A NOTE ON BULGARIAN SOLITAIRE

MIDORI KOBAYASHI

Let n be any triangular number: $n=1+2+\cdots+k$, where k is a natural number.

Form a pile of n cards, then divide it into arbitrary piles with an arbitrary number of cards in each pile. Take one card from each pile and with them make a new pile. Keep repeating the procedure. It is conjectured that regardless of the initial state you will reach the consecutive state, i. e., $(1,2,3, \cdots, k)$ in finite steps: the game must end because the consecutive state cannot change. This game is called Bulgarian Solitaire. ${ }^{(1)}$

For example, in case $k=3, n=6$,

$$
(1,1,4) \rightarrow(3,3) \rightarrow(2,2,2) \rightarrow(1,1,1,3) \rightarrow(2,4) \rightarrow(1,2,3),
$$

$$
(6) \rightarrow(1,5) \rightarrow(2,4) \rightarrow(1,2,3),
$$

and in case $k=4, n=10$,

$$
\begin{aligned}
& (1,1,3,5) \rightarrow(2,4,4) \rightarrow(1,3,3,3) \rightarrow(2,2,2,4) \rightarrow(1,1,1,3,4) \rightarrow \\
& \rightarrow(2,3,5) \rightarrow(1,2,3,4) .
\end{aligned}
$$

The above games end with the consecutive state in 5,3 and 6 steps, respectively.

It is conjectured that for $n=1+2+\cdots+k$, any game must end in no more than $k(k-1)$ steps, and in 1982 Donald E. Knuth and his students of Stanford University comfirmed it for $k \leqq 10$ by computer. ${ }^{(2)}$

In this paper we shall show that the above conjecture cannot be
(1) M. Gardner, "Mathematical Games," Scentific American, Vol. 249, No. 2, 1983, 8-13.
(2) Gardner, op. cit., 1983, 11.
made better in a sense, that is, we shall prove the following:

Let k be any natural number $(\geqq 3)$. Put $n=1+2+\cdots+k$. The partition of $n,(1,1,2,3, \cdots, k-2, k-1, k-1)$ reaches the consecutive state by Bulgarian operation in $k(k-1)$ steps.

The partition ($1,1,2,3, \cdots, k-2, k-1, k-1$) is called the top of the main trunk of Bulgarian tree by Gardner.

Now we shall prove the above theorem for $k \geqq 6$; it is easily checked for $k \leqq 5$.

The initial state is $(1,1,2,3, \cdots, k-2, k-1, k-1)$, so we have (1 , $2,3, \cdots, k-2, k-2, k+1)$ after the lst step, $(1,2, \cdots, k-3, k-3, k, k)$ after the 2 nd step, $(1,2, \cdots, k-4, k-4, k-1, k-1, k)$ after the 3 rd step, and so on, $(1,1,4,4,5, \cdots, k)$ after the $(k-2)$ th step and $(3,3$, $4,5, \cdots, k-1, k)$ after the $(k-1)$ th step. Hence we have $(2,2,3,4$, $\cdots, k-2, k-1, k-1)$ after the k th step.
Let $2 \leqq l \leqq k-3$. We shall show by induction on l that we have $(1$, $2, \cdots, l-1, l+1, l+1, l+2, \cdots, k-1, k-1)$ after the $l k t h$ step.
If $l=2$, it is easily checked that we have $(1,1,3,5,5,6, \cdots, k)$ after the ($2 k-2$) th step, so $(1,3,3,4,5, \cdots, k-2, k-1, k-1)$ after the $2 k$ th step.

If $l=3$, we have $(2,2,3,4, \cdots, k-3, k-2, k-2, k)$ after the $(2 k+$ $1)$ th step and $(1,1,3,4,6,6,7, \cdots, k)$ after the $(3 k-2)$ th step, so we have ($1,2,4,4,5, \cdots, k-1, k-1$) after the $3 k$ th step.
Suppose, then, that $4 \leqq l \leqq k-3$. By induction we may have ($1,2, \cdots$, $l-2, l, l, l+1, \cdots, k-1, k-1)$ after the $(l-1) k$ th step. Then we have $(1,2, \cdots, l-3, l-1, l-1, l, \cdots, k-2, k-2, k)$ after the $((l-1) k+1)$ th
(3) Gardner, op. cit., 1983, 11.
step, and so on, $(1,3,3,4,5, \cdots, k-l+2, k-l+2, k-l+4, \cdots, k-1$, k) after the $((l-1) k+l-3)$ th step. So we get ($1,2, \cdots, k-l-2$, $k-l-2, k-l, \cdots, k-2, k, k)$ after the $((l-1) k+l+1)$ th step. And we have ($1,1,3,4, \cdots, l+1, l+3, l+3, l+4, \cdots, k$) after the ($l-1$) $k+k-2$) th step, so ($2,3, \cdots, l, l+2, l+2, l+3, \cdots, k-1, k$) after the $((l-1) k+k-1)$ th step, hence we obtain $(1,2, \cdots, l-1, l+1, l+1, l+$ $2, \cdots, k-1, k-1)$ after the $((l-1) k+k)=l k$ th step.

Therefore, putting $l=k-3$, we have ($1,2, \cdots, k-4, k-2, k-2, k-1$, $k-1)$ after the $(k-3) k$ th step. So we get ($1,2, \cdots, k-4, k-3, k-1$, $k-1, k-1$) after the $(k-2) k$ th step. Further we have ($1,2, \cdots, k-4$, $k-2, k-2, k-2, k)$ after the $((k-2) k+1)$ th step, $(1,3,3,3,5, \cdots, k)$ after the $((k-2) k+k-4)$ th step, hence ($1,2, \cdots, k-2, k-1, k)$ after the $(k-1) k$ th step. This completes the proof.

We shall next show that for any triangular number $n=1+2+\cdots+k$, the partition (n) reaches the consecutive state in $(n-k)$ th steps, where (n) is the next state of the partition $(1,1, \cdots, 1)$ by Bulgarian operation.

Put $\mathrm{S}_{m}=1+2+\cdots+m$ with $1 \leqq m \leqq k-1$. We shall show by induction on m the state after the S_{m} th step is $\left(1,2, \cdots, m, n-\mathrm{S}_{m}\right)$.

The state after the lst step is ($1, n-1$) and the state after the 3rd step is ($1,2, n-3$), so the assertion holds for $m=1,2$.

Suppose $3 \leqq m \leqq k-1$. By induction we may have ($1,2, \cdots, m-1$, $n-S_{m-1}$) after the S_{m-1} th step. Then we have ($1,2, \cdots, m-2, m$, $n-\mathrm{S}_{m-1}-1$) after the ($\mathrm{S}_{m-1}+1$)th step, $\left(1,3,4, \cdots, m, n-\mathrm{S}_{m}+2\right.$) after the $\left(\mathrm{S}_{m-1}+m-2\right)$ th step, so ($1,2, \cdots m, n-\mathrm{S}_{m}$) after the (S_{m-1} $+m)=\mathrm{S}_{m}$ th step.

Hence, putting $m=k-1$, we have $(1,2, \cdots, k)$ after the $(n-k)$ th step because $\mathrm{S}_{k-1}=n-k$.

For $t<\mathrm{S}_{k-1}$, the state after the t th step cannot be consecutive con-
sidering $n-t>k$. Therefore for the first time we reach the consecutive state after the $(n-k)$ th step.

