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Selective protection of diols is highly important in organic 
synthesis.1 In the past, a variety of methods for the catalytic 
monoprotection of 1,2-diols, such as acetylation,2 benzoylation,3 
tosylation,4 have been developed to achieve high selectivity.5 
Especially, the selective monosilylation of 1,2-diols is quite 
significant because silyl groups are one of the most useful 
protective groups of hydroxyl moieties.1 While selective mono-
deprotection of bis-silyl ethers has been pursued to obtain 
silyloxy alcohols,6 organocatalytic enantioselective methods were 
recently developed by Snapper7 and Tan8 in addition to the 
biphasic process.9 However, selective monosilylation controlled 
by metal catalysts has not been reported. 

On the other hand, we have already developed the effective 
methods for catalytic monoprotection of 1,2-diols with Lewis 
acid such as dimethyltin dichloride10 or copper(II) salts11 in the 
presence of weak bases. We envisioned this method could be 
applied to catalytic monosilylation of 1,2-diols. Herein, we wish 
to report the first example of selective monosilylation of 1,2-diols 
catalyzed by the metal catalyst. 

Our working hypothesis for the catalytic selective mono-
silylation of 1,2-diols is shown in Scheme 1. Dimethyltin 
dichloride (Me2SnCl2)

12 and triethylsilyl chloride (TESCl) 2a 
represent a catalyst and a silylating reagent, respectively. The 
monosilylation would proceed as below. First of all, 1,2-diol 1 is 
recognized by the Sn catalyst and the five-membered inter-
mediate A is formed with the bidentate coordination of 1,2-diol 1 
to the Sn catalyst. Second, the complex A is selectively de-
protonated by weak base, in which the pKa value of 1,2-diol 1 
would be lowered due to the coordination of 1,2-diol 1 to the 
metal center. Finally, the activated intermediate B (or B’) with a 
higher reactivity than 1,2-diol 1 reacts with TESCl, affording the 
monosilylated product 3. The difficulty for 3 in coordinating to 
the metal center would suppress the oversilylation. 
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Scheme 1. Working hypothesis for chemoselective monosilylation catalyzed 
by Me2SnCl2. 

Based on this concept, we began investigations with the 
optimization of reaction conditions using cis-1,2-cyclooctanediol 
1a and TESCl as model substrates (Table 1). In the examination 
of metal catalysts, dimethyltin dichloride gave the desired 
product 3aa in quantitative yield,13 while Cu and Pd catalysts led 
to high yields (entries 1-3). Screening of bases revealed that 
organic bases were suitable for this transformation and triethyl-
amine afforded the superior result (entries 3-6). Whereas the 
monosilylation in less polar toluene led to the reduced efficiency, 
the result in high polar ethyl acetate was also excellent (entries 7 
and 8). The catalyst loading was successfully reduced to 1 mol % 
with comparable isolated yield to the reaction with 10 mol % 
catalyst (entries 3 and 9). On the other hand, the silylation 
reaction without dimethyltin dichloride led to the significant 
decrease in yield (entry 10). 
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The selective monosilylation of 1,2-diols catalyzed by dimethyltin dichloride was successfully 
developed. This procedure was applied to various 1,2-diols, giving monosilylated products in 
good to excellent yields with high chemoselectivity. 
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Table 1. Optimization of reaction conditionsa 

OH

OH

1a

+ TESCl

2a

catalyst

base
sovent
rt, 1 h

OH

OTES

3aa
 

Entry Catalyst Base Solvent Yield (%)b 

1 Cu(OTf)2 Et3N CH2Cl2 82 

2 Pd(OAc)2 Et3N CH2Cl2 72 

3 Me2SnCl2 Et3N CH2Cl2 99 

4 Me2SnCl2 (i-Pr)2NEt CH2Cl2 73 

5 Me2SnCl2 DMAP CH2Cl2 60 

6 Me2SnCl2 Pyridine CH2Cl2 0 

7 Me2SnCl2 Et3N toluene 81 

8 Me2SnCl2 Et3N AcOEt 96 

9c Me2SnCl2 Et3N CH2Cl2 91 

10 none Et3N CH2Cl2 65 

a Reaction conditions: diol 1a (0.5 mmol), TESCl 2a (1.5 equiv), catalyst 
(10 mol %), Base (1.5 equiv), Solvent (3 mL), rt, 1 h. 

b Isolated yield. 
c Me2SnCl2 (1 mol %) was used. 
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Scheme 2. Silylation using cis-1,2-cyclooctanediol and cyclooctanol. 

In addition, this catalytic system showed quite high chemo-
selectivity (Scheme 2). The catalytic silylation with 1:1 mixture 
of cis-1,2-cyclooctanediol 1a and cyclooctanol was conducted to 
give only the desired monosilylated product 3aa in 88% yield.14 
In the absence of Sn catalyst, the monosilylated product 3aa and 
the silylated mono-ol were obtained in 69% and 59% yields, 
respectively.15 

With the optimal conditions in hand, we next explored the 
scope of 1,2-diols (Table 2). While aliphatic cyclic cis-1,2-diols 
1b-d gave the desired product 3ba-da in excellent yields (entries 
1-3), the trans-isomer 1e showed the lower reactivity (entry 4). 
High yields were observed in the reaction with cyclic cis-1,2-
diols bearing -bonds (entries 5 and 6). The heterocyclic cis-2,3-
diols containing oxygen and nitrogen atoms were also converted 
efficiently, leading to excellent results (entries 7 and 8). In the 
monosilylation of linear 1,2-diols, both meso- and threo-isomers 
1j-l gave the desired products in high yields (entries 9-11). The 
1,2-diol bearing ester groups 1m showed the high reactivity and 
catechol 1n was also proved to be a suitable substrate (entries 12 
and 13). The 1,3-diols 1o-p were still transformed readily, 
leading to high yields (entries 14 and 15). Also, the 
monosilylation of unsymmetrical 1,2-diol 1q and 1,3-diol 1r 
smoothly proceeded to give the regioselectively monosilylated 
product 3qa and 3ra in high yields (Scheme 3). 

The investigation of various silylating reagents in the mono-
silylation of cis-1,2-cyclooctanediol 1a was conducted (Table 3). 

 Table 2. Scope of diolsa 

OH

OH
R

R

n
OTES

OH
R

R

n

cat. Me2SnCl2

Et3N
CH2Cl2
rt, 1 h

+ TESCl

1 2a 3  
Entry Diol 1 Product 3 Yield (%)b

1 1b 
OH

OTES  
3ba 92 

2 1c 
OH

OTES  
3ca 88 

3 1d 
OH

OTES  
3da 99 

4 1e 
OH

OTES  
3ea 78 

5 1f 
OH

OTES  
3fa 97 

6 1g 
OH

OTES  
3ga 99 

7 1h 
OH

OTES
O

 
3ha 94 

8 1i 
OH

OTES
NCbz

 
3ia 92 

9 1j 
OH

OTES

Me

Me  
3ja 88 

10 1k 
OH

OTES

Ph

Ph  
3ka 97 

11 1l 
OH

OTES

Ph

Ph  
3la 89 

12 1m 
OH

OTES

MeO2C

MeO2C  
3ma 87 

13 1n 
OH

OTES  
3na 71 

14 1o 
OH

OTES

Me

Me  
3oa 92 

15 1p 
OH

OTES

Et

Et  
3pa 85 

a Reaction conditions: diol 1 (0.5 mmol), TESCl 2a (1.5 equiv), Me2SnCl2 
(10 mol %), Et3N (1.5 equiv), CH2Cl2 (3 mL), rt, 1 h. 

b Isolated yield. 

The more sterically bulky reagent 2b led to no significant 
decrease in yield (entry 1).16 The introduction of silyl groups 
bearing olefin moieties, which can be synthetic footholds, was 
also succeeded with high yields (entries 2 and 3). The mono-
silylation using reagents with phenyl group had no difficulty, 
leading to excellent results (entries 4-6). The silylating reagents 
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bearing reactive moieties, such as chlorine and cyano group, 
reacted efficiently with no side product (entries 7 and 8). 

 
 

 
 
 
 
 
 
 

Scheme 3. Silylation of unsymmetrical 1,2- and 1,3-diols. 

Table 3. Scope of silylating reagentsa 

OH

OH

1a

+

2

cat. Me2SnCl2

Et3N (1.5 equiv)
CH2Cl2
rt, 1 h

OH

OSiMe2R

    3

ClSiMe2R

 
Entry 2 Product 3 Yield (%)b

1 2b 

OH

O Si

Me

Me

i-Pr

 

3ab 91 

2 2c 

OH

O Si

Me

Me  

3ac 83 

3 2d 

OH

O Si

Me

Me  

3ad 79 

4c 2e 

OH

O Si

Me

Me

Ph

 

3ae 89 

5 2f 

OH

O Si

Me

Me

Bn

 

3af 87 

6c 2g 

OH

O Si

Me

Me Ph
3

 

3ag 84 

7 2h 

OH

O Si

Me

Me Cl  

3ah 82 

8 2p 

OH

O Si

Me

Me CN
3

 

3ai 99 

a Reaction conditions: diol 1a (0.5 mmol), silylating reagent 2 (1.2 equiv), 
Me2SnCl2 (10 mol %), Et3N (1.5 equiv), CH2Cl2 (3 mL), rt, 1 h. 

b Isolated yield. 
c Silylating reagent 2 (1.5 equiv) was used. 

In summary, we successfully developed the first selective 
monosilylation of 1,2-diols catalyzed by metal complexes. This 
process tolerated a variety of substrates with high chemo-
selectivity. Further efforts will be focused on the development of 
asymmetric silylation of 1,2-diols in our research group. 
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