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1 Introduction 

Tunneling is characterized by high degree of uncertainty, more so than in many other areas of civil engineering. 

Geological uncertainty is the primary source of uncertainty in the construction of mountain tunnels. The ground 

conditions are never known well prior to excavation, and must be inferred based on general information describing 

the geologic formations nearby as well as on location-specific observations provided by subsurface explorations. 

Many studies, including hard methods and soft methods, have been developed to mitigate the geological uncertainties 

in tunnel projects. Hard methods, such as subsurface boring, pilot drilling and advanced geophysical prospecting, 

utilize in-site equipment to obtain geological information in some specific locations along the tunnel alignment. In the 

contrast, several geology prediction approaches, known as soft methods, are developed to complement the results 

from hard methods. They are summarized into four categories as follows.  

The time series approach performs direct analysis on some system variables that change over time, so as to uncover 

hidden trends and patterns from the time-ordered observations (Jeon et al, 2005). Large amounts of information (e.g. 

the deformations of surrounding rock mass) are necessary to uncover the processing of underlying variables (e.g. rock 

mass rating ahead of face). The neural networks approach is also suitable for the prediction of ground conditions, 

because it can analyze non-linear trends and patterns hidden in geologic data through machine learning (Alimoradi et 

al, 2008; Lau et al, 2010). Several types of neural networks, including back-propagation perception networks, support 
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vector machine networks and radial basis function networks, have been widely used as prediction tools in many 

geology related engineering. The Markov process approach regards each single geological parameter as a 

discrete-state continuous-space Markov process (Ioannou, 1987; Ioannou, 1989; Felletti and Beretta, 2009). Based on 

the geological information revealed in some specific locations, the state probability of each single geological 

parameter and further the state probability of ground condition along the tunnel alignment are inferred through 

Bayesian updating and transition probability calculation (Ching and Chen, 2007; Miranda et al, 2009). The hybrid 

approach, which combines these three approaches mentioned above with other mathematical and computational tools, 

is also developed to deal with some specific geology prediction tasks (Leu and Adi, 2011; Leu and Adi, 2011). 

The Markovian geology prediction approach is adopted in this article to dynamically predict the geology condition 

along the tunnel alignment, because it has solid mathematical foundation and is relatively easier to be handled in 

practice. The methodology of Markovian geology prediction approach, which is based on Ioannou (1987), is 

comprehensively reviewed in Section 2. The application to the Chuangshi Tunnel project is carefully studied in 

Section 3, where some limitations and improvements are also presented. Some comments and conclusions are then 

summarized in Section 4.  

 

2 Methodology of Markovian geology prediction approach 

2.1 Single geological parameter as a continues-space discrete-state Markov process 

The spatial variability of a single geologic parameter (e.g. rock type) can be described by its transitions in or out of 

parameter states (e.g. granite, limestone, schist, etc.), each of which has a certain length of persistence. Therefore, one 

single geologic parameter can be regarded as a random process X(t), whose state probability is a function of location t. 

In practice, Markov process with its distinguishing characteristic of one-step memory is often employed to describe 

this random process. The Markovian assumption of one-step memory can be expressed as following: 

])(|)([...],)(,)(|)([ 111111 iiiiiiiiii xtXxtXPxtXxtXxtXP ====== ++−−++                      (1) 

where ti+1, ti, ti-1, … are the locations along the tunnel alignment in sequence, and .xi+1, xi, xi-1, … are the outcomes of 

corresponding random variable of X(ti+1), X(ti), X(ti-1) at those locations. 

The continuous-space discrete-state Markov process for a single geological parameter is completely determined by 
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the transition intensity matrix A: 
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In the above, transition probability pij is the probability that the next state of X will be j given the present state is i. 

Transition intensity coefficient ci is the expected distance over which the parameter X will remain in a particular state i, 

and ci follows an exponential distribution under the Markovian assumption of one-step memory. 

The probabilistic behavior of a Markov process X(t) over intervals is defined by the interval transition probability 

matrix V: 

][ ijv=V ,   where ])(|)([ 01 itXjtXPvij ===                                                (3) 

The interval transition probabilities matrix V of the Markov process satisfies the Kolmogorov differential equation, 

and thus can be linked with transition intensity matrix A as following: 

AV )(
01

01)( ttett −=− ,                                                                        (4) 

If the state probability at location t0 is known, denoted as row vector )( 0ts , one can infer the state probability at 

location t1 through the following equation: 

)()()( 0101 tttsts −= V
                                                                       (5) 

As presented above, a Markov process is totally determined by its transition intensity matrix. In general, the 

estimation of pij and ci can be accomplished by either subjective assessment or statistical procedure. If the geology 

profile for a certain project and the geology map for a large area are available, ci can be estimated by computing the 

inverse of average length of each state i ,while pij can be estimated by computing the ratio between the number of 

transitions from states i to j and the total number of transitions out of state i. As presented in next section, the prior 

transition intensity matrix obtained from geology map could be updated dynamically when new information is 

available. 

2.2 Bayesian updating for transition intensity matrix 

The likelihood matrix L for a particular exploration method at a certain location is defined as: 

][ jkl=L ,   where ])(|)([ jtXktYPl bbjk ===                                               (6) 
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In the above, Y(tb) denotes the observation result at location tb for geological parameter X(tb), ljk denotes the likelihood 

of observation result k given that the true parameter state is j. The likelihood matrix L is estimated by subjective 

assessment, which reflects the engineers’ confidence about the observation results. In general, the likelihood matrix 

varies for different exploration methods. For example, the likelihood matrix for boring hole is close to an identity 

matrix, because samples are often examined through several laboratory tests and the observation results are highly 

reliable. On the contrary, the likelihood matrix for face logging is diagonally dominant, since in-situ measurements 

are often less reliable than laboratory tests. 

When new geological information is available, e.g. new face logging is observed, the interval transition probability 

matrix should be updated sequentially according to this new information. Suppose that new tunnel face tf is excavated 

towards the direction of a known boring hole tq. Considering the interval from location tf to location tq, the prior 

interval transition probability matrix V(tq-tf) is calculated by Eq. 4, using the prior transition intensity matrix A. 

According to Bayes’ theorem, the posterior interval transition probability matrix V’(tq-tf) is updated by the following 

equation, when a certain observation result k is revealed at location tf. 
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Then the posterior transition intensity matrix A’, which reflects the “average” transition probability and the “average” 

transition intensity coefficient within the range between location tq and tf, can be calculated by the following: 
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Notice that the updating procedure should be constrained locally within the range between location tf (the tunnel 

face) and location tq (the known boring hole ahead of face). When tunnel face advances and new face logging is 

observed continuously, the updating procedure is the same just as shown in Eq. 7 and Eq. 8. Therefore, the state 

probability for that geological parameter ahead of tunnel face can be predicted dynamically with the face advancing. 

2.3 Ground condition as a complex geological parameter 

In practice, ground condition is often classified into several grades according to the simultaneous characteristics of 

several geological parameters of interest. Therefore, a geology table should be defined here to specify which kinds of 
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geological parameter combination belong to which grade of ground condition. Then regarding ground condition as a 

complex geological parameter, when the probabilistic characteristic of each single geological parameter is determined 

by the Markov process presented above, the probabilistic characteristic of ground condition along the tunnel 

alignment also can be determined. This procedure will be illustrated in an application case study in next section. 

 

3. Application and discussion 

3.1 Outline of Chuangshi Tunnel 

The Chuangshi Tunnel in Songjian expressway located in northern Fujian Province of China is a separate road 

tunnel with 4 lanes in up-line & down-line. The geology profile of Chuangshi Tunnel, as illustrated in Fig. 1, was 

obtained from surface geophysical prospecting and subsurface boring exploration (TPDIFP, 2009). During the design 

phase, this geology profile was used to classify the ground condition and determine the excavation method and 

support system. The 764m long tunnel was constructed by the New Austrian Tunneling Method. The top-heading 

excavation method was employed consistently throughout the whole tunnel, and the excavation length of each cycle 

ranged from 1m to 3m according to different ground conditions. The installation of support system also depended on 

the different ground conditions. For the ground condition of grade III, only local rock bolts and shotcrete lining were 

used to help the ground stabilize itself. For the ground condition of grade IV, pattern rock bolts, steel arches and 

shotcrete lining were used. Moreover, forepoling prior to excavation (including pipe spiling and grouting) was 

employed for the ground condition of grade V. The schematic representations of excavation cycle and support system 

are illustrated in Fig. 2. 

3.2 Construction monitoring of Chuangshi Tunnel 

The construction of Chuangshi Tunnel began in Jan. 2010 and finished in Jul. 2011, and the construction 

monitoring (including tunnel convergence monitoring, face logging and advance geology prospecting) was carried 

out by the authors’ workgroup. The tunnel was excavated from two portals, and the two faces met in the stake of 

ZK47+496. According to different ground conditions, the convergence monitoring section was erected every 

15m~30m, the face logging was conducted every 5m~10m and the advance geology prospecting by TSP203 was 

conducted every 120m~150m.  



 
 

- 6 - 
 

During the construction phase, more detailed geology information ahead of the face was inferred by hard method 

(advanced geological prospecting by TSP203) and soft method (Markovian geology prediction approach based on 

face logging). The case study of Markovian geology prediction approach in Chuangshi Tunnel is expatiated in this 

article, and the object is to predict the ground conditions ahead of face in a probabilistic way based on face logging.  

3.3 Four geological parameters 

Many rock mass classification systems have been proposed by former researchers, and a recent review on this issue 

was summarized by Tzamos and Sofianos (2007). According to Chinese Codes for Design of Road Tunnel (2004) 

and Chinese Standard for Engineering Classification of Rock Masses (1994), a BQ system is employed for the 

classification of rock mass (see details in Appendix A).  

In accord with the BQ system and considering the geology information obtained from subsurface boring 

exploration, four single geological parameters are selected and described by independent Markov processes. Rock 

hardness (H) corresponds to the parameter of Rc in BQ system. Index 1 or index 2 denotes that the intact rock revealed 

in that face is relatively hard or relatively soft. Joint intensity (I) partially corresponds to the parameter of Kv in BQ 

system. Index 1, index 2 or index3 denotes that the joint number accounted in that face is relatively more, medium or 

relatively less. Joint quality (Q) partially corresponds to the parameters of Kv and K2 in BQ system, which takes the 

joint openness, the joint length, the joint infilling and the occurrence of major joint (if any) into account. Index 1, 

index 2 or index3 denotes that the joint quality revealed in that face is relatively good, medium or relatively poor. 

Water content (C) corresponds to the parameter of K1 in BQ system. Index 1 or index 2 denotes that the revealed 

tunnel face is relatively dry or relatively humid. 

Taking the tunnel face at ZK57+608 for example, the face logging is illustrated in Fig. 3 and detailed description 

was recorded in a specified table (not given here). According the definitions of rock hardness, joint intensity, joint 

quality and water content, and due to the engineers’ qualitative assessment, the geology information at that face was 

simplified as (1, 2, 2, 1). Notice that, the selection and definition for geology parameter are case by case, and the 

indices merely denote the relative relationships for the descriptions of geology parameters.  

3.4 Geology table 

According to the definitions of four geology parameters, a total of 36 possible combinations (i.e. geology vector) 
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can be defined. Then these 36 geology vectors are classified into three ground conditions as shown in Table 1. Notice 

that, the definition of geology table is also case by case. It is partially referred to Chinese codes (2004) and Chinese 

standards (1994), and partially subjected to engineers’ experience for Chuangshi Tunnel. 

3.5 Prior transition intensity matrixes 

The prior transition intensity matrixes for these four geological parameters are listed in Table 2. They are mainly 

referred to the geology profile of Chuangshi Tunnel, and also partially referred to the geology map in a larger area. 

(see details in Section 2.1) 

3.6 Likelihood matrixes 

The likelihood matrixes that reflect the engineers’ confidence about the observation results are generally different 

from location to location. For simplification, however, they are assumed constant throughout the tunnel alignment. 

The likelihood matrixes for each single geology parameter are listed in Table 3, which are subjectively estimated from 

the engineers’ past experience (not constrained in the engineering instance of Chuangshi Tunnel ). 

3.7 Dynamic prediction of ground condition  

The tunnel face remained at location ZK47+280 (18th May), and moved towards location ZK47+448 (where a 

known boring hole had been revealed before construction) during the following three months. Take the segment 

between these two locations as an application example.  

The observation results for location 448 from boring hole BH3 are (2, 2, 1, 1), thus the state probability of each 

geological parameter can be found directly from its corresponding likelihood matrix. Then the state probability of a 

particular GV is the product of the state probabilities of all parameters related to that GV. Then the state probability of 

a particular GC is the sum of the state probabilities of all geology vectors belonged to that GC. As a summary, the 

state probabilities of four geological parameters and ground condition are listed in Table 4. 

The prior interval transition probability matrix between location 448 and location 280 can be computed by Eq. 4 

with the prior transition intensity matrix. The observation results for location 280 from face logging are (1, 1, 1, 2), 

and this new information is used to update the interval transition probability matrix according to Eq. 7. Then the 

posterior transition intensity matrix within the range between location 448 and location 280 can be computed by Eq. 8. 

As a summary, the posterior transition intensity matrixes for those four geological parameters are listed in Table 5.  
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For any particular location tx within these two locations, the state probability of each geological parameter can be 

computed by Eq. 4 and Eq. 5, where the posterior transition intensity matrixes instead of the prior ones are used in the 

calculation. Then the state probability of ground condition at location tx can also be calculated by the similar 

arithmetic operations with the ones at location 448.  

As a summary, the prediction of ground condition between location 448 and location 228 is delineated in Fig. 4. 

The areas below asterisk-line and above dotted-line denote the state probabilities of grade V and grade III, 

respectively. The area between these two lines denotes the probabilities of grade IV. If the state probability of a 

particular ground condition is much more significant than others (i.e. greater than 0.5), the location is marked with the 

corresponding label. For comparison, the real ground condition after excavation (observed by face logging 

afterwards) is also listed in the top of Fig. 4. 

When the tunnel face advanced to location ZK47+328 (28th Jun), similar calculations can be carried out to predict 

the ground condition between location 448 and location 328, as depicted in Fig. 5. If the state probabilities of two 

particular ground conditions are nearly equivalent, the location is marked with two corresponding labels. Similarly, 

Fig. 6 shows the perdition of ground condition, when the tunnel face advanced to location ZK47+376 (18th Jul). 

Generally speaking, the prediction results fit the real ground conditions well, especially for a short range ahead of 

tunnel face. 

3.8 Some discussions and comments 

In general, the Markovian geology prediction approach can be regarded as a good complement to the advanced 

geophysical prospecting during the construction phase, because it can dynamically predict the ground condition in a 

short range ahead of face with very low cost. More importantly, this approach provides the prediction of ground 

condition in a quantitative (probabilistic) way, which can further be used to estimate the project cost and period, 

evaluate the geology-related risk and help the decision-making during construction phase (Haas and Einstein, 2002; 

Min et al., 2008). 

In fact, a geological parameter that doesn’t obey the continuous-space discrete-state Markov process also can be 

included in the proposed geology prediction approach. For example, the cover depth, a key geological parameter for 

ground condition classification in deep tunnels, is a continuous-space continuous-state process with a deterministic 
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(not random) distribution. This continuous-state parameter can be divided into several discrete states (e.g. very deep, 

deep, medium), so that the state probability of cover depth for any location can be assigned directly and will not be 

updated. Then the cover depth can also be involved in the ground condition classification just as other geology 

parameters. Therefore, the proposed approach can be regarded as a framework, which can cover many types of 

geological parameter to predict the ground condition in a quantitative (probabilistic) way.  

Besides the merits presented above, the proposed geology prediction approach also has some shortages. Essentially, 

this approach assumes that the ground condition changes gradually and monotonically between two observation 

locations. Take the segment between ZK47+536 (a known boring hole) and ZK47+704 (tunnel face in 12th Apr) as 

another example. The observation results and the prediction results are depicted in Fig. 7, where the prediction results 

fail to agree with the real ground conditions in the middle of segment. The ground conditions at these two observation 

locations (one near the portal and another within the fault) are classified as grade V. But there exists a small segment 

of ground condition grade IV between these two observation locations. Then this approach fails to deal with this case 

when non-monotonic changing ground conditions occur. Fortunately, when tunnel face advances to location 

ZK47+640 (30th May) and new face logging is observed, the prediction results again fit the real ground conditions 

well as shown in Fig. 8. 

 

4 Conclusions 

The Markovian geology prediction approach and its application case study are presented in this article. Each single 

geological parameter is assumed to be described by a continuous-space discrete-state Markov random process, where 

the transition intensity matrix is initially determined by the known geology information before excavation and then 

Bayesian updated according to the newly revealed information during construction phase. Then the state probability 

distribution of each geological parameter between two locations (i.e. a tunnel face and a known boring hole) can be 

inferred. Then the state probability distribution of ground condition can be calculated by the permutation and 

combination of each single geological parameter according to a specific defined geology table. 

The application case study on Chuangshi Tunnel shows that this approach can dynamically predict the ground 

conditions with very low cost, and the prediction results fit the real ground conditions well especially for a short range 
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ahead of face. On the other hand, the implicit assumption that the ground conditions change gradually and 

monotonically make it awkward to deal with the complex case when non-monotonic changing ground conditions 

occur.  

In general, the Markovian geology prediction approach can be regarded as a good complement to the advanced 

geophysical prospecting approach during the construction phase. Moreover, it can further be used to estimate the 

project cost and period, evaluate the geology-related risk and help the decision-making during the construction phase 

of mountain tunnels. 

 

Appendix A: BQ system for rock mass classification 

Firstly, the basic quality index of rock mass BQ is related to the uniaxial compression strength Rc and coefficient of 

integrity Kv by the following equation. 

vc KRBQ 250390 ++=                                                                  (A1) 

Rc (in unit of MPa) can be obtained by standard uniaxial compression test in laboratory, or related to in-situ point 

load strength Is(50) by Eq.A2. Kv (dimensionless) can be related to the p-wave velocity in rock mass Vpm and the 

p-wave velocity in intact rock Vpr as shown in Eq.A3. 

75.0
)50(82.22 sc IR =                                                                         (A2) 

2)/( prpmv VVK =                                                                        (A3) 

If the experimental data are not available, Rc and Kv can also be estimated by qualitative means. In accord with two 

specified empirical tables (not listed here), the engineers could estimate the Rc value empirically according to the rock 

type and hammer rebound, and estimate the Kv value empirically according to joint number in unit area, joint 

openness, and joint infilling. 

Secondly, the modified quality index of rock mass [BQ] is calculated by the following equation. 

)(100][ 321 KKKBQBQ ++−=                                                          (A4) 

The dimensionless correction factors K1, K2 and K3 are related to the inflow of underground water, the occurrence 

of major joint, the level of in-situ stresses. In accord with three specified empirical tables (not listed here), these 
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factors are estimated empirically according to the engineers’ assessment. 

Finally, the rock mass is classified according to its [BQ] value by the following Table A1. 
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Fig. 1 The geology profile of Chuangshi tunnel (during design phase). 
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Fig. 3 Face logging of Chuangshi tunnel at the stake of ZK57+608. 
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Fig.4 Ground condition prediction between boring hole (448) and tunnel face (280). 
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Fig.7 Ground condition prediction between boring hole (536) and tunnel face (704). 
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Fig.8 Ground condition prediction between boring hole (536) and tunnel face (640). 

 



 

 

 

Table 1 The geology table for Chuangshi tunnel. 

ground 

condition 
geology vector geological parameter 

(GC) (GV) (H) (I) (Q) (W) 

index 1 

(grade III) 

GV01 1 1 1 1 

GV02 1 1 1 2 

GV03 1 2 1 1 

GV04 1 2 1 2 

GV05 1 3 1 1 

GV06 1 1 2 1 

GV07 1 1 2 2 

GV08 1 2 2 1 

GV09 1 1 3 1 

GV10 2 1 1 1 

index 2 

(grade IV) 

GV11 1 3 1 2 

GV12 1 2 2 2 

GV13 1 3 2 1 

GV14 1 3 2 2 

GV15 1 1 3 2 

GV16 1 2 3 1 

GV17 2 1 1 2 

GV18 2 2 1 1 

GV19 2 2 1 2 

GV20 2 3 1 1 

GV21 2 1 2 1 

GV22 2 1 2 2 

GV23 2 2 2 1 

GV24 2 2 2 2 

GV25 2 1 3 1 

index 3 

(grade V) 

GV26 1 2 3 2 

GV27 1 3 3 1 

GV28 1 3 3 2 

GV29 2 3 1 2 

GV30 2 3 2 1 

GV31 2 3 2 2 

GV32 2 1 3 2 

GV33 2 2 3 1 

GV34 2 2 3 2 

GV35 2 3 3 1 

GV36 2 3 3 2 

 
 



 

 

 

Table 2 The prior transition intensity matrixes of four geological parameters. 

for rock hardness: AH for joint intensity: AI for joint quality: AQ for water content: AC 

-0.0090 0.0090 

0.0041 -0.0041 
 

-0.0027 0.0018 0.0009 

0.0024 -0.0048 0.0024 

0.0026 0.0054 -0.0080 
 

-0.0053 0.0036 0.0018 

0.0025 -0.0050 0.0025 

0.0026 0.0054 -0.0080 
 

-0.0080 0.0080 

0.0089 -0.0089 
 

 
 

Table 3 The likelihood matrixes of four geological parameters. 

 for rock hardness: LH for joint intensity: LI for joint quality: LQ for water content: LC 

for surface boring 

prospecting 

0.95 0.05 

0.05 0.95 
 

0.8 0.15 0.05 

0.15 0.7 0.15 

0.05 0.15 0.8 
 

0.8 0.15 0.05 

0.15 0.7 0.15 

0.05 0.15 0.8 
 

0.9 0.1 

0.1 0.9 
 

for face logging 
0.9 0.1 

0.1 0.9 
 

0.7 0.25 0.05 

0.25 0.5 0.25 

0.05 0.25 0.7 
 

0.7 0.25 0.05 

0.25 0.5 0.25 

0.05 0.25 0.7 
 

0.7 0.3 

0.3 0.7 
 

 
 

Table 4 State probabilities at location 448. 

 index 1 index 2 index 3 
rock hardness (H) 0.050 0.950  
joint intensity (I) 0.150 0.700 0.150 
joint quality (Q) 0.800 0.150 0.050 
water content (C) 0.900 0.100  
ground condition (GC) 0.148 0.778 0.074 

 
 

Table 5 The posterior transition intensity matrixes (after updating at location 280). 

for rock hardness: A’H for joint intensity: A’I for joint quality: A’Q for water content: A’C 

-0.0025 0.0025 

0.0129 -0.0129 
 

-0.0010 0.0009 0.0001 

0.0054 -0.0063 0.0009 

0.0091 0.0104 -0.0194 
 

-0.0022 0.0019 0.0003 

0.0054 -0.0062 0.0008 

0.0089 0.0102 -0.0191 
 

-0.0121 0.0121 

0.0056 -0.0056 
 

 
 

Table A1 Ground condition classification according to [BQ] value. 

modified quality index of rock mass [BQ] >550 550~451 450~351 350~251 ≤250 
ground condition I II III IV V 
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