A NOTE ON BULGARIAN SOLITAIRE

MIDORI KOBAYASHI

Let *n* be any triangular number: $n = 1 + 2 + \cdots + k$, where *k* is a natural number.

Form a pile of *n* cards, then divide it into arbitrary piles with an arbitrary number of cards in each pile. Take one card from each pile and with them make a new pile. Keep repeating the procedure. It is conjectured that regardless of the initial state you will reach the consecutive state, i. e., $(1, 2, 3, \dots, k)$ in finite steps: the game must end because the consecutive state cannot change. This game is called Bulgarian Solitaire.⁽¹⁾

For example, in case k=3, n=6,

$$(1, 1, 4) \rightarrow (3, 3) \rightarrow (2, 2, 2) \rightarrow (1, 1, 1, 3) \rightarrow (2, 4) \rightarrow (1, 2, 3),$$

 $(6) \rightarrow (1, 5) \rightarrow (2, 4) \rightarrow (1, 2, 3),$

and in case k = 4, n = 10,

 $(1, 1, 3, 5) \rightarrow (2, 4, 4) \rightarrow (1, 3, 3, 3) \rightarrow (2, 2, 2, 4) \rightarrow (1, 1, 1, 3, 4) \rightarrow (2, 3, 5) \rightarrow (1, 2, 3, 4).$

The above games end with the consecutive state in 5, 3 and 6 steps, respectively.

It is conjectured that for $n = 1 + 2 + \dots + k$, any game must end in no more than k(k - 1) steps, and in 1982 Donald E. Knuth and his students of Stanford University comfirmed it for $k \le 10$ by computer.⁽²⁾

In this paper we shall show that the above conjecture cannot be

(2) Gardner, op. cit., 1983, 11.

⁽¹⁾ M. Gardner, "Mathematical Games," Scentific American, Vol. 249, No. 2, 1983, 8-13.

made better in a sense, that is, we shall prove the following:

Let k be any natural number (≥ 3). Put $n=1+2+\dots+k$. The partition of n, (1, 1, 2, 3, \dots , k-2, k-1, k-1) reaches the consecutive state by Bulgarian operation in k(k-1) steps.

The partition (1, 1, 2, 3, \cdots , k-2, k-1, k-1) is called the top of the main trunk of Bulgarian tree by Gardner.⁽³⁾

Now we shall prove the above theorem for $k \ge 6$; it is easily checked for $k \le 5$.

The initial state is $(1, 1, 2, 3, \dots, k-2, k-1, k-1)$, so we have $(1, 2, 3, \dots, k-2, k-2, k+1)$ after the lst step, $(1, 2, \dots, k-3, k-3, k, k)$ after the 2nd step, $(1, 2, \dots, k-4, k-4, k-1, k-1, k)$ after the 3rd step, and so on, $(1, 1, 4, 4, 5, \dots, k)$ after the (k-2) th step and $(3, 3, 4, 5, \dots, k-1, k)$ after the (k-1) th step. Hence we have $(2, 2, 3, 4, \dots, k-2, k-1, k-1)$ after the kth step.

Let $2 \le l \le k-3$. We shall show by induction on l that we have (1, 2, \cdots , l-1, l+1, l+1, l+2, \cdots , k-1, k-1) after the lkth step.

If l=2, it is easily checked that we have $(1, 1, 3, 5, 5, 6, \dots, k)$ after the (2k-2) th step, so $(1, 3, 3, 4, 5, \dots, k-2, k-1, k-1)$ after the 2kth step.

If l=3, we have (2, 2, 3, 4, ..., k-3, k-2, k-2, k) after the (2k+ 1)th step and (1, 1, 3, 4, 6, 6, 7, ..., k) after the (3k-2)th step, so we have (1, 2, 4, 4, 5, ..., k-1, k-1) after the 3kth step.

Suppose, then, that $4 \le l \le k-3$. By induction we may have $(1, 2, \dots, l-2, l, l, l+1, \dots, k-1, k-1)$ after the (l-1)kth step. Then we have $(1, 2, \dots, l-3, l-1, l-1, l, \dots, k-2, k-2, k)$ after the ((l-1) k+1) th

step, and so on, $(1, 3, 3, 4, 5, \dots, k-l+2, k-l+2, k-l+4, \dots, k-1, k)$ after the ((l-1) k+l-3) th step. So we get $(1, 2, \dots, k-l-2, k-l-2, k-l-2, k-l, \dots, k-2, k, k)$ after the ((l-1)k+l+1)th step. And we have $(1, 1, 3, 4, \dots, l+1, l+3, l+3, l+4, \dots, k)$ after the ((l-1)k+k-2) th step, so $(2, 3, \dots, l, l+2, l+2, l+3, \dots, k-1, k)$ after the ((l-1) k+k-1) th step, hence we obtain $(1, 2, \dots, l-1, l+1, l+1, l+2, \dots, k-1, k-1)$ after the ((l-1)k+k) = lkth step.

Therefore, putting l = k-3, we have $(1, 2, \dots, k-4, k-2, k-2, k-1, k-1)$ after the (k-3)kth step. So we get $(1, 2, \dots, k-4, k-3, k-1, k-1, k-1)$ after the (k-2)kth step. Further we have $(1, 2, \dots, k-4, k-2, k-2, k-2, k)$ after the ((k-2)k+1)th step, $(1, 3, 3, 3, 5, \dots, k)$ after the ((k-2)k+k-4)th step, hence $(1, 2, \dots, k-2, k-1, k)$ after the (k-1)kth step. This completes the proof.

We shall next show that for any triangular number $n=1+2+\dots+k$, the partition (*n*) reaches the consecutive state in (n-k)th steps, where (*n*) is the next state of the partition $(\underbrace{1, 1, \dots, 1}_{n})$ by Bulgarian operation.

Put $S_m = 1 + 2 + \cdots + m$ with $1 \le m \le k - 1$. We shall show by induction on *m* the state after the S_m th step is $(1, 2, \cdots, m, n - S_m)$.

The state after the lst step is (1, n-1) and the state after the 3rd step is (1, 2, n-3), so the assertion holds for m=1, 2.

Suppose $3 \le m \le k-1$. By induction we may have $(1, 2, \dots, m-1, n-S_{m-1})$ after the S_{m-1} th step. Then we have $(1, 2, \dots, m-2, m, n-S_{m-1}-1)$ after the $(S_{m-1}+1)$ th step, $(1, 3, 4, \dots, m, n-S_m+2)$ after the $(S_{m-1}+m-2)$ th step, so $(1, 2, \dots, m, n-S_m)$ after the $(S_{m-1}+m)=S_m$ th step.

Hence, putting m = k-1, we have $(1, 2, \dots, k)$ after the (n-k)th step because $S_{k-1} = n-k$.

For $t < S_{k-1}$, the state after the *t*th step cannot be consecutive con-

sidering n-t > k. Therefore for the first time we reach the consecutive state after the (n-k)th step.