+1x + Dk+1u and we

can repeat the procedure. Let Nk :=
∏k

i=0 Sk−iMk−i−1, k = 1, 2, · · · (M−1 := I;S0 = I),

Nk := [Iqk 0qk×(l−qk)] and Ñk := [0(l−qk)×qk Il−qk ]Nk. Then yk = Nky, yk = Nky, and

ỹk = Ñky. Using these notations, y = y0 = ỹ0 = C̃0x = Cx; S0 = I and D0 = 0. Notice that

since Dk has l rows and m columns, qk ≤ min{l, m} for all k and since qk+1 ≥ qk, using the

Cayley-Hamilton theorem, it was shown in [88] that there exists a smallest integer α ≤ n

such that qk = qα, ∀k ≥ α.

If qα = m, the system is left-invertible and an inverse is

Γ−1 =





yα = Nαy,

ẋ = (A−BD−1

α Cα)x+BD
−1

α yα ,

u = −D−1

α Cαx+D
−1

α yα ,

(A.2)

with the initial state x0.

From the structure algorithm, it can be seen that ỹk = C̃kx, ∀k and hence,




Ñ0

...

Ñk


 y =




ỹ0
...

ỹk


 =




C̃0

...

C̃k


 x =: Lkx, ∀k. (A.3)

Using the Cayley-Hamilton theorem, Silverman and Payne have shown in [88] that there

exists a smallest number β, α ≤ β ≤ n, such that rank(Lk) = rank(Lβ), ∀k ≥ β. There also

exists a number δ, β ≤ δ ≤ n such that C̃δ =
∑δ−1

i=0 Pi
(∏δ

j=i+1 R̃j

)
C̃i for some matrices R̃j

from the structure algorithm and some constant matrices Pi (see [88, p.205] for details).

Derivation of operators Wp and Vp

In the construction of inverse system, there are two operators acting on the output y that

require a closer look. The first one is Nα, which appears in the dynamical equations of

the inverse system; and the other one is N := col(Ñ0, Ñ1, · · · , Ñβ−1) that appears in the

statement of Proposition 3.2. Both of them are differential operators acting on the output

y. Below we seek a simpler representation so that Ny and Nαy can be written as a matrix

(with real coefficients) times a vector (comprising of output and its derivatives).
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From the structure algorithm, we have

M0y0 =M0S0y =

[
S0

0

]
y +

d

dt

[
0

S̃0

]
y

=: K0,0 y +
d

dt
K0,1 y· (A.4)

In general, let

Miyi = Ki,0y +
d

dt

(
Ki,1y + · · ·

d

dt

(
Ki,iy +Ki,i+1y

))
· (A.5)

Then in view of Mi+1yi+1 =

[
Si+1

0

]
Miyi +

d
dt

[
0

S̃i+1

]
Miyi, we have the l × l matrices

Ki,j defined recursively as follows:

Ki+1,j =

[
Si+1

0

]
Ki,j +

[
0

S̃i+1

]
Ki,j−1, 0 ≤ j ≤ i+ 2, i ≥ 0, (A.6)

where Ki,−1 = 0 ∀ i by convention and K0,0, K0,1 are initialized in (A.4). Using the notation

in (A.5), in view of Ñky = S̃kMi−1yi−1 and Nky = SkMi−1yi−1, then

Ny =: G̃0y +
d

dt

(
G̃1y + · · ·+

d

dt

(
G̃β−2y +

d

dt
G̃β−1y

))
, (A.7)

Nαy =: G0y +
d

dt

(
G1y + · · ·+

d

dt

(
Gα−1y +

d

dt
Gαy

))
, (A.8)

where G̃i :=




S̃0K−1,i

S̃1K0,i

...

S̃β−1Kβ−2,i



, Gj := SαKα−1,j , 0 ≤ i ≤ β − 1, 0 ≤ j ≤ α, K−1,0 = I, and

Kj,k = 0 ∀k ≥ j+2, ∀ j. Next, introduce the notations: W :=
[
G̃0 · · · G̃β−1 G̃β · · · G̃n

]

and V :=
[
G0 · · · Gα Gα+1 · · · Gn

]
, where G̃i = 0 for β ≤ i ≤ n and Gi = 0 for

α + 1 ≤ i ≤ n. Then for a subsystem Γp, we have

Npy = WpY
n and Nαp

y = VpY
n. (A.9)
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Appendix B

Review: Geometric Control Theory

Geometric tools have been employed for the control of dynamical systems and in this ap-

pendix we review some of the basic notions and identities that have been used in the draft.

Some Useful Identities

Let V1, V2, and V be any linear subspaces, A be a (not necessarily invertible) n× n matrix,

and B, C, X be matrices of suitable dimension. For a matrix B, R(B) denotes the column

space (range space) of B. The pre-image of V through A is given by A−1V = {x : Ax ∈ V}.
The following properties can be found in the literature such as [175], or developed with little

effort.

1. AR(B) = R(AB) and A−1 kerB = ker(BA).

2. A−1AV = V + kerA, and AA−1V = V ∩R(A).

3. A−1(V1 ∩ V2) = A−1V1 ∩ A−1V2, and A(V1 ∩ V2) ⊆ AV1 ∩ AV2 (with equality if and

only if (V1 + V2) ∩ kerA = V1 ∩ kerA+ V2 ∩ kerA, which holds, in particular, for any

invertible A).

4. AV1 + AV2 = A(V1 + V2), and A−1V1 + A−1V2 ⊆ A−1(V1 + V2) (with equality if and

only if (V1 + V2)∩R(A) = V1 ∩R(A) + V2 ∩R(A), which holds, in particular, for any

invertible A).

5. (kerA)⊥ = R(A⊤).

6. (A⊤V)⊥ = A−1V⊥ and (A−1V)⊥ = A⊤V⊥.

7. 〈A|V〉 = V +AV +A2V + · · ·+An−1V and 〈V|A〉 = V ∩A−1V ∩A−2V ∩ · · ·∩A−(n−1)V.

8. 〈V1 ∩ V2|A〉 = 〈V1|A〉 ∩ 〈V2|A〉 and 〈A|V1 ∩ V2〉 ⊂ 〈A|V1〉 ∩ 〈A|V2〉.
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9. eAtV ⊆ 〈A|V〉 and 〈V|A〉 ⊆ eAtV for any t.

10. 〈A|V〉⊥ =
〈
V⊥|A⊤〉.

Next, we introduce the matrix G := col(C,CA, . . . , CAn−1).

11. eAt kerG = kerG and eA
⊤tR(G⊤) = R(G⊤) for all t.

12. 〈kerG|A〉 = kerG and
〈
A⊤|R(G⊤)

〉
= R(G⊤).

13. The equation BX = C can be solved for X , if and only if R(C) ⊆ R(B).

14. The equation XB = C can be solved for X , if and only if kerB ⊆ kerC.

15. Let W be A-invariant and P : Rn → R
n/W be the canonical projection, then there

exists a unique map A : Rn → R
n/W such that AP = PA. We say that the map A is

induced by A on the factor space R
n/W.

16. Let W :W → R
n be an insertion map; then there exists a unique map A|W such that

AW = W (A|W), and A|W is the restriction of A to W.

In the sequel we introduce some classical notion from geometric based linear multivariable

control for the class of following linear time-invariant systems:

ẋ = Ax+Bu, (B.1a)

y = Cx. (B.1b)

Conditioned-Invariant Subspaces

Definition B.1. [176, Chapter 5] A subspace V of Rn is called conditioned invariant if there

exists an observer for x/V.

Proposition B.2. [176, Chapter 5] The following statements are equivalent:

1. V is conditioned-invariant,

2. A(kerC ∩ V) ⊆ V,

3. there exists a matrix L such that (A+ LC)V ⊆ V.
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Controlled-Invariant Subspaces

Definition B.3. [176, Chapter 4] A subspace W ⊆ R
n is called controlled invariant if for

any x0 ∈ W, there exists an input function u such that the solution of ẋ = Ax+Bu satisfies

x(t) ∈ W, for all t ≥ 0.

Proposition B.4. [176, Chapter 4] Consider the system ẋ = Ax+Bu. Let W be a subspace

of Rn. The following statements are equivalent:

1. W is controlled invariant,

2. AW ⊆W +R(B),

3. there exists a linear map F such that (A+BF )W ⊆W.

Invertibility Conditions

Theorem B.5. Consider the dynamical system (B.1), and let W(kerC) denote the largest

controlled-invariant subspace contained in kerC. Then the system is left-invertible if and

only if

W(kerC) ∩R(B) = {0}.

A related notion to that of invertibility is that of input observability [76]. System (B.1) is

said to be input observable if and only if

〈kerC|A〉 ∩ R(B) = {0}.

Note that every A-invariant subspace is controlled-invariant, so that 〈kerC|A〉 ⊆ W(kerC).

Thus, left-invertibility implies input-observability. However, the converse is not true in gen-

eral.

Theorem B.6. If B is monic and dimR(B) = 1, then (B.1) is left-invertible if and only if

〈kerC|A〉 ∩ R(B) = {0}.
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Birkhäuser, Boston, 2002.

[102] A. Tanwani, H. Shim, and D. Liberzon, “Observability implies observer design for
switched linear systems,” in Proc. ACM Conf. Hybrid Systems: Computation and
Control, pp. 3 – 12, 2011.

[103] F. Pait and A. Morse, “A cyclic switching strategy for parameter-adaptive control,”
IEEE Trans. Autom. Control, vol. 39, no. 6, pp. 1172 – 1183, 1994.

[104] H. Shim and A. Tanwani, “On a sufficient condition for observability of nonlinear
switched systems and observer design strategy,” in Proc. American Control Conf. 2011,
pp. 1206 – 1211, 2011.

[105] A. Tanwani and D. Liberzon, “Invertibility of switched nonlinear systems,”
Automatica, vol. 46, no. 12, pp. 1962 – 1973, 2010.

[106] R. Hermann and A. J. Krenner, “Nonlinear controllability and observability,” IEEE
Trans. Autom. Control, vol. 22, no. 5, pp. 728 – 740, 1977.

[107] J. Gauthier, H. Hamouri, and S. Othman, “A simple observer for nonlinear systems,”
IEEE Trans. Autom. Control, vol. 37, pp. 875 – 880, 1992.

[108] J. Gauthier and I. Kupka, “Observability and observers for nonlinear systems,” SIAM
J. Control, vol. 32, no. 4, pp. 975 – 994, 1994.

246
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