Anomaly of Hexachlorodisilane in Symmetric Si-Cl Stretching Frequency and Its Vibrational Assignments

Keinosuke HAMADA and Hirofumi MORISHITA

Faculty of Education, Nagasaki University, Nagasaki 852

(Received October 31, 1974)

Abstract

The symmetric Si-Cl stretching of hexachlorodisilane, 352 cm^{-1} is found to be anomously low when a comparison with those of some compounds containing SiCl₃ groups is made. This anomaly seems due to intensive coupling of symmetric SiCl₃ deformation with symmetric Si-Cl stretching and/or Si-Si stretching mode. On the basis of the above consideration, the vibrational assignments of hexachlorodisilane are tentatively done.

1. Experimental

The compounds used are obtained from commercial sources, except trifluorotrichlorodisiloxane ($F_3SiOSiCl_3$) and hexachlorodisilazane ($Cl_3SiN(H)SiCl_3$) synthesized according to the references.¹⁻³⁾

The Raman spectrum is recorded on *JEOL JRS-S1B* spectrophtometer using argon ion laser and the infrared spectrum is measured with *Shimadzu IR-450* spectrometer, whose window material is *KRS-5*.

2. Results and Discussion

The most prominent band in the Raman spectra of compounds containing SiCl₃ groups has been observed to arise from symmetric Si-Cl stretching mode(ν_s SiCl); this band is always strong and highly polarized and occurs in 450 cm⁻¹ wave number region⁴), with which ν_s SiCl would be identified. However there does not appear such a **ba**nd in 450 cm⁻¹ region for hexachlorodisilane(Cl₃SiSiCl₃). Therefore the very intensive and highly polarized band at 352 cm⁻¹ can not help being assigned to the ν_s SiCl for Cl₃SiSiCl₃.⁵⁻⁷) Figure 1 shows schematic Raman bands of some compounds containing SiCl₃ groups.

The stretching force constants of ν_s SiCl are approximately calculated from the

Fig. 1 Schematic Raman Spectra

experimental vibration frequencies assuming XSi (X=O, N(H), Cl ,F, H) as one particle and the vibration as simple two-body vibration of (XSi)-Cl. The values of the force constant for these compounds except Cl₃SiSiCl₃ are calculated to be $2.21 \sim 2.55 \times 10^{-5}$ dyn/cm, which seem to be reasonable value, compared with 2.71×10^{-5} of SiCl₄⁶ and 2.60×10^{-5} dyn/cm of Cl₃SiOSiCl₃⁵). However the force constant of ν_s SiCl for Cl₃SiSiCl₃ is calculated to be 1.15×10^{-5} dyn/cm using 352 cm⁻¹ assigned to ν_s SiCl previously.⁵⁻⁷⁾ The calculated force constant is roughly a factor of two to two and a half times too small, which results from using too small frequency (352 cm⁻¹) for ν_s SiCl of Cl₃SiSiCl₃. The lowering of ν_s SiCl frequency may be due to the mixing of symmetry coordinates which results in the simultaneous raising and lowering of the frequencies of two of the A_{1g} fundamentals, as follows; ν_s Si-Si(A_{1g}) and δ_s SiCl₃(A_{1g}), and ν_s SiCl(A_{1g}) and δ_s SiCl₃(A_{1g}) are coupled intensively, and so ν_s Si-Si and ν_s SiCl stretches involve considerable δ_s SiCl₃ motion. Accordingly the frequencies of ν_s Si-Si and ν_s SiCl modes are lower than would be expected for isolated ν_s Si-Si and ν_s SiCl and that of δ_s SiCl₃, higher due to a corresponding rising. Consequently ν_s SiCl and δ_s SiCl₃ bands would come closer to coalesce to be one band due to very strong coupling in Cl₃SiSiCl₃.

Even in Cl₃SiOSiCl₃, the coupling shall arise among ν_s Si-O-Si(A_{Ig}) and δ_s SiCl₃ (A_{Ig}), and ν_s SiCl(A_{Ig}) and δ_s SiCl₃(A_{Ig}), but it shall not be so strong in Cl₃SiOSiCl₃. Because in Cl₃SiSiCl₃, two silicon atoms are close together, whereas in Cl₃Si-O-SiCl₃, they are separated by oxygen atom.

In Cl₃SiOSiCl₃ and Cl₃SiSiCl₃, the asymmetric Si-Cl stretching mode(ν_{as} SiCl) (A_{2u}) is infrared active but silent in the Raman effect. The infrared band at 480 cm⁻¹ is assigned to ν_{as} SiCl in Cl₃SiOSiCl₃. This mode lies well within the expected frequency range(*ca.* 450cm⁻¹), and the assignment of ν_{as} SiCl places the frequency of ν_{as} SiCl 58 cm⁻¹ above 422 cm⁻¹ of ν_{s} SiCl. Such a large separation is to be expected if ν_{s} SiCl

Species	Normal Vibrational Modes	Reference 6)		Present authors	
		Raman(liq.)	IR(gas)	Raman(liq.)	IR(gas)
A ₁₆	ν₅Si–Si	(<i>þ</i>)627m		(<i>þ</i>)625m	
	v _s Si-Cl	(<i>þ</i>)356s		(<i>þ</i>)354vs	
	δ _s SiCl ₃	(<i>þ</i>)136m		(<i>þ</i>)354vs	
A ₁ u	Torsion		•••••		
Azu	νasSiCl		464s		465s
	δasSiCla		245m		()
Eg	νasSiCl	592m		590m	
	δasSiCl3	215w		213m	
	ρ _r SiCl ₃	129m		132s	
Eu	νasSiCl		615vs		610vs
	δasSiCl3		179m	(*) 180w	()
	ρ _r SiCl ₃		75vvw		()

Table 1Symmetry Species and Selection Rules of D_{3d} , and Frequency Assignments
of $Cl_3SiSiCl_3$

^() means this band is out of observational limit. (*) shows this band would be forbidden, but appears due to breakdown of the selection rules caused by intermolecular action.

mode is coupled with $\delta_s SiCl_3$ one and the frequency of $\nu_s SiCl$ is lowered. Otherwise $\nu_s SiCl$ and $\nu_{as} SiCl$ modes should lie very close together.⁹⁾ In the case of $Cl_3 SiSiCl_3$, the separation between $\nu_s SiCl(A_{1g})$ and $\nu_{as} SiCl(465 \text{ cm}^{-1})(A_{2u})$ is 111 cm⁻¹. This shows, as above mentioned, that there occur very, very intensive coupling of the A_{1g} fundamentals of $Cl_3 SiSiCl_3$.

The frequencies of symmetric SiCl₃ deformation(δ_s SiCl₃) for Cl₃SiOSiCl₃, Cl₃SiN-(H)SiCl₃ and F₃SiOSiCl₃ are 330, 328 and 344 cm⁻¹, respectively. On the other hand, the frequency of δ_s SiCl₃ for Cl₃SiSiCl₃ has been reported to be 136 cm⁻¹, as shown in Table 1, which seems to be very low, compared with those of δ_s SiCl₃ for the structually similar molecules, Cl₃SiOSiCl₃, Cl₃SiN(H)SiCl₃ and F₃SiOSiCl₃. If the band at 354 cm⁻¹, as above mentioned, would be considered as the coalescent band of ν_s SiCl and δ_s SiCl₃, the frequency, 354 cm⁻¹ is reasonable for δ_s SiCl₃ mode, whose frequency is expected to lie within 330 cm⁻¹ region, but is raised to 354 cm⁻¹ due to coupling of A_{1g} fundamentals. If the band at 136 cm⁻¹ is assigned to δ_s SiCl₃ the depolarized one. Nevertheless the 132 cm⁻¹ band obtained looks like depolarized one. On the basis of the above discussion, the vibrational spectra of Cl₃SiSiCl₃ can be tentatively assigned as shown in Table 1. The new results require some minor adjustments in the earlier assignments.¹⁰)

Grateful appreciation is expressed for financial support of this work by the Science Research Fund of the Ministry of Education.

References

- 1) H. S. Booth and R. A. Osten, J. Amer. Chem. Soc., 67, 1092(1945)
- 2) K. Hamada, J. Phys. Soc. Japan, 36, 617(1974)
- 3) H. Bürger, M. Schultze und U. Wannagat, Inorg. Nucl. Chem. Letters, 3, 43(1967)
- 4) J. R. Durig and K. L. Hellams, Appl. Spectry., 22. 153(1968)
- 5) M. Katayama, T. Shimanouchi, Y. Morino and S. Mizushima, J. Chem. Phys., 18, 506(1950)
- 6) G. A. Ozin, J. Chem. Soc. (A), 2952(1969)
- 7) J. E. Griffiths, *Spectrochim. Acta*, 25A, 965(1969)
- 8) F. Höfler, W. Sawodny and E. Hengge, Spectrochim. Acta, 26A, 819(1970)
- 9) J. R. Durig and K. L. Hellams, Inorg. Chem., 8, 944(1969)
- 10) K. Hamada and H. Morishita, Sci. Bull. Fac. Educ. Nagasaki Univ., 24, 29(1973)