# The Vibrational Spectra and Structures of Hexachlorodisiloxane and Trifluorotrichlorodisiloxane II.

Keinosuke HAMADA

Faculty of Education, Nagasaki University, Nagasaki 852

(Received October 31, 1974)

### Abstract

The infrared spectra of  $Cl_3SiOSiCl_3$  and  $F_3SiOSiCl_3$  in gaseous state are measured and the Raman spectra of the molecules are reexamined using  $Ar^+$  laser. The new results support the author's original contention concerning the structures of these molecules, but require some minor adjustments in the earlier assignments.<sup>1-a)</sup>

The vibrational spectrum of  $Cl_3SiOSiCl_3$  has been measured, and it has been reported that the symmetry was  $C_{2\nu}$  (bent). However the present observations seem to show that the vibrational bands obtained can be explained according to  $D_{3d}$  selection rules(linear). Because the irreducible representation of  $C_{2\nu}$  point group is  $7A_1$  $(R,p; IR) + 4A_2(R) + 6B_1(R; IR) + 4B_2(R; IR)$ , that is, all 21 fundamentals are allowed in the Raman effect (7 of them as polarized lines) and that 17 fundamentals are allowed in infrared absorption. On the other hand, that of  $D_{3d}$  point group is  $3A_{Ig}(R, p) + 3A_{2u}(IR) + 3E_g(R) + 4E_u(IR)$ . Accordingly the bands obtained are too simple to be ones of  $C_{2\nu}$  model, and it is against  $C_{2\nu}$  one that the obtained spectra are mutually exclusive in Raman and infrared.

The vibrational spectrum of  $F_3SiOSiCl_3$  should be assigned according to  $C_{3v}$ (linear) or  $C_s$ (bent) model. The irreducible representation of  $C_{3v}$  point group is  $6A_1$ (R,p; IR) + 7E(R; IR) and that of  $C_s$ , 13A'(R,p;IR) + 8A''(R;IR). The vibrational spectrum of  $F_3SiOSiCl_3$  obtained seems to be assigned according to  $C_{3v}$  selection rules, compared with those of structurally related molecules,  $Cl_3SiOSiCl_3$ ,  $F_3SiCl$ and  $FSiCl_3$ . However the final decision must await the results of the further studies, because it is very important whether Si-O-Si chain is linear or not.

The Raman spectra are recorded on *JEOL JRS-S1B* spectrophotometer using argon ion laser and the infrared spectra are measured with *Shimadzu IR-450* spectrometer, whose gas cell had a path of 10 cm and *KRS-5* windows.

### 1. Introduction

The  $D_{3d}$  model for hexachlorodisiloxane(Cl<sub>3</sub>SiOSiCl<sub>3</sub>) has six Raman active fundamentals and seven infrared active ones, which are mutually exclusive in the

Raman and infrared, wheareas less symmetric model  $C_{2v}$  would give twenty-one fundamentals, all of which are Raman active and seventeen of which are both Raman and infrared active.

It appears doubtful that the vibrational bands of  $Cl_3SiOSiCl_3$  have been assigned according to  $C_{2\nu}$  selection rules as indicated in the previous literatures<sup>1.b)-14)</sup>, except the literatures describing that the symmetry of disiloxane (H<sub>3</sub>SiOSiH<sub>3</sub>) was  $D_{3d}^{13}$ (linear Si-O-Si) and that of  $Cl_3SiOSiCl_3$ ,  $D_{3h}^{14}$ ) (linear Si-O-Si). Because only nine of 21 fundamental bands can be found in the Raman spectrum obtained, some of which may correspond to overtone or combination bands, and this fact seems to be sufficient to exclude the  $C_{2\nu}$  model which should have 21 fundamentals which are Raman active. The present author has therefore found it worthwhile to investigate the structure of  $Cl_3SiOSiCl_3$  by measuring the vibrational spectra and by comparing the spectra with those of structurally related molecules;  $F_3SiOSiCl_3^{15}$ ,  $F_3SiCl$  and  $FSiCl_3^{16, 17}$ )

The assignments of the vibrational spectra of  $F_3SiOSiCl_3$  which would supply useful informations for the structure of  $Cl_3SiOSiCl_3$  as well as that of  $F_3SiOSiCl_3$  is the first example.

### 2. Experimental

A compound  $Cl_3SiOSiCl_3$  was purchased from commercial source and purified by distillation. In order to synthesize  $F_3SiOSiCl_3$ ,  $Cl_3SiOSiCl_3$  was fluorinated using  $SbF_3$  and incorporating  $SbCl_5$  as a catalyst<sup>18</sup>), and the synthesized  $F_3SiOSiCl_3$  was separated by fractional distillation.

Raman spectra are recorded on *JEOL JRS-S1B* spectrometer using argon ion laser, and the infrared spectra are measured with *Shimadzu IR-450* spectrometer, whose gas cell had a path of 10 cm and KRS-5 windows.

## 3. Results and Discussion

### 3-1. Vibrational Spectra of Cl<sub>3</sub>SiOSiCl<sub>3</sub>

The Raman and infrared spectra of  $Cl_3SiOSiCl_3$  are given in Fig. 1. It is clearly seen that the spectra indicate the lack of coincidence between Raman and infrared frequencies which means that the molecule has a center of symmetry, and are too simple to be interpreted according to  $C_{2v}$  symmetry which has 21 Raman active fundamentals and 17 infrared active ones, as shown in the irreducible representation of  $C_{2v}$ ;  $7A_1(R, p; IR) + 4A_2(R) + 6B_1(R; IR) + 4B_2(R; IR)$ . The spectra of  $Cl_3SiOSiCl_3$  observed are in excellent agreement with the selection rules expected for  $D_{3d}$  model<sup>\*1</sup>, the irreducible representation of which is  $3A_{1g}(R, p) + 3A_{2u}(IR) + 3E_g$  $(R) + 4E_u(IR)$ .

<sup>\*1)</sup> A  $D_{3h}$  symmetry, the irreducible representation of which is  $3A_1'(R,p) + 3A_2''(IR) + 4E'(R;IR) + 3E''(R)$  is reasonable for linear Cl<sub>3</sub>SiOSiCl<sub>3</sub>, too, but  $D_{3h}$  symmetry does not have a symmetry center.



3-1-1.  $A_{1g}$  Bands These are Raman active, polarized and infrared inactive. The Raman band of FSiCl<sub>3</sub><sup>16, 17</sup> that corresponds to (p)728 cm<sup>-1</sup> Raman band of Cl<sub>3</sub>SiOSiCl<sub>3</sub> does not exist, but (p) 672 cm<sup>-1</sup> Raman band of F<sub>3</sub>SiOSiCl<sub>3</sub> seems to correspond to the (p)728 cm<sup>-1</sup> one of Cl<sub>3</sub>SiOSiCl<sub>3</sub>. Accordingly the (p)728 cm<sup>-1</sup> band should be due to Si-O-Si stretching or bending which does not exist

for FSiCl<sub>3</sub>. On the basis of the polarization state, the  $(p)728 \text{ cm}^{-1}$  band can be assigned to symmetric Si-O-Si stretching  $(\nu_s \text{Si-O-Si}).^{*2}$  It is well known that a band of symmetric Si-Cl stretching  $(\nu_s \text{SiCl})^{*2}$  would be very strong band which is polarized, lying at 450 cm<sup>-1</sup> region.<sup>14, 19</sup> For example, the very intensive and polarized band at 464 cm<sup>-1</sup> of FSiCl<sub>3</sub> is assigned to  $\nu_s \text{SiCl.}^{16, 17}$  So the  $(p)422 \text{ cm}^{-1}$  band of Cl<sub>3</sub>SiOSiCl<sub>3</sub> can be assigned to  $\nu_s \text{SiCl}$ , where the lowering frequency than expected might be due to the coupling of  $\nu_s \text{SiCl}(A_{Ig})$  and  $\delta_s \text{SiCl}_3(A_{Ig}).^{14}$  There remains symmetric SiCl<sub>3</sub> deformation( $\delta_s \text{SiCl}_3$ ), and the polarized bands at 330, 351 and 389 cm<sup>-1</sup> could be considered as  $\delta_s \text{SiCl}_3$  mode. Compared with the  $\delta_s \text{SiCl}_3$  bands of F<sub>3</sub>SiOSiCl<sub>3</sub> and FSiCl<sub>3</sub>,\*<sup>3</sup>) the  $(p)330 \text{ cm}^{-1}$  band is assigned to  $\delta_s \text{SiCl}_3.*^{*4}$ 

3-1-2.  $A_{2u}$  Bands — These are infrared active and Raman inactive. The asymmetric Si-O-Si stretching modes of substituted disiloxanes have been found to exhibit relative constancy from one compound to the next.<sup>21)</sup> For example, bands arising from this mode of vibration appear at 1107 cm<sup>-1</sup> in the spectrum of H<sub>3</sub>SiOSiH<sub>3</sub><sup>13)</sup>, at 1060 cm<sup>-1</sup> in that of Me<sub>3</sub>SiOSiMe<sub>3</sub><sup>22)</sup>, at 1075 cm<sup>-1</sup> in that of  $\phi_3$ SiOSi $\phi_3^{23}$  (Me=methyl,  $\phi$ =phenyl), and at 1175 cm<sup>-1</sup> in that of F<sub>3</sub>SiOSiCl<sub>3</sub> as shown in Fig.1. The only band appearing in the spectrum of Cl<sub>3</sub>SiOSiCl<sub>3</sub> within this wave number region is the strong infrared band at 1180 cm<sup>-1</sup>. Therefore this band is confidently assigned to  $\nu_{as}$ Si-O-Si. The Raman counterpart is unobserved. If Cl<sub>3</sub>SiOSiCl<sub>3</sub> has  $C_{2v}$  symmetry,  $\nu_{as}$ Si-O-Si band should appear in Raman. Therefore this strongly supports  $D_{3d}$  for Cl<sub>3</sub>SiOSiCl<sub>3</sub>, too.

Molecule  $Cl_3SiOSiCl_3$  is considered as a derivative in which SiCl\_3 group is connected to FSiCl\_3 in opposite direction along the *z* axis and an oxygen atom is inserted between the two SiCl\_3 groups instead of a fluorine atom. Consequently the  $\nu_sSiCl_3$  in FSiCl\_3 is split to  $\nu_sSiCl(A_{1g})$  and  $\nu_{as}SiCl(A_{2u})$  in Cl\_3SiOSiCl\_3, and so the  $\nu_aSiCl$  of Cl\_3SiOSiCl\_3 would appear near  $\nu_sSiCl$  of FSiCl\_3 and Cl\_3SiOSiCl\_3 in frequencies.<sup>\*5</sup> Accordingly the strong 480 cm<sup>-1</sup> band is assigned to asymmetric SiCl stretching( $\nu_{as}SiCl$ ), compared with the frequency(422 cm<sup>-1</sup>) of  $\nu_sSiCl(A_{1g})$ . The 339 cm<sup>-1</sup> band can be assigned to asymmetric SiCl\_3 deformation ( $\delta_{as}SiCl_3$ ) in a similar manner as above.<sup>\*5</sup>)

3-1-3.  $E_g$  Bands ...... These are Raman active, depolarized, and infrared inactive. The bands at 613, 220 and 133 cm<sup>-1</sup>, all of which are depolarized, are

- \*3) It is well known that the frequencies of ν<sub>s</sub>CH<sub>3</sub>, ν<sub>as</sub>CH<sub>3</sub> and δ<sub>as</sub>CH<sub>3</sub> are remarkably constant throughut the series of molecule CH<sub>3</sub>X(X=F, Cl, Br, I)<sup>19,20</sup>. This is, also, the case for compounds containing SiCl<sub>3</sub> and SiF<sub>3</sub> groups.
- \*4) The literature<sup>14)</sup> has assigned 330 cm<sup>-1</sup> to  $\nu_s$ Si-O-Si.
- \*5) In the other words, the similar vibration modes which belong to the similar species are close to each other in frequencies.

<sup>\*2)</sup> Some literatures  $^{8,12}$  have assigned intensive and polarized 422 cm<sup>-1</sup> band to  $\nu_s$ Si-O-Si, but the band should be assigned to  $\nu_s$ SiCl.

assigned to  $\nu_{as}$ SiCl,  $\delta_{as}$ SiCl<sub>3</sub> and SiCl<sub>3</sub> rocking( $\rho_r$ SiCl<sub>3</sub>) respectively, compared with those of FSiCl<sub>3</sub>\*<sup>3</sup>) and  $E_u$  bands of Cl<sub>3</sub>SiOSiCl<sub>3</sub>\*<sup>5</sup>)

3-1-4.  $E_u$  Bands ...... These are infrared active and Raman inactive. The bands at 642, 247<sup>\*6</sup>) and 179<sup>\*6</sup>) cm<sup>-1</sup> are assigned to  $\nu_{as}SiCl_3$ ,  $\delta_{as}SiCl_3$  and  $\rho_rSiCl_3$ respectively, compared with those of FSiCl<sub>3</sub>\*<sup>3</sup>) and  $E_g$  bands of Cl<sub>3</sub>SiOSiCl<sub>3</sub>\*<sup>5</sup>). The 180 cm<sup>-1</sup> Raman band\*<sup>7</sup>) found in liquid Cl<sub>3</sub>SiOSiCl<sub>3</sub> may be the infrared fundamental at 179 cm<sup>-1</sup>, appearing in the Raman effect through a breakdown of the selection rules due to intermolecular force active in the liquid. That is to say, this frequency would actually be permitted in the Raman effect even if the selection rules appropriate to  $D_{3d}$  configuration apply to Cl<sub>3</sub>SiOSiCl<sub>3</sub><sup>24</sup>). An absorption intensity of a fundamental vibrational transition which is infrared active is related to the dipole moment derivative, and then the intensity of Si-O-Si bending( $\delta$ Si-O-Si) of Cl<sub>3</sub>SiOSiCl<sub>3</sub> would be expected to be weak, because of same end groups. On the other hand, the intensity of  $\delta$ Si-O-Si of F<sub>3</sub>SiOSiCl<sub>3</sub>, to be not weak, because of different end groups. The very intensive band at 410 cm<sup>-1</sup> of F<sub>3</sub>SiOSiCl<sub>3</sub> can be assigned to  $\delta$ Si-O-Si, and the very weak band lying at 400 cm<sup>-1</sup> of Cl<sub>3</sub>SiOSiCl<sub>3</sub> could be assigned to  $\delta$ Si-O-Si. This is in agreement with expectations for  $\delta$ Si-O-Si as mentioned above.

3-1-5. Overtone and Combination Bands — The infrared bands at 1173 and 1130 cm<sup>-1</sup> would neither P nor R branch of rotation-vibrational band, because the difference of 43 cm<sup>-1</sup> seems to be too large to be considered as P-R separation value, for molecule having large moment of inertia like Cl<sub>3</sub>SiOSiCl<sub>3</sub>. These bands could be interpreted as due to Fermi resonance. Thus  $1130(A_{2u})$  is in resonance with  $480(A_{2u})$  $+ 2 \times 339(A_{2u})$ , the intensity of which is enhanced anomalously by Fermi resonance and is comparable to that of fundamental band. The center of Fermi doublet coincides very nearly with the wave number of combination band. This indicates the resonance of Fermi resonance. The Raman bands at 351 and 389 cm<sup>-1</sup> could be considered as combination of  $220(E_g) + 133(E_g)$  and of  $613(E_g) + 220(E_g)$ , respectively.

Table 1 lists tentative assignments for the fundamental bands observed together with symmetry species and selection rules of  $D_{3d}$ .

# 3-2. Vibrational Spectra of F<sub>3</sub>SiOSiCl<sub>3</sub>

The Raman and infrared spectra of  $F_3SiOSiCl_3$  are shown in Fig.1. The symmetry of  $F_3SiOSiCl_3$  is  $C_{3v}$  or  $C_3$  for linear model and  $C_s$  for bent one. The irreducible representations of skeletal modes are  $6A_1(R,p;IR) + 7E(R;IR)$  in  $C_{3v}$ , 7A(R,p;IR) +

<sup>\*6)</sup> The bands at 247 and 179 cm<sup>-1</sup> are out of observational limit due to KRS-5 optics, but the frequencies are cited from the literature.<sup>2)</sup>

<sup>\*7)</sup> In the literature<sup>14</sup>), this 180 cm<sup>-1</sup> band is assigned to  $\delta_s SiCl_3$ . However this line is observed to be depolarized, therefore the above assignment seems to be doubtful. Because the band for totally symmetric deformational mode,  $\delta_s SiCl_3$  should be polarized.

#### Keinosuke HAMADA

| Species | Normal                       | Cl₃SiC            | Cl <sub>3</sub> SiOSiCl <sub>3</sub> |  |
|---------|------------------------------|-------------------|--------------------------------------|--|
|         | Vibrational Modes            | Raman             | IR                                   |  |
| A1g     | Si-O-Si sym. str.            | ( <i>þ</i> )728w  | (ia)                                 |  |
|         | Si-Cl sym. str.              | ( <i>þ</i> )422vs | (ia)                                 |  |
|         | SiCl₃ sym. def.              | ( <i>þ</i> )330m  | (ia)                                 |  |
| A1u     | Torsion                      | <i>(ia)</i>       | <i>(ia)</i>                          |  |
| A2u     | Si-O-Si asym. str.           | <i>(ia)</i>       | 1130vs                               |  |
|         | SiCl asym. str.              | <i>(ia)</i>       | 480s                                 |  |
|         | SiCl <sub>3</sub> asym. def. | <i>(ia)</i>       | 339m                                 |  |
| Eg      | SiCl asym. str.              | 613w              | (ia)                                 |  |
|         | SiCl <sub>3</sub> asym. def. | 220s              | (ia)                                 |  |
|         | SiCl <sub>3</sub> rock.      | 133vs             | <i>(ia)</i>                          |  |
| Eu      | SiCl asym. str.              | ( <i>ia</i> )     | 642vs                                |  |
|         | Si-O-Si bend.                | ( <i>ia</i> )     | ~400vvw                              |  |
|         | SiCl₃ asym. def.             | <i>(ia)</i>       | (247)*)                              |  |
|         | SiCl <sub>3</sub> rock       | 180**)            | (179)*)                              |  |

Table 1Symmetry Species and Selection Rules of  $D_{3d}$  and Frequency<br/>Assignments of  $Cl_3SiOSiCl_3$ 

\*) This band is out of observational limit, but the frequency is cited from reference 3).

\*\*) This band would be forbidden, but the selection rules forbiding it may be somewhat less rigorous in the liquid due to intermolecular action.

(ia) means inactive.

### 7E(R;IR) in $C_3$ and 13A'(R,p;IR) + 8A''(R;IR) in $C_s$ .

The spectra observed seem to be too simple to be interpreted on the basis of  $C_s$  selection rules, which has 21 Raman fundamentals, of which 13 ones are polarized and 21 infrared fundamentals. Accordingly the symmetry of  $F_3SiOSiCl_3$  is  $C_{3v}$  or  $C_3$ . It is difficult to differenciate  $C_{3v}$  model from  $C_3$  one on the basis of the vibrational bands obtained, but  $C_{3v}$  model would energetically be preferable to  $C_3$  one.

3-2-1.  $A_1$  Bands — These are active in both Raman and infrared, and polarized in Raman. The vibrational bands which belong to  $A_1$  species are assigned as shown in Table 2, compared with structurally related compounds,  $Cl_3SiOSiCl_3$ ,  $FSiCl_3$  and  $F_3SiCl^{*3}$ . The assignments of Si-O-Si stretching modes of  $F_3SiOSiCl_3$  are discussed previously(3-1-1 and 3-1-2).

3-2-2 E Bands ...... These are active in both Raman and infrared, and depolarized in Raman. These are assigned as listed in Table 2 in a similar manner

as above. The assignment of  $\delta$ Si-O-Si is discussed in section 3-1-4.

| Normal                       | Species $A_1$      |        | Species E   |               | F3SiCl            |                 |
|------------------------------|--------------------|--------|-------------|---------------|-------------------|-----------------|
| Vibrational Modes            | Raman              | IR     | Raman       | IR            | Raman             | IR              |
| SiF <sub>3</sub> asym. str.  | ( <i>ia</i> )      | (ia)   | 1009vw      | 1017vs        | 990vw             | 1005msh         |
| SiF₃ sym. str.               | ( <i>þ</i> )897w   | 902s   | (ia)        | <i>(ia)</i>   | ( <i>þ</i> )873w  | 883vs           |
| SiF <sub>3</sub> asym. def.  | ( <i>ia</i> )      | (ia)   | 312m        | 313m          | 265m              | (*)             |
| SiF <sub>3</sub> sym. def.   | ( <i>p</i> )497s   | 501s   | (ia)        | ( <i>ia</i> ) | ( <i>þ</i> )347m  | 352s            |
| SiF <sub>3</sub> rock.       | <i>(ia)</i>        | (ia)   | 177m        | (*)           | 222m              | (*)             |
| Si-O-Si asym. str.           | ( <i>þ</i> )1164vw | 1175vs | (ia)        | ( <i>ia</i> ) |                   |                 |
| Si-O-Si sym. str.            | ( <i>þ</i> )672w   | 659m   | <i>(ia)</i> | (ia)          | FSiC              | 21 <sub>3</sub> |
| Si-O-Si bend.                | ( <i>ia</i> )      | (ia)   | 410vw       | 410vs         | Raman             | IR              |
| SiCl <sub>3</sub> asym. str. | ( <i>ia</i> )      | (ia)   | 624w        | 636vs         | 630w              | 630vs           |
| SiCl <sub>3</sub> sym. str.  | ( <i>þ</i> )458vs  | 458s   | (ia)        | (ia)          | ( <i>p</i> )464vs | 466w            |
| SiCl <sub>3</sub> asym. def. | (ia)               | (ia)   | 220s        | (*)           | 278m              | (*)             |
| SiCl <sub>3</sub> sym. def.  | ( <i>þ</i> )344m   | 340m   | (ia)        | <i>(ia)</i>   | ( <i>þ</i> )237m  | (*)             |
| SiCl <sub>3</sub> rock.      | ( <i>ia</i> )      | (ia)   | 154s        | (*)           | 165s              | (*)             |

Table 2Symmetry Species and Selection Rules of  $D_{3d}$  and Frequency Assignments of<br/>Fundamentals of F<sub>3</sub>SiOSiCl<sub>3</sub>, F<sub>3</sub>SiCl and FSiCl<sub>3</sub>

(ia) means inactive, and (\*) means out of observational limit.

3-2-3. Overtone and Combination Bands — The 1220 cm<sup>-1</sup> infrared band could be interpreted as due to Fermi resonance in similar manner as that of the 1173 cm<sup>-1</sup> band of Cl<sub>3</sub>SiOSiCl<sub>3</sub>. Thus 1175 ( $A_1$ ) is in resonance with  $501(A_1)+2\times340$ ( $A_1$ ), the intensity of which is enhanced anomalously by Fermi resonance. The center of Fermi doublet coincides very nearly with the frequency of the combination band. The intensive infrared band at 957 cm<sup>-1</sup> may be one of Fermi doublet due to  $902(A_1)$ and  $2\times458(A_1)$ . The 681 cm<sup>-1</sup> infrared band can be considered as first overtone of 340 cm<sup>-1</sup> one; 436, as that of 220, and 359, as that of 177 cm<sup>-1</sup>.

3-2-4. Impurity The  $(p)800 \text{ cm}^{-1}$  band may be due to SiF<sub>4</sub> included in F<sub>3</sub>SiOSiCl<sub>3</sub> as impurity, since the most intensive Raman band of SiF<sub>4</sub> is  $(p)800 \text{ cm}^{-1}$  band assigned to  $\nu_s$ SiF.

### 4. Conclusion

From the observed spectra, it would be clear that the Si-O-Si skeleton is linear in both  $Cl_3SiOSiCl_3$  and  $F_3SiOSiCl_3$ , for coincidence between Raman and infrared

frequencies which are the spectral feature of  $C_{2v}$  symmetry (bent Si-O-Si) for Cl<sub>3</sub>SiOSiCl<sub>3</sub> does not occur and less fundamentals of F<sub>3</sub>SiOSiCl<sub>3</sub> appear for  $C_{3v}$  linear model to be acceptable. The only argument against linear Si-O-Si is that the Si-O-Si chain should be bent, on the basis of the fact that -O- is bent in H<sub>2</sub>O molecule, but some literatures support experimentally a linear -O- for gaseous Z-O-H(Z=K,Rb,Cs).<sup>25-28)</sup> In addition it is possible to consider the 2s and 2p<sub>z</sub> orbitals in oxygen atom as being hybridized to be linear.<sup>\*8)</sup>

Table 2 lists the tentative assignments for the fundamental bands observed together with symmetry species and selection rules.

Grateful appreciation is expressed for financial support of this work by the Science Research Fund of the Ministry of Education and for the assistance of Mr. Morishita of this Faculty in doing the Raman and infrared measurements.

------

2p1.

<sup>\*8)</sup> The ground state of the oxygen atom is  $1s^22s^22p^4$ . In order to display a linear valence of two, the oxygen atom must have two electrons with uncoupled spins. The way to obtain this condition is to excite one of the 2s electrons into 2p state, and to have the resulting  $2p_z$  electron with uncoupled spin, and  $2p_x$  and  $2p_y$  electrons with coupled spins. Then the 180° bond angle in Si-O-Si could be produced by mixing 50 per cent  $2s^1$  and 50 per cent

### References

- 1-a) E. A. Robinson and K. Hamada, Sci. Bull. Fac. Educ. Nagasaki Univ., 23, 63(1972)
- 1-b) W. R. Thorson and I. Nakagawa, J. Chem. Phys., 33, 994(1960)
  - 2) J. E. Griffiths and D. F. Sturman, Spectrochim. Acta, 25A, 1415 (1969)
  - 3) H. Burger, K. Burczyk, F. Hofler and W. Sawodny, Spectrochim. Acta, 25A, 1891(1969)
  - 4) C. C. Certo, J. L. Lauer and H. C. Beachell, J. Chem. Phys., 22,1(1954)
  - 5) I. Simon and H. O. Mahon, J. Chem. Phys., 20, 905(1952)
  - 6) N. Wright and M. J. Hunter, J. Amer. Chem. Soc., 69, 803(1947)
  - 7) H. Kriegsman, Z. f. Electrochem., 61, 1088 (1957)
  - 8) J. E. Griffiths, Spectrochim. Acta, 25A, 965(1965)
  - 9) A. L. Smith, Spectrochim. Acta, 19, 849(1963)
- 10) J. R. Aronson, R. C. Lord and D. M. Robinson, J. Chem. Phys., 33, 1004(1960)
- 11) T. F. Tenisheva and A. N. Lazarev, Izv. Akad. Nouk, SSSR, Morgan, Mat, 4, 1952(1968)
- 12) J. E. Griffiths, Spectrochim. Acta, 30A, 945(1974)
- 13) R. C. Lord, D. W. Robinson and W. C. Schumb, J. Amer. Chem. Soc., 78, 1327 (1956)
- 14) J. R. Durig and K. L. Hellams, Inorg. Chem., 8, 944(1969)
- 15) K. Hamada, J. Phys. Soc. Japan, 36, 617(1974)
- 16) K. Hamada, G. A. Ozin and E. A. Robinson, Can. J. Chem., 49, 477 (1971)
- 17) K. Hamada, G. A. Ozin and E. A. Robinson, Bull. Chem. Soc. Japan, 44, 2555(1971)
- 18) H. S. Booth and R. A. Osten, J. Amer. Chem. Soc., 67, 1092(1945)
- 19) J. R. Durig and K. L. Hellams, Appl. Specry., 22, 153(1968)
- 20) W. H. Bennett and C. F. Meyer, Phys. Rev., 32, 888(1928)
- 21) J. G. Moorhead, Phys. Rev., 39, 788(1932)
- 22) R. J. Gillespie and E. A. Robinson, Can. J. Chem., 42, 2496(1964)
- 23) D. W. Scott et al., J. Phys. Chem., 65, 1320(1961)
- 24) Kriegsman and K. H. Schowta, Z. physik. Chem. (Leipzig), 209, 261(1958)
- 25) D. R. Lide Jr. and R. L. Kuczkowski, J. Chem. Phys., 46, 4768(1967)
- 26) C. Matsumura and D. R. Lide Jr., J. Chem. Phys., 50, 71(1969)
- 27) D. R. Lide Jr. and C. Matsumura, J. Chem. Phys., 50, 3080(1969)
- 28) E. P. Pearson and M. B. Trueblood, J. Chem. Phys., 58, 826(1973)