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ABSTRACT 
 
We consider cross-borehole imaging of buried objects 
embedded in a large search area by using a time domain 
inverse analysis. For simplicity, a two-dimensional model is 
examined. In order to avoid trap into false solution and 
enhance the achievable spatial resolution, the iterative 
multiscaling strategy combined with the forward-backward 
time-stepping method is proposed. Preliminary results show 
the effectiveness of proposed method. 
 

Index Terms— inverse scattering, iterative multiscaling, 
microwave imaging, cross-borehole, time domain 
 

1. INTRODUCTION 
 
Cross-borehole radar can access objects buried tens of 
meters underground and image geophysical structure 
between two boreholes [1-3]. Cross-borehole imaging often 
faces a problem of detecting high-contrast buried objects in 
a large search region compared to the operating wavelength.  
In such a case, tomographic imaging techniques based on 
inverse scattering analysis often tap into false solution (i.e., 
a wrong scatterers retrieval) when a high-resolution 
inversion is carried out or yield smooth scatterer 
reconstructions, otherwise. To overcome these drawbacks, a 
novel tomographic borehole imaging technique is presented 
in this paper. More in detail, the detection of unknown 
objects in wide search regions with a sufficient resolution is 
yielded by integrating the forward-backward time-stepping 
(FBTS) algorithm [4, 5] with the iterative multiscale scheme 
(IMS) [6-8]. 
 

2. FORMULATION 
 
Let us consider a two-dimensional borehole radar imaging 
problem. As shown in Fig. 1, the investigation domain D is 
successively irradiated by a microwave pulse generated at 

transmitter points  t
mr r   1,2,m  , M  with an 

electric current  ,m tJ r  in the left borehole. The pulse is 

scattered by the unknown object belonging to the scatterer’s 
investigation domain and the total fields are collected at 

receiver points r
nr r  1,2,n   , M  in both left and 

right boreholes. For the sake of simplicity, two-dimensional 
TM case is considered (i.e., the scatterers are cylindrical 
objects with axes along the z-direction and the current 
sources are infinitely long line currents along the same 
direction). Moreover, the objects are also assumed as 
lossless and nonmagnetic material and are embedded in an 
uniform isotropic background with constant permittivity b . 

The total fields mv  satisfy Maxwell’s equations: 

m mv JL      (1) 

where   
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Fig. 1. Geometry of the problem
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c  and   being the speed of light and the intrinsic 
impedance in the background medium, respectively. The 
matrices in (2) are given by 
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where  r r  is the relative permittivity of  the objects. By 

assuming that the current is turned on at time 0t  , the 
initial condition of the generated electromagnetic fields is 

   , 0m v r 0 .        (4) 

 
2.1. Forward-backward Time-stepping Algorithm 
 
The inverse scattering problem considered here can be 
formulated as an optimization one: finding the relative 

permittivity distribution  r r  which minimizes the 

following cost functional 
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where  , ,r
z m nE tr  and   , ; ,r

z m r nE t r r  are the 

measured and the calculated electric fields at the nth 
receiver point due to the current source mJ . The upper limit 

of integration T  is the time duration of the measurement 

and  ,r
m nK tr  is a nonnegative weighting function equal to 

zero at t T . 
 
A gradient-based technique (namely the FBTS [4]) is 

employed to minimize  rF  . More specifically, the 

Fréchet differential rF   of the functional is given by 

   ,r rF g   r r    (6) 

being 

         ,
D

a b a b dS r r r r .   (7) 

The gradient g of the functional is given by 
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where 1,mw  is the first component of the adjoint field vector   

  ; ,m r tw r r  which is the solution of the following 

equation 
  m mw uL      (9) 

subject to the condition 

    ; ,m r T w r r 0 .       (10) 

In (9), mu  is the weighted residual (i.e., the weighted 

difference of the calculated and measured field data) whose 
first component is equal to 
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while its second and third components are zeros. It is worth 
nothing that the Maxwell’s operator L  is self-adjoint in the 
lossless case. 
 
Let the kth step be referred to by superscript ‘ k ’. The 

estimate of the relative permittivity r  at the ( 1)thk   

iteration is given by the following updating formula: 

     1k k k k

r r d    r r r    (12) 

where kd  is a search direction, which in this paper is 
chosen to be the Polak-Ribière-Polyak conjugate direction, 
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The step size k  is determined approximately by 

linearizing   , ; ,r

z m r nE t r r  with respect to k . 

 
Let L  be the side of the square region of interest D . 
Taking into account of the limited bandwidth properties of 
the measured scattering data, the unknown relative 
permittivity ( , )r x y  is expanded into 2-D truncated 

Fourier series over the domain sD  as in the reference [9]: 
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Then, the functional  rF   reduces to a function of the 

coefficients  ,
;

p q
A P p P Q q Q      . The differential 

r  is represented as 
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Substituting (15) into (6), we get the differential of the 

function   ,p qF A with respect to the coefficients ,p qA : 

    ,rF G A      (16) 

where G  and A  are    2 1 2 1P Q    matrices whose 

thpq  entries are ,p qA  and ,p qG  given by 
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and the inner product  ,A B  is defined by  
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The updating formula for the coefficients ,p qA  at the 

( 1)thk   iteration is given by 
1

, , ,
k k k k
p q p q p qA A D       (19) 

where ,
k
p qD  is a search direction for the coefficients and is 

represented by 
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2.2. Iterative Multiscaling Algorithm 
 
The reconstruction using a simple optimization technique in 
a large investigation domain with limited-view 
measurements such as borehole imaging often fails trapped 
into a false solution. On way to tackle this problem is to 
reduce as much as possible the extension of the domain of 
investigation enclosing the unknown objects. In this respect, 
we adopt an iterative procedure based on a multiresolution 
approach [6]. First, a ‘coarse’ reconstruction of the 
unknown dielectric profile is searched for in the whole 
investigation domain.  Then, the investigation domain is 
reduced iteratively to ‘zoom’ the region to which the object 
belongs and reconstruct the dielectric profile more 
accurately with higher resolution. The multistep procedure 
is stopped when the reduction of the investigation domain 
becomes smaller than a prescribed value.  In more detail, at 
each step of the iterative process, by means of the acquired 
a priori information (achieved at the previous steps), the 
scatterer is localized and a zoomed square investigation 
domain ( )sD  is centered at  

 

 
( 1)

( 1)

( )

,

,

s

s

r
D

s

r
D

x x y dxdy
x

x y dxdy
















,  (21a) 

 

 
( 1)

( 1)

( )

,

,

s

s

D

s

D

y x y dxdy
y

x y dxdy
















.  (21b) 

where r r rb      and rb  is the relative permittivity of 

the background medium. The side ( )sL  of the investigation 

domain ( )sD  is defined as 
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where      2 2

( ) ( ), s sr x y x x y y     . 

The multistep procedure is terminated when the ‘stationary 
condition’ on the reconstruction is satisfied [8]. 
 

3. NUMERICAL RESULTS 
 
In this section, some preliminary results are reported to 
assess the effectiveness of the proposed IMS-FBTS method. 

Let us consider a tunnel-like object filled with air  1r   

embedded in a lossless background medium with , 5b r  . 

The object is a square with side 1.0 ma  . The distance 

between the left and right borehole is 22.8 m. Eight 
transmitter positions are uniformly distributed in the left 
borehole at a 3.3-m interval, i.e., 23.1-m source domain. 
Fifteen receiver positions are placed along 23.1-m 
measurement domain in each borehole. The FDTD solution 
space is a square area of 26.4×26.4 m2 wide, which is 
partitioned into 176×176 cells of size 0.15 mx y     

and time step size 0.35 nst  . A fifteen-cell perfectly 

matched layer is used as an absorbing boundary condition 
for the FDTD grid. The time variation of the current source 
is given by 

     
2

0 0.29
sin 2st t T

cI t e f t       (23) 

where 
0

48.45 ns, 32.30 ns
s

t T   and 40 MHz
c

f  . The 

optimization at each stage was carried out by 50 iterations in 
reconstruction with progressively increasing truncation 
numbers (0, 0), (±P/3, ±Q/3), (±2P/3,±2Q/3) and (±P, 
±Q). Thus, total iteration number at each stage is 200 
iterations. The original profile of the tunnel-like object and 
reconstructed results by IMS-FBTS at each stage are shown 
in Fig. 2. As can be seen, the IMS strategy yields a 
significant improvement. It is confirmed that IMS-FBTS 



method efficiently and accurately provides the 
reconstruction of cross borehole radar. 
 

4. CONCLUSIONS 
 
A novel methodology for cross-borehole imaging has been 
presented. The multiscaling procedure, exploiting the 
limited amount of information achievable from the 
scattering measurements, is integrated with the time domain 
inversion algorithm. In order to check the effectiveness of 
the proposed approach, some preliminary numerical results 
for a high-contrast object in a large investigation domain 
have been shown. Although a two-dimensional TM case has 
been considered, the proposed inversion algorithm can be 
easily extended to TE and three-dimensional cases. 
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Fig. 2. Reconstructed relative permittivity. (a) Original profile. (b) Reconstruction after 200 iterations at 0th 
step of IMSA (P,Q = 67). (c) Reconstruction after 200 iterations at 1st step of IMSA (P,Q = 22). (d) 
Reconstruction after 200 iterations at 2nd step of IMSA (P,Q = 5). 


