VALID INEQUALITIES AND SUBADDITIVITY FOR INTEGER PROGRAMMING PROBLEMS

MIDORI KOBAYASHI

1. Consider the integer programming problem $\left(\mathrm{P}_{\mathrm{t}}\right)$

$$
\begin{array}{ll}
\operatorname{minimize} & \boldsymbol{c}^{\boldsymbol{t}} \boldsymbol{x} \\
\text { subject to } & A \boldsymbol{x}=\boldsymbol{b} \\
& \boldsymbol{0} \leqq \boldsymbol{x} \in Z^{n}
\end{array}
$$

where $A \in \boldsymbol{R}^{m \times n}, \boldsymbol{b} \in \boldsymbol{R}^{m}$ and $\boldsymbol{c} \in \boldsymbol{R}^{n}$. Throughout this paper, \boldsymbol{R} and \boldsymbol{Z} denote the set of all real numbers and the set of all integers respectively.
Suppose that the set

$$
X^{I}=\left\{\boldsymbol{x} \in \boldsymbol{R}^{n} ; A \boldsymbol{x}=\boldsymbol{b}, \boldsymbol{0} \leqq \boldsymbol{x} \in Z^{n}\right\}
$$

of feasible solutions is bounded and not empty.
Let π be in \boldsymbol{R}^{n} and π_{0} be a real number. An inequality $\boldsymbol{\pi}^{t} \boldsymbol{x} \geqq$ π_{0} is called a valid inequality for X^{I} if it is satisfied by all $\boldsymbol{x} \in X^{I}$. We consider the associated linear programming problem (P_{0})

$$
\begin{array}{ll}
\operatorname{minimize} & \boldsymbol{c}^{t} \boldsymbol{x} \\
\text { subject to } & A \boldsymbol{x}=\boldsymbol{b} \\
& \boldsymbol{0} \leqq \boldsymbol{x} \in \boldsymbol{R}^{n}
\end{array}
$$

Let \boldsymbol{x}^{0} be an optimal solution to the problem (P_{0}). A valid inequality for $X^{I}, \pi^{t} \boldsymbol{x} \geqq \pi_{0}$, is called a cut if $\boldsymbol{\pi}^{t} \boldsymbol{x}^{0}<\pi_{0}$.

We put

$$
V=\left\{\boldsymbol{v} \in \boldsymbol{R}^{m} ; \boldsymbol{v}=A \boldsymbol{x}, \boldsymbol{0} \leqq \boldsymbol{x} \in \boldsymbol{Z}^{n}\right\} .
$$

If $\boldsymbol{v}^{1}=A \boldsymbol{x}^{1} \in V$ and $\boldsymbol{v}^{2}=A \boldsymbol{x}^{2} \in V$, we have $\boldsymbol{v}^{1}+\boldsymbol{v}^{2}=A\left(\boldsymbol{x}^{1}+\boldsymbol{x}^{2}\right)$
$\in V$. Put $A=\left(a_{i j}\right)=\left(\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{n}\right)$,

$$
\boldsymbol{a}_{j}=\left(\begin{array}{c}
a_{1 j} \\
\vdots \\
\vdots \\
\vdots \\
\vdots \\
a_{m j}
\end{array}\right), \text { and } \boldsymbol{e}_{j}=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right)-j \quad(1 \leqq j \leqq m)
$$

then we have $A \boldsymbol{e}_{j}=\boldsymbol{a}_{j}$, therefore $\boldsymbol{a}_{j} \in V \quad(1 \leqq j \leqq m)$.
Let f be a real-valued function defined on $V . f$ is said to be a subadditive function on V if

$$
f\left(v^{1}\right)+f\left(v^{2}\right) \geqq f\left(v^{1}+v^{2}\right)
$$

for any \boldsymbol{v}^{1} and \boldsymbol{v}^{2} in V.

Theorem 1. (cf. Theorem 1.5 of [2] and Theorem 7.12 of [4]) Let f be a subadditive function on V satisfying $f(\boldsymbol{0})=0$. Then the inequality

$$
\sum_{j=1}^{n} f\left(\boldsymbol{a}_{j}\right) \boldsymbol{x}_{j} \geqq f(\boldsymbol{b})
$$

is a valid inequality for X^{I}.

Proof. First, we shall show that if f is subadditive, it holds

$$
\begin{equation*}
\sum_{j=1}^{l} f\left(\boldsymbol{v}_{j}\right) z_{j} \geqq f\left(\sum_{j=1}^{l} \boldsymbol{v}_{j} z_{j}\right) \tag{1}
\end{equation*}
$$

for any integer $l>0$, any $\boldsymbol{v}_{j} \in V$ and any $z_{j} \in \boldsymbol{Z}, z_{j} \geqq 0(1 \leqq j \leqq l)$. Put $k=\sum_{j=1}^{l} z_{j}$, then $k \geqq 0$. We shall prove (1) by induction on k. If $k=0$, it holds by the asssumption of $f(0)=0$. If $k=1,(1)$ is trival. Let $r \geqq 2$. Suppose, as the induction hypothesis, that (1) is satisfied for $k=r-1$. Consider now $k=r$. We may assume $z_{1} \geqq 1$. Then

$$
\begin{aligned}
f\left(\sum_{j=1}^{l} \boldsymbol{v}_{j} z_{j}\right) & =f\left(\boldsymbol{v}_{1}+\boldsymbol{v}_{1}\left(z_{1}-1\right)+\sum_{j=2}^{\iota} \boldsymbol{v}_{j} z_{j}\right) \\
& \leqq f\left(\boldsymbol{v}_{1}\right)+f\left(\boldsymbol{v}_{1}\left(z_{1}-1\right)+\sum_{j=2}^{l} \boldsymbol{v}_{j} z_{j}\right) \\
& \leqq f\left(\boldsymbol{v}_{1}\right)+f\left(\boldsymbol{v}_{1}\right)\left(z_{1}-1\right)+\sum_{j=2}^{l} f\left(\boldsymbol{v}_{j}\right) z_{j} \\
& =\sum_{j=1}^{l} f\left(\boldsymbol{v}_{j}\right) z_{j}
\end{aligned}
$$

by the induction hypothesis and by subadditivity. Thus, (1) is proven by induction.

Now, by the assumption of $X^{I} \neq \phi$ we have $\boldsymbol{b} \in V$. For any $\boldsymbol{x}=\left(x_{j}\right)_{1 \leq j \leq n} \quad$ in X^{I}, we have

$$
\sum_{j=1}^{n} \boldsymbol{a}_{j} x_{j}=\boldsymbol{b}
$$

so we have by (1)

$$
\begin{aligned}
f(\boldsymbol{b}) & =f\left(\sum_{j=1}^{n} \boldsymbol{a}_{j} x_{j}\right) \\
& \leqq \sum_{j=1}^{n} f\left(\boldsymbol{a}_{j}\right) x_{j}
\end{aligned}
$$

Hence it is a valid inequality for X^{\prime}.
2. For an integer $m(>1), \boldsymbol{Z}_{m}$ denotes a complete residue system modulus $m: \boldsymbol{Z}_{m}=\{0,1, \cdots, m-1\}$. We define the function f_{m} on \boldsymbol{Z} to \boldsymbol{Z}_{m} as follows: for any $n \in \boldsymbol{Z}$, there exists $a \in \boldsymbol{Z}_{m}$ such that $n \equiv a(\bmod m)$, so we define $f_{m}(n)=a$. For any a and $b \in \boldsymbol{Z}$, $a \equiv b(\bmod m)$ implies $b-a$ is divisible by m.
subset U of \boldsymbol{Z}.

Proof. We shall show for any n and $n^{\prime} \in \boldsymbol{Z}$,

$$
\begin{equation*}
f_{m}(n)+f_{m}\left(n^{\prime}\right) \geqq f_{m}\left(n+n^{\prime}\right) \tag{2}
\end{equation*}
$$

If $f_{m}(n)+f_{m}\left(n^{\prime}\right) \leqq m-1$, (2) is satisfied with equality since we have $f_{m}(n)+f_{m}\left(n^{\prime}\right)=f_{m}\left(n+n^{\prime}\right)(\bmod m)$ and $0 \leqq f_{m}\left(n+n^{\prime}\right)$ $\leqq m-1$. If $f_{m}(n)+f_{m}\left(n^{\prime}\right) \geqq m$, (2) is satisfied, since $0 \leqq f_{m}(n+$ $\left.n^{\prime}\right) \leqq m-1$.

Example 1. We put

$$
\begin{gathered}
X^{I}=\left\{\boldsymbol{x} \in \boldsymbol{R}^{4} ; 5 x_{1}+3 x_{2}+2 x_{3}+x_{4}=7,\right. \\
\left.0 \leqq x_{j} \in Z, 1 \leqq j \leqq 4\right\}
\end{gathered}
$$

then we have

$$
V=\left\{5 x_{1}+3 x_{2}+2 x_{3}+x_{4} ; 0 \leqq x_{j} \in \boldsymbol{Z}, 1 \leqq j \leqq 4\right\}
$$

We have $V=\{x \in \boldsymbol{Z} ; x \geqq 0\}$, since $1 \in V$ and $0 \in V$. By Theorem 1 and Theorem 2, for every integer $m(>1)$, an inequality

$$
f_{m}(5) x_{1}+f_{m}(3) x_{2}+f_{m}(2) x_{3}+f_{m}(1) x_{4} \geqq f_{m}(7)
$$

is a valid inequality for X^{I} :

$$
\begin{array}{ll}
\text { for } m=2, & x_{1}+x_{2}+x_{4} \geqq 1, \\
\text { for } m=3, & 2 x_{1}+2 x_{3}+x_{4} \geqq 1, \\
\text { for } m=4, & x_{1}+3 x_{2}+2 x_{3}+x_{4} \geqq 3, \\
\text { for } m=5, & 3 x_{2}+2 x_{3}+x_{4} \geqq 2 .
\end{array}
$$

Let $t(>0)$ be an integer. For any j with $1 \leqq j \leqq t$ and any integer $m(>1)$, we define the function f_{m}^{j} on \boldsymbol{Z}^{t} to \boldsymbol{Z}_{m} as follows :

$$
f_{m}^{\dot{j}}\left(\left(n_{i}\right)_{1 \leq i \leq t}\right)=f_{m}\left(n_{j}\right),
$$

for any $\left(n_{i}\right)_{1 \leq i \leq t} \in \boldsymbol{Z}^{t}$.

Theorem 3. The function f_{m}^{j} is subadditive on \boldsymbol{Z}^{t} and on any
subset V of \boldsymbol{Z}^{t}.

Proof. For any $\left(n_{i}\right) \in \boldsymbol{Z}^{t}$ and $\left(n_{i}^{\prime}\right) \in \boldsymbol{Z}^{t}$, we have

$$
\begin{aligned}
f_{m}^{j}\left(\left(n_{i}\right)\right)+f_{m}^{j}\left(\left(n_{i}^{\prime}\right)\right) & =f_{m}\left(n_{j}\right)+f_{m}\left(n_{j}^{\prime}\right) \\
& \geqq f_{m}\left(n_{j}+n_{j}^{\prime}\right) \\
& =f_{m}^{j}\left(\left(n_{i}+n_{i}^{\prime}\right)\right) \\
& =f_{m}^{j}\left(\left(n_{i}\right)+\left(n_{i}^{\prime}\right)\right)
\end{aligned}
$$

Therefore f_{m}^{j} is a subadditive function on \boldsymbol{Z}^{t}.

Example 2. We put

$$
\begin{gathered}
X^{I}=\left\{x \in \boldsymbol{R}^{5} ; x_{1}+2 x_{2}+2 x_{3}+3 x_{4}+5 x_{5}=10,\right. \\
3 x_{1}-3 x_{2}+2 x_{3}+3 x_{4}+2 x_{5}=7, \\
\left.0 \leqq x_{j} \in \boldsymbol{Z}, \quad 1 \leqq j \leqq 5\right\} .
\end{gathered}
$$

Put

$$
A=\left(\begin{array}{ccccc}
1 & 2 & 2 & 3 & 5 \\
3 & -3 & 2 & 3 & 2
\end{array}\right) \text { and } \quad \boldsymbol{b}=\binom{10}{7}
$$

then

$$
X^{I}=\left\{x \in \boldsymbol{R}^{5} ; A \boldsymbol{x}=\boldsymbol{b}, \boldsymbol{0} \leqq \boldsymbol{x} \in Z^{5}\right\} .
$$

Since $V=\left\{A \boldsymbol{x} ; \boldsymbol{0} \leqq \boldsymbol{x} \in \boldsymbol{Z}^{5}\right\}$, so $V \subset \boldsymbol{Z}^{2}$. For every integer $m(>1)$ and $j(=1,2)$, an inequality

$$
f_{m}^{j}\binom{1}{3} x_{1}+f_{m}^{j}\binom{2}{-3} x_{2}+f_{m}^{j}\binom{2}{2} x_{3}+f_{m}^{j}\binom{3}{3} x_{4}+f_{m}^{j}\binom{5}{2} x_{5} \geqq f_{m}^{j}\binom{10}{7}
$$

is valid for X^{I} by Theorem 1 and Theorem 3:

$$
\begin{array}{ll}
\text { for } j=1 \text { and } m=3, & x_{1}+2 x_{2}+2 x_{3}+2 x_{5} \geqq 1, \\
\text { for } j=1 \text { and } m=4, & x_{1}+2 x_{2}+2 x_{3}+3 x_{4}+x_{5} \geqq 2, \\
\text { for } j=2 \text { and } m=2, & x_{1}+x_{2}+x_{4} \geqq 1, \\
\text { for } j=2 \text { and } m=3, & 2 x_{3}+2 x_{5} \geqq 1 .
\end{array}
$$

3. Consider the integer programming problem $\left(\mathrm{P}_{\mathrm{I}}\right)$

minimize	$z=\boldsymbol{c}^{t} \boldsymbol{x}$
subject to	$A \boldsymbol{x}=\boldsymbol{b}$
	$\boldsymbol{0} \leqq \boldsymbol{x} \in \boldsymbol{Z}^{n}$

where $A \in \boldsymbol{R}^{m \times n}, \boldsymbol{b} \in \boldsymbol{R}^{m}$ and $\boldsymbol{c} \in \boldsymbol{R}^{n}$. We assume A is an integer matrix and \boldsymbol{b} and \boldsymbol{c} are integer vectors (they may be rational ; indeed they satisfy the assumption by multiplying by an integer). Suppose that $m<n$ and rank $A=m$. Consider the associated linear programming problem (P_{0})

minimize	$z=\boldsymbol{c}^{t} \boldsymbol{x}$
subject to	$A \boldsymbol{x}=\boldsymbol{b}$
	$\boldsymbol{0} \leqq \boldsymbol{x} \in \boldsymbol{R}^{n}$.

Let B be an optimal basis matrix to the problem $\left(\mathrm{P}_{0}\right)$, so $\left(\mathrm{P}_{\mathrm{I}}\right)$ can be written

$$
\begin{array}{ll}
\operatorname{minimize} & z=z_{\mathrm{B}}+\overline{\boldsymbol{c}}_{N}^{t} \boldsymbol{x}_{N} \\
\text { subject to } & \boldsymbol{x}_{B}+\bar{N} \boldsymbol{x}_{N}=\overline{\boldsymbol{b}} \\
& \boldsymbol{0} \leqq \boldsymbol{x}_{B} \in \boldsymbol{Z}^{m}, \boldsymbol{0} \leqq \boldsymbol{x}_{N} \in \boldsymbol{Z}^{n-m} .
\end{array}
$$

Put $l=n-m$. We assume $\boldsymbol{x}_{N}=\left(x_{1}, \cdots, x_{l}\right)^{t}$ and $\boldsymbol{x}_{B}=\left(x_{l+1}, \cdots, x_{n}\right)^{t}$ without loss of generality. Then the problem (P_{I}) can be written

$$
\begin{array}{ll}
\operatorname{minimize} & z=z_{B}+\sum_{j=1}^{l} \bar{c}_{j} x_{j} \\
\text { subject to } & x_{l+i}+\sum_{j=1}^{l} \bar{a}_{i j} x_{j}=\bar{b}_{i}(1 \leqq i \leqq m) \\
& 0 \leqq x_{j} \in \boldsymbol{Z} \quad(1 \leqq j \leqq n) .
\end{array}
$$

If \boldsymbol{b} is an integer vector, then $\overline{\boldsymbol{x}}=\left(\overline{\boldsymbol{x}}_{B}, \overline{\boldsymbol{x}}_{N}\right)=(\overline{\boldsymbol{b}}, \boldsymbol{0})$ is in X^{I}, so $\overline{\boldsymbol{x}}$ is an optimal solution to the problem (P_{1}). Therefore we assume $\overrightarrow{\boldsymbol{b}}$ is not an integer vector. Then there exists $i(1 \leqq i \leqq m)$ such that b_{i} is not an integer : consider the constraint

$$
\begin{equation*}
x_{l+i}+\sum_{j=1}^{\ell} \bar{a}_{i j} x_{j}=\bar{b}_{i} \tag{3}
\end{equation*}
$$

where $\bar{a}_{i j}$ and \bar{b}_{i} are rational numbers.
We define $f(a)=a-[a]$ for any a $\in \boldsymbol{R}$, where [] is a Gauss' symbol, i. e., $[a]$ denotes the maximal integer not greater than a. Then we have $0 \leqq f(a)<1$. For any a and $b \in \mathrm{R}$, we write $a \equiv b$ $(\bmod 1)$ when $b-a$ is an integer. Then we have

$$
\sum_{j=1}^{l} f\left(\bar{a}_{i j}\right) x_{j} \equiv f\left(\bar{b}_{i}\right) \quad(\bmod 1)
$$

by the constraint (3), so we have

$$
\begin{equation*}
\sum_{j=1}^{\ell} f\left(\bar{a}_{i j}\right) x_{j} \geqq f\left(\bar{b}_{i}\right) ; \tag{4}
\end{equation*}
$$

this inequality is called a Gomory cut because it does not hold when $x_{j}=0(1 \leqq j \leqq l)$.

Now there exists an integer $D(>1)$ such that $D \bar{a}_{i j} \in \boldsymbol{Z}(1 \leqq j$ $\leqq l$) and $D \bar{b}_{i} \in Z$, so the constraint (3) can be written

$$
D x_{l+i}+\sum_{j=1}^{l} D \bar{a}_{i j} x_{j}=D \bar{b}_{i}
$$

We obtain by Theorem 2 a valid inequality

$$
\sum_{j=1}^{\iota} f_{D}\left(\overline{D a_{i j}}\right) x_{j} \geqq f_{D}\left(D \bar{b}_{i}\right)
$$

This inequality is the same as a Gomory cut (4), since putting $\bar{a}_{i j}=\frac{D_{a}}{D}$ and $\bar{b}_{i}=\frac{D_{b}}{D}\left(D_{a}, D_{b} \in Z\right)$, we have

$$
\begin{aligned}
& f\left(\bar{a}_{i j}\right)=\frac{f_{D}\left(D_{a}\right)}{\bar{D}}=\frac{f_{D}\left(D \bar{a}_{i j}\right)}{\bar{D}}, \\
& f\left(\bar{b}_{i}\right)=\frac{f_{D}\left(D_{b}\right)}{D}=\frac{f_{D}\left(D \bar{b}_{i}\right)}{D} .
\end{aligned}
$$

Example 3. Consider the integer programming problem minimize
subject to

$$
\begin{aligned}
& z=x_{1}+x_{2}+x_{3}+2 x_{4}+2 x_{5} \\
& x_{1}+2 x_{2}+x_{3}+x_{4}+5 x_{5}=10 \\
& 3 x_{1}-3 x_{2}+2 x_{3}-3 x_{4}+3 x_{5}=5 \\
& 0 \leqq x_{j} \in Z, \quad 1 \leqq j \leqq 5
\end{aligned}
$$

The optimal linear programming tableau is

$$
\begin{array}{ll}
\text { minimize } & z=\frac{5}{3} x_{3}+\frac{5}{3} x_{4}+\frac{5}{9} x_{5} \\
\text { subject to } & x_{1}+\frac{7}{9} x_{3}-\frac{1}{3} x_{4}+\frac{7}{3} x_{5}=\frac{40}{9} \\
& x_{2}+\frac{1}{9} x_{3}+\frac{2}{3} x_{4}+\frac{4}{3} x_{5}=\frac{25}{9}
\end{array}
$$

or

$$
\begin{array}{ll}
\text { subject to } & 9 x_{1}+7 x_{3}-3 x_{4}+21 x_{5}=40 \\
& 9 x_{2}+x_{3}+6 x_{4}+12 x_{5}=25
\end{array}
$$

(see Example 1 of [2]).
By Theorem 3 we have valid inequalities as follows :

$$
\begin{array}{lc}
\text { for } j=1 \text { and } m=3, & x_{3} \geqq 1 \\
\text { for } j=1 \text { and } m=7, & 2 x_{1}+4 x_{2} \geqq 5, \\
\text { for } j=1 \text { and } m=9, & 7 x_{3}+6 x_{4}+3 x_{5} \geqq 4, \\
\text { for } j=2 \text { and } m=2, & x_{2}+x_{3} \geqq 1, \\
\text { for } j=2 \text { and } m=3, & x_{3} \geqq 1, \\
\text { for } j=2 \text { and } m=4, & x_{2}+x_{3}+2 x_{4} \geqq 1, \\
\text { for } j=2 \text { and } m=6, & 3 x_{2}+x_{3} \geqq 1 \\
\text { for } j=2 \text { and } m=9, & x_{3}+6 x_{4}+3 x_{5} \geqq 7 .
\end{array}
$$

The third and the last inequalities of these are Gomory cuts.

References

[1] B. E. Gillett, Introduction to Operations Research, McGraw-Hill, 1976.
[2] R. E. Gomory and E. L. Johnson, Some continuous functions related to corner polyhedra I, Mathematical Programming 3 (1972), 23-85.
[3] R. E. Gomory and E.L. Johnson, Some continuous functions related to corner polyhedra II, Mathematical Programming 3 (1972), 359-389.
[4] H. Konno, Seisu-keikaku-ho (in Japanese), Sangyo-Tosho, 1981.

