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 Let nbe any triangular number: n=l+2+ å å •E +k, where j^ is a

natural number.

 Form a pile of n cards, then divide it into arbitrary piles with an

arbitrary number of cards in each pile. Take one card from each pile

and with them make a new pile. Keep repeating the procedure. It is

conjectured that regardless of the initial state you will reach the con-

secutive state, i. e., (1, 2, 3, •E•E•E , k) in finite steps: the game must end

because the consecutive state cannot change. This game is called

Bulgarian Solitaire.

 For example, in case k=3, n=6,

  (1, 1, 4)->(3, 3)->(2, 2, 2)->(l, 1, 1, 3)-*(2, 4)->(l, 2, 3),

  (6)->(l, 5)-(2, 4)->(l, 2, 3),

and in case k=4, n=lO,

 (1, 1, 3, 5)-»(2, 4, 4)->(l, 3, 3, 3)->(2, 2, 2, 4)->(l, 1, 1, 3, 4)->

  ->(2, 3, 5)->(l, 2, 3, 4).

The above games end with the consecutive state in 5, 3 and 6 steps,

respectively.

 It is conjectured that for n=l+2+ å å •E +k, any game must end in

no more than k{k -1) steps, and in 1982 Donald E. Knuth and his
                                                 (2)students of Stan ford University comfirmed it for kS 10 by computer.

 In this paper we shall show that the above conjecture cannot be

(1) M. Gardner, "Mathematical Games," Scentific American, Vol. 249, No. 2, 1983, 8-13.

(2) Gardner, op. cit, 1983, ll.
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made better in a sense, that is, we shall prove the following: 

Let k be any natural number (~ 3). Put n = 1 + 2 + ... + k. The parti­

tion of n, (1, 1, 2, 3, ... , k-2, k-l, k-l) reaches the consecutive state 

by Bulgarian operation in k(k-l) steps. 

The partition (1, 1, 2, 3, ... , k- 2, Ie-I, 1e-1) IS called the top of 
(3) 

the main trunk of Bulgarian tree by Gardner. 

N ow we shall prove the above theorem for Ie ~ 6; it is easily check­

ed for k~5. 

The initial state is (1, 1, 2, 3, ... , k- 2, Ie-I, k-l), so we have (1, 

2, 3, ... , k- 2, k- 2, k+ 1) after the 1st step, (1, 2, ... , k- 3, k- 3, k, k) 

after the 2nd step, (1, 2, ... , k-4, 1e-4, Ie-I, k-l, k) after the 3rd 

step, and so on, (1, 1, 4, 4, 5, ... , k) -after the (k-2) th step and (3,3, 

4, 5, ... , k-l, k) after the (k-l) th step. Hence we have (2, 2, 3, 4, 

... , k-2, k-l, k-l) after the kth step. 

Let 2 ~ I;;;;; k- 3. We shall show by induction on I that we have (1, 

. 2, ... , 1-1, 1+ 1, 1+ 1, 1+ 2, ... , k-l, k-l) after the lkth step. 

If 1= 2, it is easily checked that we have (1, 1, 3, 5, 5, 6, ... , k) 

after the (2 k- 2) th step, so (1, 3, 3, 4, 5, ... , k- 2, k-l, k-l) after 

the 2 kth step. 

If 1=3, we have (2, 2, 3, 4, ... , 1:-3, k-2, /(-2, k) after the (2k+ 

l)th step and (1, 1, 3, 4, 6, 6, 7, ... , Ie) after the (3k-2)th step, so we 

have (1, 2, 4, 4, 5, ... , /,-1, 1e-1) after the 3kth step. 

Suppose, then, that 4 ~ I ~k-3. By induction we may have (1, 2, ... , 

1-2, I, I, 1+1, ... , k-l, k-l) after the (l-I)kth step. Then we have 

(1,2, ···,1-3,1-1,1-1, 1,···,k-2, k-2, k) after the ((1-1) k+l) th 

(3) Gardner, op. cit., 1983, 11. 
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step, and so on, (1, 3, 3, 4, 5, ... , k-l+ 2, k-l+ 2, k-l+4, "', k-l, 

k) after the ((l-1) k+ l -3) th step. So we get (1,2. "', k-I-2, 

J?-l- 2, k-l, "', k- 2, k, k) after the ((l-lJk+ 1+ l)th step. And 

we have (1, 1, 3, 4, "', 1+1, '1+3, l+3, l+4, "', k) after the ((l-I) 

k+k-2) th step, so (2, 3, "', l, l+2, l+2, l+3, "', k-1, k) after the 

(( l-l) k+ k-l) th step, hence we obtain (1, 2, "', l-l, l+ 1, l+ 1, l+ 

2, ... , k -1, k-:-l) after the ((l-I) k+ k) = lkth step. 

Therefore, putting l= k-3, we have (1, 2, "', k-4, k-2, k-2, k-l, 

k-l) after the (k-3)kth step. So we get (1, 2, ... , k-4, k-3, k-l, 

k-1, k-l) after the (k-2)kth step. Further we have (1, 2, "', k-4, 

k-2, k-2, k-2, k) after the ((k-2)k+l)th step, (1,3,3,3,5, ... ,k) 

after the ((k- 2) k+ k-4) th step, hence (1, 2, '" , k- 2, k-l, k) after 

the (k-l)kth step. This completes the proof. 

We shall next show that for any triangular number n = 1 + 2 + ... + k, 

the partition (n) reaches the consecutive state in (n- k)th steps, where 

(n) is the next state of the partition (1, 1, ... ,1) by Bulgarian opera-
'---v-' 

tion. 
n 

Put Sm= 1 +2+ .. , + m with 1~ m ~ k-l. We shall show by induc­

tion on m the state after the Sm th step is (1, 2, "', m, n - Sm). 

The state after the 1st step is (1, n-l) and the state after the 3rd 

step is (1, 2, n-3), so the assertion holds for m= 1, 2. 

Suppose 3 ~ m~ k-l. By induction we may have (1, 2, ... , m-l, 

n-Sm-l) after the Sm-l th step. Then we have (1, 2, "', m-2, m, 

n-S m-l-l) after the (Sm-l+l)th step, (1,3,4, "', m, n-S m +2) 

after the (Sm-l + m-2)th step, so (1, 2, '" m, n-S m ) after the (Sm-l 

+ m) =Sm th step. 

Hence, putting m= k-l, we have (1, 2, ... ,k) after the (n- k)th 

step because Sk-l= n- k. 

For t< Sk-l, the state after the tth step cannot be consecutive con-
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sidering n- t> k. Therefore for the first time we reach the consecutive 

state after the (n- k)th step. 




