Rotation-Vibrational Spectrum and Structure of Methanol

Keinosuke HAMADA and Hirofumi MORISHITA

Faculty of Education, Nagasaki University, Nagasaki 852

(Received October 31, 1974)

Abstract

The authors obtain the infrared rotation-vibrational spectrum of gaseous methanol and the Raman spectrum of liquid one. Actually the infrared as well as the Raman spectrum of methanol has been analyzed on the basis of C_s symmetry.^{1, 2)} However, the present observations show that the vibrational bands of methanol obtained can be explained according to C_{3v} selection rule, that is, it is in agreement with theoretical expectations for C_{3v} model that four parallel type bands are polarized in Raman and have P, Q, and R branches in infrared, whose P-R separations are observed to be 40 cm⁻¹ and estimated to be 43 cm⁻¹ on the basis of the parameters for C_{3v} model. In addition, the obtained spectra of methanol resemble very closely those of acetonitrile, whose symmetry is C_{3v} ¹⁾

1. Introduction

The symmetrical model C_{3s} for methanol (H₃COH) has eight fundamentals, four totally symmetric ones (A_1) and four degenerate ones (E), all of which are both infrared and Raman active, whereas less symmetric model C_s would give twelve fundamentals $(\mathcal{B}A' + \mathcal{A}A'')$, all of which are both infrared and Raman active. The vibrational spectrum of H₃COH has been assigned according to C_s model,¹⁻⁶ but this appears doubtful. Because only eight fundamental bands can be found in the spectrum obtained, some Raman bands as fundamental are missing the corresponding infrared ones and vice versa, and some inconsistencies in the fundamental assignments appear in the preceding literatures.

The authors have therefore found it worthwhile to reinvestigate the structure of methanol by measuring the rotation-vibrational spectrum as well as the vibrational one and by comparing the spectrum of methanol with those of structurally related molecules.

2. Experimental

The compounds are purchased from commercial sources and purified by distillation. The Raman spectrum is recorded on *JEOL JRS-SIB* spectrophotometer using argon ion laser and the infrared spectrum is measured with *Shimadzu IR-450* spectrometer, whose gas cell had a path length of 10 cm and *KRS-5* windows.

Fig. 1 IR and Raman Spectra of H₃CI, CH₃Br H₃CCN and H₃COH IR spectra are measured in gas state and Raman spectra, in liquid state using Ar⁺ laser(4880 Å).

3. Results and Discussion

3-1. Vibrational spectra of $acetonitrile(H_3CCN)$

From the fact that hydrogen cyanide(HCN) is linear it would appear very likely that in H₃CCN the C-C-N chain is linear,^{1, 7)} that is, that the molecule has a threefold axis just as methyl iodide(H₃CI) and methyl bromide(H₃CBr). Figure 1 shows the Raman and infrared spectra of H₃CI, H₃CBr, H₃CCN and H₃COH. If H₃CCN and H₃COH have a three-fold axis of symmetry they would have, according to the irreducible representations shown in Table 1, four totally symmetric (A_1) and four doubly

 $H_{3}C-X-Y = \begin{cases} C_{3v} & 4A_{1}[R,p \ ; \ IR(||)] + 4E[R,dp \ ; \ IR(\perp)] \\ \hline C_{s} & 8A'[R,p \ ; \ IR \] + 4A''[R,dp \ ; \ IR \] \\ \hline H_{3}C-X & C_{3v} & 3A_{1}[R,p \ ; \ IR(||)] + 3E[R,dp \ ; \ IR(\perp)] \end{cases}$

Table 1 Irreducible Representations of C_{3v} and C_s for H_3C-X-Y and C_{3v} for H_3C-X

degenerate (E) vibrations, all of which are both Raman and infrared active. Eight fundamental bands have indeed been observed for H₃CCN and H₃COH in Raman and infrared, respectively, as shown in Fig. 1 and Table 2. If the C-C-N or C-O-H chains were not linear, there would be twelve bands, all of which are both Raman and infrared active. The agreement of the number of observed Raman and infrared fundamentals with that expected on the C_{3v} model is of course by no means a very strong argument for this model; but the following considerations support it further. As for H₃CI and H₃CBr, one would expect for H₃CCN and H₃COH a totally symmetric C-H stretching vibration ($\nu_{s}CH_{3}$) and a degenerate C-H stretching one ($\nu_{as}CH_{3}$) and a similar pair of CH₃ symmetric deformation(δ_s CH₃) and CH₃ asymmetric one(δ_{as} CH₃). These are indeed observed, with nearly the same frequencies as for H_3CI and H_3CBr as shown in Fig. 1 and Table 2, where $\nu_s CH_3$ lies around 2950; $\nu_{as} CH_3$, around 3000; δ_s CH₃, around 1000 and δ_{ss} CH₃, around 1450 cm⁻¹ region as expected. For H₃CCN one would further expect a C-N vibration(ν_{s} C-N) and C-C one(ν_{s} C-C), which are indeed observed at (p)2250 cm⁻¹ in Raman and at (\parallel)2254 cm⁻¹ in infrared for v_s C-N and at (p)916 cm⁻¹ in Raman and (||)920 cm⁻¹ in infrared for v_s C-C. The two remaining frequencies (dp)1040 and (dp)380 cm⁻¹ in Raman which correspond to $(\perp)1052$ and $(\perp)360$ cm⁻¹ in infrared are apparently those of the two remaining degenerate vibrations, a methyl rocking vibration ($\rho_r CH_3$) and CN rocking one ($\rho_r CN$). The totally symmetric vibrations of H_3CCN give rise to parallel type bands having P, Q and R branches in infrared, and the degenerate vibrations, perpendicular type bands with succession of Q branches as shown in Figs. 1 and 2.

These facts are strongly in favor of the $C_{3\nu}$ model for H₃CCN as mentioned in the reference¹⁾. The Raman and infrared spectra of H₃COH seem to be same as those of CH₃CN except having a symmetric O-H stretching(ν_s OH) and a O-H rocking (ρ_r OH) bands instead of ν_s C-N and ρ_r CN bands for H₃CCN.

Species	Form of Vibration	Н₃С-О-Н					H₃C-C≡N					H ₃ C-B _r					H ₃ C–I				
		Raman (liq.)	<i>IR</i> (gas)	ΔυρR		Raman	IR	Δv _{PR}		Raman	IR	Δν _{PR}			Raman	IR	ΔυρR				
				Туре	obs.	calc.	(liq.)	(gas)	Туре	obs.	calc.	(liq.)	(gas)	Туре	obs.	calc.	(liq.)	(gas)	Type	obs.	calc.
Аі	ν _s X-Y	(p)3330	3710	()	40		(p)2250	2254	24		nil	nil		nil		nil	nil		nil		
	ν _s CH ₃	(p)2940	(2940)		<u>.</u>	13	(p)2950	2964	- ()	24	26.7	(p)2959	2983	()	26	24 7	(p)2947	2978		21	- 22.4
	ν _s C-X	(p)1033	1034		· ?	45	(p) 916	920		24		(p) 596	611		26	24.1	(p) 522	535		21	
	δsCH3	(p)1450	1452		· 40		(p)1373	(1380)		?		(p)1298	1309		26		(p)1237	1253		21	
<i>E</i>	ν _{as} CH ₃	2993	(2993)	(1)	nil	nil	3030	3038	- - - -		nil	3050	3075	(1)			3040	3075			
	δasCH3	1475	1480				1445	1441		nil		1433	1417		nil	nil	1425	1447	i)	nil	l nil
	ρrCH3	1114	1105				1040	1052				958	958				882	886			
	ρrXY	1158	1347				380	360				nil	l nil				nil	nil			
E×E	2×δasCH3	(p)2835	2852	(1)	40	43	(p)2876	2876	(1)	?	26.7	(p)2840	2856		26	24.7	(p)2820	2845	(II) ·	?	22.4

Table 2 Symmetry Species, Selection Rules, Band Type, P-R Separation and Frequency Assignments of Skeletal Fundamentals

() shows that the figure comes from that of Raman band, because it is not clear due to overlapping with another band.

42

Fig. 2 The Band Shape of Infrared Parallel and Perpendicular Bands of CH_3I , CH_3Br , CH_3CN and CH_3OH

3-2. Vibrational spectra of methanol(H_3COH)

3-2-1 Parallel type bands.......... The infrared band at 2845 cm^{-1} of H₃CI might

be considered as fundamental, but the bands at 2845 and 2978 cm⁻¹ form a doublet due to a Fermi resonance⁸⁾, whose center coincides very nearly with twice the wave number of the band at 1447 cm⁻¹. Therefore the 2845 cm⁻¹ band of H₃CI is not fundamental one, but the 2978 cm⁻¹ band corresponds to one fundamental only^{*1)}. The band at 2852 cm⁻¹ of H₃COH that corresponds to 2845 cm⁻¹ band of H₃CI has been assigned to ν_s CH₃ in one of previous literatures¹⁻⁶⁾, but it should be assigned to the first overtone of an asymmetric methyl deformation ($2 \times \delta_{as}$ CH₃), which should appear in the region⁹⁾ of 2800 cm⁻¹. This overtone is usually found to be medium, therefore the strong intensity of the overtone for H₃COH seems due to a strong Fermi resonance of $2 \times \delta_{as}$ CH₃ band with 2940 cm⁻¹ fundamental one. The 2940 cm⁻¹ band can be assigned to ν_s CH₃ which is expected to lie around 2950 cm⁻¹ region, to show *P*, *Q* and *R* envelopes^{*2)} in infrared and to be polarized in Raman. The strong Raman line and strong parallel infrared at 1034 cm⁻¹ obviously is the C-O vibration(ν_s C-O) corresponding to ν_s C-C of H₃CCN.

The two infrared bands at (||)1452 and $(\perp)1480$ cm⁻¹ which are corresponding to the Raman bands at (p)1450 and (dp)1475 cm⁻¹, are not well resolved, but are readily explained as corresponding to δ_s CH₃ and δ_{as} CH₃ of H₃CCN, respectively. The O-H stretching vibration corresponds obviously to the infrared band (||)3710 cm⁻¹, which has a frequency very similar to that of the symmetrical O-H stretching vibration of H₂O. The very considerable difference between the frequency (p)3330 cm⁻¹ measured in the Raman spectrum and that(3710 cm⁻¹) measured in the infrared spectrum is due to the fact that the Raman frequency refers to the liquid. The infrared spectrum of the liquid^{10, 11}) has shown the ν_s OH band, just as does the Raman spectrum.

The frequencies of $\nu CX(X=O,C,Br,I)$ and $\nu_s XY(XY=OH,CN)$ should deeply decrease in which the frequency change in going from the lighter to the heavier atom.

3-2-2 Perpendicular type band......It is well known that the frequencies of $\nu_{as}CH_3$ and $\delta_{as}CH_3$ are remarkably constant throughout the series of molecule H₃CY (Y=F,Cl,Br,I)^{12, 13)}. This is, also, the case for H₃CXY(XY=OH,CN), Therefore the depolarized Raman band at 2993 cm⁻¹ of H₃COH can be assigned to $\nu_{as}CH_3$, which shows the perpendicular type band in infrared. The 1475 cm⁻¹ Raman band which corresponds to the 1480 cm⁻¹ band in infrared can easily be assigned to $\delta_{as}CH_3$ in a similar manner as above.

The rocking vibration of a O-H group($\rho_r OH$) should give a frequency of the same order as the bending vibration in H₂O(of course modified by the different distribution of masses). It may be identified both with the depolarized Raman band at 1158 cm⁻¹

^{*1)} It is seen that the envelope of 2978 cm⁻¹ band has P, Q and R branches in high resolution spectrum.

^{*2)} The 2940 cm⁻¹ infrared band does not show *P*, *Q* and *R* branches. This is due to overlapping of this band with the *Q* sequence of $\nu_{as}CH_3$.

and the infrared band at 1347 cm⁻¹ of perpendicular type. The large difference of frequecies in ρ_r OH bands between gaseous infrared and liquid Raman spectrum is due to strong hydrogen bonding in liquid state, as does ν_s OH. There remains the rocking vibration of CH₃ group(ρ_r CH₃), accordingly the infrared band at 1105 cm⁻¹ must be assigned to the ρ_r CH₃, whose corresponding Raman band is weak one at 1114 cm⁻¹.

4. Band Contours

4-1. *P-R separation*......The parallel bands are those for which the electric moment oscillates along the symmetry axis, and the envelope of those bands possesses *P*, *Q*, and *R* branches, whose *P-R* separation, $\Delta \nu_{PR}$ is expressed by Gerhard and Denisson¹⁴) as follows;

$\Delta \nu_{\rm PR} = S(\beta) / \pi \sqrt{kT/I_A}$

where the separation function $S(\beta)$ is given by the following empirical formula, $\log_{10}S(\beta) = 0.721/(\beta+4)^{1.13}$

whose parameter β is equal to $(I_B/I_A)-1$.

On the assumption that the structure of H_3COH is C_{3v} having the following parameters, O-H=0.96Å, O-C=1.427Å, C-H=1.10Å, tetrahedral HCH angle and COH angle of 180°, the authors estimated the moment of inertia about top axis to be $I_A=5.09 \times 10^{-40} \text{ g} \cdot \text{cm}^2$, and that about the axis perpendicular to the top axis to be $I_B = 32.13 \times 10^{-40} \text{ g} \cdot \text{cm}^2$. Thus the *P*-*R* separation of the parallel bands of H₃COH at 25°C is estimated to be 43 cm⁻¹. The *P*-*R* separation for the bands, v_s O-H, v_s C-O and $2 \times \delta_{as}$ CH₃ are observed to be 40 cm⁻¹ in Fig. 2. Therefore, the agreement is good and may be regarded as fairly satisfactory. The separation for v_s CH₃ can not be observed due to overlapping^{*2)}, and that for δ_s CH₃ can not be observed due to be too weak. The observed and calculated *P*-*R* separations for the parallel bands of H₃CCN, H₃CBr and H₃CI are shown in Table 2. The agreements seem to be fairly good.

4-2. Rotational fine structure.......The rotational constant B is calculated to be 0.87 cm⁻¹ from the equation¹⁵⁾, $B=h/8\pi^2 cI_B$ and $I_B=32.13\times10^{-40}$ g·cm² calculated previously. The constant B can, too, be obtained from the frequency separation between lines in P or/and R branches which is equal to $2B^{15}$. Fig. 3 shows that the frequency separation in P branch of ν_s CO band is 1.88 cm⁻¹. The agreement of the observed value with that calculated on the basis of $C_{3\nu}$ symmetry is regarded as satisfactory.

4-3. Family of Q branches...... The perpendicular type bands are those bands for which the electric moment oscillates perpendicular to the figure axis, and which consists of a family of Q branches in infrared and are depolarized in Raman. It is seen in Figs. 1 and 2 that the Q branches of the perpendicular bands exihibit an intensity alternation of the type strong, weak, weak etc. Observation of such an intensity alternation in a Q branch consequence is sufficient to establish that the rotating species Keinosuke HAMADA and Hirofumi Morishita

Fig. 3 Rotation-Vibrational Spectra of ν_{s} CO of CH₃OH

has C_3 symmetry about the axis of rotation¹⁶.

5. Conclusion

The experimental results and the computations of P-R separation and constant B are in excellent agreement with the theoretical expectations for $C_{3\nu}$ model of methanol. But the only argument against $C_{3\nu}$ model of H₃COH is that the C-O-H chain in H₃COH should be bent, because the fact that the H₂O molecule is bent suggests strongly that the C-O-H chain is bent as well. However it is possible to consider the 2s and 2p_z orbitals in oxygen atom as being hybridized to be linear -O-. In addition, some literatures support experimentally a linear -O- for gaseous Z-O-H(Z= K,Rb,Cs)¹⁷⁻²⁰ and trifluorotrichlorodisiloxane(F₃SiOSiCl₃)²¹.

Above all, it seems to be sufficient evidence to justify $C_{3\nu}$ model for methanol that an intensity alternation in Q branch sequence of perpendicular type bands is observed. However the final decision must await the results of the further study, because some literatures^{1-6, 22, 23)} support C_s model for H₃COH. Table 2 lists tentative assignments for the fundamental bands observed together with symmetry species and selection rules.

Grateful appreciation is expressed for financial support of this work by the Science Research Fund of the Ministry of Education.

References

- 1) G. Herzberg "Molecular Spectra and Molecular Structure II. Infrared and Raman Spectra of Polyatomic Molecules" Van Nostrand Reinhold Co. New York(1945) p. 332, 334
- 2) M. Falk and E. Whalley, J. Chem. Phys., 34, 1554(1961)
- 3) J. O. Holford, L. C. Anderson and G. H. Kissin, J. Chem. Phys., 5, 927(1937)
- 4) A. Borden and E. F. Barker, J. Chem. Phys., 6, 553(1938)
- 5) E. F. Barker and G. Bosschieter, J. Chem. Phys., 6, 563(1938)
- 6) H. D. Noether, J. Chem. Phys., 10, 693(1942)
- 7) A. W. Reitz and R. Skrabal, Monatshefe f. Chem., 70, 398(1937)
- 8) A. Adel and E. F. Barker Phys. Rev., 45, 277(1934)
- M. G. Miles, J. H. Patterson, C. W. Hobbs, M. J. Hopper, J. Overend and R. S. Tobias, Inorg. Chem., 7, 1721(1968)
- 10) J. Errera and P. Mollet, Nature, 138, 882(1936)
- 11) A. M. Busmell, V. Deitz and W. H. Rodebush, J. Chem. Phys., 5, 501(1937)
- 12) W. H. Bennet and C. F. Meyer, Phys. Rev., 32, 888(1928)
- 13) J. G. Moorhead, Phys. Rev., 39, 788(1932)
- 14) S. L. Gerhard and D. M. Dennison, Phys, Rev., 43, 197(1933)
- 15) G. M. Barrow "Introduction to Molecular Spectroscopy" McGraw Hill, N. Y. (1962), p. 52 and p. 153
- M. Davies "Infrared Spectroscopy and Molecular Structure" Elsevier Publishing Co. New York (1963). p.153
- 17) D. R. Lide, Jr. and R. L. Kuczkowski, J. Chem. Phys., 46, 4768(1967)
- 18) C. Matsumura and D. R. Lide, Jr., J. Chem. Phys., 50, 71(1969)
- 19) D. R. Lide, Jr. and C. Matsumura, J. Chem. Phys., 50, 3080(1969)
- 20) E. P. Pearson and M. B. Trueblood, J. Chem. Phys., 58, 826(1973)
- 21) K. Hamada, J. Phys. Soc. Japan, 36, 617(1974)
- 22) Y. Y. Kwan and D. M. Dennison, J. Mol. Spectrosc., 43, 291(1972)
- 23) R. M. Lees, J. Chem. Phys., 57, 824, 2249(1972)