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Abstract

We examine the spatial distribution of galaxies in the Numerical Galaxy Catalog, which is based on a hierarchical
clustering framework. This catalog is constructed from a semianalytic model of galaxy formation combined with
high-resolution N -body simulations in a Λ-dominated flat cold dark-matter cosmological model. To quantify the
spatial distribution of galaxies, we use a graph-theoretical approach, because it is one of the most powerful statistical
ways of estimating spatial data. In particular, three types of graphs are adopted: the Delaunay graph, the minimal
spanning tree, and the constellation graph. To quantify the galaxy distributions, we apply statistical measures suitable
for each type. The mass distributions in the cold dark-matter universe are also examined to clarify differences in
the spatial distribution of dark matter and galaxies. The spatial distribution of galaxies in the two-degree field
(2dF) galaxy redshift survey is finally compared with that in the Numerical Galaxy Catalog. From our analysis,
we definitely show that galaxy distributions in the Numerical Galaxy Catalog are different from the dark-matter
distributions. We also find that the Numerical Galaxy Catalog considerably improves the theoretical prediction of
spatial galaxy distributions, although it does not do enough to reproduce the 2dF galaxy redshift survey. Finally, we
show that the constellation graph and the minimal spanning tree are convenient for quantifing the galaxy distributions
in an objective manner.
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1. Introduction

Large-scale structure of the universe has been eagerly
studied to test hypotheses of dark-matter identification, the
nature of initial-density perturbations, and the mechanism of
structure growth. In particular, the values of fundamental
cosmological parameters are estimated to quantify the galaxy
distributions. Because considerable progress has been made
in cosmology, the consensus is that cold dark matter is the
most likely candidate for dark matter, and the cosmic struc-
ture grows due to the gravitational amplification of random-
Gaussian initial-density fluctuations. In addition, results of
measuring anisotropies of the cosmic microwave background
with the Wilkinson Microwave Anisotropy Probe (Spergel
et al. 2003) and the type Ia supernova rate (Riess et al. 1998;
Perlmutter et al. 1999) reveal that the fundamental cosmolog-
ical parameters have the following values: the density param-
eter, Ω0 ' 0.3, the cosmological constant term, ΩΛ ' 0.7, and
the Hubble constant (in units of 100 km s�1 Mpc�1), h ' 0.7.
The fundamental frame of a cosmological model is now estab-
lished, and we will advance form the present stage to the next
stage; namely, studies of the galaxy formation and evolution.

To approach this subject, new galaxy surveys of high

qualitiy and correct modeling of galaxy formation are crit-
ical. Fortunately, a new generation of galaxy surveys that
provides the key to solving the mechanism of galaxy forma-
tion and evolution has become available. To construct correct
models of galaxy formation was once known as a very diffi-
cult work for cosmologists (Peacock 1999). Due to progress
in computer capacity and the theory of galaxies, however, the
idea of realistic calculations of galaxy formation and evolu-
tion has gradually been put into practice. There exist two
strategies to provide theoretical galaxy formation and evolu-
tion. One is a hydrodynamical simulation that incorporates
gas dynamics into cosmological structure models (Monaghan
1992). Because the hydrodynamical simulation directly calcu-
lates dynamics related to galaxy formation processes, the
computer complexity is very vast. The resolution is therefore
limited, and the mass scale that can be studied is restricted. For
this reason, a numerical hydrodynamical simulation of galaxy
formation still has large uncertainties.

Recently, another strategy has attracted attention. This is
a semianalytic model of galaxy formation combined with the
high-resolution N -body simulations (Roukema et al. 1997;
Kauffmann et al. 1999a, 1999b; Diaferio et al. 1999, 2001;
Somerville et al. 2001; Helly et al. 2003a, 2003b; Hatton et al.
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2003). Because this method does not follow the dynamics
related to galaxy-formation processes, the computation is much
faster. This means that semianalytic modeling is flexible for
studying the effects of varying the assumptions and param-
eter values. Therefore, semianalytic modeling is an important
approach, complementary to hydrodynamical simulations for
understanding the physics of galaxy formation. Lately, theoret-
ical data that are based on semianalytic models combined with
N -body simulations have been constructed by some groups
(Kauffmann et al. 1999a; Hatton et al. 2003). Among them, the
Numerical Galaxy Catalog (�GC) constructed by Nagashima
et al. (2005) is one of the most reliable models, because the
high-resolution N -body simulations in a Λ-dominated flat cold
dark matter (ΛCDM) cosmological model are used.

In this paper, we use this catalog and examine the spatial
distribution of galaxies. Only a few attempts have so far
been made at this point, and studies of the spatial distribution
of galaxies in �GC provide useful information about galaxy
formation and evolution. In particular, we can check the relia-
bility of theoretical predictions by comparing our results with
recent observations of high quality.

Two-point correlation function is a famous measure to
quantify spatial distributions of galaxies. However, spatial
properties are fully specified by the two-point correlation
function, only if the distributions have a Gaussian form. To
recognize nonlinear properties, it is necessary to calculate
the higher-order correlation functions (Peebles 1980; Suto &
Matsubara 1994). However, it is very difficult to calculate
the higher-order correlation functions from real galaxy surveys.
Many other statistical methods are therefore proposed for esti-
mating the large-scale structure (Saslaw 2000; Martı́nez &
Saar 2002). Among them, Minkowski functionals (Mecke &
Wagner 1991; Mecke et al. 1994; Schmalzing et al. 1996; Sahni
et al. 1998; Kerscher et al. 2000) and genus statistics (Gott
et al. 1986; Weinberg et al. 1987; Melott 1990; Coles 1992;
Matsubara & Suto 1996; Hikage et al. 2001; 2002) are famous
measures. In addition to these two well-known measures, the
graph-theoretical approach is also useful for quantifying the
galaxy distributions (Ueda & Itoh 1999).

In this paper, we use the graph-theoretical approach for
quantifying the galaxy distributions. Because the distribu-
tion of galaxies is discrete, it is natural to apply discrete
mathematics to the statistical descriptions of galaxies. Graph
theory is one of the most typical topics of discrete mathe-
matics, and we therefore examine the galaxy distributions by
means of a graph-theoretical approach. This approach has been
examined by many people, and is known as a useful proce-
dure for describing spatial patterns of galaxies (Barrow et al.
1985; Bhavsar & Nigel Ling 1988; Gurzadyan & Kocharyan
1994; Graham et al. 1995; Pearson & Coles 1995; Krzewina &
Saslaw 1996). In this paper, we adopt three types of graph (the
Delaunay graph, the minimal spanning tree, and the constella-
tion graph) to quantify the galaxy distributions.

The Delaunay graph (Delone 1934) is a dual graph of
Voronoi tessellations (Voronoi 1908). This graph is well known
to computer technicians who are interested in computational
geometry (Preparata & Shamos 1985); e.g., the Delaunay trian-
gulations are utilized for hight interpolations of the terrain
(de Berg et al. 1997). In addition, this graph is used for

finite elements (Livesley 1983), computational fluid dynamics
(Chung 2002), two-dimensional interpolation (Späth 1995),
image analysis (Seul et al. 2000), and computer vision (Forsyth
& Ponce 2002). In cosmology, however, the Voronoi tessella-
tion is more famous, because it was regarded as being a toy
model of large-scale structures. For example, van de Weygaert
(1994) presented a detailed study as to how several quantities
(area, number of vertices, edge length, etc.) relate to the cells
of a Voronoi tessellation. It was also used as a description
of the geometric skeleton of galaxy distributions by Icke and
van de Weygaert (1987) and van de Weygaert and Icke (1989).
In addition, the dynamical Voronoi tessellation was used for
examining the observed three-dimensional structure of galaxies
(Zaninetti 1991). The Voronoi tessellation was also applied to
find clusters of galaxies by Ramella et al. (2001). On the other
hand, the Delaunay graph was used for spatial interpolation by
Schaap and van de Weygraert (2000). Although applications
in cosmology have been in decreasing numbers recently, we
revive this attractive graph to quantify the galaxy distributions
in �GC.

The minimal spanning tree (MST) has been applied in many
fields. For example, this is used in computer science (Aho
et al. 1983; Eiselt & Sandblom 2000), and geographic infor-
mation systems (Wise 2002). MST has also been applied rigor-
ously by many cosmologists. Barrow et al.(1985) constructed
MST from the Zwicky catalog (Zwicky et al. 1961–68) and the
Harvard-Smithsonian Center for Astrophysics (CfA) catalog
(Huchra et al. 1983), and showed that the distribution of edge
length of the MST in Zwicky and CfA catalogs are very
different from that in a Poisson model. Bhavsar and Nigel Ling
(1988) showed that MST is useful for seeing whether the
filaments are real or not. The nature of MST was exam-
ined by van de Weygaert (1991) and Krzewina and Saslaw
(1996). Doroshkevich et al. (1999) used the MST edge length
to analyze the galaxy distribution, and Adami and Mazure
(1999) applied MST to cluster galaxies. Martı́nez et al. (1990)
used MST for obtaining the multifractal dimension. Bhavsar
and Splinter (1996), Doroshkevich et al. (2001), Demianski
and Doeoshkevich (2004), and Colberg (2007) also used MST.
Although MST may be regarded as an old-fashioned statis-
tical measure, this is still a good measure to quantify galaxy
distributions.

The constellation graph has been examined by Ueda and
Itoh (1997) in the context of cosmology. From previous anal-
yses, the constellation graph is one of the most useful methods
for estimating galaxy distributions; this is useful for discrimi-
nating differences in the galaxy distributions among power-law
models (Ueda & Itoh 1997) and the cold dark-matter models
(Ueda & Itoh 1999; Ueda et al. 2003). Moreover, this approach
is also useful when applied to two-dimensional galaxy distribu-
tions (Ueda et al. 2001; Ueda & Takeuchi 2006).

The remainder of this paper is organized as follows. Data
that we use are described in section 2. An overview of the
graph-theoretical approach is given in section 3, and in
section 4 the results of our analyses are presented. Finally, we
provide a summary in section 5.
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Fig. 1. Example of a thin slice of the spatial galaxy distributions of
�GC in real space with a B-band absolute magnitude of MB � �16.5.

2. Data

In this paper, we use three kinds of data: galaxies in �GC,
dark matter in an N -body simulation, and galaxies in 2dFGRS.
We will begin by explaining these data in order.

2.1. Numerical Galaxy Catalog (�GC)

The catalog �GC is constructed by a semianalytic model of
galaxy formation combined with high-resolution cosmological
N -body simulations. This catalog was created by Nagashima
et al. (2005) as follows: the distribution of dark matter is
constructed by means of high-resolution N -body simulations
carried out by using the parallel version (Yahagi 2005) of
the adaptive mesh refinement N -body code (Yahagi & Yoshii
2001). In this simulation, cosmological parameters are fixed
as (Ω0;ΩΛ;h;�8) = (0.3,0.7,0.7,0.9) with a particle number of
N = 5123, and a box size of L = 70 h�1 Mpc. Dark halos
are identified in this simulation using a friends-of-friends algo-
rithm with a linking length of b = 0.2. The minimum number
of particles identifying a dark halo is 10, which corresponds to
3.04 � 109 Mˇ. As pointed out by Nagashima et al. (2005),
it is important to notice that the fully resolved mass in �GC
might be larger than 5 � 1011 Mˇ. Because the mass of dark-
matter particles in �GC is smaller than other theoretical data in
the public domain, �GC is a better and more reliable model of
galaxy formation and evolution.

The galaxy is then assigned to a position within the halo,
by accounting for the tidal stripping of subhalos, hot halo gas
cooling, star formation, and supernova feedback. In these
processes, the semianalytic model proposed by Nagashima and
Yoshii (2004) is used to predict the properties of the galaxy.
Finally, three-dimensional galaxy distributions are obtained.
Notice that there exists uncertainty as to how to estimate the
supernova feedback. Here, we adopt the strong supernova feed-
back model, because this is in much better agreement with
near-infrared faint galaxy number counts and redshift distri-
bution than the weak feedback model (Nagashima et al. 2005).

In this paper, volume-limited samples as well as apparent

Fig. 2. Example of a thin slice of the spatial galaxy distributions
of �GC in redshift space with a B-band absolute magnitude of
MB � �16.5.

magnitude-limited samples are used. In volume-limited
samples, we construct two types whose B-band absolute
magnitudes are MB � �16.5 and MB � �18.0. The galaxy
numbers in each type are N = 29065 and N = 9436, respec-
tively. Figure 1 is a thin slice of �GC, in which galaxies
with MB � �16.5 are indicated by points. In addition, the
volume-limited galaxy distributions in redshift space are also
displayed in figure 2. The apparent magnitude-limited samples
are used to compare the galaxy distributions in �GC with
observations (see subsection 2.4).

2.2. N-Body Simulation

In order to estimate the difference between the galaxy
and dark-matter distributions, we performed a low-resolution
cosmological N -body simulation in ΛCDM cosmology.
Various codes are available to perform N -body simulations,
and we used Hydra, obtained from the Hydra Consortium Web
page. Hydra is an adaptive particle-particle, particle-mesh
N -body simulation program. It can be used with periodic
boundary conditions (Couchman et al. 1995),

Here, we adopted the same cosmological parameters,
(Ω0; ΩΛ; h; �8) = (0.3,0.7,0.7,0.9), with a particle number of
N = 643, a box size of L = 70 h�1 Mpc, and particle mass
of 2.1 � 1011 Mˇ that is almost the same as typical galaxy
mass or fully resolved mass in �GC. We purposely used this
low-resolution simulation (resolution length rc � 1.56 Mpc)
because it has the same resolution that we used to examine the
properties of the large-scale structure. To compare the distri-
bution of dark matter with galaxies in �GC, we selected the
same number of particles (N = 9436, 29065) randomly. For
a statistical treatment, we produced three samples from this
simulation. Figure 3 is a slice of the dark-matter distributions
in ΛCDM cosmology. In addition, the dark-matter distributions
in redshift space are also displayed in figure 4.

2.3. Two-Degree Field Galaxy Redshift Survey (2dFGRS)

The 2dFGRS is an optical spectroscopic survey of objects
brighter than bJ = 19.45 selected from the APM (Automatic
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Fig. 3. Example of a thin slice of the spatial dark-matter distributions
of N -body simulations in real space.

Plate Measuring) Galaxy Survey (Maddox et al. 1990a, b).
Therefore, 2dFGRS is a magnitude-limited sample. The
2dFGRS was divided into two main regions: the region of the
North Galactic Pole (NGP), which covers 147:ı5 < ˛ < 222:ı5
and �7:ı5 < ı < 2:ı5, and the region of the South Galactic
Pole (SGP), which covers 325ı < ˛ < 52:ı5 and �37:ı5 < ı <
�22:ı5. In addition to these two main regions, random fields
were observed, but we did not utilize these fields.

The data that we analyzed were from a public release of
the final version (Colless et al. 2001 and references therein);
102426 galaxy redshifts were contained in the data release. All
redshift identifications were assigned to a quality parameter Q
in the range of 1–5; Q � 3 redshifts were 98.4% reliable, and
we used galaxies with Q � 3. In addition, we only selected
nearby galaxy distributions within 15 � r � 300 Mpc to avoid
any effects of galaxy evolution. [We supposed cosmolog-
ical parameters (Ω0; ΩΛ; h) = (0.3,0.7,0.7)]. Although there
exists a huge number of galaxies in the original 2dFGRS,
the galaxies that are available are 18377 in NGP, and 25909
in SGP. Although the galaxy number that we utilized in our
analysis was rather smaller than that of the original 2dFGRS,
it was sufficient to examine the galaxy distributions in a statis-
tical way.

2.4. Mock Sample

To compare the galaxy distributions in 2dFGRS with those
in theoretical models, we constructed artificial mock surveys
from �GC and N -body simulations. To make mock surveys,
a periodic boundary condition was used. Putting �GC side
by side, we constructed a large-volume sample. Based on
the peculiar velocity of each galaxy, we transferred the galaxy
distributions from real space to redshift space. By cutting off
excess regions, we obtained a map with the same geometry as
the 2dFGRS. To select galaxies whose apparent magnitude is
brighter than bJ � 19.45, we finally constructed a mock sample
of �GC. In this procedure, we used the following color relation:

bJ = B � 0:28.B � V /: (1)

Fig. 4. Example of a thin slice of the spatial dark-matter distributions
of N -body simulations in redshift space.

For a statistical treatment, we produced three mock samples.
In fact, the galaxy numbers in the mock samples were slightly
larger than 2dFGRS, and we chose galaxies randomly to set
the same galaxy number. For the sake of completeness,
we directly calculated the luminosity functions of our mock
samples and 2dFGRS, and confirmed that these were consis-
tent with each other.

The mock sample of dark matter was constructed by the use
of same procedures. However, particles do not have any infor-
mation about the absolute luminosity. We therefore randomly
assigned the luminosity to each particle under the condition
that it corresponds to a luminosity function determined by the
Schechter function (Schechter 1976),

�.L/dL = ��
�

L

L�

�˛

exp

�
� L

L�

�
d

�
L

L�

�
: (2)

The characteristic galaxy luminosity, L�, relates to the charac-
teristic magnitude, M�, as

Lˇ
L�

= 10�0:4.Mˇ�M�/ : (3)

We adopted parameter values of M� = �19.66 + 5 logh and
˛ = �1.21 (Norberg et al. 2002). The parameter �� was set
suitably since the galaxy number in 2dFGRS and the particle
number in the N -body simulation were the same.

3. Overview of the Graph-Theoretical Approach

3.1. Graph

Although the graph theory has long been studied in math-
ematics and computer science, technical terms for graphs are
not unified (Harary 1969). To avoid confusion, we define
some terms that are needed to understand the graph-theoretical
approach. A graph (or undirected graph) is a set of vertices
connected by edges. Strictly speaking, a graph G is a pair G =
(V; E) with a set of vertices V and a set of unordered pairs of
vertices called edges E . A subgraph of graph G is a graph
whose vertices and edges are subsets of G. In particular,
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a spanning subgraph of a graph G is a subgraph if it has the
same vertex set as G.

A graph is labeled when the vertices are distinguished from
one another by name. As is well known, a labeled graph
is expressed by an adjacency matrix. The adjacency matrix
A = (apq) for a graph to n vertices is an n � n matrix in which
apq = 1 if vertex p is adjacent to vertex q, and apq = 0 other-
wise. Since the adjacency matrix is symmetric, eigenvalues of
this matrix are always real numbers. A graph structure can be
extended by assigning a weight to each edge of the graph. In
particular, we weight each edge by assigning a factor of edge
length lj (j is a real number). In this case, the element of the
adjacency matrix is apq = lj if vertex p is adjacent to vertex q,
and apq = 0 otherwise.

Since there exists no absolute criterion as to how to construct
graphs from the galaxy distributions, we here adopted three
types of graphs: the Delaunay graph, the MST, and the constel-
lation graph.

3.2. Delaunay Graph (Delaunay Tetrahedron)

A Delaunay triangulation is a two-dimensional Delaunay
graph, and to see the Delaunay graph intuitively, we first
explain this case. The Delaunay triangulation of a point set
is a collection of edges satisfying an empty circle property,
i.e., for each edge one can find a circle containing the edge’s
endpoint, but not containing any other points. Figure 5 is an
example of a Delaunay triangulation constructed from two-
dimensional point distributions. A Delaunay tetrahedron is
a three-dimensional Delaunay graph. The Delaunay tetrahe-
dron is a collection of four points of a discrete point distribution
whose circumsphere does not contain any other points. More
detailed discussions and figures of three-dimensional Delaunay
tetrahedrons can be found in van de Weygaert (1994). In this
paper, we used the Delaunay tetrahedron to quantify the galaxy
distributions.

Although the Delaunay graph has not been examined in the
context of cosmology, it has many attractive features. For
example, the Delaunay graph is convenient, because for a given
set of vertices it is unique, and its existence is guaranteed. We
here highlight the homogeneousness of the galaxy distributions
using volumes of the tetrahedron. This is achieved by counting
the number of Delaunay tetrahedrons as a function of volumes.
If the galaxy distributions are rather homogeneous, almost all
tetrahedrons have the same volumes. As clustering becomes
strong, the number of tetrahedrons that have small or large
volumes increases. We therefore used Delaunay graph to esti-
mate homogeneity of the galaxy distributions.

3.3. Minimal Spanning Tree (MST)

A tree is a graph in which any two of the vertices are
connected by exactly one path, and a spanning tree for G is
a tree which contains all of the vertices of G. Given a weighted,
undirected graph G, an MST is one for which the sum of the
weights on its edges is less than, or equal to, the sum of the
weights on the edges of any other spanning tree for G. The
MST is also known to be unique. Figure 6 is an example of the
MST that is constructed from the same two-dimensional point
distributions in figure 5. (We construct MST in figure 6 for
weighting each edge by assigning the edge length.) Notice that

Fig. 5. Example of the Delaunay graph constructed from two-dimen-
sional point distributions.

Fig. 6. Example of the MST constructed from the same two-dimen-
sional point distributions in figure 5. Notice that the MST is a spanning
subgraph of the Delaunay graph.

Fig. 7. Example of the constellation graph constructed from the same
two-dimensional point distributions in figure 5 or figure 6. Notice that
the constellation graph is a spanning subgraph of the Delaunay graph
or the MST.
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Fig. 8. Number counts of Delaunay tetrahedrons in the Delaunay
graph as a function of volume V . Solid and short-dashed curves repre-
sent N�GC.V / and NNB.V / in real space. The upper panel (lower
panel) is the MB � �16.5 (MB � �18.0) case.

the MST is a spanning subgraph of the Delaunay graph.
The MST has many attractive features to quantify the galaxy

distributions; in particular, it highlights the filamentary nature.
In this paper, we also utilized the MST to quantify the galaxy
distributions counting the number of edges as a function of the
edge length.

3.4. Constellation Graph

The constellation graph is constructed by connecting the
nearest neighbor pair of galaxies. This graph is also uniquely
determined, and details of this graph can be found in Ueda and
Itoh (1997). The constellation graph is not frequently used as
compared with the Delaunay graph and the MST, although it is
useful to cosmologists. Figure 7 is an example of the constella-
tion graph that is constructed from the same two-dimensional
point distributions in figure 5 or figure 6. Notice that the
constellation graph is a spanning subgraph of the Delaunay
graph or the MST.

The constellation graph connects with pattern recognition of
human eyes. Humans have regarded the arrangement of stars
in the night sky as being animals or heroes. The constella-
tion graph is related to the constellation as its name indicates,
although it resembles not the constellations of Greece, but the
constellations of China. In particular, it highlights the pattern
in a small area. In this paper, we utilized the constellation graph
to quantify the galaxy distributions, estimating the eigenvalues
of adjacency matrix.

Fig. 9. Number counts of edge lengths in the MST as a function of
the edge length l . Solid and short-dashed curves represent N�GC.l/

and NNB.l/ in real space. The upper panel (lower panel) is the MB �
�16.5 (MB � �18.0) case.

4. Analysis

The main purpose of this section is to quantify the galaxy or
dark-matter distributions in �GC, an N -body simulation, and
2dFGRS. Analyses of this subject fall into three categories: In
the first place, we compared the galaxy distributions in �GC
with the dark-matter distributions in real space. In the second
place, a comparison in redshift space was performed. Lastly,
the galaxy (or dark matter) distributions in mock samples were
compared with observations.

In addition to the above main subject, we also reexam-
ined the usefulness of the graph-theoretical approach. This is
because the graph-theoretical approach has not been compared
with other famous statistics, although this has the advantage
of dealing with discrete spatial data directly. We shall discuss
these two subjects in detail.

4.1. �GC Galaxy versus Dark Matter in Real Space

In this subsection, we compare the galaxy distributions in
�GC with the dark-matter distributions found by an N -body
simulation. Figure 8 is the number counts of the volume of
Delaunay tetrahedrons in the Delaunay graph. As stated in
subsection 2.1, two different cases, MB � �16.5 (upper panel)
and MB � �18.0 (lower panel), are represented. In each panel,
solid and short-dashed curves are the number counts of volume
in �GC, N�GC.V /, and the dark matter in N -body simulations,
NNB.V /, respectively. For a statistical treatment, we produced
three samples from N -body simulations, and the errors in
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Fig. 10. Relative mean absolute deviation of galaxy and dark matter
in real space with MB � �18.0, as a function of index j . Filled circles
and squares represent the relative mean absolute deviations of �GC,
and an N -body simulation, respectively.

NNB.V / were estimated by treating three samples differently,
i.e., we treated NNB.V / of each sample independently, and
calculated the average value and the standard deviation. This
standard deviation is shown as an error bar. From these panels,
we found that clustering of the galaxies in �GC is stronger than
that of the dark matter, because small or large volume tetra-
hedrons emerge as the clustering increases. This fact seems
to harmonize with the spatial distributions in figure 1 and
figure 3. Although it is not clear, the Delaunay graph succeeds
in highlighting the homogeneousness of the galaxy distribu-
tions. We therefore conclude that this graph is useful to some
degree for describing features of the spatial galaxy distributions
in real space.

Figure 9 is the number counts of the edge length in the
MST. In this figure, solid and short-dashed curves represent
the number counts of the edge length in �GC, N�GC.l/, and
N -body simulations, NNB.l/, respectively. Two different
magnitudes, MB � �16.5 and MB � �18.0, are also repre-
sented. From these panels, we also infer that galaxy clustering
is stronger than the dark matter. This is because N�GC.l/ is
larger than NNB.l/ around in the small or large scale, and
NNB.l/ is larger than N�GC.l/ in the middle scale. Although
the difference is not clear, the MST that highlights the filamen-
tary structure succeeds in describing the spatial galaxy distri-
butions in real space.

We finally quantify the galaxy or dark-matter distributions
by means of a constellation graph. Analysis of the constel-
lation graph is not simple; we first construct an adjacency
matrix of each constellation graph. In this procedure, the

Fig. 11. Number counts of Delaunay tetrahedrons in the Delaunay
graph as a function of volume V . Solid and short-dashed curves repre-
sent N�GC.V /, and NNB.V / in redshift space, respectively. The upper
panel (lower panel) is the MB � �16.5 (MB � �18.0) case.

weighted constellation graphs that are assigned to the edge
length lj (j = 0–2.0) are used. The eigenvalues of the adja-
cency matrices are calculated, and the distribution functions
of the eigenvalues are obtained. We finally estimate a mean
absolute deviation D.j / of the distribution function of the
eigenvalue as a function of the weight index, j (Ueda &
Itoh 1997).

Figure 10 is the relative mean absolute deviation D=D�GC

as a function of index j . Filled circles and squares represent
the relative mean absolute deviations of the �GC galaxy and
the dark matter, respectively. Since the constellation graph
was constructed by connecting the nearest neighbor pair of
galaxies, the edge length in the constellation graph is rather
small. In order to decrease resolution effects in N -body simu-
lation, we only analyzed the MB � �18.0 case, because the
average edge length of the constellation graph in MB � �18.0
was larger than rc, and because that was smaller than rc in
MB � �16.5. Notice that the long edge was weighed for our
analysis, which also decreased the resolution effects.

From the analysis of the constellation graph, we found
that DNB is larger than D�GC. This means that the galaxy
clustering in �GC is stronger than the dark-matter clustering
in N -body simulations, because the mean absolute deviation
becomes smaller as the degree of clustering increases (Ueda
& Itoh 1999). This result agrees with our intuitive percep-
tion, although it is expected from the Delaunay graph or
MST analysis (see lower panels in figures 8 and 9). Since
the constellation graph is constructed by the nearest-neighbor
pair, the global structure does not reflect this analysis. The
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Fig. 12. Number counts of edge in the MST as a function of the
edge length, l . Solid and short-dashed curves represent N�GC.l/ and
NNB.l/ in redshift space. The upper panel (lower panel) is the MB �
�16.5 (MB � �18.0) case.

constellation graph is, however, very useful for quantifying
galaxy distributions, and is an important approach that serves
as complementary to the other graph-theoretical approaches.

4.2. �GC Galaxy versus Dark Matter in Redshift Space

In this subsection, we compare the distribution of galaxies
with that of dark-matter in redshift space. Although the galaxy
distributions are different from the dark-matter distributions in
real space (see subsection 4.1), we examine how this difference
changes in redshift space. Figure 11 is the number counts of
the volume of Delaunay tetrahedrons in redshift space. The
symbols in this figure are the same as in figure 8. From
these panels in figure 11, we find that the difference between
N�GC.V / and NNB.V / becomes unclear in redshift space. As
is well known, it is not easy to construct the Delaunay graph
from given points (Okabe et al. 2000); we thus conclude that
the volume analysis of the Delaunay tetrahedron is not attrac-
tive.

Figure 12 is the number counts of the edge length in the
MST. The symbols in this figure are the same as in figure 9.
From these panels, we find that the trends of the number count
of the edge length in redshift space are also the same as in real
space. Notice that the difference between the galaxy and dark
matter in figure 12 is clearer than that in figure 11. We therefore
conclude that MST is a more useful method for the description
of the spatial galaxy distributions, in general.

If one can clearly see the difference between a galaxy
and dark matter, we have to use the constellation graph.
Figure 13 is the relative mean absolute deviations of galaxy and

Fig. 13. Relative mean absolute deviations of galaxy and dark-matter
distributions in redshift space with MB � �18.0, as a function of index
j . Filled circles and squares represent the relative mean absolute devi-
ations of �GC and an N -body simulation, respectively.

dark-matter distributions as a function of index j . The symbols
in this figure are the same as in figure 10. Because of the effect
of finger-of-god, the average edge length of the constellation
graph in redshift space is larger than that in real space, and the
analysis in the MB � �18.0 case is still meaningful. From
this analysis, we find that the difference between spatial distri-
butions of galaxies and dark matter in redshift space is still
clear. We also find that the analysis of the constellation graph
still harmonizes with our intuitive perception. It is therefore
concluded that the constellation graph is very useful for quan-
tifying the nature of galaxy clustering.

4.3. �GC Galaxy, Dark Matter versus 2dFGRS

We now compare the galaxy distributions in the 2dFGRS
with those in mock samples that are constructed from �GC
or N -body simulations. Figure 14 is the number counts of
the Delaunay tetrahedrons as a function of volume V . In this
figure, the solid, short-dashed, and long-dashed curves repre-
sent the number counts of tetrahedrons that are constructed
from 2dFGRS [N2dF.V /], �GC [N�GC.V /], and N -body
simulations [NNB.V /], respectively. Two different regions are
analyzed independently; the upper panel is the result in NGP
and the lower panel is the result in SGP. From these panels,
we find that the mock samples derived from �GC and dark
matter do not reproduce the galaxy distributions in 2dFGRS; in
a small volume, N�GC.V / and NNB.V / are considerably larger
than N2dF.V /. Although this means that the clustering in the
�GC galaxy and dark matter is stronger than the galaxy clus-
tering in 2dFGRS, this fact does not harmonize with intuition
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Fig. 14. Number counts of Delaunay tetrahedrons in a Delaunay
graph as a function of volume V . Solid, short-dashed, and long-dashed
curves represent N2dF.V /, N�GC.V /, and NNB.V /, respectively. The
upper panel (lower panel) is the result of NGP (SGP).

from human eyes. As we describe below, the galaxy distri-
butions in 2dFGRS and mock samples are not the same, and
that N�GC.V / or NNB.V / agrees with N2dF.V / in a large
volume is not desirable. In addition, the difference between
N�GC.V / and NNB.V / is unclear. After all, a volume analysis
of the Delaunay tetrahedron becomes meaningless if the shape
of a sample is far from a cube.

In order to understand the correct features of the galaxy
spatial distribution, we performed a MST analysis. The results
of the number counts of the edge length in the MST are given
in figure 15. The symbols in this figure are the same as in
figure 14. From these panels, we find that the number of small
edges in 2dFGRS is larger than those in �GC and dark matter,
and that the number of long edges is smaller. This means
that the clustering is the strongest in 2dFGRS, and normal in
�GC and weak in N -body simulations. We therefore confirm
that the �GC considerably improves the theoretical prediction
of the spatial galaxy distributions, although this do not suffi-
ciently reproduce the 2dFGRS. We also conclude that the MST
is useful if the shape of a sample is far from cubic.

For the sake of completeness, we finally quantify the galaxy
distributions by means of a constellation graph. Figure 16
shows the relative mean absolute deviations of the galaxy in the
2dFGRS, �GC, and dark-matter distributions in N -body simu-
lations as a function of index j . The filled circles, squares, and
triangles represent the relative mean absolute deviations of the
2dFGRS, �GC, and N -body simulation, respectively. It is not
surprising that the behaviors of D�GC and DNB are complex
in NGP with a small j ; this is due to the abundance of the

Fig. 15. Number counts of edges in the MST as a function of the
edge length, l . Solid, short-dashed, and long-dashed curves represent
N2dF.l/, N�GC.l/, and NNB.l/, respectively. The upper panel (lower
panel) is the result of NGP (SGP).

very small edge. In the large-j region, or an analysis in SGP,
we also see that the clustering in 2dFGRS is the strongest, and
normal in �GC and weak in N -body simulations. In any case,
we confirmed that the spatial galaxy distributions in �GC do
not coincide with those in 2dFGRS.

5. Summary

In this paper, we have examined the galaxy distributions
in �GC using the graph-theoretical approach. In order to
understand the nature of �GC, the dark-matter distributions in
N -body simulations and the galaxy distributions in 2dFGRS
were also quantified. From our analysis, two important results
were derived, and summarized as follows.

The most important result is that although �GC does not
reproduce the observational galaxy distributions, this consid-
erably improves the theoretical prediction of the spatial galaxy
distributions. From graph-theoretical analyses, we confirm that
the differences between �GC and 2dFGRS are always smaller
than those between an N -body simulation and 2dFGRS. By
using the high-resolution N -body simulations, �GC is found
to be one of the most reliable models at the present stage.
Comparisons of the galaxy spatial distributions between reli-
able theoretical modeling and high-quality observations are
not fully understood. Our analysis clearly shows that �GC
improves the theoretical prediction of the spatial galaxy distri-
butions. It may therefore be considered that the analysis
of semianalytic modeling is still important in examining the
nature of galaxy formation.
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Fig. 16. Relative mean absolute deviations of the galaxy and dark
matter, as a function of index j . Filled circles, squares, and triangles
represent the relative mean absolute deviations of 2dFGRS, �GC, and
N -body simulations, respectively. The upper panel (lower panel) is the
result of NGP (SGP).

In addition to the above result, we prove the useful-
ness of the statistical measures used in the graph-theoretical
approach. Three types of graphs are adopted for this purpose.
Local clustering properties are described in the constellation
graph. On the other hand, global galaxy distributions are
examined in the Delaunay graph, and the MST highlights the

filamentary structure. From our analysis, we conclude that the
graph-theoretical approach is convenient for quantifying the
galaxy distributions in an objective manner. In particular, the
constellation graph is useful for this purpose. Because the MST
contains information about the global structure, this is also an
attractive graph. On the other hand, the Delaunay graph is less
useful than the constellation graph and the MST. It is, therefore,
important to improve the techniques concerning the constella-
tion graph and the MST.

Finally, we come to the remaining problems of our analysis.
Recent progress in computer capacity will allow researchers
to perform more high-resolution simulations, and it will there-
fore be practicable to improve �GC. Comparing �GC with the
hydrodynamical simulation to estimate the correctness of the
semianalytic modeling is also interesting. We only examined
the galaxy distributions in 2dFGRS, but more complete galaxy
redshift surveys become available. It will therefore be attrac-
tive to compare the galaxy distributions in �GC with the next-
generation surveys. We look forward to having the opportunity
of improving our analysis, and to understanding the physics of
galaxy formation and evolution clearly.
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