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1. Consider the integer programming problem (P))
minimize cix
subject to Ax =b
0< x € 72"
where A € R™"” be R™ and ¢ € R* Throughout this paper, R and Z
denote the set of all real numbers and the set of all integers respec-
tively.
Suppose that the set
X' ={xe R"; Ax = b 0= xe 2%}
of feasible solutions is bounded and not empty.
Let = be in R* and m be a real number. An inequality m'x =
7o is called a valid inequality for X’ if it is satisfied by all x € X~
We consider the associated linear programming problem (Py)
minimize cix
subject to Ax = b
0= xc R”
Let x° be an optimal solution to the problem (P,). A valid inequality
for X! mw'x =m, is called a cut if #'x° < .
We put
V={veR";v= Ax, 05 xe€ Z"}.
If v' = Ax' € Vand v?= Ax%*e V, we have v' + v?= A (x'+ x?%)
e V. Put A = (ay) = (ai,, a,),
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al{‘ 0
Z 0 .
a; = i |, and e = 1| —7 (1 < ] = m),
: 0
Ams ()
then we have Ae; = a;, therefore a; ¢ V (1 < 7 £ m).

Let f be a real-valued function defined on V. fis said to be a

subadditive function on V if

f)+ 1) z f(v' + v*)

for any o! and v? in V.

THEOREM 1. (¢f. Theorem 1.5 of [2] and Theorem 7.12 of [4])
Let f be a subadditive function on V satisfving f (0) = 0. Then the ine-
quality

2 fla)x; = f(b)

is a valid inequality for X'.

Proof. First, we shall show that if fis subadditive, it holds
14 L
2 flvi)z = (2 viz;) (1)
J=1 J=1
for any integer { > 0, any v;€ Vand any z;€ Z, z; = 0(1<j< ).

13
Put £k = 3 z, then £ = (0. We shall prove (1) by induction on A

J=1

If 2 = 0, it holds by the asssumption of f(0) = 0. If 2 =1, (1) is
trival. Let » = 2. Suppose, as the induction hypothesis, that (1) is
satisfied for & = »—1. Consider now 2 = ». We may assume 2 =21
Then
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SO 0z) = Flot o (6= D)+ 3 o)
< fv) + foi(z—1) + _é v;2;)

< flo) + flo) (a—1) + é!f(vj)zj

é fv)z

by the induction hypothesis and by subadditivity. Thus, (1) is proven
by induction.
Now, by the assumption of X’ % ¢ we have b€ V. For any

X = (x;) 1s52» In X', we have

M

a;x; = b,
1

J

so we have by (1)

f(b)

f (é a;x;)

= é Sfla;)x;

Hence it is a valid inequality for X"

2. For an integer m (> 1), Z, denotes a complete residue
system modulus m:Z, = {0, 1, -+ , m—1} - We define the function
fmon Zto Z, as follows: for any =n € Z, there exists ¢ € Z, such
that » = a (mod m), so we define f, () = a. For any « and b € Z,

a = b (mod m) implies b-a is divisible by .

THEOREM 2. The function fn is subadditive on Z and on any
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subset U of Z.

Proof. We shall show for any »n and # € Z,
fo ) + fo ') 2 fu (0 + w) - (2)
If fn (n) + fu (w) = m—1, (2) is satisfied with equality since we
have fn, (n) + fu (') = fu(m + n')(mod m) and 0 < f, (n + n’ )
< m-1. If f, (m) + fm (') = m, (2) is satisfied, since 0 £ f, (n +

n) < m-1.

ExamMpLE 1. We put
X ={xe R*;5x + 3x; + 22+ %, = 7, -
0<xeZ lsj<4),

then we have

V={5x +3%+2x+x;0LxeZ 14}
We have V= {xeZ;x=20}, since 1 € V and 0 € V. By Theorem
1 and Theorem 2, for every integer m (> 1), an inequality

Fa8)xr + fu(3) %2 + f(2) 25 + fu (D) 2 2 fu(T)

is a valid inequality for X':

for m = 2, n+xt+tx =1,

for m = 3, 20+ 2%+ x4, = 1,

for m = 4, X+ 3%+ 2%+ x4 = 3,
for m = 5, 3%+ 223+ 2 = 2.

Let £(> 0) be an integer. For any j with 1 <7< ¢ and any
integer m( > 1), we define the function £ on Z! to Z, as follows :
S ((mizize ) = fm(n;),

for any (#i)1zize € Z¢

THEOREM 3. The function f is subadditive on Z' and on any
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subset V of Z-

Proof. For any (n;) € Z* and (n;) € Z! we have
falm)) + frn((n)) = fu(n) + fu(ng)
2 fu(n;+ nj)
= il + ni))
= ful(n) + (n))

Therefore fJ, is a subadditive function on Z*

ExamMPLE 2. We put
X' ={xeR5; x, + 2%, + 2xs + 32, + 5x5 = 10,
3x1 — 3% + 223+ 3x, + 2% = 7,
0=x€eZ 175}

1 2 2 35 10
A = and b = ,
3-3 2 3 2 7

X' ={xe R°; Ax = b, 0= xe Z°).
Since V ={Ax ; 0= x ¢ Z°), so V C Z% For every integer m( > 1)

Put

then

and j(=1,2), an inequality

0+ (B4 e G 49

is valid for X7 by Theorem 1 and Theorem 3 :

for =1 and m = 3, X+ 2%+ 2x5 4+ 2x5 = 1,
for j=1 and m =4, X+ 2%+ 2%+ 3%, + x5 = 2,
for j=2 and m = 2, n+x+x =1,

for 7=2 and m =3, 245 + 2% = 1.
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3. Consider the integer programming problem (P,)

minimize zZ = ¢'x
subject to Ax = b
0 xe 20

where A € R™” be R™and ¢ € R® We assume A is an integer
matrix and b and ¢ are integer'vectors (they may be rational ; in-
deed they satisfy the assumption by multiplying by an integer). Sup-
pose that m < »n and rank A = m. Consider the associated linear
programming problem (P,)
minimize zZ = c'x
subject to Ax = b
0= xe R”
Let B be an optimal basis matrix to the problem (P,), so (P;) can be
written
minimize z = z5 + CiuXxn
subject to X5+ Nxy = b
0 xge€ Z™ 0 xy€ ZM™
Put / = n— m. We assume xy = (%1,-, x,)t and Xz = (X4, =+, )’

without loss of generality. Then the problem (P;) can be written
minimize zZ = zp+ 2 ¥

Subject to Xivi + 2 Eij X; = Z—Ji (1 = i§ m)
J=1

0=x;e Z (Q=£55n).

If b is an integer vector, then X = (Xz Xx) = (b, 0) is in X7,
so X is an optimal solution to the problem (P,). Therefore we assume
b is not an integer vector. Then there exists 7 (1 < i< m) such that

b; is not an integer : consider the constraint
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[
X: + 2 Q% = bi, (3)

J=1

where a@;; and b; are rational numbers.

We define f(a) = a— [a] for any a € R, where [ ]is a Gauss’
symbol, i. e., [a] denotes the maximal integer not greater than a.
Then we have 0 £ f(a)< 1. For any a and b € R, we write a = b

(mod 1) when & — a is an integer. Then we have
L . —
2 flai)x; = f(b) (mod 1)
=1
by the constraint (3), so we have

f(au)xJ = f(b); (4)

nM...

this inequality is called a Gomory cut because it does not hold when
% =017 0.

Now there exists an integer D(> }) such that Da;; € Z (1 £7
< 1) and Db; € Z so the constraint (3) can be written

! _ -
Dxy; + X Daix; = Db;.

Jj=1

We obtain by Theorem 2 a valid inequality
t _— —_
'21: fo(Da;)x; = fo(Dby).,
a

This inequality is the same as a Gomory cut (4), since putting

Gy = D% and 5, =2 (D, D, € 2), we have

)= fo(Da) — fD(Daij)
flai;) = D D ’

7)) — fD(Db) fD(DEz’)
f(bz) - D = D .
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ExAmMPLE 3.
minimize

subject to
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Consider the integer programming problem

Z = x1+xZ+x3+*2x4+2x5
0+ 2%+ x5+ x4+ 5x = 10

32, — 3%+ 223 — 3x4+ 3% = 5

0L« € Z,

1=/<5

The optimal linear programming tableau is

minimize

subject to

or

subject to

(see Example 1 of [2]

).

2 =

X+ =

X2 +——

_'X3+

5 5
3 AT
1 7 40
TTEATTEA T
2 4 25
g TR g

9%, + Txs — 3x, + 21x; = 40
9x2 + X3 + GX4 + ].sz = 25

By Theorem 3 we have valid inequalities as follows :

for j=1
for j=1
for j=1
for j=2
for j=2
for j=2
for j=2
for j=2

The third and the last inequalities

and
and
and
and
and
and
and

and

m=3,
m=1,
m=9,
m=2,
m =3,
m =4,
m =6,
m=29,

x =1 ,

2%, + 4x = 5,

Tx; + 62, + 3% = 4,
X+ x3 =1,
X = 1,

Xp+ x5+ 22, 2 1,
3, tx =1,

x3+6x4+3x5 = 7.

of these are Gomory cuts.
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