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MIDORI KOBAYASHI

Let » be any triangular number: #=1+2+ --- + %, where % is a
natural number.

Form a pile of » cards, then divide it into arbitrary piles with an
arbitrary number of cards in each pile. Take one card from each pile
and with them make a new pile. Keep repeating the procedure. It is
conjectured that regardless of the initial state you will reach the con-
secutive state, i. e, (1, 2, 3, ===, k) in finite steps: the game must end
because the consecutive state cannot change. This game is called
Bulgarian Solitairesl)

For example, in case k=3, n=25,

(1, 1, 4)—=(3, 3)—(2, 2, 2)—>(1, 1, 1, 3)—(2, 4)—(1, 2, 3),
(6)—(1, 5)—(2, 4)—(1, 2, 3),
and in case k=4, n=10,
(1, 1, 3, 5)—=(2, 4, 4)—=(1, 3, 3, 3)—>(2, 2, 2, 4)—(1, 1, 1, 3, 4)—
—(2, 3, 5)—(1, 2, 3, 4).
The above games end with the consecutive state in 5, 3 and 6 steps,
respectively.

It is conjectured that for n=1+2+ -+ + %k, any game must end in
no more than &£(Z — 1) steps, and in 1982 Donald E. Knuth and his
students of Stanford University comfirmed it for £=10 by computer(.Z)

In this paper we shall show that the above conjecture cannot be .

(1) M. Gardner, “Mathematical Games,” Scentific American, Vol. 249, No. 2, 1983, 8-13.
(2) Gardner, op. cit., 1983, 11.
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made better in a sense, that is, we shall prove the following:

Let k be any natural number (= 3). Put n=1+2+---+k The parii-
tiom of m, (1, 1, 2, 3, -, k=2, k—1, k—1) reaches the consecutive state

by Bulgarian operation in k(k—1) steps.

The partition (1, 1, 2, 3, -, k42, k—1, k—1) is called the top of
the main trunk of Bulgarian tree by Gardner(.s) -

Now we shall prove the above theorem for k= 6; it is easily check-
ed for k<5.

The initial state is (1, 1, 2, 3, -, k=2, k—1, k—1), so we have (1,
2,3, ", k=2, k=2, k+1) after the lst step, (1, 2, ~=*, k~3, k-3, &k k)
after the 2nd step, (1, 2, ---, k—4, k—4, k—1, k—1, k) after the 3rd
step, and so on, (1, 1, 4, 4, 5, -+, k) -after the (k—2) th step and (3,3,
4, 5, -, k—1, k) after the (k—1) th step. Hence we have (2, 2, 3, 4,
=+, k=2, k—1, k—1) after the kth step.

Let 2=/=k—3. We shall show by induction on /that we have (1,
<2, v, =1, 141, 41, 142, - k=1, k—1) after the lkth step.
If /=2, it is easily checked that we have (I, .1, 3, 5,5 6, =, k
after the (2k—2) th step, so (1, 3, 3, 4, 5, -+, k=2, k—1, k—1) after
the 2%th step.

If /=3, we have (2, 2, 3, 4, .-, k=3, k=2, k—2, k) after the (2k+
1)th step and (1, 1, 3, 4, 6, 6, 7, ---, k) after the (3%&—2)th step, so we
have (1, 2, 4, 4, 5, -+, k—1, k—1) after the 3/th step.

Suppose, then, that 4=/=<k—3. By induction we may have (1, 2, ---,
-2, 11 I+1, -, k—1, k—1) after the ([—1)kth step. Then we have
1, 2, -, =3, I-1, I-1, {, -, k=2, k=2, k) after the ((/—1) k+1) th

(3) Gardner, op. cit., 1983, 11.
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step, and so on, (1, 3, 3, 4, 5, -+, k=142, k—[+2, k—[+4, -, k-1,
k) after the ((I—1) k+ [ -3) th step. So we get (1, 2, -, b—1[-2,
k—1—2, k—1 -, k=2, k k) after the ((/—1)k+ /+1)th step. And
we have (1, 1, 3, 4, =, I+1,'[+3, [+3, (+4, -, k) after the ((/—1)
k+ k—2) th step, so (2, 3, -+, [, [+2, [+2, 43, -, k—1, k) after the
(({—1) &+ k£—1) th step, hence we obtain (1, 2, -, =1, I+1, I+1, I+
2, -, k=1, k—1) after the ((/{—1)k+ k)= lkth step.

Therefore, putting /=%—3, we have (1, 2, -+, k—4, k—2, k—2, k—1,
k—1) after the (k—3)kth step. So we get (1, 2, -+, k—4, k-3, k—1,
k—1, k—1) after the (k—2)kth step. Further we have (1, 2, -+, k—4,
k—2, k—2, k—2, k) after the ((k—2)k+1)th step, (1, 3,3, 3,5, ",k
after the ((k—2) k+k—4)th step, hence (1, 2, -+, k—2, k—1, k) after
the (k—1)kth step. This completes the proof.

We shall next show that for any triangular number n=14+2+---+ 4,
the partition (%) reaches the consecutive state in (z— Ath steps, where
(n) is the next state of the partition (1, 1, ---,1) by Bulgarian opera-
tion. "

Put S,=14+2+ --- +m with 1<m<k—1. We shall show by induc-
tion on m the state after the S, th step is (1, 2, ---, m, n—Sy).

The state after the Ist step is (1, #—1) and the state after the 3rd

step is (1, 2, n—3), so the assertion holds for m=1, 2.

Suppose 3< m<=k—1. By induction we may have (1, 2, -=-, m—1,
n—Sn.) after the S, th step. Then we have (1, 2, -+, m—2, m,
n—Sna—1) after the (S, +1)th step, (1, 3, 4, -, m, n—S,+2)

after the (S, +m—2)th step, so (1, 2, «-- m, n—S,) after the (S,
+m)=Snrth step.

Hence, putting m=k—1, we have (1, 2, -, k) after the (n—FA)th
step because Si-1=n—~.

For t<S,.,, the state after the fth step cannot be consecutive con-
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sidering n—t> k. Therefore for the first time we reach the consecutive

state after the (n— A)th step.





