
KEYWORD-BASED OBJECT SEARCH AND EXPLORATION IN
MULTIDIMENSIONAL TEXT DATABASES

BY

BO ZHAO

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2011

Urbana, Illinois

Master’s Committee:

Professor Jiawei Han, Director of Research

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4837549?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

We propose a novel system TEXplorer that integrates keyword-based object ranking with the aggregation

and exploration power of OLAP in a text database with rich structured attributes available, e.g., a product

review database.

TEXplorer can be implemented within a multi-dimensional text database, where each row is associated

with structural dimensions (attributes) and text data (e.g., a document). The system utilizes the text cube

data model, where a cell aggregates a set of documents with matching values in a subset of dimensions.

Cells in a text cube capture different levels of summarization of the documents, and can represent objects

at different conceptual levels.

Users query the system by submitting a set of keywords. Instead of returning a ranked list of all the cells,

we propose a keyword-based interactive exploration framework that could offer flexible OLAP navigational

guides and help users identify the levels and objects they are interested in. A novel significance measure

of dimensions is proposed based on the distribution of IR relevance of cells. During each interaction stage,

dimensions are ranked according to their significance scores to guide drilling down; and cells in the same

cuboids are ranked according to their relevance to guide exploration. We propose efficient algorithms and

materialization strategies for ranking top-k dimensions and cells. Finally, extensive experiments on real

datasets demonstrate the efficiency and effectiveness of our approach.

ii

To Father and Mother.

iii

Acknowledgments

First I would like to express my deepest appreciation to my advisor Professor Jiawei Han, who always

motivates me to conduct quality research and inspires my interest in data mining, databases and OLAP

techniques with his great insight and knowledge in the area. I would also like to thank Professor Chengxiang

Zhai, who always gives constructive feedbacks and suggestions for my thesis research, especially problems

related to keyword search and text mining. My gratitude also goes to many colleagues in the DAIS group at

UIUC who collaborate with me on the research related to this thesis or provide helpful feedbacks, especially

Bolin Ding, Cindy Lin, Tianyi Wu, Hongbo Deng, Duo Zhang, Jing Gao, Yizhou Sun and Yue Lu.

The work was supported in part by HP Lab Innovation Award, NASA NRA-NNH10ZDA001N, and the

U.S. Army Research Laboratory under Cooperative Agreement No. W911NF-09-2-0053 (NS-CTA).

iv

Table of Contents

Chapter 1 Introduction . 1

Chapter 2 Problem Definition . 5
2.1 Data Model: Text Cube . 5
2.2 Tasks of TEXplorer . 5

Chapter 3 Significance of a Dimension . 9

Chapter 4 Ranking Algorithms . 12
4.1 MultiAccess Algorithm . 12
4.2 OneAccess Algorithm . 13
4.3 OneAccess+ Algorithm . 15
4.4 OneAccess++ Algorithm . 17

Chapter 5 Experiments . 20
5.1 Effectiveness . 20

5.1.1 Measures in Faceted Search . 20
5.1.2 Case Studies . 21
5.1.3 Quantitative Evaluation . 23

5.2 Efficiency . 24
5.2.1 Efficiency vs. Number of Documents . 24
5.2.2 Efficiency vs. Top-k . 25
5.2.3 Efficiency vs. Number of Dimensions . 26

5.3 Storage . 26

Chapter 6 Related Work . 28
6.1 Faceted Search . 28
6.2 Discovery-driven OLAP Systems . 28
6.3 Object Search in Database . 28

Chapter 7 Conclusions . 30
7.1 Overview . 30
7.2 Future Work . 30

7.2.1 Clustering of Objects . 30
7.2.2 Advanced Relevance Models . 30
7.2.3 User Feedback and Query Suggestion . 31

References . 32

v

Chapter 1

Introduction

Nowadays the web is deeply integrated with database technologies, and one important trend is that much

more free texts generated on the web are associated with structured attributes which are either automatically

extracted or recognized by human experts. For example, many shopping websites display technical attributes

of their products, e.g., Brand, Model, Price, along with customer reviews about the products, so users can

conveniently specify those structured attributes to refine their results. Structured data coexist with texts

also in many other domains, such as medical reports, system bug reports, etc. Therefore, developing novel

systems that can efficiently manage such multidimensional textual data and provide effective methods for

users to explore and understand the data has become a demanding need.

Intuitively, users should be able to query multi-dimensional text databases by specifying values that

match the dimensions and keywords that match the texts. Keyword search has been developed in RDBMSs

[4], and traditional keyword search systems are effective if users only care about the top relevant tuples, but

when the relevant results are many, it could be difficult for users to digest the results and come up with

more accurate queries to refine the results. However, if rich structured dimensions are available, they can be

naturally utilized to organize the results and give users possible refinement. One example is faceted search

systems [15, 17, 6, 11, 12, 10, 2], which show structured facets that are associated with relevant documents

in their interfaces, and facets can be interactively selected by users to further refine the search results.

Moreover, to further guide user exploration, some systems [17, 6, 11] rank facets based on their proposed

measures to promote those dimensions and attributes that are more effective in helping users navigate to

their desired results. For example, DynaCet [17] focuses on minimizing the number of facets users need to

select to reach the most relevant documents.

Faceted search offers users much more flexibility to explore the results by specifying various facet refine-

ment, however, we should notice in faceted search attributes are mainly treated as filtering conditions and

the results displayed to users are still individual relevant tuples, which means the relevance computation, if

there is any, still stays at the tuple level. However, individual tuples may not be exactly what users are look-

ing for in many scenarios, instead, users may be more interested in finding the relevance objects, which can

1

be represented by certain aggregation of the tuples. For example, when a user searches for “light-weighted

laptop” on Amazon, usually she is not looking for specific review documents that mention the keywords, but

some laptop brands or models that reviewers generally think are light-weighted. In this case, faceted search

that returns the relevant documents may not be very helpful, instead, we need a framework that supports

object-level relevance and navigation.

Past works on entity and object search [5, 1, 3] have justified the effectiveness of aggregating relevant

tuples into high-level objects. And recently, [7, 23] target on supporting more flexible aggregation in multidi-

mensional databases, i.e., any combination of the structured attributes correspond to an object at a certain

level. In data cubes built on top of the databases, [23] searches for the minimum cells covering the query,

while TopCells [7] ranks all the cells based on IR relevance functions. However, all these systems output

results in a ranked list, which as we have argued is not ideal for user digestion and exploration, and the fact

that ranked objects are in different levels could give more difficulties to users. Therefore, an exploration

mechanism suitable for higher-level objects needs to be developed.

With such motivation, in this work we propose TEXplorer, a keyword-based interactive OLAP framework

that incorporates keyword search with the aggregation and exploration functionalities that are essential in

OLAP systems (Figure 1.1 compares TEXplorer with existing keyword search systems). In TEXplorer, we

adopt the strengths of object search and faceted search by utilizing structured attributes in two aspects: first,

as in object/entity search they represent high-level objects which individual tuples can be aggregated into;

and second as in faceted search they are ranked and displayed to users to facilitate informative navigation

of the results.

Object Search
Entity Search

TopCells

Web Search
BANKS

DBXplorer
DISCOVERTuples

Keywords

with Exploration

Objects

Aggregated

........

........

Faceted Search

TEXplorer

Output

Query

Interface

Non−aggregated

Keywords

Figure 1.1: Roadmap of Keyword Search Systems

Moreover, to enable smooth exploration experience, TEXplorer employs a text cube data model as pre-

sented in [7], so that objects, i.e., cells in the cube, at different levels can be efficiently aggregated. When

2

a keyword query comes, the relevance of each object/cell is aggregated from the relevance scores of tuples

belonging to the cell, so that objects in same dimension subspaces can be ordered by relevance, and we

further propose a significance measure for ranking different dimension subspaces, which indicates to users

which subspaces are more likely to contain desired objects. To interactively explore the results, users can

drill down to a dimension with high significance to look at the objects in the corresponding subspace, then

they can select an object with high relevance and advance to the next interaction stage, where sub-objects

are computed only from tuples belonging to the selected object. Example 1 explains the user interaction

with concrete details.

Text Database
Multidimensional

Lenovo

HP

Brand

... ...

Dell

14.0’’ LED

15.0’’ LED

Screen

14.0’’ TFT

ATI 5850

nVidia 330M

Video Card

ATI 5730

User selects

"Vidio Card"

= nVidia 330M

Intel Core i7

AMD Turion

Intel Core i5

CPU

... ...

15.0’’ LED

Screen

... ...

15.0’’ LED

15.0’’ LED

User selects

"Brand"

= HP

(15.0’’ LED, nVidia 330M, HP)

Browse laptops

User selects

= 15.0’’ LED

"Screen"

2. Ranking dimensions in a subspace

1. Ranking cells in the same cuboid

Drill down‘‘Powerful’’, ‘‘Gaming’’

Keyword Query:

... ...

... ...

Lenovo

Brand

... ...

ATI 5850

nVidia 330M

ATI 5730

Video Card

... ...

HP

Dell

15.0’’ LED

Screen

... ...

15.0’’ LED

Screen

... ...

15.0’’ LED

15.0’’ LED

15.0’’ LED

15.0’’ LED

Drill down

nVidia 330M

Video Card

nVidia 330M

Video Card

Video Card

15.0’’ LED

Screen

... ...

14.0’’ LED

Screen

... ...

15.0’’ LED

Screen

... ...

15.0’’ LED

15.0’’ LED

15.0’’ LED

15.0’’ LED

15.0’’ LED

15.0’’ LED

... ...

... ...

... ...

nVidia 330M

nVidia 330M

nVidia 330M

nVidia 330M

nVidia 330M

nVidia 330M

AMD Turion

Intel Core i5

Intel Core i7

CPU

... ...

MacOS 10.6

Win 7

OS

... ...

HP

Apple

Dell

... ...

Brand

Roll up

Drill down

Win XP

nVidia 330M

Figure 1.2: Keyword-based Interactive Exploration in TEXplorer

Example 1. (Motivating Example) Given a customer review database of laptops, each review document

is associated with several structural attributes of the laptop being reviewed, e.g., Brand, CPU, Screen, OS,

Video Card and Weight, etc.

Figure 1.2 shows a running example of TEXplorer. A customer Kate wants to buy a powerful laptop

suitable for gaming. Using our system, she could submit a keyword query “powerful, gaming”.

Suppose at the beginning, the system returns Kate a list of dimensions ordered by significance: Screen,

Brand, Video Card, etc. The Screen dimension will be on the top if we infer from review data it is the most

important factor for choosing gaming laptops. Within the Screen subspace different screen objects are ranked

according to relevance, e.g. 15” LED will be the most relevant one if reviews about laptops with this screen

have the highest aggregated relevance score.

Kate can drill down the Screen dimension and select 15” LED, then in the second stage, the rest dimen-

sions and objects in each dimension are re-ranked only based on reviews for laptops that have the selected

screen type. Then this time she could drill down to the top 2 “Video Card” dimension if she feels video cards

are more important to her, after which she will be prompted to the third stage to make more refinements. At

3

each stage, Kate can modify her keyword query and the system will re-rank the current records based on the

updated query; Kate can also choose to roll back to any previous stages and explore other subspaces.

To summarize, we identify the contributions of this thesis 1 are :

• We propose a keyword-based interactive exploration framework, which integrates keyword search with

OLAP aggregation and exploration, and supports most state-of-the-art IR models for relevance com-

putation.

• We introduce a novel measure, significance, to effectively rank dimensions and facilitate informative

user exploration based on relevance scores.

• We identify the major computational challenges in our system and propose pre-computation strategies,

as well as ranking algorithms that efficiently retrieve top-k dimensions/cells.

Organization We will introduce the data model, text cube, and identify the major tasks of TEXplorer

in Chapter 2. Chapter 3 introduces our significance measure. Chapter 4 proposes pre-omputation strategies

and efficient algorithms for ranking dimensions and cells. Chapter 5 reports experimental study. Chapter 6

discusses related work, and finally Chapter 7 concludes this thesis.

1This thesis is based on previously published work [22]

4

Chapter 2

Problem Definition

In this chapter, we first introduce the text cube data model, in Section 2.1, then define the problems we need

to address in Section 2.2.

2.1 Data Model: Text Cube

In an n-dimensional text database DB, each tuple t can be represented by a document d and an object with

n structural dimensions A1, A2, . . ., and An, i.e., t = (a1, a2, . . . , an, d). Each dimension corresponds to one

attribute of the object, e.g., Brand, Model, etc. We let tAi
= ai, and tD = d denote the value of dimension

Ai and document of the tuple respectively.

A text cube can be built on top of the multidimensional text database in order to support OLAP operations

on the text data. The model was first introduced in [16]. Our system utilizes text cube so we briefly introduce

several important concepts as follows.

A cell in the text cube is denoted as C = (v1, v2, . . . , vn : D), where vi ∈ Ai ∪ {∗}. vi = ∗ means the

dimension Ai is aggregated in C (vi can take any value in Ai). D is the set of documents in the tuples of DB

whose dimension values match C. We call this set D the aggregated document of the cell C. Let CAi denote

vi, and CD denote D. A cell is called empty if CD = ∅.

A cuboid is a group of cells having the same non-∗ dimensions. A cuboid with m non-∗ dimensions is called

an m-dim cuboid. Cell C ′ is a child of cell C iff ∃i, s.t. CAi = ∗, and C ′Ai
∈ Ai, and ∀j 6= i : CAj = C ′Aj

.

Specifically, if A is the only one dimension that is aggregated in C but has non-∗ value in C ′, we call C ′

the A-child of C. Let chd(C ′) denote the set of (non-empty) children of C ′, and chdA(C ′) denote the set of

(non-empty) A-children of C ′.

2.2 Tasks of TEXplorer

After introducing our data model, in this section we will formally define the major tasks of TEXplorer. As

explained in Example 1 and Figure 1.2, at any interactive stage, if users would like to further drill down to a

5

more detailed level, they need to decide: (i) which dimension to drill down; and (ii) which cell in the drilled

down cuboid to further explore. Hence, two major tasks of TEXplorer are (i) ranking candidate dimensions

by the significance measure; and (ii) for each dimension, ranking children cells in the corresponding subspace

by relevance. We give formal definitions of these two problems as follows:

Ranking Dimensions for Drilling Down

Given a cell C (being explored by the user), for any aggregated dimension Ai of C, we define the significance

of Ai w.r.t. the keyword query q, denoted by SigAi
(q, C). Our goal is to rank all the aggregated dimensions

of C according to SigAi
(q, C), or provide the top-k ones.

Example 2. Consider the example in Figure 1.2. When the cell (Screen = 15.0” LED) is being explored

and query is “gaming, powerful”, the drilling down dimensions are ranked as Brand, Video Card, CPU,

. . . . This implies, for laptops with 15.0” LED screens, Brand, Video Card and CPU are the most important

factors that are related to gaming experience. The user can choose a dimension to drill down based on the

system outputs as well as her own intention and preference.

Providing a ranked list of top-k significant dimensions is important, especially when the number of di-

mensions is large, to help users explore the data more effectively. Otherwise, users who do not have much

knowledge about the domain, e.g., laptops, could waste a lot more time looking into all possible subspaces.

Even for domain experts, such data-oriented ranking can also benefit the analysis of the correlation between

structured attributes and keywords in the texts. For example, in a TEXplorer built on aviation report

databases, aviation safety analysts can query specific problems mentioned in pilot reports by several key-

words and find what dimensions, e.g., location, weather, time, etc, are the most important factors that are

potentially related to the problem.

Note that although the roles are similar, the significance measure in TEXplorer is designed with quite

different intuitions from facet ranking measures in faceted search systems. Since we focus on the ranking

and exploration of relevant objects rather than individual tuples given a keyword query, our significance

measure is more appropriate for this goal by exploiting the distributions of relevance scores of objects and

tuples. We will formally define the significance measure in Chapter 3.

Ranking Cells in the Same Cuboid

Given a cell C (being explored by the user) and an aggregated dimension Ai of C, we want to rank all the

Ai-children of C according to the relevance Rel(q, C) efficiently, or provide the top-k relevant ones.

6

Example 3. Consider the second stage in Figure 1.2, when the user decides to drill down from the cell C:

(Screen = 15.0” LED), for C’s Brand-children, we need to rank them according to their relevance to the

keyword query, in the order of, e.g., (Screen = 15.0” LED, Brand = HP), (Screen = 15.0” LED, Brand =

Dell), and so on. Similarly, we also rank C’s Video Card-children, CPU-children, and so on. Note we only

rank cells within the same cuboid.

Different from [23, 7], where all the cells in the whole cube are ranked together, we focus on ranking cells

(objects) in the same cuboid (subspace), which not only makes the ranking more meaningful in semantics,

but also enables our system to adopt much more IR relevance models that could potentially increase accuracy.

Recall a cell C aggregates the documents in CD, so the relevance of C w.r.t. a query q, i.e., Rel(q, C), is

actually the relevance of a set documents. Previous studies in IR [8] propose two general relevance models

for this problem. The first one is called “large document model”: simply concatenating all the documents

in the set into a pseudo document, and computing the relevance of such pseudo document. The second is

“small document model”: computing the relevance of each individual document and aggregating the scores

using an aggregate function, e.g., the average function:

Rel(q, C) =
1

|CD|
∑
d∈CD

rel(q, d) (2.1)

where |CD| is the number of documents in CD, and rel(q, d) is the relevance of a document d w.r.t. q.

The two relevance models have their own advantages. One limitation of previous methods [23, 7] is that

they are restricted to specific relevance functions. For example, TopCells [7] can only support the “small

document model” due to its efficiency issue. But in TEXplorer, we can efficiently support both models. In

the rest of the thesis, we will use the average model (Equation 2.1) to denote the relevance of a cell only for

the ease of explanation.

For the document relevance rel(q, d), TEXplorer is not restricted to a specific form of document relevance

function either. We support the class of document relevance in a more general form of:

rel(q, d) =
∑
w∈q

IDFw · TFWw,d · QTWw,q (2.2)

where IDFw is the inverted document frequency factor of term w ∈ q, TFWw,d is the term frequency factor

of w in document d, and QTWw,q is the query term frequency factor of w in q.

Most state-of-the-art relevance functions fit into the above form, such as Okapi BM25, pivoted normal-

ization, and some language modeling approaches [21]. Moreover, user relevance models [12] can also be

7

implemented in TEXplorer to take users’ interaction as feedback and make the ranking more personalized.

For example, documents in a cell may be less relevant if a user rolls up after visiting the cell. We will not

explain more details since the relevance function for ranking documents and objects is not the contribution

of this thesis, since we intend to design a general framework that can utilize any IR relevance measure.

8

Chapter 3

Significance of a Dimension

In this chapter, we introduce a novel significance measure to help users determine which dimension to drill

down when exploring a cell. For a cell C and an aggregated dimension Ai, Ai-children of C are obtained by

drilling down Ai from C. The significance of drilling down dimension Ai w.r.t. a keyword query q is defined

based on the following two intuitions.

i) How distinctive are top relevance cells? The overall relevance of documents in C is constant

given the query q, then if for some dimension Ai, relevant documents are aggregated in a way that

some cells are very relevant while the others are not, it implies Ai is discriminative w.r.t. q, and

therefore Ai is more interesting to look into. For example, if reviews of (Brand = Lenovo, Model =

ThinkPad) laptops are highly relevant to query “long battery life” while reviews of (Brand = Lenovo,

Model = IdeaPad) are not, then users might be more interested in drilling down dimension Model from

cell (Brand = Lenovo) than those dimensions where top relevance cells are not very distinctive.

ii) How consistent are documents within each cell? Now consider the documents in each of the

Ai-children of C. If these documents are consistent w.r.t. q, i.e., they are either all relevant to q or

all irrelevant to q, then it implies the relevance of this cell is of high confidence. For example, if we

drill down dimension Color from a cell (Brand = Lenovo), and documents in every children cell are

not very consistent w.r.t. the query {“battery”, “long”, “time”}, then it probably means Color is not

a very meaningful dimension to drill down.

Figure 3.1 illustrates the significance scores for two dimensions. The height of the bars indicate the

relevance of the documents and cells. In the first dimension, top cells are more distinguished from others

and documents are more consistent within each cell, and therefore the first dimension will have higher

significance score.

Now we can formally introduce the significance measure. To capture our first intuition, we define cell

variance CVAi
(q, C) as how much the relevance of each of C’s Ai-children deviates from the relevance of

C, weighted by the number of documents in each Ai-child, since intuitively larger cells should have higher

9

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

cell 1 cell 2 cell 3

document
cell

average

(a) High Significance

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

cell 1 cell 2 cell 3

document
cell

average

(b) Low Significance

Figure 3.1: Example of Significance Scores

weights:

CVAi
(q, C) =

∑
C′∈chdAi

(C)

|C ′D| · (Rel(q, C ′)− Rel(q, C))2

|chdAi(C)| − 1
(3.1)

To capture our second intuition, we define the document variance DVAi
(q, C) as how much the relevance

of each document in C deviates from the relevance of the Ai-child of C which contains that document.

And inverted document variance IDVAi(q, C) is the reciprocal of DVAi(q, C), so higher IDV implies higher

consistency of documents within each Ai-child of C:

IDVAi(q, C) =
|CD| − |chdAi

(C)|∑
C′∈chdAi

(C)

(∑
d∈C′

D

(rel(q, d)− Rel(q, C ′))2

) (3.2)

If the average relevance model (Equation 2.1) is used, treating each cell as a document group, CV is

actually the variance of group means, and DV is the mean of with-in group variances. We define a more

general form here so other relevance models can also be plugged in.

We will consider a dimension more significant if the CV and IDV are both high. On the other hand, a

dimension with higher CV is also more likely to have lower IDV, since the documents in this cuboid tend to

be inconsistent. Therefore, similar to the well-known TF-IDF mechanism, we penalize high CV scores based

on IDV scores by using the product of the two as our measure, i.e., we define the significance as:

SigAi
(q, C) = CVAi

(q, C) · IDVAi
(q, C) (3.3)

Statistical Meaning of Sig Actually our proposed significance measure SigAi
has some intrinsic relationship

to the F-ratio, which is often used in ANOVA test [13] in statistics. All the documents in a cell C are

10

partitioned into its Ai-children for a drilling down dimension Ai. If we associate each of the Ai-children

with a relevance distribution, we can regard the relevance scores of documents in each of the Ai-children as

samples drawn from this distribution. If the average relevance model (2.1) is used, SigAi
as defined in (3.3)

is actually the F-ratio, which measures how significantly these relevance distributions are different from each

other. The higher F-ratio is, the more significantly these distributions are different. And in this thesis we

generalize its form so other relevance models can also be used to compute SigAi
.

11

Chapter 4

Ranking Algorithms

In this chapter, we focus on designing efficient algorithms for the two computational tasks: ranking most

significant dimensions and most relevant cells in each dimension. In the previous chapter, we can see that

our significance measure depends on the relevance scores of children cells in each dimension, so the ranking

of relevant cells can be naturally implemented within the framework of ranking dimensions. Therefore, in

the discussion of our proposed algorithms we mainly focus on computing the top-k significant dimensions.

We identify two major computational challenges of this problem and proposed the corresponding solutions:

• Each document belongs to one children cell in each drill-down dimension. Therefore, in order to

rank children cells in every dimension and compute the Sig score, every relevant document needs

to be aggregated multiple times to different cells. However, we find the cell relevance scores are

pre-computable, therefore we can materialize some statistics offline in the Text Cube, so that online

query-dependent aggregation can be performed very efficiently.

• The Sig measure requires aggregated statistics from all the relevant documents. Hence, to compute the

exact scores all relevant documents need to be scanned, which could be costly on large scale corpus.

To solve this problem, we focus on finding top-k solutions, i.e., if only top-k significant dimensions are

desired we can just scan a very small number of documents. We identify our top-k problem is very

different from existing ones, and by exploiting some good properties of our problem, we could achieve

stronger pruning power than previous top-k algorithms.

4.1 MultiAccess Algorithm

The first algorithm is the baseline approach. Equation (3.1) and (3.2) show that, given the cell C (currently

visited by users) and the keyword query q, the Sig score of dimension Ai depends on: i) relevance of C, and

every Ai-child of C; ii) relevance of every document in C, i.e., rel(q, d); iii) some query independent factors:

|C ′D|, |CD|, and |chdAi
(C)|.

For the query independent factors, we can pre-compute and materialize them in the Text Cube, so that

12

we do not have to scan all the documents in C on-the-fly. However, we still need to scan every relevant

document when the query comes. Moreover, each relevant document should be aggregated to all the cells C ′

it belongs to for computing Rel(q, C ′). After we scan all the relevant documents, exact significance scores

can be computed and the dimensions with top-k highest scores will be output. Because multiple aggregation

operations are performed for each relevant document, we call this algorithm MultiAccess.

Algorithm 1 MultiAccess Algorithm

Input: keyword query q, starting cell C, parameter k.

1: d = FetchNextRelevant(q, C);
2: while d is not NULL do
3: Update C with d;
4: for each aggregated dimension Ai of C do
5: Update d’s cell C ′ ∈ chdAi

(C) with d;
6: d = FetchNextRelevant(q, C);
7: for each aggregated dimension Ai of C do
8: Compute SigAi

(q, C);
9: Output dimensions Ai with the top-k highest SigAi

(q, C);

Analysis Suppose there are m different aggregated dimensions in C, and n relevant documents, then the

time complexity of the MultiAccess algorithm is O(m × n). When n is very large, this algorithm runs very

slow. Also notice that if we do not pre-compute the query-independent factors like the number of documents

in C, then those factors can only be computed by scanning all documents in the cell, meaning the time

complexity for every query is O(m× |CD|), which is not acceptable.

4.2 OneAccess Algorithm

One major overhead of the MultiAccess algorithm is that multiple aggregation operations are performed for

each relevant document. To alleviate this problem, we naturally exploit the pre-computability of the scores

by materializing some statistics about the terms offline in the Text Cube, so that when online queries come,

the scores can be computed based on materialized results very efficiently.

From Equation (3.3) we can see the only factor that causes multiple aggregation of documents is the

relevance of children cells of C, i.e., Rel(q, C ′). Since users could query on any cell in the Cube, we now

discuss how to precompute relevance signals for any cell in the Text Cube.

Precomputation of Relevance To compute the relevance of a cell C w.r.t. a keyword query q, without

any precomputation, we need to scan each document in CD at least once. In the following, we show that,

for the general form of cell relevance defined in Section 2.2, we need only O(1) space per term in each cell

for precomputation, so that the relevance of the cell C, Rel(q, C), can be computed in O(|q|) time.

13

For the “small document” cell relevance model defined in (2.1), we can rewrite it as follows:

Rel(q, C) =
1

|CD|
∑
d∈CD

∑
w∈q

IDFw · TFWw,d · QTWw,q

=
1

|CD|
∑
w∈q

IDFw · QTWw,q ·

(∑
d∈CD

TFWw,d

)

Let TFWw,C =
∑

d∈CD

TFWw,d. If for each term w, we precompute IDFw, and in each cell C, we precompute

TFWw,C , then from the above equation, Rel(q, C) can be computed in O(|q|) time.

For the “large document model”, the precomputation is straightforward: we concatenate the documents

in each cell offline and store the pseudo document in the cell. Computing Rel(q, C) is then equivalent to

computing the relevance of the pseudo document, which takes O(|q|) time.

The precomputaion needs O(1) space per term for each cell, so the total space cost of the text cube

is O(|V | × |Cube|), where |V | is the size of the vocabulary, and |Cube| is the number of non-empty cells

in the Cube, bounded by 2m×#(Base Cells), m is the number of dimensions. For a text database that

does not have very high number of dimensions, e.g., 10 dimensions, but have a large number of documents,

the number of non-empty cells is comparable to the number of documents, so the extra space needed is

comparable to the size of inverted index built on the document collection, which is quite affordable.

Moreover, there have been extensive studies on reducing the space cost and supporting efficient query

processing in a partial materialized cube [16, 20], where only some cells of the cube are precomputed and the

rest ones can be efficiently computed online based on them. Those techniques can be easily implemented

in our system to further save the storage, since the measures stored in the text cube satisfy the distributive

property [16]. In the remainder of the thesis, however, we assume our cube is fully materialized since how

to reduce the space is not the main focus of this work.

Online Computation We have showed with precomputation the relevance of cells can be computed very

efficiently on-the-fly. And based on those scores we can compute the cell variance CV(q, C) (3.1) directly.

Next, we further decompose the IDV(q, C) and rewrite Equation (3.3):

SigAi
(q, C) =

CVAi(q, C) · (|CD| − |chdAi(C)|)∑
C′∈chdAi

(C)

(|C ′D|Rel(q, C ′)2 − 2SC′Rel(q, C ′)) + SSC
(4.1)

where SC′ =
∑

d∈C′
rel(q, d), and SSC =

∑
d∈C

rel(q, d)2.

SC′ is the sum of the relevance scores of documents in cell C ′, so it can also benefit from the precompu-

tation. In fact, SC′ just equals to |C ′D| · Rel(q, C ′) if the average relevance model (2.1) is used. Then the

only factor left unknown in Sig is SSC , the sum of squares of each document’s relevance score. And this

14

factor can not be easily pre-computed unless bigrams are considered, which would cause too much storage

overhead. Therefore, in the online query processing we still need to scan all relevant documents, but this

time we only need O(1) operation for each document to compute SSC . We call this algorithm OneAccess.

Algorithm 2 OneAccess Algorithm

Input: keyword query q, starting cell C, parameter k.

1: Compute Rel(q, C);
2: for each aggregated dimension Ai of C do
3: for each C ′ ∈ chdAi

(C) do
4: Compute Rel(q, C ′);
5: d = FetchNextRelevant(q, C);
6: while d is not NULL do
7: SSC = SSC + rel(q, d)2;
8: d = FetchNextRelevant(q, C);
9: for each aggregated dimension Ai of C do

10: Compute SigAi
(q, C) using SSC , etc;

11: Output dimensions Ai with the top-k highest SigAi
(q, C);

Analysis Since for each relevant document OneAccess only needs O(1) operation, the time complexity is

O(n + m), if there are n relevant documents and m dimensions. When m or n is large, OneAccess will

be significantly faster than MultiAccess. Another benefit of OneAccess is that the relevance of cells can be

computed without scanning any document, so the ranking of top cells in each dimension can be performed

very efficiently.

4.3 OneAccess+ Algorithm

OneAccess needs to scan all relevant documents once in order to compute the exact significance scores.

However in the case only top-k dimensions are desired by users, we do not have to compute the exact scores

if the top-k is guaranteed.

Specifically, in OneAccess+ we progressively fetch documents in the descending order of their relevance

scores, which can be easily supported by the underlying full text search component. Then we can estimate

the upper and lower bounds of the scores, and rank all dimensions in two lists: LUB and LLB , based on

their upper bounds and lower bounds respectfully. We update the bounds and the ranked lists every time

we fetch new documents. When the top-k dimensions with highest values in LUB and LLB are the same,

and the k-th lower bound is greater than or equal to the (k + 1)-th upper bound, it means no dimension in

LUB that ranks lower than k could eventually win any top-k dimension in LLB , i.e., the top-k is guaranteed

and the algorithm can stop.

Upper and Lower Bounds of Sig As we have discussed in the OneAccess algorithm, all factors in (4.1)

15

can be computed efficiently from offline materialized scores without scanning any relevant documents, except

the sum of squares of document relevance scores SSC =
∑
d∈C

rel(q, d)2. So if we treat factors that have been

calculated as constants, it is easy to see the Sig score monotonically decreases with SSC . Also we know the

documents can be fetched in a non-increasing order of their relevance. Based on these facts, we can derive

the upper and lower bounds of Sig as follows.

Suppose at the current step we are accessing the i-th document, then an obvious lower bound SSC is

given by the current SSC score we have aggregated:

SSC =

i∑
j=1

rel(q, dj)
2 (4.2)

Then the Sig score computed by using lower bound SSC is the upper bound.

To derive the upper bound of SSC , we first need to know the number of relevant documents for the

current query. While the exact number is not easy to get without scanning all the relevant documents, the

total number of documents in the current starting cell CD is obviously too loose. The solution is we can

offline compute and materialize the document frequency of w in C, i.e., number of documents in C that

contain w, denoted as dfw,C . Then for each w in the query q, the sum of dfw,C gives an upper bound of the

number of relevant documents. And since we know the relevance of future documents is not greater than

the current rel(q, di). The upper bound of SSC can be estimated by:

SSC =

i∑
j=1

rel(q, dj)
2 + (min{

∑
w∈q

dfw,C , |CD|} − i) · rel(q, di)
2 (4.3)

And the lower bound of Sig can be computed using SSC .

Analysis OneAccess+ exploits upper and lower bounds of the significance scores to enable early termination

of the algorithm when top-k is guaranteed. When the bounds are tight, and k is small, it could lead to more

efficient execution than MultiAccess and OneAccess. However, every time we get a new relevant document,

the upper and lower bounds for each dimension should be updated, which takes O(m), and the ranked lists

may need to be adjusted, which takes expected O(m logm) time. Hence the time complexity of OneAccess+

is O(n · m logm) for n relevant documents and m dimensions, which is worse than OneAccess. Several

heuristics could be applied to improve the running time, e.g., only updating the bounds after fetching a

batch of t documents.

16

Algorithm 3 OneAccess+ Algorithm

LUB and LLB : ranked lists of dimensions (in the non-increasing order of upper bound and lower bound of
Sig(q, C) respectfully)
Input: keyword query q, starting cell C, parameter k.

1: Compute Rel(q, C);
2: for each aggregated dimension Ai of C do
3: for each C ′ ∈ chdAi

(C) do
4: Compute Rel(q, C ′);
5: d = FetchNextRelevant(q, C);
6: while d is not NULL do
7: Update SSC and SSC ;
8: for each aggregated dimension Ai of C do
9: Update SigAi

(q, C) using SSC ;

10: Update SigAi
(q, C) using SSC ;

11: Update LUB and LLB ;
12: if LUB [1..k] == LLB [1..k] and LLB [k].score ≥ LUB [k + 1].score then
13: break;
14: d = FetchNextRelevant(q, C);
15: Output top-k dimensions LUB [1..k];

4.4 OneAccess++ Algorithm

OneAccess+ deploys standard top-k stop conditions which work for general ranking functions [3]. However,

our top-k problem is quite different from previous top-k aggregation problems [3, 1, 14]. In previous problems,

each object is aggregated from a set of tuples in the database, and to get the top-k objects, the algorithms give

higher priorities to the promising objects so that their exact scores can be computed first. However, in our

problem, the Sig scores for different dimensions depend on all relevant documents in the cell. Computation

of the exact scores requires scanning all the relevant documents, which is what we want to prevent.

More specifically, for the Sig score in Equation (4.1), if all pre-computable factors are already calculated,

they can be treated as constant. Therefore, the significance scores for different dimensions can be simplified

as a series of functions with different parameters but the same variable, which is the unknown factor SSC

(it is unknown before all relevant documents are scanned):

SigAi
(SSC) =

pAi

qAi + SSC
(4.4)

Then we can exploit a good property of this family of functions to achieve stronger pruning power.

Property 1. f1, f2, . . . , fn are a series of functions of x. For any two functions fs and f t (1 ≤ s < t ≤ n),

there exists no xi < xk < xj, s.t. fs(xi) < f t(xi), and fs(xj) < f t(xj), but fs(xk) > f t(xk).

Property 1 says if the values of any two functions at xi, xj rank in the same order, then such order

remains for the values of the two functions at any point between xi and xj . It is equivalent to say that any

17

two functions do not cross more than once between any xi and xj .

According to Equation (4.4), SigAi
(SSC) represents a family of functions of SSC . And it is easy to verify

that any two functions in this family with different parameters can only have at most one intersection, i.e.,

SigAi
(SSC) satisfies Property 1.

Now we give the lemma which is the key of this OneAccess++ algorithm.

Lemma 1. Given a series of functions of x: f1, f2, . . . , fn that satisfy Property 1. If x is bounded between

lower(x) and upper(x), and f functions with top-k highest values at lower(x) are the same as f functions

with top-k highest values at upper(x); then the top-k remain the same at any point x between lower(x) and

upper(x).

Proof. Let us assume the lemma is not true, i.e., there exists a function f ′, s.t. f ′ is not in top-k either at

lower(x) nor at upper(x), but in top-k at some point x′ which is between lower(x) and upper(x). Then

there must exist a function f ′′ which is in top-k at both lower(x) and upper(x), but f ′′(x′) < f ′(x′). On

the other hand, since the values of f ′′ are greater than f ′ at both lower(x) and upper(x), and Property 1 is

satisfied for all functions in the series, we can derive that f ′′(x′) > f ′(x′). Contradiction.

Algorithm 4 OneAccess++ Algorithm

LUB and LLB : ranked lists of dimensions (in the non-increasing order of upper bound and lower bound of
Sig(q, C) respectfully)
Input: keyword query q, starting cell C, parameter k.

1: Compute Rel(q, C);
2: for each aggregated dimension Ai of C do
3: for each C ′ ∈ chdAi(C) do
4: Compute Rel(q, C ′);
5: d = FetchNextRelevant(q, C);
6: while d is not NULL do
7: Update SSC and SSC ;
8: for each aggregated dimension Ai of C do
9: Update SigAi

(q, C) using SSC ;

10: Update SigAi
(q, C) using SSC ;

11: Update LUB and LLB ;
12: if LUB [1..k] == LLB [1..k] then
13: break;
14: d = FetchNextRelevant(q, C);
15: Output top-k dimensions LUB [1..k];

Since SigAi
(SSC) is a series of functions of SSC satisfying Property 1, and SSC is bounded by its lower

bound SSC and upper bound SSC . Therefore the real top-k SigAi
(SSC) scores are achieved when SSC

reaches the exact value, which is some point between SSC and SSC . Lemma 1 tells us, if the top-k dimensions

Ai with highest SigAi
(SSC) and SigAi

(SSC) are the same, then they are the real top-k dimensions.

18

Therefore, our OneAccess++ algorithm is generally the same as OneAccess+. The only difference is the

stop-condition for top-k . OneAccess++ stops as soon as the top-k dimensions in the lower bound and upper

bound lists are the same. The condition that the k-th lower bound is greater than or equal to the k + 1-th

upper bound is no longer required. Since the stop condition is relaxed, OneAccess++ is guaranteed to be

more efficient than OneAccess+. Also note that OneAccess++ will generate the exactly same top-k results

as OneAccess+.

Analysis Since OneAccess++ is generally the same as OneAccess+ except the stop condition is different,

the time complexity of the two algorithms are identical. But in practice, OneAccess++ is guaranteed to be

faster.

19

Chapter 5

Experiments

In this chapter, our goal is to (i) verify the effectiveness of our ranking mechanisms and (ii) analyse the

performance of our proposed algorithms, and storage of the text cube.

Dataset We crawled customer reviews for laptops from Google Products1. The dataset has 26,418 reviews,

920 laptops, and 11 dimensions: Audio Card, Battery Run Time, Brand, Screen Type, Color, Weight,

Operating System, CPU, Hard Drive, Main Memory and Video Card.

Environment Setup All experiments were done on a machine running Windows 7 Professional, with a

Inter Core Duo T9300 processor, 4GB main memory, and 80G hard disk. The algorithms were implemented

in C++ and compiled with Microsoft Visual C++ 2008.

5.1 Effectiveness

In this section we focus on studying the effectiveness of our proposed significance measure for ranking

dimensions. For the relevance functions of documents and cells, there have been extensive studies in the

field of information retrieval, and TEXplorer can flexibly adopt most state-of-the-art relevance models.

Therefore we will not focus on evaluating different relevance functions. In the following experiments, we

use Okapi BM25 [21] for document relevance and the average model (Equation 2.1) for cell relevance, which

work quite well on our dataset.

5.1.1 Measures in Faceted Search

We compare our significance measure with the dimension ranking functions in two recent faceted search

systems [17, 6] defined as follows:

i) [17] targets on building decision trees with minimum height on the tuples, so that users’ efforts to

reach each individual tuple can be minimized. The Indg score of dimension Ai measures the number

1http://products.google.com

20

of indistinguishable pairs of tuples if choosing Ai as the root, and the algorithm greedily selects the

dimension with minimum Indg to build the tree.

IndgAi
(q, C) =

∑
C′∈chdAi

(C)

 ∑
di,dj∈C′

D

rel(q, di)× rel(q, dj)

 (5.1)

ii) [6] estimates the probability of the query results using a hyper-geometric distribution: let |CD| be the

number of documents in CD, and |CD(q)| be the numbers of relevant documents w.r.t. q in CD. For

an Ai-child of C, say C ′, if we randomly sample |CD(q)| documents from CD, the p-value of getting at

least |C ′D(q)| documents from C ′D in the sample can be written as:

pAi,C′(q, C) = 1−
|C′

D(q)|−1∑
s=0

(|C′
D|
s

)(|CD|−|C′
D|

|CD(q)|−s
)(|CD|

|CD(q)|
) (5.2)

A smaller p-value indicates it is less likely to get the results by chance, and therefore the cell C ′ is more

interesting. And the overall interestingness of a dimension Ai is the aggregation of p-values of the top-k

interesting Ai-children of C:

IntrAi
(q, C) = −

k∑
t=0

log pAi,C′
t
(q, C) (5.3)

We can see the two measures defined above more focus on the tuple level results. Indg targets on

distinguishing individual tuples, which may not be very effective for users to understand the data if they

are more satisfied with higher level aggregated results. The p-value and Intr utilize the distribution of result

tuples, but the relevance scores of tuples and cells are not considered at all. Therefore, these two measures

may not be well suited for our tasks in TEXplorer.

5.1.2 Case Studies

We issue a keyword query “stylish beauty cool fashion” on all documents in our dataset. The top-1 dimension

ranked by Sig is Brand, and the corresponding top relevant cell is (Brand = Apple), which is quite reasonable

since Apple laptops are well-known for the stylish design. However, the Brand dimension only ranks the

9th and the 10th according to Indg and Intr respectively, while the top-1 dimensions according to those two

measures are Weight and CPU, which are quite difficult to interpret.

Figure 5.1 plots the documents and cells for each top-1 dimension. Height of red and blue bars indicates

the relevance of documents and cells, and the green bar represents the average relevance of all the documents,

which remains the same. Width of the blue bars represents the number of documents in the cells. In

21

R
el

ev
an

ce
Documents

Cells
Average

(a) Sig: Brand

R
el

ev
an

ce

Documents
Cells

Average

(b) Indg: Weight

R
el

ev
an

ce

Documents
Cells

Average

(c) Intr: CPU

Figure 5.1: Top-1 dimension given by Sig, Indg, and Intr for query “stylish beauty cool fashion”

Figure 5.1(a), we can see the top (Brand=Apple) cell dominates other cells and the documents are rather

consistent compared to the other two dimensions, and therefore its Sig score is very high. Figure 5.1(b) shows

Indg tends to give higher scores to dimensions that have more cells but each cell has less documents, so that

the number of filtered tuples is maximized after users select one cell. However, the results lack semantic

interpretation if users prefer higher level objects rather than individual tuples. Intr does not utilize the

relevance scores at all. Although in our experiments cell (Brand=Apple) has quite high p-value compared

to other Brand-children, more CPU-children get higher p-values and thus the CPU dimension ranks top-1,

which is not very meaningful either.

We can show the effectiveness of our method using several more queries. The top-1 dimensions given

by the three measures Sig, Indg and Intr are put in Table 5.1. For our proposed Sig measure we also show

the top relevant cell in the corresponding subspace. Results of Sig are generally more meaningful than the

other two measures. Take the first query for instance, Screen Type is very important to gaming, and the top

relevant cell is a fairly large screen, meaning users who bought this screen mentioned gaming experience more

22

Query Sig Indg Intr

game player
Screen Type

Weight Processor
(16” TFT)

runtime error
OS

Weight Display Type
(MaxOS 10.5)

slow response
Processor

OS Video
(Celeron M353)

long hour
Battery Time

Color Processor
(9.5 hour)

Table 5.1: Top-1 Dimensions given by Sig, Indg and Intr

frequently in their reviews. However, Indg and Intr still rank Weight and Processor as the top-1 dimensions,

same as the results of a quite different query in Figure 5.1, which is probably because these two measures

do not utilize much the distribution of the relevance scores.

5.1.3 Quantitative Evaluation

To quantitatively justify the effectiveness of our method, we adapt the most popular IR evaluation mech-

anism: labelling dimensions as relevant or non-relevant for a given query and compute several measures

such as precision and MAP against the results. We want to compare with other state-of-the-art systems

and see whether our system can provide immediate helpful guides, so in this experiments, we evaluate the

first stage of the exploration (immediately after keyword query issued). To get the ground truth, we choose

20 common queries and ask 3 users to label which dimensions are meaningful w.r.t. the queries. Then we

take the intersection of their labelled sets as the ground truth, which is quite conservative but can ensure us

labelled dimensions are really relevant. Actually, we found the 3 users agree on more than 90 percent of the

dimensions, which means the meaningful dimensions are quite obvious given a certain keyword query. For

example, for the query “stylish”, Brand is obviously a relevant dimension.

Then we compute two most important measures in IR evaluation: mean average precision (MAP) and

the precision at top 3 against the dimensions output by Sig, Indg, and Intr measures. Table 5.2 shows the

averaged results over 20 queries: unsurprisingly Sig achieves the best MAP and precision among the three

measures by a significant margin; the MAP of Intr and Indg are close while the precision of Intr is higher

than Indg.

- Sig Indg Intr

MAP 0.662 0.430 0.468
Precision@3 0.467 0.233 0.367

Table 5.2: MAP and Precision@3 of Sig, Indg and Intr

23

5.2 Efficiency

Now we analyse the performance of the proposed algorithms. In the experiments we issue 10 queries of

length 3 and compare the average running time and visited documents of each algorithm. Note that for fair

comparison we do not count the time of loading index and fetching relevant documents, since all algorithms

assume it is efficiently supported by underlying full text search modules. We also loop the algorithms for

multiple times and take the average in order to measure the running time more accurately.

5.2.1 Efficiency vs. Number of Documents

To verify the scalability of the algorithms, we take 4 samples of 4901, 9802, 14703, 19604 documents from

our dataset and run the algorithms on the 4 samples and the whole dataset with 26418 documents. All 11

dimensions are considered, and the k is set to 3 for top-k algorithms.

 1

 10

 100

 1000

 10000

 5000 10000 15000 20000 25000

#
 R

u
n
n

in
g

 T
im

e
(m

ic
ro

 s
ec

)

Documents

MA

OA

OA+

OA++

(a) Running Time

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

4901 9802 14703 19604 26418

#
 V

is
it

e
d

 D
o

c
u

m
e
n
ts

Documents

MA
OA

OA+
OA++

(b) Visited Documents

Figure 5.2: Performance for Different # Documents

If we look at the number of visited documents in Figure 5.2(b). MultiAccess and OneAccess always

visit all the relevant documents as expected, which grow linearly with the number of all documents in the

database. OneAccess+ visits less documents by utilizing the upper and lower bounds of Sig to compute the

top-k dimensions, and the documents OneAccess+ accesses grow slower than the total number of relevant

documents, which means the pruning power of OneAccess+ becomes stronger as the size of the database

increases. OneAccess++ visits significantly less documents than all the other three algorithms, and the

number is almost stable. This verifies the unique property of our top-k problem does deliver stronger

pruning power. Also note that top-k algorithms OneAccess+ and OneAccess++ also has a good property

that they may actually visit less documents when the total number of document increases, because when

there are more relevant documents it is possible that the gap between top-k results and the rest becomes

24

larger, so the algorithms can confidently stop earlier.

For the running time shown in Figure 5.2(a), MultiAccess is slower than OneAccess even they visit the

same number of documents, since multiple aggregation is performed for each document in MultiAccess. Also

notice that OneAccess+ is also slower than OneAccess on the smallest samples because of the overhead for

updating the bounds and maintaining the top-k lists. When the size of the database is large, the pruning

power begins to dominate and therefore OneAccess+ becomes slightly faster than OneAccess. OneAccess++

is consistently the fastest as expected, and it generally runs more than 10 times faster than OneAccess

and OneAccess+ except for the first two smaller samples. This again verifies the good performance of

OneAccess++.

5.2.2 Efficiency vs. Top-k

In this experiment, we vary the length of the top list, i.e., k, and evaluate the efficiency for each algorithm.

All the documents in the dataset and all 11 dimensions are considered. We evaluate 10 queries of length 3

and report the average running time and number of visited documents in Figure 5.3.

 1

 10

 100

 1000

 10000

 1 2 3 4 5

#
 R

u
n
n

in
g

 T
im

e
(m

ic
ro

 s
ec

)

K

MA

OA

OA+

OA++

(a) Running Time

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

1 2 3 4 5

#
 V

is
it

e
d
 D

o
c
u

m
e
n
ts

K

MA
OA

OA+
OA++

(b) Visited Documents

Figure 5.3: Performance for Different Top K

First Figure 5.3(b) shows MultiAccess and OneAccess always visit all the relevant documents, which do

not change for different k. The number of documents OneAccess+ accesses fluctuates, since it may be difficult

to predict the stop condition of OneAccess+, but OneAccess+ still visits less documents than MultiAccess

and OneAccess. Among all the algorithms, OneAccess++ accesses the least documents, and the performance

is quite stable for different k compared to OneAccess+. The running time in Figure 5.3(a) shows the same

trend as Figure 5.3(b), and the running time of OneAccess++ is consistently the fastest among all the

algorithms.

25

5.2.3 Efficiency vs. Number of Dimensions

In this experiment, we use all the documents in our dataset, but vary the number of candidate dimensions

(i.e., dimensions considered to be ranked). k is set to 3, and the same 10 queries of length 3 as in previous

experiments are evaluated. We report the average running time and number of accessed documents in

Figure 5.4.

 1

 10

 100

 1000

 10000

 6 7 8 9 10 11

#
 R

u
n
n
in

g
 T

im
e

(m
ic

ro
 s

ec
)

Candidate Dimensions

MA

OA

OA+

OA++

(a) Running Time

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

6 7 8 9 10 11
#

 V
is

it
e
d
 D

o
c
u
m

e
n
ts

Candidate Dimensions

MA
OA

OA+
OA++

(b) Visited Documents

Figure 5.4: Performance for Different # Candidate Dimensions

Figure 5.4(b) shows the number of document visited by each algorithms is quite stable w.r.t. the number

of dimensions: MultiAccess and OneAccess always visit all relevant documents as expected, OneAccess+

generally visits less than a half and OneAccess+ consistently visits less than 5% of the relevant documents.

The fixed k in this experiment is probably one of the reasons why the pruning power of the two top-k

algorithms is stable.

As observed in Figure 5.4(a), the running time of all algorithms follows the similar patterns as in previous

experiments: MultiAccess is the slowest, and OneAccess+ is faster than OneAccess when the number of

dimensions is small, and with the growth of candidate dimensions the overhead of OneAccess+ increases.

And OneAccess++ is consistently around 10 times faster than OneAccess and OneAccess+.

5.3 Storage

We now examine the space overhead of the text cube in our system. We use all the 11 dimensions and vary

the number of documents to build the cube, and compare its size with inverted index built on the document

collection (Figure 5.5). Although the size of text cube is several times larger, it increases much slower w.r.t.

the number of tuples, which means the summarization power of text cube becomes stronger when the size

of original databases gets larger. Given in our experiments we are only able to get a small portion of the

26

real world customer review data, we could image the size of text cube would be comparable with inverted

index on much larger datasets, in which sense our solution is quite scalable.

Also notice there have been extensive studies on saving the space of a data cube using partial material-

ization [16, 20]. Since it is not the main focus in this thesis, we construct the full cube in the experiments.

However, those techniques can be easily applied to reduce the space substantially.

 1

 10

 100

4901 9802 14703 19604 26418

#
 S

to
ra

g
e

S
iz

e
(M

)

Documents

Inverted-Index
Text-Cube

Figure 5.5: Space Overhead vs. Documents

27

Chapter 6

Related Work

In this chapter we discuss previous work related to this thesis.

6.1 Faceted Search

Faceted search systems [17, 6, 11, 12, 10, 2, 15] allow users to flexibly select structured attributes to refine

the search results. Facets are ranked based on number of associated documents [10], estimated user effort

[17, 11], or p-value of the results [6]. Some systems dynamically generate facets from data [2, 15] or build

personalized relevance models [12]. As we have mentioned, TEXplorer is different from previous faceted

search systems because it focuses on keyword-based ranking and exploration of aggregated objects rather

than individual documents. None of the previous facet ranking measures consider the distribution of IR

relevance scores as we do and our experiments show the proposed Sig measure is more effective for our task.

6.2 Discovery-driven OLAP Systems

In traditional data cubes, discovery driven OLAP mechanisms [18] can find surprising or unexpected cells in

the cube. [19] further supports matching candidate subspaces by keywords and then dynamically suggests

facets by measuring surprising or correlated aggregates of categorical or numerical attributes. TEXplorer is

different in the sense that we care about the relevance of cells and correlated dimensions, rather than the

distribution of categorical or numerical values in the database. And we target on the most common search

behaviors: we suppose users who issue the keyword queries are always interested in the most relevant objects

rather than surprising ones, because objects with rather low relevance could still get high surprise scores.

6.3 Object Search in Database

Ranking of aggregated documents for keyword queries have been developed in relational databases [1, 3]

and data cubes [23, 7]. TEXplorer ranks objects in the same subspaces so that the comparison is more

28

meaningful, and the interactive exploration framework organizes different subspaces and rankings in an

effective way.

Our algorithms of ranking top-k dimensions are related to top-k query processing in database [9, 14, 3].

[14] supports ad-hoc ranking aggregation for the group-by operations in SQL. The mechanism of progressively

aggregating scores to each group is proposed so that the top-k groups can be computed efficiently. [3] also

proposes aggregation-based top-k generation and pruning strategies. We identify the unique property of our

top-k problem and our algorithms achieve stronger pruning power.

29

Chapter 7

Conclusions

7.1 Overview

In this work, we propose a novel system TEXplorer that allows users to perform keyword search and OLAP-

style aggregation and exploration of the objects in a text cube built on a multidimensional text database.

A novel significance measure is proposed to rank dimensions. Top relevant objects/cells in each dimension

subspace are also ranked for users to select. We develop top-k algorithms and materialization strategies

to accelerate the ranking. Extensive experimental studies verify the scalability of our methods and the

effectiveness of our proposed significance measure. TEXplorer can be potentially implemented on top of

many text databases like Amazon to improve user experience.

7.2 Future Work

7.2.1 Clustering of Objects

Currently in TEXplorer all objects or cells are considered separately in computing the relevance and signifi-

cance, even some objects are very similar, e.g., 16” and 17” screens can be both considered as “large” screens,

and users often do not have preferences in selecting a particular one. In this case, if we can automatically

cluster similar cells or allow users flexibly group cells, then relevance and significance scores based on these

object clusters could probably be more meaningful. In terms of computation, current system can support

the selection of a set of objects by aggregating the cells on-the-fly. If some cells are clustered offline with

high confidence, the clusters can also be materialized in text cube.

7.2.2 Advanced Relevance Models

Currently TEXplorer supports bag-of-words relevance models. Although these models still work very well in

general, we can also consider other signals for computing relevance. For example, to support the proximity

of keywords, we can mine frequent phrases from the texts and in text cube cells we can materialize phrases

30

that are more correlated or more likely to be queried, which could reduce the space overhead. To judge

the relevance of a cell we can also give different weights to different documents based on whether they are

important, etc.

7.2.3 User Feedback and Query Suggestion

When users interact with the system their behaviors can be utilized to compute the relevance and significance.

For example, if the user selects one object then decides to roll up and explore another dimension, it probably

means that object is not very relevant and that dimension is not very significant. Weights for terms that

appear very frequently in those objects can also be adjusted.

In each interaction stage we can also suggest users keywords that can summarize different candidate

objects and dimensions, which helps users choose the most effective query. For instance, when users have

drilled down to the very detailed level of the cube, instead of still executing their original query at higher

levels, the system should also give users suggestion on what are the most representative keywords of in the

current subspace so that users would have an even better understanding of the data.

31

References

[1] Albert Angel, Surajit Chaudhuri, Gautam Das, and Nick Koudas. Ranking objects based on relation-
ships and fixed associations. In EDBT, 2009.

[2] Ori Ben-Yitzhak, Nadav Golbandi, Nadav Har’El, Ronny Lempel, Andreas Neumann, Shila Ofek-
Koifman, Dafna Sheinwald, Eugene J. Shekita, Benjamin Sznajder, and Sivan Yogev. Beyond basic
faceted search. In WSDM, 2008.

[3] Kaushik Chakrabarti, Venkatesh Ganti, Jiawei Han, and Dong Xin. Ranking objects based on relation-
ships. In SIGMOD Conference, 2006.

[4] Yi Chen, Wei Wang, Ziyang Liu, and Xuemin Lin. Keyword search on structured and semi-structured
data. In SIGMOD Conference, 2009.

[5] Tao Cheng, Xifeng Yan, and Kevin Chen-Chuan Chang. Entityrank: searching entities directly and
holistically. In VLDB, 2007.

[6] Debabrata Dash, Jun Rao, Nimrod Megiddo, Anastasia Ailamaki, and Guy M. Lohman. Dynamic
faceted search for discovery-driven analysis. In CIKM, 2008.

[7] Bolin Ding, Bo Zhao, Xide Lin, Jiawei Han, and Chengxiang Zhai. Topcells: Keyword-based search of
top-k aggregated documents in text cube. In ICDE, 2010.

[8] Jonathan L. Elsas, Jaime Arguello, Jamie Callan, and Jaime G. Carbonell. Retrieval and feedback
models for blog feed search. In SIGIR, 2008.

[9] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algorithms for middleware. J.
Comput. Syst. Sci., 66(4), 2003.

[10] Marti Hearst, Ame Elliott, Jennifer English, Rashmi Sinha, Kirsten Swearingen, and Ka-Ping Yee.
Finding the flow in web site search. Commun. ACM, 2002.

[11] Abhijith Kashyap, Vagelis Hristidis, and Michalis Petropoulos. Facetor: Cost-driven exploration of
faceted query results. In CIKM, 2010.

[12] Jonathan Koren, Yi Zhang, and Xue Liu. Personalized interactive faceted search. In WWW, 2008.

[13] R Kuehl. Design of Experiments: Statistical Principles of Research Design and Analysis. Duxbury
Press, 2000.

[14] Chengkai Li, Kevin Chen-Chuan Chang, and Ihab F. Ilyas. Supporting ad-hoc ranking aggregates. In
SIGMOD Conference, 2006.

[15] Chengkai Li, Ning Yan, Senjuti B. Roy, Lekhendro Lisham, and Gautam Das. Facetedpedia: dynamic
generation of query-dependent faceted interfaces for wikipedia. In WWW, 2010.

[16] Cindy Xide Lin, Bolin Ding, Jiawei Han, Feida Zhu, and Bo Zhao. Text cube: Computing ir measures
for multidimensional text database analysis. In ICDM, 2008.

32

[17] Senjuti Basu Roy, Haidong Wang, Gautam Das, Ullas Nambiar, and Mukesh K. Mohania. Minimum-
effort driven dynamic faceted search in structured databases. In CIKM, 2008.

[18] Sunita Sarawagi, Rakesh Agrawal, and Nimrod Megiddo. Discovery-driven exploration of olap data
cubes. In EDBT, 1998.

[19] Ping Wu, Yannis Sismanis, and Berthold Reinwald. Towards keyword driven analytical processing. In
SIGMOD Conference, 2007.

[20] Dong Xin, Jiawei Han, Xiaolei Li, and Benjamin W. Wah. Star-cubing: Computing iceberg cubes by
top-down and bottom-up integration. In VLDB, 2003.

[21] Cheng Xiang Zhai and Graeme Hirst. Statistical Language Models for Information Retrieval. Morgan
& Claypool Publishers, 2008.

[22] Bo Zhao, Cindy Xide Lin, Bolin Ding, and Jiawei Han. Texplorer: keyword-based object search and
exploration in multidimensional text databases. In CIKM, 2011.

[23] Bin Zhou and Jian Pei. Answering aggregate keyword queries on relational databases using minimal
group-bys. In EDBT, 2009.

33

