VALID INEQUALITIES FOR MIXED INTEGER PROGRAMMING PROBLEMS

Midori Kobayashi

Consider the mixed integer programming problem (P_{M})

$$
\begin{array}{ll}
\operatorname{minimize} & z=\boldsymbol{c}^{t} \boldsymbol{x} \\
\text { subject to } & A \boldsymbol{x}=\boldsymbol{b} \\
& \boldsymbol{0} \leq \boldsymbol{x} \in \boldsymbol{R}^{n} \\
& x_{j} \in \boldsymbol{Z} \quad\left(1 \leq j \leq n_{1}\right)
\end{array}
$$

where A is an \boldsymbol{R}-component $m \times n$ matrix, \boldsymbol{b} is a vector in $\boldsymbol{R}^{m}, \boldsymbol{c}$ is a vector in \boldsymbol{R}^{n} and n and n_{1} are integers with $0<n_{1}<n . \quad R$ and Z denote the set of all real numbers and the set of all integers, respectively.

Let X be the set of all feasible solutions:

$$
X=\left\{\boldsymbol{x}=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \in \boldsymbol{R}^{n} ; A \boldsymbol{x}=\boldsymbol{b}, \boldsymbol{x} \geq 0, x_{\mathrm{j}} \in \boldsymbol{Z}\left(1 \leq j \leq n_{1}\right)\right\} .
$$

Let $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}$ be the column vectors of A: A $=\left(\boldsymbol{a}_{1} \ldots \boldsymbol{a}_{n}\right)$, where $\boldsymbol{a}_{j}=\left(a_{1 j} \ldots a_{n j}\right)^{t}$. We denote by V the abelian group generated by $a_{1}, \ldots, a_{n_{1}}, b$, i. e.,

$$
V=\boldsymbol{a}_{1} \boldsymbol{Z}+\ldots+\boldsymbol{a}_{n_{1}} \boldsymbol{Z}+\boldsymbol{b} \boldsymbol{Z} \subset \boldsymbol{R}^{n}
$$

Let f be a real valued function defined on V, satisfying

$$
f\left(\boldsymbol{v}_{1}\right)+f\left(\boldsymbol{v}_{2}\right) \geq f\left(\boldsymbol{v}_{1}+\boldsymbol{v}_{2}\right)
$$

for any $\boldsymbol{v}_{1}, \boldsymbol{v}_{2} \in V$, then f is called a subadditive function on V.
Let π be a vector in R^{n} and π_{0} be a real number. An inequality $\boldsymbol{\pi}^{t} \boldsymbol{x} \geq \pi_{0}$. is called a valid inequality for X if every $\boldsymbol{x} \in X$ satisfies $\pi^{t} x \geq \pi_{0}$.

Theorem 1. Let f be a subadditive function on V satisfying $f(\boldsymbol{\theta})$ $=0$. Then, for any $\boldsymbol{x} \in X$,

$$
\sum_{j=1}^{n_{1}} f\left(\boldsymbol{a}_{j}\right) x_{j}+f\left(\sum_{j=n_{1}+1}^{n} \boldsymbol{a}_{j} x_{j}\right) \geq f(\boldsymbol{b}) .
$$

Proof. For any $z_{1}, \ldots, z_{n_{1}} \in Z$, we have

$$
\sum_{j=1}^{n_{1}} f\left(\boldsymbol{a}_{j}\right) z_{j} \geq f\left(\sum_{j=1}^{n_{1}} \boldsymbol{a}_{j} z_{j}\right)
$$

(See the proof of Theorem 1 in [4]).
For any $\boldsymbol{x} \in X$, we have $A \boldsymbol{x}=\boldsymbol{b}$, i. e.,

$$
\sum_{j=1}^{n_{1}} \boldsymbol{a}_{j} x_{j}+\sum_{j=n_{1}+1}^{n} \boldsymbol{a}_{j} x_{j}=\boldsymbol{b}
$$

so

$$
\begin{aligned}
& f\left(\sum_{j=1}^{n_{1}} \boldsymbol{a}_{j} x_{j}+\sum_{j=n_{1}+1}^{n} \boldsymbol{a}_{j} x_{j}\right) \\
\leq & f\left(\sum_{j=1}^{n_{1}} \boldsymbol{a}_{j} x_{j}\right)+f\left(\sum_{j=n_{1}+1}^{n} \boldsymbol{a}_{j} x_{j}\right) \\
\leq & \sum_{j=1}^{n_{1}} f\left(\boldsymbol{a}_{j}\right) x_{j}+f\left(\sum_{j=n_{1}+1}^{n} \boldsymbol{a}_{j} x_{j}\right),
\end{aligned}
$$

hence

$$
\sum_{j=1}^{n_{1}} f\left(\boldsymbol{a}_{j}\right) x_{j}+f\left(\sum_{j=n_{1}+1}^{n} \boldsymbol{a}_{j} x_{j}\right) \geq f(\boldsymbol{b})
$$

For an integer $l(>1)$, we denote by Z_{l} a complete residue system modulus $l: \boldsymbol{Z}_{l}=\{0,1, \ldots, l-1\}$. We define the function $f_{l}: Z \rightarrow \boldsymbol{Z}_{l}$ as follows: for any $a \in Z$, there exists the integer b such that $a \equiv b$ $(\bmod l)$ and $b \in Z_{l}$; we define $f_{l}(a)=b$. Then f_{l} is a subadditive function on \boldsymbol{Z} and on any subset of \boldsymbol{Z}.

Further we define the function $p_{i}: \boldsymbol{Z}^{t} \rightarrow \boldsymbol{Z}$ as follows: for any $\left(\boldsymbol{a}_{j}\right)_{1 \leq j \leq t} \in \boldsymbol{Z}^{t}, p_{i}\left(\left(\boldsymbol{a}_{j}\right)\right)=\boldsymbol{a}_{i}$. We put $f_{l}^{i}=f_{l} \circ p_{i}$; then f_{l}^{i} is a subadditive function on \boldsymbol{Z}^{t} and on any subset of \boldsymbol{Z}^{t}.

Now, we consider the mixed integer programming problem (P_{M}). We assume all of the components of A and b are integers. This is actually equivalent to assuming the components rational.

THEOREM 2. Let i be an integer with $1 \leq i \leq m$. If $a_{i j} \geq 0$ for any $j\left(n_{1}+1 \leq j \leq n\right)$, then

$$
\sum_{j=1}^{n_{1}} f_{l}\left(a_{i j}\right) x_{j}+\sum_{j=n_{1+1}}^{n} a_{i j} x_{j} \geq f_{l}\left(b_{i}\right)
$$

is a valid inequality for X .

Proof. We should notice that $V=a_{1} \boldsymbol{Z}+\cdots+a_{n_{1}} \boldsymbol{Z}+b \boldsymbol{Z} \subset \boldsymbol{Z}^{n}$. By Theorem 1, we have for any $\boldsymbol{x} \in X$,

$$
\sum_{j=1}^{n_{1}} f_{i}^{j}\left(\boldsymbol{a}_{j}\right) x_{j}+f_{l}^{i}\left(\sum_{j=n_{1}+1}^{n} \boldsymbol{a}_{i} x_{j}\right) \geqq f_{l}^{i}(\boldsymbol{b}),
$$

since f_{l}^{i} is a subadditive function on V. So it follows

$$
\sum_{j=1}^{n_{1}} f_{l}\left(a_{i j}\right) x_{j}+f_{l}\left(\sum_{j=n_{1}+1}^{n} a_{i j} x_{j}\right) \geqq f_{l}\left(b_{i}\right) .
$$

We have

$$
f_{l}\left(\sum_{j=n_{1}+1}^{n} a_{i j} x_{j}\right) \leq \sum_{j=n_{1}+1}^{n} a_{i j} x_{j}
$$

by our assumption. Therefore

$$
\sum_{j=1}^{n_{1}} f_{l}\left(a_{i j}\right) x_{j}+\sum_{j=n_{1}+1}^{n} a_{i j} x_{j} \geq f_{l}\left(b_{i}\right)
$$

is a valid inequality for X.

$$
\begin{aligned}
& \text { EXAMPLE. } \\
& \qquad \begin{array}{cl}
\text { minimize } & z=x_{1}+2 x_{2}+3 x_{3}+4 x_{4}+5 x_{5} \\
\text { subject to } & 3 x_{1}+x_{2}+5 x_{3}-2 x_{4}-4 x_{5}=15 \\
& 5 x_{1}+x_{2}-x_{3}+4 x_{4}-5 x_{5}=10 \\
& 0 \leq x_{j} \in Z \quad(1 \leqq j \leqq 4) \\
& 0 \leq x_{5} \in \boldsymbol{R}
\end{array}
\end{aligned}
$$

The solution $x_{1}=\frac{65}{28}, x_{2}=0, x_{3}=\frac{45}{28}, x_{4}=0, x_{5}=0 \quad$ with $z=\frac{50}{7}$ is optimal for the associated linear programming problem without the
integrality restrictions.
Put $A=\left(\begin{array}{llrrr}3 & 1 & 5 & -2 & -4 \\ 5 & 1 & -1 & 4 & -5\end{array}\right), \quad \boldsymbol{b}=\binom{15}{10}$ and $\boldsymbol{x}=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right)$.
We multiply both sides of the equation $A \boldsymbol{x}=\boldsymbol{b} \quad$ on the left by the $\operatorname{matrix}\left(\begin{array}{ll}3 & 1 \\ 5 & 1\end{array}\right)^{-1} . \quad$ Then we have

$$
-\frac{1}{2}\left(\begin{array}{rrrrr}
-2 & 0 & 6 & -6 & 1 \\
0 & -2 & -28 & 22 & 5
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=-\frac{1}{2}\binom{5}{-45}
$$

So

$$
\begin{aligned}
& -2 x_{1} \quad+6 x_{3}-6 x_{4}+x_{5}=5 \\
& \quad-2 x_{2}-28 x_{3}+22 x_{4}+5 x_{5}=-45 .
\end{aligned}
$$

The coefficients of x_{5} are non-negative, so we obtain the following valid inequalities by Theorem 2 :

$$
\begin{array}{cc}
\text { for } i=1 \text { and } l=2 & x_{5} \geq 1 \\
\text { for } i=1 \text { and } l=3 & x_{1}+x_{5} \geq 2 \\
\text { for } i=1 \text { and } l=4 & 2 x_{1}+2 x_{3}+2 x_{4}+x_{5} \geq 1 \\
\text { for } i=1 \text { and } l=6 & 4 x_{1}+x_{5} \geq 5 \\
\text { for } i=2 \text { and } l=2 & 5 x_{5} \geq 1 \\
\text { for } i=2 \text { and } l=4 & 2 x_{2}+2 x_{4}+5 x_{5} \geq 3 \\
\text { for } i=2 \text { and } l=6 & 4 x_{2}+2 x_{3}+4 x_{4}+5 x_{5} \geq 3 \\
\text { for } i=2 \text { and } l=7 & 5 x_{2}+x_{4}+5 x_{5} \geq 4
\end{array}
$$

The first, 5th, 6th and the last of these inequalities are cuts.

REFERENCES
[1] B. E. Gillett, Introduction to Operations Research, McGraw-Hill, 1976.
[2] R. E. Gomory and E. L. Johnson, Some continuous functions related to corner polyhedra I, Mathematical Programming, Vol. 3, 1972.
[3] R. E. Gomory and E. L. Johnson, Some continuous functions related to corner polyhedra II, Mathematical Programming, Vol. 3, 1972.
[4] M. Kobayashi, Valid inequalities and subadditivity for integer programming problems, Keiei to Keizai, Vol. 64, No. 2, 1984.
[5] H. Konno, Seisu-keikaku-ho (in Japanese), Sangyo-Tosho, 1981.

