VALID INEQUALITIES AND SUBADDITIVITY FOR INTEGER PROGRAMMING PROBLEMS

MIDORI KOBAYASHI

1. Consider the integer programming problem (P_1)

minimize $c^t x$ subject toAx = b

$$0 \leq x \in Z^n$$

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^{m}$ and $c \in \mathbb{R}^{n}$. Throughout this paper, \mathbb{R} and \mathbb{Z} denote the set of all real numbers and the set of all integers respectively.

Suppose that the set

$$X^{I} = \{ \boldsymbol{x} \in \boldsymbol{R}^{n} ; A \boldsymbol{x} = \boldsymbol{b}, \boldsymbol{0} \leq \boldsymbol{x} \in \boldsymbol{Z}^{n} \}$$

of feasible solutions is bounded and not empty.

Let π be in \mathbb{R}^n and π_0 be a real number. An inequality $\pi^t x \ge \pi_0$ is called a valid inequality for X^I if it is satisfied by all $x \in X^I$. We consider the associated linear programming problem (P₀)

minimize
$$c^{t}x$$

subject to $Ax = b$
 $0 \leq x \in R^{n}$.

Let x^0 be an optimal solution to the problem (P₀). A valid inequality for X^i , $\pi^i x \ge \pi_0$, is called a cut if $\pi^i x^0 < \pi_0$.

We put

 $V = \{ v \in \mathbb{R}^{m} ; v = Ax, 0 \leq x \in \mathbb{Z}^{n} \}.$ If $v^{1} = Ax^{1} \in V$ and $v^{2} = Ax^{2} \in V$, we have $v^{1} + v^{2} = A(x^{1} + x^{2})$ $\in V$. Put $A = (a_{ii}) = (a_{1}, \dots, a_{n}),$

$$\boldsymbol{a}_{j} = \begin{pmatrix} a_{1j} \\ \vdots \\ \vdots \\ a_{mj} \end{pmatrix}$$
, and $\boldsymbol{e}_{j} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} - j$ $(1 \leq j \leq m)$

then we have $Ae_j = a_j$, therefore $a_j \in V$ $(1 \leq j \leq m)$.

Let f be a real-valued function defined on V. f is said to be a subadditive function on V if

$$f(\boldsymbol{v}^1) + f(\boldsymbol{v}^2) \geq f(\boldsymbol{v}^1 + \boldsymbol{v}^2)$$

for any v^1 and v^2 in V.

THEOREM 1. (cf. Theorem 1.5 of [2] and Theorem 7.12 of [4]) Let f be a subadditive function on V satisfying f(0) = 0. Then the inequality

$$\sum_{j=1}^{n} f(\boldsymbol{a}_{j}) \boldsymbol{x}_{j} \geq f(\boldsymbol{b})$$

is a valid inequality for X'.

Proof. First, we shall show that if f is subadditive, it holds

$$\sum_{j=1}^{l} f(\boldsymbol{v}_j) z_j \geq f(\sum_{j=1}^{l} \boldsymbol{v}_j z_j)$$
(1)

for any integer l > 0, any $v_j \in V$ and any $z_j \in \mathbb{Z}$, $z_j \ge 0$ $(1 \le j \le l)$.

Put $k = \sum_{j=1}^{l} z_j$, then $k \ge 0$. We shall prove (1) by induction on k.

If k = 0, it holds by the assumption of f(0) = 0. If k = 1, (1) is trival. Let $r \ge 2$. Suppose, as the induction hypothesis, that (1) is satisfied for k = r-1. Consider now k = r. We may assume $z_1 \ge 1$. Then

$$f\left(\sum_{j=1}^{l} v_{j}z_{j}\right) = f\left(v_{1} + v_{1} (z_{1} - 1) + \sum_{j=2}^{l} v_{j}z_{j}\right)$$

$$\leq f(v_{1}) + f\left(v_{1} (z_{1} - 1) + \sum_{j=2}^{l} v_{j}z_{j}\right)$$

$$\leq f(v_{1}) + f(v_{1}) (z_{1} - 1) + \sum_{j=2}^{l} f(v_{j}) z_{j}$$

$$= \sum_{j=1}^{l} f(v_{j}) z_{j}$$

by the induction hypothesis and by subadditivity. Thus, (1) is proven by induction.

Now, by the assumption of $X' \neq \phi$ we have $b \in V$. For any $\mathbf{x} = (x_j)_{1 \leq j \leq n}$ in X', we have

$$\sum_{j=1}^n a_j x_j = b_j$$

so we have by (1)

$$f(\boldsymbol{b}) = f(\sum_{j=1}^{n} \boldsymbol{a}_{j} \boldsymbol{x}_{j})$$
$$\leq \sum_{j=1}^{n} f(\boldsymbol{a}_{j}) \boldsymbol{x}_{j}$$

Hence it is a valid inequality for X^{\prime} .

2. For an integer m (> 1), Z_m denotes a complete residue system modulus $m: Z_m = \{0, 1, \dots, m-1\}$. We define the function f_m on Z to Z_m as follows: for any $n \in Z$, there exists $a \in Z_m$ such that $n \equiv a \pmod{m}$, so we define $f_m(n) = a$. For any a and $b \in Z$, $a \equiv b \pmod{m}$ implies b-a is divisible by m.

THEOREM 2. The function f_m is subadditive on Z and on any

subset U of Z.

Proof. We shall show for any n and $n' \in \mathbb{Z}$,

 $f_m(n) + f_m(n') \ge f_m(n + n')$ (2)

If $f_m(n) + f_m(n') \le m-1$, (2) is satisfied with equality since we have $f_m(n) + f_m(n') = f_m(n + n') \pmod{m}$ and $0 \le f_m(n + n') \le m-1$. If $f_m(n) + f_m(n') \ge m$, (2) is satisfied, since $0 \le f_m(n + n') \le m-1$.

EXAMPLE 1. We put

$$X^{I} = \{ \boldsymbol{x} \in \boldsymbol{R}^{4} ; \, 5x_{1} + 3x_{2} + 2x_{3} + x_{4} = 7, \\ 0 \leq x_{j} \in Z, \, 1 \leq j \leq 4 \},$$

then we have

 $V = \{5x_1 + 3x_2 + 2x_3 + x_4; 0 \leq x_j \in \mathbb{Z}, 1 \leq j \leq 4\}$ We have $V = \{x \in \mathbb{Z}; x \geq 0\}$, since $1 \in V$ and $0 \in V$. By Theorem 1 and Theorem 2, for every integer m(>1), an inequality

 $f_m(5)x_1 + f_m(3)x_2 + f_m(2)x_3 + f_m(1)x_4 \ge f_m(7)$

is a valid inequality for X':

for $m = 2$,	$x_1 + x_2 + x_4 \; \geq \; 1$,
for $m = 3$,	$2x_1 + 2x_3 + x_4 \ge 1$,
for $m = 4$,	$x_1 + 3x_2 + 2x_3 + x_4 \ge 3$,
for $m = 5$,	$3x_2 + 2x_3 + x_4 \geq 2 \; .$

Let t(>0) be an integer. For any j with $1 \le j \le t$ and any integer m(>1), we define the function f_m^j on \mathbb{Z}^t to \mathbb{Z}_m as follows:

$$f_m^j((n_i)_{1\leq i\leq t}) = f_m(n_j)^{\prime},$$

for any $(n_i)_{1 \leq i \leq t} \in Z^t$.

THEOREM 3. The function f_m^j is subadditive on Z^t and on any

subset V of Z^t .

Proof. For any
$$(n_i) \in \mathbf{Z}^t$$
 and $(n'_i) \in \mathbf{Z}^t$, we have
 $f^j_m((n_i)) + f^j_m((n'_i)) = f_m(n_j) + f_m(n'_j)$
 $\ge f_m(n_j + n'_j)$
 $= f^j_m((n_i + n'_i))$
 $= f^j_m((n_i) + (n'_i))$

Therefore f_m^j is a subadditive function on Z^t .

EXAMPLE 2. We put $X^{I} = \{ x \in \mathbb{R}^{5} ; x_{1} + 2x_{2} + 2x_{3} + 3x_{4} + 5x_{5} = 10, \}$

$$3x_1 - 3x_2 + 2x_3 + 3x_4 + 2x_5 = 7$$
$$0 \le x_j \in \mathbb{Z}, \quad 1 \le j \le 5 \}.$$

Put

$$A = \begin{pmatrix} 1 & 2 & 2 & 3 & 5 \\ 3 & -3 & 2 & 3 & 2 \end{pmatrix}$$
 and $b = \begin{pmatrix} 10 \\ 7 \end{pmatrix}$,

then

$$X' = \{ x \in \mathbf{R}^{\mathfrak{s}} ; A x = b, \ \mathbf{0} \leq x \in \mathbf{Z}^{\mathfrak{s}} \}.$$

Since $V = \{A\mathbf{x} ; \mathbf{0} \leq \mathbf{x} \in \mathbf{Z}^5\}$, so $V \subset \mathbf{Z}^2$. For every integer m(>1) and j(=1, 2), an inequality

$$f_{m}^{j}\binom{1}{3}x_{1} + f_{m}^{j}\binom{2}{-3}x_{2} + f_{m}^{j}\binom{2}{2}x_{3} + f_{m}^{j}\binom{3}{3}x_{4} + f_{m}^{j}\binom{5}{2}x_{5} \ge f_{m}^{j}\binom{10}{7}$$

is valid for X^{I} by Theorem 1 and Theorem 3 :

for j = 1 and m = 3, $x_1 + 2x_2 + 2x_3 + 2x_5 \ge 1$,for j = 1 and m = 4, $x_1 + 2x_2 + 2x_3 + 3x_4 + x_5 \ge 2$,for j = 2 and m = 2, $x_1 + x_2 + x_4 \ge 1$,for j = 2 and m = 3, $2x_3 + 2x_5 \ge 1$.

,

3. Consider the integer programming problem (P_1)

minimize $z = c^t x$ subject to Ax = b $0 \le x \in Z^n$

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ and $c \in \mathbb{R}^n$. We assume A is an integer matrix and b and c are integer vectors (they may be rational; indeed they satisfy the assumption by multiplying by an integer). Suppose that m < n and rank A = m. Consider the associated linear programming problem (P₀)

> minimize $z = c^t x$ subject to Ax = b $0 \le x \in R^n$.

Let *B* be an optimal basis matrix to the problem (P_0) , so (P_1) can be written

Put l = n - m. We assume $\mathbf{x}_N = (x_1, \dots, x_l)^t$ and $\mathbf{x}_B = (x_{l+1}, \dots, x_n)^t$ without loss of generality. Then the problem (P₁) can be written

minimize
$$z = z_B + \sum_{j=1}^{l} \overline{c}_j x_j$$

subject to $x_{l+i} + \sum_{j=1}^{l} \overline{a}_{ij} x_j = \overline{b}_i \ (1 \le i \le m)$
 $0 \le x_j \in \mathbb{Z} \quad (1 \le j \le n)$.

If **b** is an integer vector, then $\overline{\mathbf{x}} = (\overline{\mathbf{x}}_B, \overline{\mathbf{x}}_N) = (\overline{\mathbf{b}}, \mathbf{0})$ is in X^I , so $\overline{\mathbf{x}}$ is an optimal solution to the problem (P₁). Therefore we assume $\overline{\mathbf{b}}$ is not an integer vector. Then there exists $i \ (1 \le i \le m)$ such that b_i is not an integer : consider the constraint

$$x_{l+i} + \sum_{j=1}^{l} \bar{a}_{ij} x_j = \bar{b}_i , \qquad (3)$$

where \overline{a}_{ij} and \overline{b}_i are rational numbers.

We define f(a) = a - [a] for any $a \in \mathbf{R}$, where [] is a Gauss' symbol, i. e., [a] denotes the maximal integer not greater than a. Then we have $0 \le f(a) < 1$. For any a and $b \in \mathbb{R}$, we write $a \equiv b$ (mod 1) when b - a is an integer. Then we have

$$\sum_{j=1}^{l} f(\overline{a}_{ij}) x_j \equiv f(\overline{b}_i) \pmod{1}$$

by the constraint (3), so we have

$$\sum_{j=1}^{l} f(\bar{a}_{ij}) x_j \ge f(\bar{b}_i) ; \qquad (4)$$

this inequality is called a Gomory cut because it does not hold when $x_j = 0 (1 \le j \le l)$.

Now there exists an integer D(>1) such that $D\bar{a}_{ij} \in \mathbb{Z}$ $(1 \leq j \leq l)$ and $D\bar{b}_i \in \mathbb{Z}$, so the constraint (3) can be written

$$Dx_{l+i} + \sum_{j=1}^{l} D\overline{a}_{ij}x_j = D\overline{b}_i.$$

We obtain by Theorem 2 a valid inequality

$$\sum_{j=1}^{l} f_D(D\overline{a}_{ij}) x_j \geq f_D(D\overline{b}_i).$$

This inequality is the same as a Gomory cut (4), since putting $\bar{a}_{ij} = \frac{D_a}{D}$ and $\bar{b}_i = \frac{D_b}{D}$ ($D_a, D_b \in \mathbb{Z}$), we have

$$f(\bar{a}_{ij}) = \frac{f_D(D_a)}{\bar{D}} = \frac{f_D(D\bar{a}_{ij})}{\bar{D}} ,$$

$$f(\bar{b}_i) = \frac{f_D(D_b)}{\bar{D}} = \frac{f_D(D\bar{b}_i)}{\bar{D}} .$$

EXAMPLE 3. Consider the integer programming problem

minimize
$$z = x_1 + x_2 + x_3 + 2x_4 + 2x_5$$

subject to $x_1 + 2x_2 + x_3 + x_4 + 5x_5 = 10$
 $3x_1 - 3x_2 + 2x_3 - 3x_4 + 3x_5 = 5$
 $0 \le x_j \in \mathbb{Z}, \quad 1 \le j \le 5$

The optimal linear programming tableau is

minimize
$$z = \frac{5}{3}x_3 + \frac{5}{3}x_4 + \frac{5}{9}x_5$$

subject to $x_1 + \frac{7}{9}x_3 - \frac{1}{3}x_4 + \frac{7}{3}x_5 = \frac{40}{9}$ $x_2 + \frac{1}{9}x_3 + \frac{2}{3}x_4 + \frac{4}{3}x_5 = \frac{25}{9}$

or

subject to
$$9x_1 + 7x_3 - 3x_4 + 21x_5 = 40$$

 $9x_2 + x_3 + 6x_4 + 12x_5 = 25$

(see Example 1 of [2]).

By Theorem 3 we have valid inequalities as follows :

for $j = 1$ and $m = 3$,	$x_3 \geq 1$,
for $j = 1$ and $m = 7$,	$2x_1 + 4x_2 \ge 5$,
for $j = 1$ and $m = 9$,	$7x_3 + 6x_4 + 3x_5 \ge 4$,
for $j = 2$ and $m = 2$,	$x_2+x_3 \ge 1$,
for $j = 2$ and $m = 3$,	$x_3 \geq 1$,
for $j = 2$ and $m = 4$,	$x_2 + x_3 + 2x_4 \ge 1$,
for $j = 2$ and $m = 6$,	$3x_2+x_3 \ge 1$,
for $j = 2$ and $m = 9$,	$x_3 + 6x_4 + 3x_5 \ge 7$.

The third and the last inequalities of these are Gomory cuts.

References

- [1] B. E. Gillett, Introduction to Operations Research, McGraw-Hill, 1976.
- [2] R. E. Gomory and E. L. Johnson, Some continuous functions related to corner polyhedra I, Mathematical Programming 3 (1972), 23-85.
- [3] R. E. Gomory and E.L. Johnson, Some continuous functions related to corner polyhedra II, Mathematical Programming 3 (1972), 359-389.
- [4] H. Konno, Seisu-keikaku-ho (in Japanese), Sangyo-Tosho, 1981.