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ABSTRACT

Modern storage systems continue to increase in scale and complexity as they attempt to

meet the increasing storage needs of our society. Additionally, increased requirements to

comply with government regulation and consumer expectations have increased the need to

make data more available and reliable for longer periods of time. The design of modern and

next-generation storage systems is a difficult task that requires high storage capacity and

efficiency while also maintaining the data integrity.

The rapid advancement of storage system technologies brings with it a level of uncertainty

as to the fitness of new designs and methods for meeting the complex requirements. New

technologies, like deduplication, promise improved storage efficiency, but their impact on

reliability measures is unclear due to the complex relationships inherent to the systems

that employ these technologies. Additionally, as systems scale up, they become subject to

faults and errors that previous-generation systems may never have encountered due to the

rare nature of these faults. Because of the stiffness of the represented systems, and the

complex relationships involved, it can be difficult to analyze these environments correctly

and efficiently.

In this dissertation, we propose a method to analyze storage system reliability by us-

ing component-based models coupled with realistic fault models. We solve these complex

systems by identifying fault, fault propagation, and mitigation events; by identifying de-

pendence relationships between state variables, events, and rewards; and by decomposing

our model at various points during model solution to improve the efficiency of our solution

while maintaining the correctness of our reward measures. In particular, we discuss build-

ing scalable component-based models of large-scale systems that employ modern reliability

methods, such as RAID, and state-of-the-art storage efficiency methods such as dedupli-
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cation. We present detailed fault models for these systems, including a novel model for

undetected disk errors. To enable efficient solution of these models we propose a method to

analyze the dependence relationships that underlie storage systems and propose a way to

solve these models by identifying and exploiting these relationships when solving for reliabil-

ity measures. We apply our methods to real-world systems, detail the consequences for the

reliability of deduplication, and suggest and evaluate methods to improve reliability while

still maintaining improved storage efficiency.
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CHAPTER 1

INTRODUCTION

Modern storage systems have become increasingly large, both because of the growth of user

data, and the advent of new regulations concerning the length of time data must be kept.

As storage systems have increased in size, failures have become increasingly common, and

faults which once were rare enough to be ignored as improbable have become threats to

data integrity. As systems and needs evolve, so do reliability goals, and technologies that

once provided suitable reliability may need to be re-examined. To better understand the

challenges and requirements of evolving storage systems before production and deployment,

and to understand the costs and trade offs necessitated by alternative system configurations,

methods must be adapted to evaluate and assess proposed designs.

Part of the process of evaluating proposed storage systems is the development of a complete

understanding of the environment in which the system operates, interactions within the

system, and the nature of the technologies employed by the system to achieve reliability

goals and storage efficiency goals. Recent years have seen rapid development along these

lines, especially in response to recent legislation mandating the length of time data must be

stored for retrieval. In 2002, over five exabytes of data were produced [2], representing an

increase of 30% from 2001. By 2007 the figure had increased to 281 exabytes, 10% more

than expected because of faster growth in cameras, digital TV shipments, and other media

sectors [1]. In 2010, the total data produced passed the zettabyte barrier. Forecasts put the

total size of stored data for 2011 at 10 times the size for 2006, roughly 1.8 zettabytes [3].

Storing the data has become increasingly problematic. In 2007, as forecast, the amount of

data created exceeded available storage for the first time [1].

Part of the driving force behind those changes has been the more than 10,000 legal reg-

ulations enacted in the U.S. alone [4]. In 2003, the amount of data stored for compliance
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Figure 1.1: Percent of total data that requires high reliability due to security, compliance,
or preservation requirements [1].

reasons increased by 63% [5]. What makes those increases particularly significant is that

they took place before the most demanding regulations, such as Sarbanes-Oxley, went into

effect. Furthermore, digital storage is also being impacted by the shift to digital storage of

permanent records. As shown in Figure 1.1, an increasing amount of data is subject to high

reliability requirements due to security, compliance, or preservation-related goals.

It is not enough, however, to simply have a large, reliable storage system. Despite the

decreasing cost of COTS storage devices, the cost of managed disk-based storage is still

high. These costs usually represent more than just the cost of the physical hardware it-

self. Enterprise-class storage has proven to be too expensive for many uses, creating an

environment in which less expensive near-line drives are used for archival purposes [6].

Additional pressure on storage systems is being created by the expanding availability and

reliance on cloud-based applications and resources. Web services such as e-mail, archives,

photo sharing, and social networks require that large volumes of user data be stored indef-

initely. In order for these services to remain economically viable to their operators, they

must have access to low-cost storage that remains reliable and available for their customers.
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To enable increased scalability for primary and archival storage systems new methods are

being developed to improve storage efficiency, allowing a larger data set to be stored in less

space by eliminating redundancy. Due to the increasing size requirements of archival stor-

age, many system administrators are choosing to deploy these increased-efficiency systems

without fully understanding the reliability consequences.

The key challenges addressed by this dissertation are as follows:

• Developing a robust understanding of current storage systems currently deployed, and

being developed. This includes an understanding of the underlying system models,

including the current storage requirements, technologies for improving storage effi-

ciency and reliability, and the faults these systems face in production systems and

next-generation systems currently being designed.

• Creating new fault models for emerging faults faced by modern and next-generation

storage systems based on the analysis of real data from production systems, and the

previous literature. This includes models of fault interaction, and mitigation techniques

so that a rich fault environment can be appropriately simulated.

• Analyzing and developing new models for storage data, its placement on production

file systems, and how the characteristics of that data can be used to better understand

the impact of system designs, and to develop new techniques to improve reliability and

storage efficiency of storage systems under development to enable intelligent design

decisions.

• Creation of new techniques to improve the efficiency and correctness of our analysis,

specifically aimed at confronting the challenges presented by the rare nature of certain

important faults in modern storage systems.

• The development of new reliability infrastructures designed to provide storage systems

which meet specified reliability goals while maintaining a high level of storage efficiency.
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1.1 Thesis Statement

There exists a need for methods that allow for the simulation of complex storage systems

with complex dependence relationships, accounting for wide classes of faults in order to

design and plan for next-generation systems to meet goals for storage system reliability and

efficiency.

It is our thesis that by combining component level models of storage system hardware,

with empirically derived models of data dependence relationships, we can efficiently calculate

measures of reliability for the systems in a rich environment of faults, and provide real

solutions for achieving both reliability and storage efficiency goals.

To achieve this goal we must:

• Develop an understanding of the faults affecting not only the current generation of

storage systems, but also those that will be important in next-generation systems.

• Develop an understanding of the technologies which will be employed by next-generation

systems, such as deduplication.

• Understand the complex dependence relationships in modern storage systems which

arise from RAID, and deduplication.

• Exploit the structure of the underlying models to improve efficiency of solution of stiff

models, given the wide range of rates implied by large-scale systems with rare-errors

and fast I/O.

• Illustrate the use of the developed methods on a real system, using component-based

methods.

• Propose methods for improving the reliability of large-scale storage systems, while

maintaining some improvements to storage-efficiency.
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1.2 Related Work

We now discuss work related to this dissertation. While we will discuss related work more

specific to our methods in each chapter to provide the context for the contributions of each

chapter, we discuss here some work of general interest to our motivation.

1.2.1 Modeling Disk Faults

Magnetic storage have become remarkably reliable devices since their inception, despite

their complexity. Both near-line and enterprise drives often implement the ability to detect

and recover from many types of errors automatically. Faulty portions of a platter can be

remapped to different logical and physical portions of the disk, and disks can often correctly

report when their data is no longer readable. Manufacturers provide reliability parameters

for their disks, such as mean time to failure (MTTF), and many studies exist which detail

the failure rates of drives in practice [7, 8, 9]. In addition to traditional, whole disk failure,

work has been done in the literature detailing other types of failures which result in the loss

of individual sectors [10, 9].

While these fault models characterize many types of faults, they do not appear to be

sufficient to estimate the reliability of large scale systems. IBM/LLNL’s ASCI White with

only 8192 cores, realized a MTTF of only 40 hours [11], much lower than expected from

traditional fault models. While RAID was sufficient in the past to tolerate faults [12], faults

which are unaddressed by RAID have been documented [13]. To assess the reliability of

modern storage systems, more detailed models of observed faults are required.

1.2.2 The Impact of Modern Storage Technologies on Reliability

In order to reduce the footprint of backup and archival storage, system architects have

begun using a new method to improve storage efficiency, called data deduplication. At a

high level, data deduplication is a method for eliminating redundant data in a storage system

to improve storage efficiency. Sub-file segments are fingerprinted and compared to a data

base of identified segments to find duplicate data. Duplicate data is then replaced with
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references to the stored instances. Recently this technology has also become available for

near-line primary storage controllers. These same methods are also being used to diminish

the silos between primary and archival storage for scale-out file systems. With the increasing

prominence of cloud computing, providers are also actively evaluating deduplication as a

method to decrease costs when supplying cloud storage products to customers.

The literature provides a good understanding on the cost of deduplication in terms of

performance [14, 15]. Reliability studies have been much fewer in number. Since traditional

deduplication keeps only a single instance of redundant data, deduplication has the poten-

tial to magnify the negative impact of losing a data chunk in chunk-based deduplication

[16, 5] that divides a file into multiple chunks, or of missing a file in deduplication using

delta encoding [17, 18, 19, 20, 21] that stores the differences among files. However, due to

the smaller number of disks required to store deduplicated data, it also has the potential to

improve reliability as well. Administrators and system architects have found understanding

the data reliability of their system under deduplication to be important but extremely diffi-

cult [22]. A related question is estimating if a data reliability constraint for files associated

with a business critical application (such as database) will be violated if data deduplication

is employed.

Existing literature on the reliability of deduplication is hindered by a reliance on heuristics

– the key recommendation is to keep multiple copies of a data chunk instead of storing only

a single instance. Deep Store [5] proposed to determine the level of redundancy for a chunk

based on a user-assigned value of importance. D. Bhagwat et al. [16] suggested that the

number of replicas for a chunk should be proportional to its reference count, i.e., the number

of files sharing the chunk. A gap exists in the current literature on the topic of quantifying

the data reliability of a deduplication system or providing a means to estimate whether a

set of reliability requirements can be met in a deduplication system.

1.3 Contributions

The contributions of this dissertation are as follows:
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• A model for an emerging class of faults, undetected disk errors (UDEs), derived from

real data and an analysis of how UDEs interact with existing reliability methods which

cause them to be both orthogonal to these methods, and to interact to propagate faults

to the parity section of RAID groups.

• A model of data deduplication, analyzing the dependence relationships implied by data

deduplication in a real system, and the complex ways in which deduplication can affect

both reliability and storage efficiency of the entire disk, and file categories on the disk

itself. We show via our model and analysis that such category specific information is

important both to understand the impact of deduplication, but also to form efficient

strategies for improving reliability of the underlying storage system without completely

compromising the storage efficiency benefits.

• A method for analyzing dependence relationships in storage system models. This

includes a method to represent the system model as a Model Dependency Graph

(MDG), a data structure which encodes all direct and indirect dependence relationships

as paths through the graph traversing state variables and events.

• A method for simulating systems with constructed MDGs. This new method attempts

to improve performance by decomposing the underlying model based on the current

values of all state variables, and the information encoded in the MDG, splitting the

model into separated sub-models which can be analyzed independently until the next

rare event.

• Experimental results to show the use of our methods on real production systems and

data, demonstrating their utility for analyzing real world systems.

• A case study of a production archival storage system to show how reliability goals can

be defined, system fitness for these goals can be evaluated, and how system models

can be altered to meet the stated reliability goals.

• Novel reliability frameworks which can be used with deduplicated storage systems to

provide additional reliability while increasing storage efficiency as well as methods to
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protect against faults which were orthogonal to previous reliability methods.

1.4 Organization

The remainder of this dissertation is organized as follows.

Chapter 3 details the important faults facing modern and next-generation storage systems.

We detail models for traditional disk failure, latent sector errors (LSEs), and develop new

models for UDEs. We study the ways in which these faults can impact storage systems,

the reasons the occur in real physical systems, and how they manifest when they occur. In

addition to studying the faults themselves we address the way these faults are mitigated

in production systems, and develop models of both the detection and recovery phases of

mitigation for each of our fault models.

Chapter 2 details the creation of models for storage systems. In particular it introduces a

component based modeling method which focuses on building, validating, and using models

of individual components to enable scalability analysis, while giving some confidence in

models of systems have not yet been built. We analyze an existing system in production at

the National Center for Supercomputing Applications (NCSA) for our analysis.

Chapter 4 details the creation of fault models specific to our studied system, and introduces

the idea of decomposition as a method for handling rare events and the stiffness which results

from their introduction to our models.

Chapter 5 introduces the concept of a MDG. We begin by discussing the ways in which

dependencies can occur within a model, their importance to our decomposition methods,

and an algorithm for creating an MDG from a model. We then discuss the decomposition

procedure, beginning with an analysis of the types of rare events which can change the

dependence relationships represented in the MDG. We detail a method for modifying the

MDG to represent the current dependence relationships and define a decomposed set of sub-

models. We then discuss how to use these techniques to solve a model, and the limitations

of our solution method.

In Chapter 6 we study a real deduplicated storage system, enabling us to develop a model of

deduplication, expanding the models developed in Chapters 2 and 4. We present the results
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of this study and develop a full model for an entire production system, solving the model

and analyzing the impact of deduplication, and various proposed strategies for reliability

using the techniques presented in 5.

Finally, in Chapter 7 we discuss the consequences of our studies for real systems and

formally present novel methods for improving the reliability of primary and secondary storage

systems, including the ability to tolerate UDEs, faults that previously had no acceptable

means for tolerance.
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CHAPTER 2

COMPONENT-BASED MODELS

2.1 Introduction

In this chapter we address the problem of building large scalable models of systems. One

challenge that we tackle is that of developing models that can be trusted to adequately

represent next-generation systems that have not yet been built. We approach that goal

by developing component-based models based on current systems, validating these models

against log data for current systems, and then constructing larger-scale models using these

components. We present such an approach in this chapter, showing the results of scaling a

component-based model of the Abe cluster [23] to petascale. We will use this method for

component-based modeling in Chapters 4 and 6 when building models of next-generation

systems.

Our results in this chapter emphasize the importance of developing a detailed model of

the underlying system based on real data. The failure rates we observed in the real system

differed from those presented in the manufacturer data sheets. Software faults due to the

corrupted applications or the Lustre file system were responsible for many errors and had a

repair time that was significantly less than hardware errors. Without detailed study of the

underlying system, these important factors would have been unaccounted for, resulting in

an incorrect analysis of our next-generation system.

2.2 Motivation

Historically, scientific computing has driven large-scale computing resources to their limits.

In the last decade, plans to achieve petascale computing have come to fruition. While
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supercomputer performance has improved by over two orders of magnitude every decade, the

performance gap between the individual nodes and the overall processing ability of an entire

system has widened drastically [24]. This has led to a shift in the paradigm of supercomputer

design, from a centralized approach to a distributed one that supports heterogeneity. While

most high-performance computing environments require parallel file systems, there have

been several file systems, such as GPFS [25], PVFS2 [26], and Lustre [27], that have been

specifically proposed to support very large-scale scientific computing environments.

As the number of individual computing resources and components becomes very large,

the frequency of failure of components within these clusters and the propagation of these

failures to other resources are important concerns to high-performance computing applica-

tions. Failures can be caused by many factors: (a) transient hardware faults due to increased

chip density, (b) software error propagation due to a large buggy legacy code base, or (c)

manufacturing defects and environmental factors such as temperature or humidity.

Recent literature on failure analysis of BlueGene/L discusses various causes of increased

downtime of supercomputers [28]. It has been well-established that elimination of failures

is impossible; it is only feasible to circumvent failures and to mitigate their effects on a

system’s performance. The standard approach to the mitigation of a failure is to checkpoint

the application at regular intervals. Long et al., however, showed that check-pointing has

a large impact on the performance of very large computer clusters with large numbers of

nodes [29].

Increasing the number of compute servers in a cluster almost always increases the size of

the desired storage subsystem. Depending on the type of parallel file system, that means an

increase in the number of file servers that could accept requests from the compute servers to

keep up with I/O requests. Compute servers and file servers have very different characteris-

tics. First, a failure in a file server needs more attention than a failure in a compute node.

A compute server might just be marked as unavailable until it is repaired, but a failed file

server might have to be reconstructed, or its state might need to be transferred to another

file server, depending on the replication strategy. Second, file servers are inherently slower

than compute servers due to their I/O characteristics. This generally makes file servers the

bottleneck for the reliability and performance of a cluster. Unfortunately, there has been a
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trend towards increasing failure rates for I/O subsystems that is similar to that for overall

petascale clusters. This increase in failures can be attributed to the increase in the number

of individual components that are used to build the whole I/O subsystem . Recent studies

have shown that workload intensity is highly correlated to the failure rates [30, 31]. That

emphasizes the need for thorough analysis to understand the impact of the I/O subsystems

and their failures on petascale computers.

To address the research challenge of providing realistic prediction of petascale file system

availability, we took a two-pronged approach. First, we have obtained the failure event

log of the Abe cluster from the NCSA. The log contains the failures of individual nodes,

file server nodes, and the storage area network (SAN). We preprocessed the event logs to

determine various reward measures of interest corresponding to the file system, such as the

availability of the file system over the lifetime of the log and the failure rate of jobs due to

I/O failures and other transient failures. Then, we built and refined stochastic models of the

file system used by these clusters that abstracts much of the operations, while generating

reward measures that are comparable to the real log events. We then scaled the models to

reflect the scale and magnitude of a future petascale computer and estimated the impact

of current I/O and file system designs on a petascale computer. Furthermore, we evaluated

strategies that could be used to mitigate the bottlenecks due to scaling of I/O file system

and cluster designs from current supercomputers to petascale computers. Our analysis will

give storage architects support to make informed design choices as they build larger cluster

file systems.

The rest of the Chapter is organized as follows. Section 2.3 outlines related work. Sec-

tion 2.4 discusses the file system architecture of the Abe cluster at NCSA with the analysis

of collected failure log files. Section 2.5 presents the conceptual stochastic activity network

model of the Abe cluster. Section 2.6 covers results and analysis. Section 2.7 offers our

conclusions and plans for future work.

12



2.3 Related Work

The estimation and prediction of the failure of file systems are crucial to understanding the

overall performance of petascale computers. Past literature describes several attempts to

model and analyze different aspects of large-scale supercomputing systems.

Log/trace-based analysis: Recent literature using trace-based system analysis has

shown that storage subsystems are prone to higher failure rates than their makers estimate

because of underrepresented disk infant mortality rates [32]. In addition to disk failures, the

analysis by Jiang et al. shows that interconnects and protocol stacks play a significant role in

storage subsystem failure [33]. Furthermore, Liang et al. investigated the failure events from

the event logs from BlueGene/L to develop failure prediction models to anticipate future

fatal failures [28]. In general, trace-based analysis of logs provide good metrics for evaluat-

ing and understanding working systems, but is limited to the scope of events represented by

these traces, making it difficult to study trends or behaviors not witnessed in the traces.

Model-based analysis: Wang et al. looked at the impact on system performance in

the presence of correlated failures as the systems are scaled to several hundred thousand

processors [29]. Rosti et al. presented a formal model to capture CPU and I/O interactions

in scientific applications, to characterize system performance [34].

The use of simulation for evaluating the model provides the ability to predict behavior

and bottlenecks of future designs, but the accuracy of predictions may often be compro-

mised by assumptions of parameter values. Our approach focuses on integrating trace based

analysis with model-based evaluation to form a combined approach, providing guidance to

make informed choices for system design. Using failure data from the logs of the cluster as

parameter values, we verify our models against the real system. We then analyze the impact

of current design choices when the system is scaled. Our approach reduces the burden of

sensitivity analysis, reducing the design space to a moderate size providing the opportunity

to perform a robust analysis of the system.
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2.4 Abe Cluster: System Configuration and Log File Analysis

The Abe cluster architecture was the current state-of-the-art as of 2008. Abe consists of

1200 blade compute nodes, i.e., 9600 core CPU Intel 64 (2.33 GHz dual-socket quad-core)

processors, 8/16 GB shared RAM per node, and an InfiniBand (IB) interface. The cluster

runs Red Hat Enterprise Linux 4 (Linux 2.6.9) as its operating system. The cluster can

provide a peak compute performance of 89.47 peta-FLOPS (floating point operations per

second). The Lustre file system supports a 100TB parallel cluster file system for the Abe

cluster’s compute nodes [23].

2.4.1 General Cluster File System (CFS) Architecture

A typical storage architecture for a cluster file system consists of a metadata server, multiple

file servers, and clients [27]. The metadata server maintains the file system’s metadata,

which includes the access control information, mapping of files and directory names to their

locations, and mapping of allocated and free space. The metadata server serves the metadata

to the clients. The file servers maintain the actual data and information about the file

blocks stored on the connected I/O disks and serve these file blocks to the clients. For

reliability/performance, the file blocks can be replicated/striped over multiple disks. The

client communicates first with the metadata server and then with the appropriate file server

to perform the required read and write operation. The readers are referred to [27] for further

details.

2.4.2 Abe CFS Server Hardware

The Abe Lustre-FS is currently supported by 24 Dell dual Xeon servers that provide 12 fail-

over pairs1. One OSS serves the metadata of the Lustre-FS, 8 OSSes serve the /cfs/scratch

OSS, and the remaining 6 servers handle the remaining partitions of the shared file systems

(home, local, usr, etc.) of the cluster. Each server self-monitors its file system’s health. The

2 metadata OSSes are connected to the storage I/O through a dual 2Gb fiber channel (FC).

1We refer to a fail-over pair as an OSS in the remainder of the Chapter.
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2.4.3 Abe CFS Storage Hardware

Scratch partition: 2 S2A9550 storage units from DataDirect Networks Systems provide

the storage hardware for the CFS’s scratch partition. Each S2A9550 supports 8 4Gb FC

ports. Each port connects to 3 tiers of SATA disks. Each tier has (8+2) disks in a RAID6

configuration. Therefore, there are 480 disks, each with a 250GB capacity, that form the

scratch partition providing 96TB of usable space.

Metadata: DDN EF2800 provides the I/O hardware to support the metadata of the

Lustre-FS. It is connected to the 2 metadata OSSes through a dual 2Gb fiber channel. The

EF2800 has one tier of 10 disks in RAID10 configuration.

Other partitions: 10 IBM DS4500s serve an approximate total of 40TB of usable space

over a SAN via a 2Gb FC.

Lustre settings: Lustre version 1.4.10.X runs on all of the OSS’s hardware. Most of

the reliability is provided by the SAN hardware; therefore, the Lustre reliability features are

switched off.

2.4.4 Abe Log Failure Analysis

All NCSA clusters have elaborate logging and monitoring services built into them. The

log data set used in this study was collected from 05/03/2007 to 10/02/2007 for compute

nodes (compute-logs) and from 09/05/2007 to 11/30/2007 for the SAN (SAN-logs). The

compute-logs and SAN-logs are monitored precisely, and the logs provide details about the

events taking place in the cluster. Events are reported with the node IP addresses and the

event times appended to the log information. To extract accurate failure event information,

we filter failure logs based on temporal and causal relationships between events.

Table 2.2 provides the availability of the Abe cluster based on the notifications provided by

the SAN administrators to the users [35]. The availability of Abe’s SAN can be estimated

to be between 0.97 and 0.98 depending on the dates one chooses as the start and end

times for the measure computation. Table 2.1 shows Lustre-FS mount failures experienced

by individual compute nodes aggregated on a per-day basis. Lustre-FS mount failures do

not always imply the failure of the CFS, as these errors could be caused by intermittent
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network unavailability. Nevertheless, those errors are perceived as failures from the cluster’s

perspective.

Table 2.3 presents the job failure/completion statistics obtained by analyzing the compute-

log. The analysis shows that the transient errors causing network unavailability (between

the compute nodes and the CFS or between the compute nodes and the login nodes) are

5 times more likely to cause job failures than other errors are (such as software errors or

CFS failures). Earlier clusters had dedicated back-planes connected to compute nodes to

provide communication. Current communication in Abe is through COTS network ports

and switches. The change in the design choice was motivated chiefly by a desire to lower

costs and increase flexibility in maintaining the system.

Table 2.4 provides the disk failure and replacement log from 09/05/2007 to 11/28/2007 for

disks that support the scratch partition of the Abe’s cluster. The authors of [32] estimated

the disks’ hazard rate function to be statistically equivalent to a Weibull distribution. We

performed similar survival analysis on the disk failure data and found that Weibull with

β = 0.7 was a good fit for Abe’s disk drive failure logs. The key insights we gained from

analyzing failure data and from discussions with cluster system administrators are as follows:

• The disk replication redundancy and replacement have been so well-streamlined that

they almost never cause catastrophic failure of the CFS. On average, 0-2 disks are

replaced on the Abe cluster per week.

• The Abe cluster’s S2A9550 RAID6 (8+2) technology combines the virtues of RAID3,

RAID5, and RAID0 to provide both reliability and performance [36]. RAID6 prevents

a second drive failure from occurring during disk re-mirroring. The Blue Waters peta-

scale computer, which will be built at the University of Illinois, will likely have an

Date # Date # Date #
07/03/07 102 07/19/07 258 08/16/07 375
08/20/07 591 09/05/07 005 09/17/07 002
09/18/07 004 09/19/07 003 09/28/07 463
09/29/07 477 10/01/07 051 10/02/07 035

Table 2.1: Lustre mount failure notification by compute nodes from 07/01/07 to 10/02/07;
column with “#” represents the number of compute nodes that experienced mount failure
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Lustre-FS outage time
Cause of Failure Start time End time Hours

I/O hardware 07/21/07 23:03 07/22/07 12:00 12.95
I/O hardware 07/31/07 01:49 07/31/07 20:01 18.18
I/O hardware 08/22/07 18:08 08/23/07 02:15 08.12
I/O hardware 08/28/07 16:20 08/29/07 18:01 01.67
I/O hardware 09/25/07 18:00 09/26/07 09:30 15.50
I/O hardware 10/04/07 09:30 10/04/07 21:55 12.42
Batch system 10/16/07 17:56 10/16/07 21:24 03.47
Network 10/29/07 11:53 10/29/07 15:15 03.36
File system 11/16/07 09:30 11/16/07 10:00 00.40
File system 11/19/07 09:04 11/19/07 11:00 01.93

Table 2.2: User notification of outage of the Lustre-FS

Total jobs submitted between 05/13/07 and 10/02/07 44085
Total failures due to transient network errors 1234
Total failures due to other/file system errors 0184

Table 2.3: Job execution statistics for the Abe cluster

(8+3) RAID configuration. That would make the failure of the file system due to

multiple individual disk failures highly unlikely.

• Most file system failures are due to software errors, configuration errors, and other

transient errors. The software errors take, on average, 2-4 hours to resolve. Most

often, the fix is to bring the disks to a consistent state using a file system check (fsck).

A hardware failure due to a network component or a RAID controller might take up

to 24 hours to resolve, as these components need to be procured from a vendor.

2.5 Stochastic Activity Network Model: Cluster File System

The failure data analysis and the insights provide the details necessary to build a stochastic

model of the Abe’s cluster file system. Here, we describe the details of the stochastic activity

network models using Möbius [38].
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Dates in September 2007 05 06 09 13 23
Number of failed disks 2 1 1 1 1
Dates in October 2007 08 17 24
Number of failed disks 2 1 1
Dates in November 2007 08 17
Number of failed disks 1 1

Survival analysis of the disk failures (n = 480) using Weibull
regression (in log relative-hazard form) gives the shape parameter as
0.6963571 with standard deviation of 0.1923109 (95% confidence interval) [37]

Table 2.4: Disk failure log from 09/05/2007 to 11/28/2007 for disks supporting the Abe
cluster’s scratch partition

2.5.1 Overall Model

Figure 2.1 shows the composed model of the Abe cluster using replicate/join composition in

Möbius . The leaf nodes in the replicate/join tree are stochastic activity network models that

implement the functionalities. Space limitations do not permit detailed descriptions of these

submodels. The CLUSTER model has two main submodels connected using a join, where

the models share states on error propagation from their CLIENT to the CFS. The CLIENT

represents the behavior and interaction of the compute nodes and the communication net-

work between the compute nodes and the CFS. The CFS UNIT emulates the Abe’s cluster

file system. It is composed of the OSS, OSS SAN NW, SAN, and the DDN UNITS. The

OSS implements the availability and operational model of the metadata server and the file

server. The OSS SAN NW implements the failure model of the network ports and switches

that connect OSS to the DDN UNITS. The SAN emulates the operations provided by the

network to communicate between OSS and the DDN UNITS. The OSS, OSS SAN NW,

SAN, and the DDN UNITS communicate by sharing information about their current state

of operation and availability. The DDN UNITS composes multiple RAID6 UNITS with

RAID CONTROLLER. The failure of disks in RAID6 UNITS is assumed to follow a Weibull

distribution. RAID CONTROLLER emulates the failure and operation of a typical RAID6

architecture. The DDN UNITS is replicated to emulate multiple S2A9550 units.

Since the goal is to investigate the impact of availability of file systems to peta-scale com-

puters, the stochastic activity network models do not consider hardware failure in compute

nodes. Our model incorporates only the behavior of the scratch partition and the meta-
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Figure 2.1: Compositional model of the CFS.
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data servers of the CFS, because a cluster’s utility depends mainly on its scratch partition’s

availability. Finally, hardware and software misconfiguration errors occur in the early de-

ployment phase of the system; therefore, we exclude them from the models. In the following

subsections, we describe the reward measures and the failure model used to represent the

Abe’s CFS.

2.5.2 Reward Measures

The availability of the cluster file system is defined as the ability of the CFS to serve the

client nodes. More precisely, it is defined as the fraction of time when all the file server

nodes (OSSes), the DDN, and the network interconnect between the OSSes and the DDN

are in the working state.

The disk replacement rate is defined as the number of disks that need to be replaced per

unit of time to sustain the maximum availability of the CFS.

The cluster utility, CU, is an availability metric from the cluster’s perspective. To be

precise, it is defined as CU =
(

1− Compute cycles lost due to unavailable file system
Total available compute cycles

)

. CU is a met-

ric that is different from the availability metric of the CFS2. The cluster users and SAN

administrators tend to notice different levels of availability. The reasons are failures in

network communication between the compute nodes and the CFS as well as failures due

to intermittent transient errors that make CFS appear unavailable even though it has not

failed.

2.5.3 Failure Model for Abe’s CFS

The Abe’s cluster suffers from failures mainly because of 3 types of errors: hardware errors,

software errors, and transient errors. Each kind of error affects all the CFS’s components.

The hardware errors in the metadata/file servers (OSSes) occur in the hardware com-

ponents that are built to operate the system. These errors include processor, memory, and

network errors. Hardware errors are assumed to be less frequent than disk failures, occurring

2CU does not distinguish between compute cycles used to perform check-pointing and those used for
actual computation.
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Model parameter Values (range)

Disk MTBF2 100000-3000000
Annualized Failure Rate (AFR) 0.40%–8.6%
Weibull distribution’s shape parameter1 0.6–1.0
Number of DDN1 2–20
Number of compute nodes1 1200–32000
Average time to replace disks3 1–12 hours
Average time to replace hardware3 12–36 hours
Average time to fix software3 2–6 hours
Job request per hour1 12–15 per hour
Hardware failure rate1 1–2 per 720 hours
Software failure rate 1–2 per 720 hours
Annual growth rate of disk capacity2 33%
DDN Units1 2–20
OSS Units1 8–80

Parameter values obtained from: log file analysis 1, data
specification from literature and hardware white papers 2,
discussions with NCSA cluster administrators3

Table 2.5: Abe cluster’s simulation model parameters

at the rate of 1–2 per month. The RAID controllers in the DDN or network ports/switches

that connect DDN to OSS show similar failure rates. The repairs of these components take

12–36 hours depending upon the severity of the failure (as reported by SAN administra-

tors), as the needed replacement parts have to be shipped from the vendors. Most of the

hardware is replicated with fail-over mechanisms. Failure of both members of the fail-over

pair causes the unavailability of the CFS system. The replacement of failed disks is modeled

as a deterministic event. The repair time is varied from 1 to 12 hours across simulation

experiments.

The software errors that cause failure of the cluster file systems are mainly due to the

corrupted supercomputing applications running on the compute nodes (implemented in the

CLIENT submodel) or the Lustre-FS (implemented in the OSS submodel). Since we do not

have accurate estimates on software corruption errors, we assume that the rates are similar

in the orders of magnitude to hardware error rates. The repair times for software errors

are modeled as deterministic events. The repair time is varied from 2 to 6 hours across

simulation experiments.

Transient errors occur in most components of the cluster model, but mainly in the network

components. The error rates are obtained from the failure-log analysis as shown in Table 2.3.
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Transient errors are temporary, but hard to diagnose. Our model assume that one of these

errors causes a few minutes of unavailability of components under transient failure. The jobs

depending on those components fail due to the temporary unavailability.

Past literature has emphasized the importance of modeling correlated failures [31]. Most

correlated errors occur because of shared resources. Correlated errors propagate to compo-

nents that have causal or spatial proximity. In the CFS model, hardware errors propagate

because other hardware components are connected to each other. Software errors propagate

from compute nodes to OSS or from OSS to disk, leading to data corruption. Transient

errors propagate errors into software. All failures except disk failures are modeled as expo-

nential distributions. To model correlated failures, we model jobs and requests submitted to

the CFS, and estimate the probability p that the job requires a resource that is inaccessible

due to failure, causing errors to propagate through the system.

2.6 Experimental Results and Analysis

We evaluate the design of the Abe cluster’s availability using simulation in the Möbius

tool. Table 2.5 summarizes the parameters collected through failure log analysis, hardware

reliability specifications, and discussions with cluster administrators. In order to reflect the

size and scale of a peta-scale computer and to determine the factors that impede the high

availability of the CFS, we scale the number of individual components in the composed

model. By implementing scaling through the addition of components (each of which has its

own individual failure models) rather than by changing failure parameter values themselves,

we ensure that the failure rates observed in the overall system model accurately reflect the

new system size. All the simulation results are reported at a 95% confidence level.

2.6.1 Impact of Disk Failures on CFS

To evaluate the baseline effect of failures of disks on availability of the CFS, we evaluate the

DDN UNITS models associated with the RAID6 tiers and the RAID controllers in isolation

from failures of other components of the SAN. Figure 2.2 shows the availability of the storage
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Figure 2.2: Availability of storage with respect to disk failures; Label with values
(0.7,2.92,8+2,4) represents a tuple =(Weibull shape parameter β, AFR in %, RAID
configuration, average disk replacement time in hours)

hardware as one scales the file system from the current 96TB (Abe’s file system) to 12PB

(the Blue-Waters file system). The key observation is that the RAID6 architecture provides

sufficient redundancy and recovery mechanisms to mitigate the impact of high disk failure

rates to a very large extent. First, note that all configurations of failure and recovery rates

for an Abe-sized cluster file system have nearly 100% availability (refer to the first data point

in Figure 2.2). However, as the experiments are scaled from Abe’s system to a peta-scale

system, our simulation results show that the RAID6 architecture cannot provide the same

level of storage availability for some of the failure model configurations. The SAN architect’s

plan to use (8+3) RAID in Blue Waters is important; it provides better reliability than the

(8+2) RAID on peta-scale systems. While RAID6 provides a larger margin for disk failure

rates, i.e., up to 8.6% AFR, it is very important that these rates be contained to lower

thresholds by disk manufacturers and vendors to provide the adequate level of availability.

If one makes a pessimistic assumption of a higher infant mortality rate in disks (Weibull

shape parameter = 0.6), the availability falls below 99.9% for peta-scale storage.

To better understand the cost of disk replacement, we compute the expected number

of disks that need to be replaced per week for the RAID6 tiers. Figure 2.3 depicts the
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average number of disks that need to be replaced per week to sustain the availability so that

the CFS does not suffer failure due to RAID6 failure. The configuration (0.7,2.92,8+2,4)

corresponds to the Abe cluster with 0 to 2 disk replacements per week. Each time a disk

fails, there is an operational cost (in dollars) that is borne by the SAN vendors as they

provide extended support to their SANs. As the CFS system is scaled to support peta-scale

computers, the number of disks that need to be replaced increases, increasing the labor cost

and the replacement cost. Therefore, the SAN vendors have an incentive to increase the disk

MTBF to reduce their overall support cost.

Survival analysis of the disk failure data provided a good estimate of the Weibull dis-

tribution’s shape parameter β, but the estimate for the scale parameter (MTBF) was in-

significant [37]. Using simulations, we estimated an MTBF that matched the average disk

failures per week for the scratch partition and determined that an MTFF=300,000 hours or

an annualized failure rate (AFR) = 2.92% to be a good fit.
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2.6.2 CFS Availability and CU

To analyze the impact of all components that determine the availability of the CFS, we

evaluated the availability and CU of the Abe system. The experiments are scaled to the size

of a peta-scale computer to allow understanding of the impact of failures on those measures.

Figure 2.4 shows that the CFS availability decreases as one scales the system to support

a peta-scale computer. Since most of the parameter values were obtained through the log

data analysis and times reported by SAN administrators, our measures for CFS availability

matched with Abe’s availability as shown in Table 2.2. Therefore, we have higher confidence

in the measures of availability and CU as we scaled the models to represent a peta-scale

computer with a petabyte storage system. The storage availability in Figure 2.4 refers to

configuration (0.7,2.92,8+2,4), which models the Abe cluster’s current environment. We find

that the RAID6 subsystem in this configuration continues to provide an availability of 1, but

the CFS availability is reduced from 0.972 to 0.909 as one scales the design to support the

peta-scale system. The reduction is mainly due to correlated failures in OSS and hardware.

Improving upon Abe cluster’s design, the architect could provide an additional standby or

spare OSS to replace the failed OSS quickly. Our evaluation shows that this approach can

improve the availability by 3%. To improve the availability further, the architects have to

develop solutions to mitigate correlated errors. For example, improving the robustness of

the Lustre-FS can reduce the software-correlated errors. The CU in Figure 2.4 shows that

the cluster’s network architecture between the compute nodes and the CFS has a profound

impact on the cluster utility available to the users. The trend to move away from customized

backplanes to COTS network hardware (with its complicated software stacks) has decreased

the CU. The transient errors seen in the network can be mitigated by providing multiple

network paths between the compute nodes and the CFS.

2.7 Conclusion

Many researchers have focused on developing and understanding dependability of clusters

for supercomputing applications. In this chapter, we have taken steps to understand the
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dependability and availability of the ABE cluster through failure data analysis and discus-

sions with administrators at multiple levels of the cluster operation, from the lowest level of

the SAN’s availability, to the cluster’s availability, and to user perception of cluster utility

at the top level. Our key findings through analysis and simulation showed that the RAID6

design for a disk’s dependability has limited the impact of disk failures on the CFS, even

when the model is scaled to evaluate the support for peta-scale systems. On the other hand,

transient errors, hardware errors, and software errors contribute significantly to failures, and

these components are the limiting factors for the high availability of the CFS. We believe

that peta-scale architects will have to focus on those issues to develop solutions to improve

the overall availability of the CFS.

More generally we have shown the success of component-based system modeling, combined

with data analysis for real systems, for evaluating the availability of the ABE’s CFS. We

will extend this method in later chapters to model more complex storage systems.

26



CHAPTER 3

MODELING STORAGE SYSTEM FAULTS

3.1 Introduction

More so than in the past, the high-performance computing systems of tomorrow will grow in

computing power and storage space far faster than the growth of per-chip computing power,

and storage density. Today’s large scale systems are dominated by components assembled

from commodity PC hardware, aggregated into large clustered systems [11, 39]. Node counts

for state of the art terascale systems number in the tens of thousands, and peta-scale systems

are likely to contain hundreds of thousands of nodes. Under these conditions the normally

rare mean time to failure (MTTF) of various components compose to create a short MTTF

for the first failure in the composed system. Faults that previously were unlikely to occur

within the mean life time of a system also scale up in frequency system wide, presenting new

challenges which current fault tolerance methods do not address [11, 40]. Understanding

these failure models is a key first step towards developing tools to evaluate their impact, and

the effectiveness of proposed methods for coping with these failures.

In Chapter 2 we explored a component based model of a large-scale storage system, using

only whole disk failures. In this Chapter we expand our portfolio of fault-models to include

latent sector errors (LSEs) and undetected disk errors (UDEs). Our fault model for LSEs

is derived from the existing fault models in the literature, while our the UDE fault model

we present is a novel model which we will derive from various data in the literature and

an understanding of the physical manifestations of UDEs. These fault models will be used

along with whole disk failures in subsequent chapters to model storage system reliability in

more complex fault environments.
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3.1.1 Challenges

Understanding how faults change with larger scale systems faces many challenges, chief

among them being the unwillingness of system owners to publicly report failure data [41].

Vendor specified parameters are thus the most common source for failure models. These

parameters, most commonly given as the MTTF, are of dubious accuracy, often based on

back of the envelope calculations, giving radically different values, depending on the assump-

tions made. This has led to a high level of skepticism towards these vendor derived figures

[42, 7]. Coupled with this is the large discrepancies between vendor reported MTTF and

user reported MTTF [43, 44].

3.1.2 Profiling Failures in Large-Scale Systems

It has been shown by [41] that disks are the most commonly replaced component of large

scale systems. This is in part due to their high population within a system, compared to

other hardware components. Other commonly replaced components include system memory,

power supplies, and motherboards or CPUs. Given the current lack of detailed failure data

for components other than those of the storage system in large-scale systems, we will focus

our study on storage level failures.

While in the past storage failures were viewed as an all-or-nothing scenario, i.e. either

the drive was working perfectly, or not at all, these models have proven inaccurate for large-

scale systems. Modern storage systems are known to suffer from more complex faults, which

primarily fall into one of two categories: LSEs, and UDEs [45]. In the following sections we

will investigate each of these failure models.

3.2 Latent Sector Errors

3.2.1 Introduction

While LSEs do not typically contribute to the MTTF of the entire drive, they do influence

the reliability of data on a given drive, creating a new metric for failure on a drive, the mean
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time to data loss (MTTDL). While many modern storage systems rely on RAID to provide

redundancy, faults such as LSEs are somewhat orthogonal to those issues solved by RAID,

especially since a latent sector error is not evident until the affected sector is accessed after

the fault occurs [9]. LSEs are orthogonal to RAID given the fact that a single latent sector

error has the potential to lead to data loss during a RAID group reconstruction [46]. LSEs

are distinguished from other types of disk faults based on the way a disk responds in the

presence of the fault. LSEs specifically refer to those cases where a sector cannot be read

or written, or when the sector reports an uncorrectable ECC error [9]. In all of these cases,

the sector is considered lost.

LSEs seem, at least in part, to be affected by the manufacturing quality of the disk in

question. While 8.5% of near-line disks were found by [9] to suffer from a latent sector error,

only 1.9% of enterprise class disks exhibited this behavior. Both classes of disks are more

likely to develop LSEs with time, but the proportion of near-line disks which have suffered a

latent sector error was shown to grow more rapidly than enterprise class disks. Disk size was

found to have an effect as well with the proportion of disks suffering a latent sector error

increasing with capacity, however the proportion of LSEs per Gigabyte does not change

appreciably with increased capacity [9]. While the quality of the drive matters with respect

to the first latent sector error [9] found that for disks with at least one error, near-line drives

were equally likely to have additional LSEs when compared to enterprise class drives.

3.2.2 LSE Model

LSEs have been shown to exhibit spacial locality [9]. According to [9], given a single latent

sector error, the probability of finding one or more LSEs within a 10MB radius of the existing

error is 0.5. LSEs were also found to exhibit temporal locality, [9] found that between 40%

and 80% of errors occurred within one minute of a previous error. Interarrival times were

classified using two measures, the temporal locality exhibited by arrivals, and a measure [9]

calls decay, which is a measure of the time taken to develop n additional LSEs, as measured

from the first latent sector error on the disk. In addition to a high level of temporal locality,

it was found that 54.8% of near-line, and 62.0% of enterprise class disks developed at least
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one additional error within one month. 5% of near-line and 10% of near-line disks developed

at least 50 additional errors within one month. Interestingly, the age of the disk does not

seem to have a direct effect on decay. Most additional faults will develop within the first

month after the initial fault.

3.2.3 Mitigation

RAID has been shown to be insufficient for prevent the loss of data from LSEs [46], and even

a full scrub detected only 86.6% of LSEs on near-line disks, and 61.5% of LSEs on enterprise

class disks. Read operations were likewise found to detect 13.4% and 19.1% of LSEs for

near-line and enterprise drives. Writes do not detect latent sector errors for near-line disks,

due to near-line disks automatically reassigning bad sectors, but in enterprise disks detected

19.3% of LSEs. Overall standard mitigation methods found 77.4% of LSEs during normal

operation.

3.3 Undetected Disk Errors

3.3.1 Introduction

Despite the reliability of modern disks, recent studies have made it increasingly clear that

a new class of faults, that of UDEs are a real challenge facing storage systems as capacity

scales [13, 47, 40]. While RAID systems have proven quite effective in protecting data from

traditional failure modes [12], these new silent data corruption events are a significant prob-

lem unaddressed by RAID [13]. UDE faults themselves are drawn from two distinct classes,

undetected read errors (UREs) and undetected write errors (UWEs). UREs manifest as

transient errors, and are unlikely to effect system state beyond their occurrence. UWEs,

on the other hand, are persistent errors which are only detectable during a read operation

subsequent to the faulty write, and thus manifest in a similar manner to a URE [40]. Met-

rics to quantify the occurrence of data corruption due to UDEs have not been presented

before since these events have been deemed to be very rare. Recently capacity scaling has
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made UDEs common enough to be a concern and drives further study both on the rate of

occurrence of these faults, and their manifestation as errors from a user perspective.

While both evidence of UDEs and suggested techniques for their mitigation have been

outlined in the literature [13, 40], it is clear that there are several situations where many of

these techniques will not be able to prevent UDE induced faults from manifesting as errors

[47].

In order to fully understand the effect of UDEs and how they manifest in a given storage

system, one must model the disks at a fine level of detail, looking at individual block read

and write information in order to track portions of the disk which are suffering from a UDE,

the propagation of UWEs due to normal operations within the RAID system (including

rebuild events), and the effectiveness of mitigation techniques to prevent a UDE based fault

from manifesting as an error.

3.3.2 UDE Model

A growing concern in the storage community has been errors for which RAID [12, 45] does not

provide adequate protection. Schroeder and Gibson note that despite a supposed MTTF

for drives ranging from 1,000,000 to 1,500,000 hours field data suggest that MTTF is, in

practice, much lower [41]. By analyzing data corruption events for over 1.53 million disks

in production storage systems Bairavasundaram et al. documented cases of data corruption

events that occurred in a 41 month period. This work illustrates the existence of several

types of rare faults which manifest as corrupt data blocks. These errors were detected by

their production system due to additional detection mechanisms implemented at the file

system layer by their system. We refer to these silent data corruption events [48, 45] as

UDEs [40].

UDEs can be divided into two primary categories, UWEs and UREs [40], and arise from

a variety of factors, including software, hardware and firmware malfunctions. The primary

difference between UWEs and UREs is that UREs are transient in nature, while UWEs

result in a changed system state that can cause many subsequent reads to return corrupt

data. Table 3.1 summarizes the primary types of UDEs, and how they manifest as actual
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Table 3.1: Summary of UDE types and manifestations

I/O Type UDE type Manifestation
Write (UWE) Dropped Write Stale data

Near off-track write Possible stale data on read
Far off-track write Stale data on intended track

Corrupt data on written track
Read (URE) Near off-track read Possible stale data

Far off-track read Corrupt data

errors on the disk [40].

Dropped writes occur when the write head fails to overwrite the data already present on

a track. In this case the disk remains in its previous state as if the write never occurred [40].

Off-track writes (also referred to as misdirected writes) come in two categories, near and

far off-track. Both types occur when the write head is not properly aligned with the track.

In the case of a near off-track write, the data is written in the gap between tracks, adjacent

to the intended track. On a read operation, the head may align itself to either the target

track, or the off-track, potentially producing stale data. Far off-track writes occur when

data is written even further off-track, such that it corrupts data in another track entirely.

Subsequent reads to the track which was mistakenly written will produce corrupt data, while

reads to the track which was intended to be written will produce stale data. [40]

It is important to note, however, that not all UWEs introduced disk errors manifest as

a user level undetected data corruption error. A subsequent (good) write to the affected

track will remove the error, preventing undetected data corruption. Likewise a near off-

track write will cause future reads to randomly return either good or stale data. Though

a far off-track write results in both stale data on the intended track, and corrupt data on

the unintended track, if the unintended track is not currently in use, that part of the effect

will be mitigated. Likewise, a UWE may manifest as several undetected data corruption

events if the same track is read multiple times before it is corrected by a subsequent write

operation. Thus a one-to-one correspondence does not exist between UDEs and user level

undetected data corruption errors.
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3.3.3 UDEs in RAID Storage Systems

Systems designed for high reliability often make use of RAID storage systems. While there

has been little study of the effect of UDEs in RAID systems, it has been shown that data

scrubbing, the normal disk error mitigation and detection technique in such systems, is not

sufficient to protect against all UDEs [47, 40]. Even under RAID6, the most powerful RAID

technique in common usage, a data scrub may incorrectly assess the integrity of data due to

a UDE [40], and in some cases even propagate the error.

3.3.4 Modeling UDEs

Storage systems faults are complex events, arising from a combination of hardware, software,

and firmware malfunctions. In the case of well studied faults, such as latent sector errors,

and complex models have been derived to capture detailed relationships and correlations.

Bairavasundaram et al., when designing a model for latent sector errors, capture temporal

and spatial locality measures [9]. Schroeder and Gibson in their study of MTTF propose and

fit both Weibull and Gamma distributions, obtaining better results than with exponentially

distributed inter-failure times [41]. Unfortunately when it comes to UDEs, there is very

little information on their rates of occurrence, let alone enough data to fit multiparameter

distributions, or ascertain spatial and temporal relationships on their failure. UDEs could

be modeled with exponential inter-failure times, making no assumptions with respect to

temporal and spatial locality.

The rates of UDE occurrence were estimated by using a combination of the data presented

in [9] and the data presented in [13], and are summarized in Table 3.2.

Table 3.2: Estimated rates of UDEs in UDEs
I/O

.

Estimated Rate
UDE Type Near-line Enterprise
Dropped I/O 9 · 10−13 9 · 10−14

Near-off Track I/O 10−13 10−14

Far-off Track I/O 10−12 10−13
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Figure 3.1: Disk tracks after a normal I/O operation, near-off track fault, and far-off track
fault.

3.3.5 Mitigation

Despite the threats to data integrity and storage system reliability posed by UDEs, pro-

duction systems rarely implement detection and mitigation strategies [49]. Methods have,

however, been proposed, if not evaluated in real systems. One family of proposed methods

to mitigate the effect of UDEs in RAID are of the form of parity appendix methods [40].

In these methods, meta-data is co-located with some or all of the blocks associated with

a chunk of data and its parity blocks. In our models we focus on a data parity appendix

method [50, 40], which utilizes the meta-data portion of a block to store a sequence number.

This sequence number is the same for all blocks in the write. UDEs can be detected with

this method by comparing the sequence numbers stored in the parity and data blocks. The

sequence numbers won’t match when a UDE manifests as an error unless a collision occurs

in the sequence number with probability

P (Seq(Parity) = Seq(UDE)) =
1

2b
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where b is the number of bits allocated for the sequence number. On a read, the sequence

number for each data block is retrieved from parity and compared, allowing this technique

to mitigate UDE manifestations, at the cost of an extra read.

3.3.6 RAID and Parity Pollution

The more typical method for ensuring data integrity and reliability is to employ some form

of parity scrub. In these cases a scheduled process checks stored data against the relevant

parity strips in a RAID subsystem. While this can detect UDEs under normal operations, it

cannot reliably detect all data corruption due to UDEs. The scrub can mistakenly find data

or parity to be correct when both are wrong. Even in cases when data corruption from a

UDE is detected, it often cannot be corrected. To understand these properties of UDEs we

provide one example each for a RAID5 and RAID6 system. We consider a RAID stripe to

be the minimum set of data blocks and parity blocks from a set of disks which are related in

the reliability framework. Read operations are processed by reading the relevant data from

the relevant disks. Write operations cause updates to both data and parity blocks in the

form of a read-modify-write operation.

Given a RAID5 system, and a RAID strip consisting of data blocks, A,B, and C and

parity block P we represent the data values in A,B, and C as a, b, and c and use the symbol

⊕ to represent a XOR operation. Figure 3.2 shows an example series of operations that

leads to an inconsistent parity state known as parity pollution [40]. The stripe begins in the

state represented by the tuple

(a0, b0, c0, a0 ⊕ b0 ⊕ c0)

.

The second row in the figure shows a write operation, intended to update the block A to

a1, which suffers a UDE in the form of a dropped write. This failure is not detected by the

system. The parity disk is read, and modified as follows

(a1 ⊕ a0)⊕ (a0 ⊕ b0 ⊕ c0)→ a1 ⊕ b0 ⊕ c0
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Figure 3.2: Example parity pollution due to a dropped write. The first step has a UWE
during a write; the the second step is a normal write; the third step represents a disk
failure; in the final step the disk is rebuilt incorrectly.
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. The parity is in a state which would be correct if a1 had been properly written, but is

inconsistent with the state of the stripe at present. A scrub at this point would detect the

inconsistency, but not where the error had occurred. A disk scrub would result in marking

the entire stripe as bad resulting in data loss for the entire stripe. The same situation would

occur if the data block was written successfully but the read-modify-write had resulted in

a dropped write to the parity block. The next row of the figure represents a successful

write which updates the strip A to a2. The read-modify-write operation to the parity disk,

however, produces an interesting result. The data block A is read as a0 before the write,

resulting in the following modification of the parity block:

(a2 ⊕ a0)⊕ (a1 ⊕ b0 ⊕ c0)→ a2 ⊕ a0 ⊕ a1 ⊕ b0 ⊕ c0

which is then written back to P . Though the entire operation was error free it has resulted in

pollution of the parity block which is now in a state which is inconsistent with the remainder

of the disk. The fourth row shows the state of the RAID stripe after the disk on which B

resides has failed, and a subsequent rebuilt operation has been performed. Even though the

stripe is now consistent, the B block contains an error as it has been rebuilt as b0 ⊕ a0 ⊕ a1

instead of b0. This error is now undetectable by a parity scrub.

This shows how a single UWE can combine with otherwise normal operations on a RAID5

system to result in a state in which an error is present, but undetectable by any normal means

including a parity scrub. A similar situation can occur for RAID6 systems, and is detailed

in [40].

3.4 Conclusions

In this section we have detailed two new important, but rare, faults, LSEs and UDEs and

the ways in which they can occur on disks. We have reviewed the fault models for LSEs

presented in the literature and detailed a novel fault model for UDEs based on existing data

and an understanding of the ways in which UDEs manifest. We will use our UDE fault

model in Chapter 4, and both the LSE and UDE fault models in Chapter 6 to develop an
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understanding of how these faults, combined with whole disk failure, impact the reliability

of large scale storage systems.

38



CHAPTER 4

SIMULATING THE EFFECTS OF UDES ON

LARGE-SCALE STORAGE SYSTEMS

4.1 Introduction

In Chapter 2, we discussed building component-based models of large-scale systems using

real data. In Chapter 3 we discussed a new class of faults, UDEs. In this chapter we

combine these methods to study the reliability of a set of storage system designs in the

presence of UDEs to understand their impact under various real world workloads, modeled

at a component-based level.

Recent studies have made it increasingly clear that UDEs are a real challenge facing storage

systems as capacity scales [13, 47, 40]. While RAID systems have proven quite effective in

protecting data from traditional failure modes [12], these new silent data corruption events

are a significant problem unaddressed by RAID [13]. Metrics to quantify the occurrence of

data corruption due to UDEs have not been presented before since these events have been

deemed to be very rare. Recently capacity scaling has made UDEs common enough to be

a concern and drives further study both on the rate of occurrence of these faults, and their

manifestation as errors from a user perspective.

While both evidence of UDEs and suggested techniques for their mitigation have been

outlined in the literature [13, 40], it is clear that there are several situations where many of

these techniques will not be able to prevent UDE induced faults from manifesting as errors

[47]. Given that the rate of UDE occurrence is low, testing these techniques in a real system

would be costly, likely requiring a prohibitively large array of disks to witness UDEs in large

enough quantities to derive measures of their effects within a reasonable period of time. A

need therefor exists for modeling tools which address the particular challenges presented

by such systems. A model provides the capability to analyze the risk posed by UDEs in a
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given system and the fault tolerance coverage provided by suggested mitigation techniques.

A simple analytical model could fail to account for important emergent trends in UDE

manifestation for a given workload. For example a block that has had a UWE error must

be read before that fault manifests as data corruption and therefore the chances of system

failure depend on the I/O stream in question. A simulation approach that is customizable

and can determine the effect of UDEs for an arbitrary workload is an effective way to capture

this behavior.

Efficient simulation of UDE faults in large scale systems proves to be a serious challenge,

however, due to the stiffness of the system. A system is said to be stiff when events occurring

on vastly different timescales must be simulated in order to capture the behavior one wishes

to model. In order to fully understand the effect of UDEs and how they manifest in a given

storage system, one must model the disks at a fine level of detail, looking at individual

block read and write information in order to track portions of the disk which are suffering

from a UDE, the propagation of UWEs due to normal operations within the RAID system

(including rebuild events), and the effectiveness of mitigation techniques to prevent a UDE

based fault from manifesting as an error. This means any model of such processes will

necessarily consider events on two very different scales, from the very fast block level I/Os

(with a rate of roughly 100 ios/sec), to the much rarer UDEs (with a rate of roughly 10−12

UDEs/io).

In order to satisfy these requirements we present in this chapter an extensible hybrid

framework for simulating large scale storage systems that combines discrete event simula-

tion on multiple levels of resolution with numerical analysis in a hybridized fashion. Our

methods take advantage of dependency relationships within a the I/O stream to temporally

switch between numerical methods, a block level discrete event simulator, and a hybridized

numerical model with some discrete events simulated. Our techniques achieve a more effi-

cient use of time and space than discrete event simulation alone. These methods have been

implemented in a simulator which takes as input a model of a storage system and a model

of a workload, and produces as output an estimate of the rate at which UDEs manifest

as corruption at the user level. Our simulator has been designed in a way that allows the

user to build component level models of storage systems, extend components to create new
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behavior, and test under arbitrary workloads and rates of UDEs. Mitigation techniques can

be easily implemented by extending the implemented base classes for disks.

The chapter is organized as follows: We will then a model for UDEs for use in our simu-

lation, this derivation includes determining appropriate rates for the various types of UDEs,

as these rates have yet to be determined in the literature. Next we will discuss how we create

workload and system models models for a novel hybrid simulator and the operation of the

simulator itself. Finally, we present our results which illustrate the problems posed by UDEs

as systems scale, and the effectiveness of even simple mitigation techniques in preventing

the faults injected by UDEs from manifesting as undetected data corruption events.

4.1.1 Modeling Considerations

Given our assumptions that UDE manifestation is likely highly correlated to the workload

and system in which they occur, we take a flexible approach in building our system models,

and solution techniques. Our solution techniques do not make any assumptions about the

underlying workload or model, allowing the user to construct appropriate workloads or mod-

els based on their own needs or assumptions. We provide a common interface for workload

models, allowing the use of traces, or probabilistic models (as was used in our evaluation),

and a framework for constructing a storage system model by composing common component

level objects as detailed in Chapter 2, which can be subclassed as needed to increase the

library of components from which the system can be built.

Once a workload model and system model have been created, we utilized a multi-modal

simulator which executes the model at three different resolutions, based on a dependency

relationship with UDEs which occur in the I/O stream.

4.2 Workload Modeling

The manifestation of UDEs as actual data corruption events is dependent on read operations

following a write which suffers from a UDE (or in the case of UREs, just simply a read oper-

ation). This fact makes modeling the workload for the system an important consideration.
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Figure 4.1: Two state DTMC read/write workload model.

The mix of reads and writes impacts the manifestation of UDEs, as does the correlation of

reads and writes in time. While this fact drives a desire to use realistic representative work

loads in any simulation, perhaps even traces, the rare nature of UDEs makes makes this a

difficult proposition. Utilizing a trace based simulation has two problems. The first is a lack

of sufficiently detailed traces, and the second is a lack of traces of sufficient length. Due

to the long periods of time involved in simulating UDE mitigation, one requires hundreds,

if not thousands, of days of block level traces. Additionally, trace based analysis is limited

to a handful of possible trajectories in the file system, only those captured in the available

traces. Given these limitations we form a simple probabilistic model of the workload which

we use to generate synthetic workloads that statistically match available traces.

Generating a representative synthetic workload has proven difficult in the past, and is still

largely considered an open problem. For the purposes of this analysis we present a simplified

workload model which captures the primary metrics of interest for our needs, namely the

ordering of reads and writes, which can be directly parametrized using real traces to which we

have direct access. Despite our selection of this method of workload modeling, our simulator

has been designed in a flexible manner which allows it to utilize any workload model a

user would like to design. The main simulator couples with the workload model simply by

requesting events from the workload model, including the type of I/O, and size and location

of the write, and the time until the next I/O. It then injects UDEs as appropriate.

In order to characterize the workload used in our study, we create a statistical model of

five primary features from a given trace.

• Per Disk Rate of I/O - Given that our UDE rates are in units of UDEs
I/O

, it is

important to know the rate at which I/O is conducted in our workload. This rate is

captured in the workload parameter io/s. Our workload model assumes exponentially

distributed inter-arrival times, with rate io/s.
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• Diversity of the I/O Stream - Just knowing the rate of incoming I/O requests

is not, however, enough to characterize the system. We also need some measure of

the diversity of the I/O stream. While io/s measures the number of I/O requests per

second, it tells us nothing about the average number of unique chunks on which I/O

operations are performed, per second. We introduce the parameter uc/s to model this,

which is a measure of the unique chunks read or written each second.

• I/O Size - Based on our analysis of some available traces we model the size of an I/O

operation within the simulator as a Exponential random variable with a mean request

size of sizei/o blocks.

• Read/Write Composition of the I/O Stream - When the simulator is not suf-

fering from a UDE, our simulator discards I/O events rather than simulate them, as

they cannot have an effect on the rate of undetected data corruption errors. When an

UDE does occur, it is important to know whether it occurred during a read operation

(and is thus transient) or during a write operation, (and could thus lead to a series

of data corruption events). Towards this end we estimate the parameter P (R), which

tells us the probability with which a given I/O is a read request.

• Correlation of I/O Stream Composition - In our analysis of available traces, we

found that an I/O request for an individual chunk is highly temporally correlated with

the most recent I/O for that same chunk in the trace. In order to model this behavior

we utilize a discrete time Markov chain (DTMC) for each active chunk to determine

the next I/O operation that will take place after a read or a write, as illustrated in

Figure 4.1. This model has four transition probabilities which we estimate from the

trace data. P (R|R) is the probability of a chunk being read if the most recent I/O

for the chunk was also a read. P (R|W ) is the probability of a chunk being read when

the most recent I/O request was a write. P (W |R) is the probability of a chunk being

written when the most recent I/O request was a read, and finally P (W |W ) is the

probability of a chunk being written when the most recent I/O request was a write.

Table 4.1 indicates the values of these parameters for three different workloads. The first
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Table 4.1: Parameters for the workload models.

Parameters Abstract Write Heavy Read Heavy

io/s 100 122.04 90.24

uc/s 10 16.2623 7.2226

sizeio 4096 B 3465.98 B 2448.94 B

P (R) 0.6 0.23161 0.82345

P (R|R) 0.6 0.4488 0.829483

P (R|W ) 0.6 0.8339 0.204677

P (W |R) 0.4 0.5512 0.170517

P (W |W ) 0.4 0.1661 0.795323

workload, which we call the Abstract Workload, is derived from parameters assumed in the

calculations presented in Section 3.3.4 derived from [13] and [41]. Both the “Read Heavy”

and “Write Heavy” workloads are estimated empirically from actual disk traces. Separate

DTMCs are kept in the workload model for each chunk on the disk that is being read or

written.

4.3 Disk Model

In order to understand the manifestation of UDEs into user-level undetected data corruption

errors, we present a block level model of storage systems which can be used to understand

the actual effects of these faults in real systems. This block level model is designed to be

easy to extend and compose with other similar models to allow for the construction of more

complex disk models. Each individual block level model keeps track of the state of a single

disk. Models can be composed to allow the simulation of various RAID configurations and

techniques for detecting UDEs. In our models, for example, a RAID6 system is simply a

subclass of a disk, which contains a number of composed disk models. RAID6 with mitigation

is simply a subclass of our RAID6 model which implements the sequence number data parity

appendix method described in Section 3.3.5.

44



4.3.1 Block-Level Model

We model each block on the disk as a non-deterministic finite automaton (NFA). The set

of states Q of the NFA represents the states of the block, and is comprised of the union

between a set of stable states Qstable and unstable states Qunstable defined by

Q = Qstable ∪Qunstable

Qstable = {good, stale, corrupt}

Qunstable = {stale-good, corrupt-good,

corrupt-stale}

The state of the block is in the state good only if no fault has occurred for that block. The

state stale represents a faulty block state after either a dropped write, or a far-off track

write which was intended for the block in question. The state corrupt represents a faulty

block state after a far-off track write which was intended for another block, but was written

to the block in question instead.

Unstable states differ from stable states in that the behavior of a read operation is ill-

defined and may return either good data, or corrupt/stale data. They are used to model the

effects of near off-track writes. In the case of an unstable state where one of the tracks is

good, a read to that track will not necessarily manifest as an error. We make the assumption

that reading either track is equally probable.

The unstable state corrupt-corrupt is omitted from this set, as it is equivalent to a

corrupt state, as is stale-stale for similar reasons.

The sector model transitions from state to state on a set of input symbols Σ, which

correspond to the write events to the sector, both faulty and non-faulty. The set of faulty

write events corresponds to the set of UDE events discussed in Section 3.3.2, which is shown

below.

Σ = {GW, DW, N-OTW, F-OTWH , F-OTWO}
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Figure 4.2: NFA representation of transitions in the block model.

Symbol GW represents a good write event. DW represents a dropped write event. N-OTW

represents a near offtrack write event. F-OTWH indicates a far offtrack write event which was

intended to write to this block but instead wrote to another. F-OTWO represents a far offtrack

write event which was intended for another block but was instead incorrectly written to the

block in question.

Figure 4.2 shows the NFA states with transitions for a single block, indicating how the

block changes states due to UDE events. Of particular importance is the fact that from

all states a good write event brings us to the good state, masking the UDE. This fact is

important when considering how a UDE fault manifests as an actual error. In the case that

a UDE occurred, but the same blocks were again written with no error before a read for

those blocks was issued, the fault will not manifest as an error.

4.3.2 Disk-Level Model

In order to represent an entire disk, the block level model indicated in Section 4.3.1 is

implemented for every block in a disk, forming our base disk model. Each block is indexed,
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and thus can have individual write operations directed to it, causing state changes in the

underlying automata. For efficient storage of the automata, we take advantage of the fact

that, barring a UDE which is by definition a rare event, the entire disk consists of blocks

in the good state. By representing the state of all blocks in a disk using a sparse matrix

with good as the default value, we achieve a space efficient implementation of even very

large disks. This sparse matrix is represented with a hash-table, using a hash function of

LBA mod n, for some n. While a simple function, it exploits the fact that UDEs will most

often manifest on a disk as a string of consecutive blocks in a state other than good. The

modulo function then works to try to ensure that consecutive blocks will appear in different

elements of the hash-table, which keeps access times for the hash table at a minimum. This

improves the time it takes to update the state of our various block level NFAs, and thus

overall simulation time.

Individual disk models are composed with a controller to form RAID units. The controller

model presents to the simulator an interface to write to the underlying disks as if they were a

single larger disk. It performs the calculations of which stripe to write to on a block by block

basis to enforce the RAID model. The RAID interface also serves to inform the simulator of

the number of actual disk reads and writes executed per requested operation so that UDEs

occurring due to a single logical write to a RAID system will be generated appropriately

for the larger numbers of actual disk reads and writes performed due to RAID operations

such as read-modify-write. Each RAID unit undergoes weekly scrubbing, and we make the

assumption that during a scrub all UDEs will be detected and marked unreadable so as not

to result in a data corruption event in the future.

Parity scrub mismatches are handled by marking the affected blocks as unreadable, mean-

ing that any reads from the workload stream to these blocks will not be executed. On a

successful write operation (UDE or otherwise) to a block, this status is changed via the NFA

in Figure 4.2 treating the unreadable sector as being in the good state just before the write.
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4.4 Simulation Framework

Given the rare nature of UDEs, attempting to calculate the mean rates of undetected data

corruption due to their injection into a storage system using just discrete event simulation

would prove prohibitively costly. With the rates given in Table 3.2, it is not unreasonable

to expect 1013 or more I/O events in between UDEs. Even given a discrete event simulator

capable of processing 107 or more events per second evaluating a single UDE event would

take almost a month on modern workstations. This makes simulating a large number of

UDEs impractical, and seems to preclude their analysis via simulation.

We solve some of the efficiency issues inherent in simulating a stiff system by designing

our simulator to have three operating modes (illustrated in Figure 4.3), and allowing the

simulator to dynamically switch between modes to maximize efficiency while maintaining

accuracy in estimating the rate of undetected data corruption served to the user. While our

simulator improves our simulation time, it makes the assumption that the underlying storage

system consists only of basic RAID subsystems and that each subsystem is independent.

The first operating mode, which is purely numerical, is also the simplest. It takes the

parameters of the system model, workload model, and the rates entered for the various

UDE types, and from this estimates the UDE rate of the composed model and generates an

exponentially distributed inter-arrival time. The internal clock which is used to determine

the next event is then advanced to the indicated time, our metrics are updated, and we

process the UDE as appropriate.

The second mode utilizes discrete event simulation to model the interaction of the workload

with the faults injected into the storage system. In order to determine which events occurring

in the storage system cause a user level undetected data corruption event, lists are maintained

of both those chunks being actively read and written, and the chunks in the storage system

which have suffered from a UDE. Only those events which add or remove chunks from the

active list, or access faulty disk blocks are explicitly simulated. Since all other operations

will either read a chunk composed of good blocks, or write a good block to a block which is

already good, they cannot affect the state of blocks within the system. When the UDE can

no longer manifest as a data corruption event, i.e. when all active chunks which intersect
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with the faulty chunk are no longer active, or when the faulty chunk is overwritten with good

data, we pass from discrete event simulation into our simulator’s third operational mode.

The third mode is a hybrid of the first two, and combines discrete event simulation at

a higher level of abstraction than the second mode, with calculations which utilize a rate

adjustment to estimate the probability of a UDE before the next discrete event. Despite the

fact that by the third mode of our solution technique the UDE can longer manifest we must

be careful to respect the dependency the system has with respect to the last UDE injected

into the system, for the admittedly unlikely case that a second UDE might occur before the

system is no longer dependent on the events of the last UDE. This is done by modeling the

flow of chunks into and out of the active list, and calculating the probability of a UDE before

the next flow of a chunk into or out of the list and adjusting the rate of the next UDE based

on the current composition of the active list. The following sections describe the modes in

more detail.

Numerical Solution

UDE

Block Level I/O Events

Discrete Event Simulation

UDE can no longer manifest
as error

Hybrid Numerical
and Discrete Event

Model Flow of
Active Chunks for

Rate Tilting

Figure 4.3: Simulator Architecture

4.4.1 Numerical Solution Mode

Our simulator begins in its first mode, and calculates the expected rate of a UWE or URE.

This is done by first finding the expected number of reads and writes generated by an I/O

operation to one of the RAID units. To show how this calculation is accomplished we show
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the formulas for a RAID5 storage subsystem. Given a RAID5 strip size of sizestrip, and

a stripe width of w data disks plus one parity, the expected number of writes for a read-

modify-write operation is equal to the number of required strips, plus one write per stripe

written to update parity. One read is likewise required for each strip written in a row, plus

an additional potential read if the write crosses a row boundary giving the expected number

of writes for a read-modify-write as:

E[writes/read-modify-write] =

⌈

E[size]

sizestrip

⌉

+

⌈

max(E[size], sizestrip)− sizestrip
sizestrip

⌉

+

⌈

E[size]

w · sizestrip
+

max(E[size], w · sizestrip)− sizestrip
w · sizestrip

⌉

(4.1)

and the expected number of reads for a read-modify-write as:

E[reads/read−modify− write] = E[writes/read-modify-write]

On a read to the RAID5 system, only a single read is performed giving us the following

reads and writes per read:

E[writes/read] = 0 (4.2)

E[reads/read] = 1.0 (4.3)

Using the values calculated with these equations it is possible to find the rate of UDEs,

given an I/O rate of λIO of which pread are reads, And it is possible, using these parameters

to generate a time to the next UDE (TUDE) as shown in the following equation:

TUDE = 1/(λIOpread(E[writes/read] + E[reads/read])

+ λIO(1− pread)(E[writes/read-modify-write] + E[reads/read-modify-write])) (4.4)
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Once we have determined a UDE will occur, we determine the type of UDE (UWE vs.

URE) and the mechanism (dropped, near-off track, far-off track) via uniformization [51]. In

the case of a URE, the error is transient, and we remain in numerical mode after handling

the UDE. In the case of a UWE, the error does not manifest immediately, and we switch

the simulator into the discrete event simulation mode.

4.4.2 Discrete Event Simulation Mode

The discrete event simulator makes only slight modifications to a standard discrete event

simulator as, for example, described in [52]. Pseudo-code for a single pass through the

main simulation loop is illustrated in Figure 4.4. The primary modification to the standard

algorithms is our creation and maintenance of two lists, the active chunk list, CA, and the

tainted chunk list CT . The set CT is comprised of all chunks which have blocks affected by

a UDE that can still serve corrupted data to the user. Between this set, and the set of all

chunks being actively read and written, CA, we can identify I/O events which do not affect

system state and safely discard them without updating the state of the simulator beyond

advancing the clock. This is because all events which do not modify the state of a block

within CT , or which do not alter the composition of CA or CT cannot serve corrupted or

stale data, or affect the rate at which additional UDEs occur.

At each step in the simulator, we process one event, comparing it to CA and CT to see

if our metric depends on the event, processing it if it does, and modifying CA and CT if

necessary. We continue with discrete event simulation until such a time as CT ∩ CA = ∅.

When this occurs, all UDEs have either been mitigated, or the chunks they occurred on will

not be read again until first written, and we no longer need to simulate I/Os on a block level

as they cannot result in a data corruption error. However, it is not enough to simply return

to our first, numerical, mode. So long as CA,i 6= ∅ and CA,i ∩ CA,0 6= ∅, where CA,0 was the

active chunk list when it was first true that CT ∩CA = ∅, and CA,i is the active chunk list at

some time i, we have a dependence on the state of the simulator during the previous UDE,

which must be maintained in the case that another UDE were to occur before CA,i = ∅ or

CA,i ∩ CA,0 = ∅, and thus we switch into our hybrid mode instead of the numerical mode.
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nextEvent ← eventList.head()

clock← clock + nextEvent.interarrivalTime
if nextEvent.io ∩(CA ∪ CT ) then
Process nextEvent
if nextEvent reads a block which suffered from a UDE then
Record UDE, update MTTDC

else {nextEvent writes a set of blocks B which suffered from a UDE}
CT ← CT ∪ B

end if
end if
if nextEvent is a chunk leaving CA then
CA ← CA \ nextEvent

end if
if nextEvent.io \ CA 6= ∅ then
CA ← CA ∪ nextEvent.io
CT ← CT ∪ nextEvent.io

end if
Schedule new event of the same type as nextEvent

Figure 4.4: Pseudo-code representation of a single pass through the main loop of the
discrete event simulator.

4.4.3 Hybrid Numerical and Discrete Event Mode

The Hybrid mode of operation of the simulator uses discrete event simulation to manage

the contents of CA. When a chunk leaves CA, it removes it from the set, and when a

chunk enters, it increments a counter of implicitly simulated active chunks, active chunks

represented by this counter are treated as the expected value of an active chunk from the

workload. In between events which modify CA, the hybrid mode acts in a manner similar

to the numerical mode described previously, calculating TUDE as shown in Equation 4.4.

Instead of using the parameters for the workload, however, it takes a less general approach

and estimates the same parameters from CA. It then uses these new estimates to perform a

rate adjustment calculation for TUDE, representing each of the parameters used to calculate

TUDE as a weighted average with the expected value of these parameters for the workload

in general. The weights used are simply the fraction of active chunks in CA as compared to

the total number |CA|+ implicit. When CA,i = ∅ or CA,i∩CA,0 = ∅, we return to the purely

numerical scheme as we are no longer dependent on the last UDE scenario.
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nextEvent ← eventList.head()

clock← clock + nextEvent.interarrivalTime
if nextEvent is an addition to CA then
implicit ← implicit + 1

end if
if nextEvent is a chunk leaving CA then
if implicit > 0 and nextEvent /∈ CA then
implicit ← implicit - 1

else
CA ← CA \ nextEvent

end if
end if
if CA = ∅ then
Switch to Numerical mode

end if
Adjust the rate for UDEs based on CA and Implicit
Schedule next change in CA

Figure 4.5: Pseudo-code representation of a single pass through the main loop of the
hybrid discrete event simulator.

4.5 Example Model Solution

We simulated three different example systems to ascertain the effect of UDEs in three set-

tings, a large-scale storage system, a large enterprise storage system, and a small business

storage system. The large-scale system was modeled as a set 1000 disks each with a capacity

of 1 terabyte, the enterprise system was modeled as a set of 512 disks, each with a capac-

ity of 300 gigabytes, and the small business system was modeled as a set of 32 disks, also

with capacities of 300 gigabytes each. Each of the three modeled systems were simulated

with three different workloads, as discussed in Section 4.2. The rate of I/O operations per

second for each system-workload pairing was calculated by multiplying the io/s parameter

for the workload by the number of disks (excluding those used for parity) in the system.

All systems, including those without mitigation, simulated a weekly parity scrub. A weekly

scrub [53] was chosen based on the existing literature, which discusses a wide range of scrub

intervals from every few days [54] to at least every two weeks [47, 9]. A scrub interval of one

week was chosen as a representative rate, but is not integral to our simulator, and can be

easily altered. Each of these systems was simulated with and without mitigation techniques.
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Table 4.2: Estimated mean proportion of UDEs which manifest as undetected data
corruption for various systems under the Abstract workload, with and without mitigation.

Mitigation Large System Enterprise System Small Business System
No 0.718 0.718 0.718
Yes 0.0028 0.0028 0.0028

UDE rates of three different orders of magnitude (10−11, 10−12, 10−13) were considered. A

total of 10 million UDEs were simulated for each scenario.

4.5.1 Validation

The results of the simulator were validated using a simple combinatorial model of a UDE

process. The combinatoric model functions the same as our simulator during the initial stage,

but once it has decided a UDE has occurred, instead of switching to discrete simulation, it

utilizes the DTMC described in Figure 4.1, using a geometric distribution with parameter

equal to the transition probability to the opposite state to find the number of reads before

a subsequent write event. After the UDE has been resolved, it simply calculates the next

UDE, and continues as before. Comparing results for the proportion of UDEs manifesting as

undetected data corruptions, and rates of user-level undetected data corruption errors from

this combinatorial model with results from the simulator, with parity scrubbing and other

mitigation features switched off, helped us to gain confidence in our simulator and ensure

it was generating results which agreed with our combinatoric model. Estimation of rates at

which UDEs manifested as user level undetected data corruption events by the simulator

were within 4.6% of those given by our combinatoric model, for 10 million simulated UDEs

with no scrubbing, and no mitigation.

4.5.2 Results

Tables 4.2 and 4.3 summarize the proportion of UDEs which actually manifest as an un-

detected data corruption event for the simulated scenarios. As can be seen in Table 4.2

the proportion of UDEs which manifest as an actual error does not vary significantly when

varying system parameters. The various rates of UDEs/IO simulated are not listed as the
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Table 4.3: Estimated mean proportion of UDEs which manifest as undetected data
corruption for various workloads on the large system model, with and without mitigation.

Mitigation Abstract Workload Read Heavy Workload Write Heavy Workload
No 0.718 0.275 0.887
Yes 0.0028 0.0011 0.0035

Table 4.4: Estimated mean and standard deviation of rate of UDE manifestation as
undetected data corruption per second for various systems under the Abstract workload,
with and without mitigation, for various rates of UDEs/IO.

Estimated rate for various rates of UDEs/IO
10−11 10−12 10−13

System Mit. µ 0.95% conf. µ 0.95% conf. µ 0.95% conf.
Large scale No 6.278 · 10−7 ±3.26 · 10−13 6.282 · 10−8 ±3.87 · 10−14 6.282 · 10−9 ±3.29 · 10−15

Large scale Yes 2.415 · 10−9 ±3.28 · 10−14 2.466 · 10−10 ±3.38 · 10−15 2.519 · 10−11 ±2.97 · 10−16

Enterprise No 3.217 · 10−7 ±1.98 · 10−13 3.218 · 10−8 ±1.98 · 10−14 3.221 · 10−9 ±1.14 · 10−15

Enterprise Yes 1.259 · 10−9 ±1.30 · 10−14 1.262 · 10−10 ±2.10 · 10−15 1.253 · 10−11 ±1.15 · 10−16

Small No 2.012 · 10−8 ±8.30 · 10−15 2.012 · 10−9 ±5.77 · 10−16 2.012 · 10−10 ±8.27 · 10−17

Small Yes 7.930 · 10−11 ±8.49 · 10−16 7.868 · 10−12 ±8.33 · 10−17 7.857 · 10−13 ±1.14 · 10−17

results were the same for all three parameters. Adding the mitigation technique described in

Section 3.3.5 had the effect of reducing the proportion of UDEs which manifested as unde-

tected data corruption by two orders of magnitude. Table 4.3 shows the effect that varying

the workload can have on the proportion of UDEs that manifest as an error. While both

the Abstract workload and Write Heavy workload have similar rates of manifestation, the

Read Heavy workload has a much lower proportion of UDEs which manifest as undetected

data corruptions. In all cases, adding mitigation had the effect of reducing the proportion

of UDEs manifesting as errors by two orders of magnitude.

Tables 4.4 and 4.5 illustrate the relationship between the rate of undetected data corrup-

tion errors and varying system and workload parameters, and rates of UDEs/IO. Table 4.4

Table 4.5: Estimated mean and standard deviation of rate of UDE manifestation as
undetected data corruption per second for the large scale system under the all workloads,
with and without mitigation, for various rates of UDEs/IO.

Estimated rate for various rates of UDEs/IO
10−11 10−12 10−13

System Mit. µ 0.95% conf. µ 0.95% conf. µ 0.95% conf.
Abstract No 6.278 · 10−7 ±3.27 · 10−13 6.282 · 10−8 ±3.87 · 10−14 6.282 · 10−9 ±3.29 · 10−15

Abstract Yes 2.415 · 10−9 ±3.28 · 10−14 2.466 · 10−10 ±3.38 · 10−15 2.519 · 10−11 ±2.97 · 10−16

Read Heavy No 2.404 · 10−7 ±1.28 · 10−13 2.405 · 10−8 ±2.44 · 10−14 2.401 · 10−9 ±1.79 · 10−15

Read Heavy Yes 9.345 · 10−10 ±1.31 · 10−14 9.310 · 10−11 ±1.14 · 10−15 9.476 · 10−12 ±1.68 · 10−16

Write Heavy No 7.764 · 10−7 ±5.52 · 10−13 7.763 · 10−8 ±4.68 · 10−14 7.766 · 10−9 ±3.51 · 10−15

Write Heavy Yes 3.048 · 10−9 ±2.39 · 10−14 3.014 · 10−10 ±2.03 · 10−15 3.038 · 10−11 ±4.09 · 10−16
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shows that the rate of UDEs manifesting as undetected data corruption declines both as the

rate of UDEs/IO decreases, and as the size of the system decreases. Those scenarios which

involved mitigation decreased the rate of undetected data corruption events by between two

and three orders of magnitude. To put these rates into perspective, Table 4.6 shows the

mean interval between undetected data corruption events that correspond to these rates.

Table 4.5 summarizes the effect of varying the workload while holding the simulated system

constant. We show the results for the large system only, as the results for enterprise and

small business systems showed similar trends in the rates of UDE manifestation. The rates

of manifestation vary in a manner consistent with Table 4.3 illustrating that workload does

have an effect on the rate of UDE manifestation, but for the workloads and systems tested,

varying the workload still yields a rate of undetected data corruption events within the same

order of magnitude.

Table 4.6: Estimated mean interval between undetected data corruption events for all
systems under the Abstract workload, with and without mitigation, derived from Table 4.4.

Mean Interval

System Mitigation 10−11 10−12 10−13

Large No 18.43 days 184.2 days 5.04 years

Large Yes 13.13 years 128.6 years 1258 years

Ent. No 35.98 days 0.9854 years 9.844 years

Ent. Yes 25.19 years 251.3 years 2531 years

Small No 1.576 years 15.76 years 157.6 years

Small Yes 399.9 years 4030 years 40358 years

4.6 Conclusions

Our results indicate that UDEs will continue to grow in their importance to system designers

as storage systems continue to scale, a conclusion which seems affirmed out by field observa-

tion of UDEs in modern large scale storage systems. Even in the case of the small business

system simulated, the rate of data corruption events without implementing mitigation is

such that one would expect to see UDEs occurring in a population of such storage systems,

and if we assume a UDE/IO rate of 10−11, the rate is high enough to push the mean interval

between undetected data corruption below the average lifetime of even a single such system.
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Our results suggest that data scrubbing on a weekly schedule is not enough to reduce

UDEs sufficiently, as the data scrub must be processing the location on a disk where the

UDE has occurred after the time at which the disk suffered the fault, and prior to the next

read request for that location. It is particularly telling that when the rate is set at 10−12

UDEs/IO, the rate of UDEs/IO estimated for near-line disks, both enterprise and large scale

systems have rates of undetected data corruption which place the mean interval between such

events at less than a year. Given the growing practice of utilizing cheaper near-line drives in

a RAID configuration, this highlights an important limitation of RAID. Since RAID5 and

RAID6 can only detect errors on the data drives during a parity scrub, the protection they

implement is largely orthogonal to the issues posed by UDEs. Fortunately, our simulations

suggest that by using relatively simple techniques such as the sequence number approach to

mitigation modeled in this work and described in [40], UDEs can largely be eliminated for

the expected lifetime of near-future systems. While they double the requirement for read

operations, requiring reading both the data and the parity, these methods reduce the rate

of undetected data corruption events by two to three orders of magnitude.

We consider in this chapter only a single mitigation technique, and a set of relatively

simple RAID based systems. Additionally, it is difficult to evaluate the correctness of our

measures given that our multi-modal simulator utilizes a variety of techniques for solution,

and only systems which can be trivially decomposed can be solved with these methods. In

Chapter 5 we will outline a modeling language for describing storage systems, and method for

identifying and categorizing complex dependence relationships within our models. Combined

with information about the fault and recovery events within a given system, we will propose

an algorithm for solving these models using a hybrid simulator which is more general than

the one defined in this Chapter. In Chapter 6 we will expand our model to include all of the

faults defined in Chapter 3.
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CHAPTER 5

ANALYZING DEPENDENCE RELATIONSHIPS IN

STORAGE SYSTEMS

5.1 Introduction

In Chapter 2, we introduced methods for building component-based models of storage sys-

tems and simulating them using empirical data. In Chapter 3, we discussed classes of faults

that were less significant in smaller systems, but which have become relevant to modern sys-

tems as they continue to increase in scale. Chapter 4 presented an initial attempt to model

those faults in component-based models when the models themselves are easily decompos-

able. The effect those faults have on storage systems is often more complex, especially when

considered along with additional complications, such as data deduplication. In this chap-

ter, we will detail a method for analyzing more complex models that cannot be trivially

decomposed, and that represent larger more complex systems.

Like all large and complex systems, the systems we address present significant problems for

modelers. Large systems present challenges for numerical solution, and though simulation

can be used even for infinite state spaces, solution time grows with the number of events

that must be processed. Because the faults we have defined have rates many orders of

magnitude smaller than those of our I/O processes and mitigation methods, we will call

them rare events. Models that contain rare events are often deemed stiff, meaning that

for the estimates of the chosen metrics to converge, an increasing number of events must

be observed. Given the rarity of UDEs and LSEs, rare events are a particular problem for

large-scale storage systems.
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Deduplication Disk Pool

Files

Figure 5.1: Representation of a deduplicated storage system. Redundant data is identified
and eliminated, so that only unique data is stored.

5.2 Dependence in Storage Systems

Modern storage systems are often more complex than the simple system represented in

Chapter 4. Most modern systems utilize RAID to improve their fault tolerance. In these

cases, dependencies are created between disks in a RAID group. Parity drives have state

that depends on the states of other disks within the RAID group; upon a failure, the states

of all drives in the group are needed in order to re-create the lost drives.

Modern storage systems have begun using a technique known as deduplication to improve

storage efficiency. The growing use of deduplication introduces a new form of dependence,

which can potentially exist between any two disks in a deduplicated system. Deduplication

(Figure 5.1) operates by fingerprinting data that is being written to the storage system and

identifying sub-file chunks that already exist in the storage system, selecting those files for

deduplication. When a file is deduplicated, only a single copy is stored as a deduplicated

instance; a series of references to that instance are created for the additional copies iden-

tified. That creates dependence among the disks storing references, the disk storing the

deduplicated instance, and the other disks in the RAID group that stores the instance.

Data deduplication is increasingly being adopted to reduce the data footprint of backup
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and archival storage, and more recently has become available for near-line primary storage

controllers. Scale-out file systems are increasingly diminishing the silos between primary

and archival storage by applying deduplication to unified petabyte-scale data repositories

spanning heterogeneous storage hardware. Cloud providers are also actively evaluating dedu-

plication for their heterogeneous commodity storage infrastructures and ever-changing cus-

tomer workloads. A more detailed model of deduplication based on empirical data will be

presented in Chapter 6.

While these dependencies make models of the resulting storage systems necessarily more

complex than models of storage systems with no fault tolerance or data deduplication, we

note that these dependencies only effect metrics in certain situations. When concerning

ourselves with reliability analysis, we note that these dependencies can be ignored except in

the cases that a fault has occurred, causing the loss of a disk in a RAID unit, or the loss of a

referenced deduplicated instance. Given that these failures are several orders of magnitude

more rare than non-faulty events within the storage system, such as scrubbing, and I/O,

an assumption that the disks are in fact independent holds for much of the storage systems

lifetime. In this chapter we focus on ways to exploit this insight to achieve performance

gains when modeling storage systems.

5.3 Related Work

There has been limited work in the literature which attempts to model complex storage

systems in rich fault environments. In Chapter 6 we will discuss the state-of-the-art, and

why it has been insufficient to understand the effect of deduplication on fault-tolerance.

In this chapter, we present related modeling work from other domains that attempt to

tackle similar modeling and solution difficulties in more general systems as preparation for

introducing our framework and methods.

Rare events, despite the low probability of their occurrence, can have large impacts. As

systems increase in size and complexity, rare event failures pose increased risk when they

occur on a per-component basis. While such failures may still occur with the same proportion

to other events, large-scale HPC systems can be expected to suffer a number of rare events
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within their normal lifetimes [55]. Rare faults may also be important for safety-critical

systems in which they are still rare during the system life time as they can represent faults

which cause catastrophic data loss [40] or system failure.

Importance sampling attempts to reduce the variance of estimates of a model’s reward

variables through mathematical biasing of the simulation, increasing the proportion of rare

events witnessed. This is accomplished by biasing the distributions, yielding a biased estima-

tor. An appropriate must then be found to unbias the estimators [56, 57]. While importance

sampling can speed-up simulations of models that have rare events, choosing a set of biased

distributions and unbiasing functions for the estimators can prove difficult. Improper choices

may slow down the simulation, or worse (and perhaps more likely), yield incorrect estimators

for the performance variables.

Importance splitting biases the simulation to make rare events less rare using a different

approach. The state space is partitioned into a number of levels. A level contains those

states that form critical points on “important paths” in the simulation, i.e. which result

in an increased probability of witnessing a rare event. Simulation paths that reach a level

are split and re-sampled to increase the likelihood of witnessing a rare event. Trajectories

resulting from a split are correlated, generating an unbiased estimator of the variance is

not straightforward. Selection of appropriate points to split and levels are model-specific

problems which can impact the efficiency of solutions using this technique [58, 59].

Decomposition offers an approach for large, complex systems, dividing them into smaller

submodels and finding solutions for the submodels separately. Models which cannot be

broken into wholly independent submodels must also have their interactions characterized.

If the submodels are weakly coupled, they may be sometimes be considered as a composition

of nearly independent submodels [60, 61].

5.4 Modeling Preliminaries

We present our method in the context of a generic model specification language based on

the notation presented in [62]. This is intended as an alternative to presenting our results

in a specific formalism, both to simplify the discussion of our techniques and to generalize
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our methods.

Definition 1. A model is a 5-tuple (S,E,Φ,Λ,∆)

• S is a finite set of state variables {s1, s2, . . . , sn} that take values in N.

• E is a finite set of events, {e1, e2, . . . , em} that may occur in the model.

• Φ : E × N1 × N2 × . . .× Nn → {0, 1} is the event-enabling function specification. For

each event e ∈ E, and any set of state variables and their assignments, q (represented

by an ordered set of natural numbers), event e is enabled and may occur for this set of

state variable assignments iff Φ(e, q) = 1.

• Λ : E × N1 × N2 × . . .× Nn → (0,∞) is the transition rate function specification. For

each event e, and set of state variables and their assignments, q, event e occurs with

rate Λ(e, q) when the state variables of the model have the values given in q.

• ∆ : E × N1 × N2 × . . . × Nn → N1 × N2 × . . . × Nn is the state variable transition

function specification. For each event e ∈ E, and each set of state variables and their

assignments q ∈ N1 × N2 × . . . × Nn, ∆(e, q) → q′ defines the values assigned to all

state variables of the model when e occurs.

Definition 2. The state of a model M is a mapping ψ : S → N, where for all s ∈ S, ψ(s) is

the value of the state variable s. Ψ = {ψ|ψ : S → N} is the set of all such mappings.

A trajectory, or behavior of a model, is described as a finite sequence of states and events.

The model is assumed to be in some initial state, with events occurring with a rate de-

termined by λ. When an event fires, the model transitions in accordance with the state

transition function δ. The probability of transitioning from some arbitrary state, ψi, to

a particular next state, ψj is the probability that an event e is the next event such that

δ(ψi, e) = ψj. We calculate this probability as:

P (ψi → ψj) =

∑

e∈E|δ(e,ψi)=mj
λ(e, ψi)

∑

e∈E|φ(e,ψi)=1 λ(e, ψi)
. (5.1)

62



In addition to specifying a model of system, one must specify the performability, availabil-

ity, or dependability measures for a model. These measures are specified in terms of reward

variables [63]. Reward variables are specified as a reward structure [64] and a variable type.

Definition 3. Given model M = (S,E,Φ,Λ,∆), we define two reward structures: rate

rewards and impulse rewards.

• A rate reward is defined as a function R : P(S,N)→ R, where for q ∈ P(S,N), R(q)

is the reward accumulated when for each (s, n) ∈ q the marking of s is n.

• An impulse reward is defined as a function I : E → R, where for e ∈ E, I(e) is the

reward earned upon completion of e.

where P(S,N) is the set of all partial functions between S and N.

Definition 4. Let ΘM = {θ0, θ1, . . .} be a set of reward variables, each with reward structure

R or I associated with a model M .

The type of a reward variable determines how the reward structure is evaluated, and can

be defined over an interval of time, an instant of time, or in steady state, as shown in [65, 63].

5.4.1 Instant-of-Time Variables

We refer to variables which are used to measure the behavior of a model at a particular time

t as instant-of-time variables [66, 63]. Such a variable, θ(t) is defined as:

θt =
∑

ν∈P(S,N)

R(ν) · Iνt +
∑

e∈E

I(e) · Iet (5.2)

where

• Iνt is an indicator random variable which represents the instance of a SAN in a marking

such that for each (s, n) ∈ ν, the state variable s has a value of n at time t.
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• Iet is an indicator random variable which represents the instance of an event e that has

fired most recently at time t.

If the indicator random variables converge in distribution as t→∞, we consider θt to be

in “steady state”. We can then evaluate the steady state reward at an instant of time t with

the variable defined as

θt→∞ =
∑

ν∈P(S,N)

R(ν) · Iνt→∞ +
∑

e∈E

I(e) · Iet→∞ (5.3)

where

• Iνt→∞ is an indicator random variable which represents the instance of a SAN in a

marking such that for each (s, n) ∈ ν, the state variable s has a value of n in steady

state.

• Iet→∞ is an indicator random variable which represents the instance of an event e that

has fired most recently in steady state.

5.4.2 Interval-of-Time Variables

In order to calculate metrics which accumulate over some fixed interval of time, we use

interval-of-time variables. Such variables accumulate reward during some interval of time,

and take on the value of the total reward for the defined period [66, 63]. Given such a

variable, θ[t,t+l], we define it as:

θ[t,t+l] =
∑

ν∈P(S,N)

R(ν) · Jν[t,t+l] +
∑

e∈E

I(e) ·N e
[t,t+l] (5.4)

where

• Jν[t,t+l] is a random variable which represents the total time the model spent in a marking
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such that for each (s, n) ∈ ν, the state variable s has a value of n during the period

[t, t+ l].

• Iet→∞ is an random variable which represents the number of times an event e has during

the period [t, t + l].

5.4.3 Time-Averaged Interval-of-Time Variables

The final type of reward variables we will consider are time-averaged interval-of-time vari-

ables. These variables quantify accumulated reward averaged over some interval of time

[66, 63]. Given such a variable, θ′[t,t+l] we define it as:

θ′[t,t+l] =
θ[t,t+l]
l

(5.5)

5.5 Dependence in Storage Systems

In Chapter 6 we will attempt to develop a good understanding on the reliability of systems

which use deduplication, which has to date been a difficult task for system designers [22].

Deduplication itself poses two potential reliability problems. First as illustrated in Figure

5.2a, the fact that chunks in several files depend on a single instance means that loss of a

instance causes secondary losses across the data store. Inversely, as shown in Figure 5.2b,

files with multiple references to different chunks may be dependent on the reliability of

multiple storage devices. If any one of the devices upon which it depends fails, the file itself

is lost. This additional dependence may be counter-balanced, however, depending on the

degree of additional storage efficiency. By decreasing the number of disks in the system with

deduplication, we decrease the number of expected disk faults as well. Understanding these

complex relationships requires understanding the nature of deduplication itself, as well as

the complex interactions created by the underlying storage system.

In order to properly exploit the dependence relationships present in a modeled storage

system, we must first establish an understanding of the types of relationships in which we
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Figure 5.2: Deduplication example showing the dependence of multiple references to the
same chunk in multiple files to a single stored reference and in a file to multiple disks in
the data store.
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are interested. Our goal is to identify and exploit structural properties in such a model,

primarily failures due to disk failure, LSEs or UDEs, and recovery actions which remove

these failures. Our hypothesis is that failures create important dependence relationships

within the model, causing us to evaluate otherwise independent submodels as a larger model.

We hypothesize that repair actions break these dependencies, until the next failure occurs.

Furthermore, we are interested in failure and repair actions that represent rare-events.

5.5.1 RAID-Induced Dependence

Under normal operating conditions, the components of a storage system can be considered

largely independent. Given the assumption of uniform file placement on the system (as is

typical for large-scale general purpose machines), files are read and written to drives in an

independent fashion. In such cases the system might be modeled more tractably as a set

of independent systems, with each system solved individually. The use of RAID, however,

implies a dependence between some sub-systems in the case of a failure. Should two drives

suffer partial or total failure, they can no longer be treated as independent if they belong to

the same RAID group, until the failure is repaired.

Once a failure has occurred, the entire RAID group must be considered dependent as

further failures directly impact the integrity of files in the RAID group. This dependence

can be removed once successfully recover actions have repaired all failures within the RAID

group, allowing the disks in the group to once again be considered independent.

5.5.2 Deduplication Induced Dependence

An additional form of dependence in storage systems are those caused by deduplication.

When a failure occurs for a chunk which stores an instance of a deduplicated resource in

the storage system, a dependence is created for all references to that chunk, and the other

disks in the failed instances RAID group. Should the RAID suffer additional failures which

make the instance unrecoverable, all references to the instance will also be unrecoverable.

As before, recovery of the failed instance and repair eliminates this dependence.
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5.5.3 Important Events

For both of the major sources of dependence, an important point is that the events that

cause and remove dependence are rare events. Faults of interest occur rarely in the system,

because of the rates used by the models that represent them. Repair actions, while having

rates that are relatively fast compared to that of failures, can only occur when a fault has

changed system state. Thus, they are rare due to their enabling conditions, which are rarely

met. In later sections, we will analyze rare events along with dependence relationships to

form a strategy for solving our systems.

5.6 Understanding Dependence Relationships

The dependence relationships described for storage systems, using RAID and deduplication

seem similar, in concept, to the idea of near-independence [67]. In order to better characterize

the dependence relationships present in models of storage systems we discuss notions of

dependence used in studies of near-independence. Characterizing the dependence of multiple

portions of a model is complex, and involves development of a measure of how far the model

is from an ideal set of truly independent models. For that reason, using the terminology

discussed in [67], we will simply present a qualitative discussion of structures that can arise.

We represent our formalism, in Figure 5.3a, using circles for state variables and squares

for events. Dependencies are shown using directed arcs. In Figure 5.3a, we have a model

with state variables s0, s1, s2, and s3 and events e0, e1, e2, and e3. While the state of the

submodel constructed from state variables s0, s1 does not depend directly on events fired by

the second submodel (which is constructed of state variables s2, s3), it can still depend on

the state of the other submodel in two key ways.

• Rate dependence: The two submodels can be said to have rate dependence if the

transition rate function Λ of an event in one submodel is defined in terms of the state

variables in the other submodel. For example, we might define the rate function of e1
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Figure 5.3: Two examples of near-independent submodels.

in Figure 5.3a as follows.

Λ(e1, s2 = 0) → x

Λ(e1, s2 6= 0) → y

Even though the firing of events in a given submodel cannot affect the state variables

of another submodel, the rate of the event of one submodel is dependent on the state

variables of another submodel.

• External dependence: When an event in one submodel has an event-enabling function,

Φ, defined in terms of the state or state variables of another submodel, we say the

submodels feature external dependence. For example, we might define the rate function

of e1 in Figure 5.3a as follows.

Φ(e1, s2 < x) → 0

Φ(e1, s2 ≥ x) → 1

Again, even though the firing of events in a given submodel cannot affect the state

variables of another submodel, e1 cannot fire, unless the other submodel has s2 ≥ x.
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The enabling conditions of an e1 are dependent on the state of s2.

A third type of structure, synchronization dependence (which we call ∆-dependence, is

discussed in [67]. It corresponds to simultaneous changes in the values of two or more state

variables in two or more submodels. We expand upon this notion in light of our concern

with rare faults to describe a new structural feature, illustrated in Figure 5.3b.

• ∆-dependence: When the firing of an event changes the value of state variables in two

or more otherwise independent submodels, we say that they feature ∆-dependence.

While the submodel shown in Figure 5.3b would not normally be considered near-independent,

if e4 and e5 represent rare events, the states of the two submodels depend on each other only

rarely, when those events fire. Assume that the initial state of the model is such that

s0 = s2 = 1, and s1 = s3 = 0. Assume that the rates of the events are not state-dependent,

and that events are enabled when a state variable for which they have an incoming arc is

greater than zero, and disabled otherwise. Also assume that the rates of e5 and e6 are several

orders of magnitude more rare than e0, e1, e2 and e3. Until e5 or e6 fires, the model in Figure

5.3b will behave just like the model in Figure 5.3a under the same initial conditions and

assumptions about the events. However, once either e5 or e6 fires, the model will change so

that one submodel is disabled and inactive with s2+ s3 = 0, while the other has s0+ s1 = 2.

This will remain true, and the two submodels will be independent of one another, until either

e5 or e6 fires again, returning the system to one that resembles 5.3a again, with s0 + s1 = 1

and s2 + s3 = 1.

Dependencies between submodels result from direct dependencies between events and

states, or from indirect dependencies resulting from a sequence of direct dependencies. Each

direct dependence can be classified as a rate dependence, an external dependence, or a

∆-dependence.

Recall from Definition 3 in Section 5.4 that a reward variable may have one of two reward

structures, rate reward or impulse reward; this implies a final category of dependence.

• Reward dependence: When a reward variable θi ∈ ΘM exists such that its reward

structure is defined in terms of the state variables of two submodels, or in terms of the

events of two submodels, we say they feature reward dependence.
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Unlike the other forms of dependence we have defined, reward dependence is more likely to

inhibit decomposition of our model into submodels, for reasons that will become apparent

in Section 5.8.

5.6.1 Model Dependency Graph

Now that we have identified general ways in which submodels can be related, we define a

way to codify these relationships by constructing a model dependency graph (MDG). We will

use an MDG in conjunction with rare events found in the model via the methods discussed

in Section 5.7 as inputs to an algorithm we introduce in Section 5.8, to provide a proposed

decomposition of M .

Definition 5. The MDG of a model M is defined as an undirected labeled graph, GM =

(V,A, L), where V is a set of vertices composed of three subsets V = VS ∪ VE ∪ VΘ, A is a

set of arcs connecting two vertices such that one vertex is always an element of the subset

VS and one vertex is always an element of the subset VE, or one vertex is of the subset VΘ

while the other is of the set {VE ∪VS}, and L is a set of labels applied to elements of A from

the set {Φ,Λ,∆, R}. Let VS denote the subset of vertices representing the state variables

S ∈M ; VE denote the subset of vertices representing the events E ∈M , and VΘ denote the

subset of vertices representing reward variables from ΘM .

We construct GM using the model specification from Definition 1 of a model M , from

Section 5.4. GM has a node for every state variable in S and event in E, and reward variable

in ΘM , with arcs connecting an arbitrary state variable si to an arbitrary event ej, iff

• The enabling condition of ej depends on the value of si. This indicates an external

dependence and is marked with the label Φ.

• The rate of the event ej depends on the value of si. This represents a rate dependence

and is marked with the label Λ.

• The firing of ej changes the value of si. This represents a ∆ dependence and is marked

with the label ∆.
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An arc labeled R connects a node representing an element θi ∈ ΘM to a node representing

an element aj ∈ {S ∪ E} iff

• aj ∈ S and θi is a rate reward defined in terms of aj .

• aj ∈ E and θi is an impulse reward defined in terms of aj .

We represent an MDG graphically as shown in Figure 5.4. State variables are repre-

sented by circles, events by squares, and reward variables by diamonds. Arcs in an MDG

represent dependencies. As shown in Figure 5.4 rate dependencies are labeled Λ (a); exter-

nal dependencies are labeled with Φ (b); ∆-dependencies are labeled with ∆ (c); and rate

dependencies, whether impulse or rate rewards, are labeled with R (d,e).

Proposition 1. For a given model M , the graph GM represents all possible dependencies

between all events and state variables in a model.

Proof. Proof by contradiction. Suppose there exist some state si and some event ej that are

directly dependent and not captured by GM . All direct dependencies due to Φ,Λ, and ∆ are

encoded in GM as labeled edges thus, the dependence must be one outside of the definition

of Φ,Λ, and ∆. By definition 1, no such direct dependencies can exist. Thus our graph

represents all possible direct dependencies.
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Suppose there exist two elements α, β ∈ S ∪ E that are indirectly dependent and not

captured by the graph GM . They are indirectly dependent if they are both state variables

and the value of α can affect the value of β or vice versa. If α is a state variable and β is

an event, they are indirectly dependent if the firing of β can affect the value of α, or if the

value of α can affect the value of Φ(β, q),Λ(β, q), or ∆(β, q) for q ∈ N1 × N2 × . . .× Nn. If

α and β are both events, they are indirectly dependent if the firing of α can affect the value

of Φ(β, q),Λ(β, q), or ∆(β, q) and vice versa.

In the model this indirect dependency will take the form of a series of event firings and

state variable changes, each of which is either enabled by, or has its rates set by, a state

variable upon which it depends, and which changes the value of subsequent state variables

upon which future events depend. For such a sequence {si, ej, sk, el, . . .} to exist, every

consecutive pair in the sequence (si, ej), (ej, sk), (sk, el), . . . must be directly dependent. If

this is true, then there must exist a path defined by a series of vertices in V and arcs in A from

the vertex representing the starting state or event in the sequence, to the vertex representing

the final state or event in the sequence, such that path visits each vertex that corresponds

to intermediate states and events in the sequence. Therefore the indirect dependence of α

and β must be represented by the path of direct dependencies vα, vαvi, vi, . . . , vj, vjvβ , vβ,

and thus cannot exist.

5.7 Rare Events in Storage Systems

The dependence relationships of interest are those which become important when a fault

occurs, and can be ignored again when a fault is repaired. In both instances, faults, and

repairs, the action which changes the importance of the dependence relationship can be

classified as a rare event. In the case of failures, the event is rare because its rate is very

low, compared to other events in the system. In the case of repair actions, the event is rare

because it is only enabled when a fault has occurred in the system.

In order to find a way to decompose a storage model, we could require the user to specify

the failure and repair actions in the model, as with the decomposition methods presented by

[67]. Ideally, however, we wish to be able to identify these events without user input. The
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characteristics that set these events apart from others in the model is that they are rare.

5.7.1 Identifying Rare Events

In order to find the events which represent whole disk faults, LSEs and UDEs, we need to

identify events which are “locally rare.” An event ei, Λ(ei, q) may be defined such that it’s

rate is much less than that of other events in the model, i.e. Λ(ei, q) < µmax∀q. In these cases

we can classify the local rate of ei to be rare. In the case of an event with a state-dependent

rate (i.e., where Λ(ei, q) varies for different q), it may be useful to create two virtual events,

ei,1 and ei,2, with the first virtual event replacing ei for values of Λ(ei, q) that constitute

non-rare events, and ei,2 replacing ei for values that qualify as representing rare events.

For our deduplication system, these locally rare rates which have Λ(ei, q) < µmax∀q, play

a part in identifying rare events in the case of total disk failures, initial latent-sector errors,

and undetected disk errors. These events have rates which are rare compared to others

within the model, based simply on the evaluation of their rate function Λ(ei, q).

Figure 5.5 illustrates an example in which the local rates defined by the transition rate

function does not differentiate rare events from non-rare events. Assume that the rate of

the event labeled e0 is defined as Λ(e0, q) = µ, ∀q, and that the events labeled e1, e2, e3 have

rates defined as Λ(ei, q) = µ, ∀q as well. Considering the case when the enabling function is
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defined for all events except e0 as

Φ(ei, s0) =







1, if s0 > 1

0, otherwise

and the state transition function is defined in part by ∆(ei, (s0 = 1)) = (s0 = 0).

If we imagine a similar case in which n such events are in competition, their effective rates

might be much lower than the local rates defined in Λ would imply. The effective rate of

each event can be easily determined using uniformization.

The final, and potentially most difficult to identify, fashion in which events may be rare is

when their enabling conditions defined by Φ are rare. Despite the difficulty in finding such

events, they are important as they represent recovery/repair actions, among other things.

Consider the model presented in Figure 5.6. Assume that all events labeled either e or r

have the same transition rate function, and that the model begins with state variables s0

and s4 equal to one, with all other state variables equal to zero. An event is enabled when

all state variables with outgoing arcs pointing to the event have values greater than zero,

and disabled otherwise. When an event fires, it decrements by one all state variables with

outgoing arcs at the event, and increments by one all state variables with incoming arcs.

Although the rates of all events are similar, the enabling conditions of the events labeled r
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are true far less often than those of the events labeled e. They require that the submodels be

“synchronized,” i.e., that s2 = s7 = 1 in order to fire. The enabling condition for the second

r requires that s8 = 1, a condition only true after the firing of a rare event, and before any

other events have been fired. These events are rare because their enabling conditions depend

on a model state that is rare.

It is important to identify events representing recovery, mitigation, and propagation as well

as faults. The difficulty is that recovery actions have high rates compared to most failures.

However, since they are not enabled unless a failure has occurred, they are dependent on a

rare enabling condition. Latent sector errors also partially fall into this category. While an

initial LSE is defined by a locally rare rate, studies [10] have shown that there is a period

afterwords during which they become frequent. This precondition of a recent LSE creates a

condition where an otherwise common event, is rare due to the state in which it is common

being rare.

We combine these notions of how an event might qualify as rare by calculating the effective

global rate of an event. For an event ei we solve for the global rate µei, given a specification

of the form presented in Definition 1 and Definition 2 from Section 5.4, along with π∗, the

steady-state occupancy probability vector, as follows:

µei =
∑

∀ψj |φ(ei,ψj)=1

λ(ei, ψj)

(

λ(ei, ψj)
∑

∀e∈E|φ(e,ψj)=1

)

· π∗[ψj ] (5.6)

While λ and φ in equation 5.6 are given by the model definition, π∗ is not. In fact, solving

for π∗ can be difficult, potentially as difficult as solving for the original model itself.

5.7.2 Identifying Recovery Actions

While calculation of all rare enabling conditions is a difficult problem, we can use domain

knowledge of storage system reliability models to aid us in finding certain classes of rare

enabling conditions. As we noted before, recovery actions are by necessity paired with a

previous fault in the model. Without a fault, the state variables in the model can not have

values such that the recovery action can fire, and so recovery actions directly depend on rare
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events. By analyzing the dependence relationships in our model we can identify these rare

events given the assumption that our model begins with no initial faults.

In the next section we will introduce a method for decomposing models with rare events.

Using the algorithms introduced in Section 5.8 we will show how to identify recovery, miti-

gation, and fault propagation events.

5.7.3 Partitioning

We identify a certain subset ER ⊂ E as rare events, given some partitioning scheme, as

first discussed in Section 5.7.1. Choice of a static parameter with which to partition has

been well-studied for hybrid simulation [68]. Some algorithms even propose methods for

dynamic partitioning while simulating a given system [69]. The exact choice of partitioning

method is unimportant for the correctness of the general application of our technique, but

some approaches may have advantages when applied to specific models. In general, for the

models we have studied, it has been appropriate to assume a static partitioning parameter

µmax. In practice, choice of a value for µmax is simple, as fault events are many orders of

magnitude rarer than non-fault events. Two clusters of rates were easily identified using

k-means clustering with two clusters, for the fault models defined in Chapter 3 and Chapter

6. Given a value for µmax, we find those events ei ∈ E for which Λ(ei, q) < µmax∀q and

define the set of these events as ER. This partitioning identifies those rare events that are

rare due to a locally rare rate, or competition; it will allow us to identify those rare events

that represent mitigation and fault propagation using the methods we will present in Section

5.8.

5.8 Decomposing Models with Rare Events

Using an MDG, we have shown how to represent all dependencies in a model of a storage

system, and we have identified a subset of rare events within the model, which include

failures and repair events. In this section we present an algorithm for decomposing M ,

using the MDG generated from M , GM . M will be decomposed into a set of n submodels
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Ξ = {ξ0, ξ1, . . . , ξn} that can be considered independent in the absence of the firing of a rare

event. We also discuss how to repartitionM using GM after a rare event has fired, producing

a new set of independent submodels, as illustrated in Figure 5.7. When visualizing our

simulation as a time-line, as shown in Figure 5.8, we represent the firing of a rare event with

the symbol τ . Each time a rare event fires, it results in a reevaluation of our decomposition

of M , represented in Figure 5.7 as τ . Given a model and a set of reward variables, we

generate an MDG and a set of identified rare events, ER. Using the MDG, GM , the set of

rare events, ER, and the current values of all state variables in the model M , we produce

τ τ τ

Figure 5.8: Model repartition after each rare event.
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a decomposition of the model M into a set of submodels ΞR and Ξ!R. From ΞR, Ξ!R, and

the subset ΞER
∈ Ξ of all submodels (in both ΞR and Ξ!R) that contain events in ER, we

produce two new sets of submodels:

ΞSim = ΞR ∪ (Ξ!R ∩ ΞER
) (5.7)

ΞNum = Ξ!R \ (Ξ!R ∩ ΞER). (5.8)

The submodels in the sets ΞSim and ΞNum will then be passed to an appropriate solution

method and solved until a rare event fires, at which point we repeat the decomposition step

based on the new state of the model.

By decomposing our model in this fashion, we hope to remove from consideration events

for which there is no current direct or indirect dependency from our reward variables in

the absence of a rare event firing. In order to form this decomposition, however, we must

analyze the dependencies in GM , and from the results of that analysis form a decomposed

model dependency graph G′
M that can be used to identify a submodel decomposition of

M . We form a decomposed model dependency graph G′
M for M by first removing all ∆-

dependencies that involve events in ER. For every vertex associated with a state variable

whose only ∆-dependencies involve events in ER, we replace those vertices with new vertices

from a set VC , which represent constant state variables whose values are equal to their initial

conditions. All vertices that represent events with rates dependent on state variables that

are now represented by constant vertices are examined. If such events have transition rate

function specifications such that Λ(e, q) = 0 for all q ∈ N1×N2× . . .×Nn given VC , or have

enabling function specifications such that Φ(e, q) = 0 for all q given VC , they are removed.

All dependencies of removed events are also removed. The process is repeated, examining

all VS and VE iteratively until no new vertices are removed. This process for generating G′
M

using GM and ER is presented in Algorithm 1.

The graph G′
M that results from the application of Algorithm 1 to GM and ER is then

used to determine if a valid partition of the model M exists for our technique. If G′
M defines

multiple unconnected sub-graphs, G′
M = {g′0 ∪ g

′
1 ∪ . . .}, a valid partition exists. If it does

not, our technique is not applicable. The sub-graphs of G′
M correspond to the submodels in
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Algorithm 1 Remove rare-event-based dependencies from G′
M .

G′
M = (V ′, A′, L′)← GM

P ← ER
while P 6= ∅ do

Remove all edges in A′ containing at least one vertex in P . Do not remove vertices with edges
labeled Φ or Λ if the vertex is in ER.
P ← ∅
for all vi ∈ V ′

S do

if !∃vivj ∈ A′ such that vivj has label ∆ then

V ′ ← V ′ \ vi
Create a new constant vertex vci ∈ VC
V ′ ← V ′ ∪ vci
Associate a value equal to the initial marking of si ∈ S associated with vi with vci

end if

end for

for all vj ∈ V ′
E do

if ∃vi|vivj ∈ A′ labeled Φ such that vi ∈ VC then

if !∃q consistent with the constant markings associated with vertices in VC and Φ(ej, q) = 1
then

P ← P ∪ vj
end if

end if

if ∃vi|vivj ∈ A′ labeled Λ such that vi ∈ VC then

if !∃q consistent with the constant markings associated with vertices in VC and Λ(ej , q) 6= 0
then

P ← P ∪ vj
end if

end if

end for

V ′ ← V ′ \ P
end while
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Figure 5.9: Example decomposition of a model dependency graph GM to G′
M .

our partition Ξ. For a given sub-graph, g′i = (V ′
i , A

′
i), for each v′j ∈ V

′
i such that v′j ∈ VS,

we add the corresponding state variable to ξi. For each v′j ∈ V
′
i such that v′j ∈ VE, we add

the corresponding event to ξi. In addition, for each ξi ∈ Ξ we restrict the definitions of

Φ(ej , q),Λ(ej, q), and ∆(ej , q) to ej ∈ ξi and q ∈ N1,N2, . . . ,N|Sξi
| such that Sξi ∈ ξi.

To further explain our decomposition algorithm, we present an example model dependency

graph and its decomposition in Figure 5.9. We assume that the event represented by the

vertex e2 is a rare event in the model. Applying algorithm 1, we begin with a set P = e2,

remove those edges labeled ∆ that involve e2, and clear P . We note that the state variable

represented by s2 remains constant in the absence of e2’s ∆ edge, and replace it with a

constant vertex c2 with a value equal to its initial conditions. We then find that events

e3 and e4 have dependencies that are marked by Φ labeled as arcs, indicating an external

dependency. Assume that the enabling conditions of e3 are not met by the constant value

of c2, but the enabling conditions of e4 are met. We add e3 to the now-empty P and iterate

again, this time removing e3. We do not remove s3, despite the ∆-dependency, as s3 has

an additional ∆-dependency on e4. At this point, P is empty, and we exit the algorithm,

yielding G′
M = G′

0 ∪G
′
1.
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5.8.1 Mitigation, Recovery, and Propagation Events

In Section 5.7.2 we mentioned that by using methods discussed in this section, we would

be able to find mitigation, recovery and fault propagation events. Through execution of

Algorithm 1 onM , with state variables set to represent an initially fault-free model, removing

state variables and events in the manner described by Algorithm 1, it is guaranteed that

recovery, mitigation and propagation events will be removed. This is due to the fact that

the fault associated with those actions have yet to occur. Since recovery, mitigation and

propagation actions have a direct correspondence with faults in the system (giving them

their rare enabling conditions), in the absence of a fault, their enabling conditions cannot

be met by the constant placeholders we use to represent the effects of a fault event’s firing.

Thus those events will be removed during our decomposition step.

When Algorithm 1 is used, the set of all events added to P is the set of fault events in ER

plus any events that depend on ER; that represent recovery, mitigation, or fault propagation;

and that are added to ER when our model is being decomposed and solved during simulation.

An example of this procedure is illustrated in Appendix A.

5.8.2 Analyzing Reward Variable Dependencies

It is important to note that reward variable dependencies were preserved in G′
M . These

dependencies prevent decomposition of otherwise independent sub-graphs by maintaining

connectivity based on reward dependence and help us choose solution methods for submodels

in Ξ. Given some reward variable θi, during a given period of solution, the reward variable

may be evaluated for the solution period using only information on the state variables and

events contained in the submodel it belongs to in a decomposition of G′
M .

Proposition 2. In the absence of the firing of a rare event, the reward variable θi is inde-

pendent from a submodel ξj if no direct dependence exists in G′
M from θi to a vertex in g′j.

Proof. If a direct dependence existed between a reward variable θi and a state or event in

ξj then G
′
M would have an edge connecting θi to a vertex in g′j, and a path would exist. If
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there were an indirect dependency between θi and a vertex in g′j, then a path would exist

between a vertex vk that has a direct dependency with θi and a vertex in g′j . Then vk would

be a vertex in g′j, and θi would have an edge connecting directly to a vertex in g′j .

Given G′
M , we divide all submodels in Ξ defined by the independent sub-graphs of G′′

M

into two sets: those upon which reward variables do and do not depend in the absence of

rare events. These sets of submodels are called ΞR and Ξ!R, respectively.

5.9 Solving the Decomposed Model

A variety of solution techniques can be used to solve a decomposable storage system model

once the dependencies have been identified and relevant decomposition events, both failures

and repair events, have been found. We present in this section an algorithm for hybrid

simulation of decomposed models, and a discussion of complementary solution methods

from the literature. Our hybrid simulation algorithm was designed to help us study the

dependability characteristics of deduplicated data storage systems. In Chapter 6, we will

use these methods to solve a real system and will present the results of our solution.

5.9.1 Hybrid Simulation of Rare-Event Decomposed Systems

Our study of rare-event-based decomposition methods was motivated by a desire to study

the dependability characteristics of storage systems that utilize data deduplication, in a fault

environment characterized by rare events. In order to estimate the value of reward variables

defined for models of these systems, we have employed our decomposition methods and a

hybrid simulation algorithm.

When solving our model, we view trajectories of model execution as a time series τ0 −→

τ1 −→ τ2 −→ τ3 −→ . . . where τ0 represents our start time, and each subsequent τi represents

the firing of a rare event. The set ΞSim has all submodels that contain either a rare event or a

reward dependency. The set ΞNum has all submodels that have neither rare events nor reward

dependencies. From Proposition 2, reward variable solution does not depend on ΞNum. Thus

we need only solve the state occupancy probability for all submodels in ΞNum at the time
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Algorithm 2 Hybrid Simulation of M

Given M,ΘM , GM and initial values for all state variables.
while ΘM not converged do

Generate G′
M and Ξ from GM .

Derive ΞSim and ΞNum.
Simulate ΞSim until the next event is in the set ER.
Generate π∗

ξi
for each submodel ΞNum.

Generate a random state for ξi ∈ ΞNum treating π∗
ξi

as the pmf of the random variable.
Recompose M . Simulate the next rare event in M .
Use current state of M as the next initial state.

end while

of the next rare event firing. We do so by making the assumption that the submodels enter

steady state between firings of rare events. This assumption seems appropriate for two

reasons. The first is the high probability of a long inter-event time between rare events. The

second relates to the fact that for the storage systems in which we are interested, systems

tend to enter into steady state instantly in the absence of rare events. The scrub process,

for example, is always in steady state; the same holds true for many recovery, propagation,

or mitigation submodels. Simulation of the model M is performed using Algorithm 2.

The general improvement offered by this algorithm comes from the reduction of events

that must be simulated in order to estimate the effect of rare events in the system. Bucklew

and Radeke [70] give a general rule of thumb that in order to estimate the impact of an

event with probability ρ, we must process approximately 100/ρ simulations. Our method

seeks to reduce the number of events that must processed for each computed trajectory by

eliminating those events that cannot impact ΘM without the firing of a rare event.

The performance improvement offered by this algorithm varies with the model and with

the degree of dependence of the state variables and events in the model. For models whose

resulting Ξ do not have the proper structure, our proposed hybrid simulator may provide

no improvement. Between firings of a rare event, our method will produce a speed-up

proportional to the rate at which we remove events from explicit simulation. Thus given

E ′ as the set of all events ei ∈ ΞNum ∪ ej ∈ M such that ej /∈ Ξ, our improvement is

proportional to
∑

ei∈E′ λ(ei,ψi)
∑

ei∈E λ(ei,ψi)
, ∀ψi ∈ Ψ. This improvement is due to the removal of events

that, while enabled, cannot change the state of our model in a way that influences our reward
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variables. For instance, a write process may still be enabled, but in the absence of a UDE

the write process cannot result in the propagation of a UDE to parity. Likewise while it is

important to represent the position of the scrub process, it cannot result in mitigation of a

fault until a fault is present to mitigate. By removing those events from our simulator, we

improve the efficiency of our solution.

5.9.2 Required Assumptions

A key assumption of our solution method is that the storage sub-models reach steady state

between rare events. For the storage systems of interest, the initial transient period is

not part of the system lifetime during production. We consider the initial state of any

storage system to be fault-free and with uniform distribution of files across the storage

system itself. The steady state of such a system can be considered this fault-free condition,

with the placement of files described by the observed empirical distribution used to model

deduplication.

Other sub-models that are likely to be considered independent, such as the model of the

scrub process, are characterized by periodic processes that are either unperturbed by rare

events in the system, or dormant in the absence of faults. Thus, any system that is not

currently composed with another system that contains a failure can be said to be in steady

state.

5.9.3 Correctness of Reward Variables

In this section, we show the three types of reward variables defined in Section 5.4. We redefine

these reward variables for use with our decomposition algorithm and hybrid solution method,

described previously. We demonstrate that the resulting reward variables are equivalent to

those defined in Section 5.4.

When solving for instant-of-time variables, we use the same equation given in Section 5.4:
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Figure 5.10: Comparison of instant-of-time reward variable solutions.

θt =
∑

ν∈P(S,N)

R(ν) · Iνt +
∑

e∈A

I(e) · Iet (5.9)

We evaluate this variable in the same fashion for the submodel that contains the necessary

state variables to establish each ν ∈ P(S,N) and each e ∈ A.

Proposition 3. For a given model M , a decomposed MDG G′
M , and an instant-of-time

reward variable θt, solving for θt using Equation 5.9, and the appropriate submodel decom-

position proposed by G′
M yields the same result as the original model M .

Proof. From Proposition 2 we know that the reward variable θt is independent from a sub-

model ξj at time t if no direct dependence exists in G′
M from θt to a vertex in g′j. Thus

the solution at time t for θt for our decomposed submodels is the same as the solution for

M .
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Because of our method of forming an MDG, reward dependencies will exist between a

variable and all state variables and events, ensuring that the submodel is decomposed in

such a way that the resulting submodel contains everything necessary to evaluate θt, as

illustrated in Figure 5.10. As shown, at the time we evaluate our reward variable, t, all

state variables and rewards on which our reward variable depends at time t are in the same

submodel as the reward variable.

To solve for interval-of-time variables using our hybrid solution method, we must provide

a new method of computation. Recall from Section 5.4 that an interval-of-time variable

θ[t,t+l] is defined as follows:

θ[t,t+l] =
∑

ν∈P(S,N)

R(ν) · Jν[t,t+l] +
∑

e∈A

I(e) ·N e
[t,t+l] (5.10)

We modify the computation of interval-of-time variables to accommodate our solution

technique by using multiple random variables for Jν[t,t+l] and N
e
[t,t+l] based on the decompo-

sition and re-composition of the underlying model, as dictated by our solution techniques.

As shown in Figure 5.11 we have a set of n model decompositions that form intervals

defined by the times d0, d1, . . . , dn−1 during the period [t, t+ l]. For these intervals, we create

n+ 1 random variables to replace Jν[t,t+l] and N
e
[t,t+l]:

Jν[t,d0], J
ν
[d0,d1]

, . . . , Jν[dn−1,t+l]

N e
[t,d0]

, N e
[d0,d1]

, . . . , N e
[dn−1,t+l]

Each of these random variables is equivalent to those from the previous definition, but over

a different interval of time.

The variables are distinguished by n + 1 separate intervals in the set

D = {[t, d0], [d0, d1], . . . , [dn−1, t+ l]}

Based on those identities, we redefine the method for calculating an interval-of-time variable
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for our solution method as follows:

Y[t,t+l] =
∑

ν∈P(S,N)

∑

d∈D

R(ν) · Jνd +
∑

e∈A

∑

d∈D

I(e) ·N e
d (5.11)

The differences between that calculation and the one shown in Section 5.4 are illustrated

in Figure 5.11. In the original model, we use a single random variable for each rate and

impulse reward. Using our methods, however, we need one for each separate interval in D.

The two methods are actually equivalent, however, as the sum of the new indicator variables

yields the old indicator variables. The reason is that the decomposition algorithm we have

presented preserves reward dependencies.

Proposition 4. For a given model M , a set of decomposed MDGs Ĝ′
M over the interval

[t, t + l], and an interval-of-time reward variable Y[t,t+l], solving for Y[t,t+l] using Equation

5.11 and the appropriate submodel decompositions for each interval in D yields the same

result as the original model M .
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Proof. Starting from the definition from Equation 5.11, we prove the equivalence of Y[t,t+l]

and θ[t,t+l] by construction.

Y[t,t+l] =
∑

ν∈P(S,N)

∑

d∈D

R(ν) · Jνd +
∑

e∈A

∑

d∈D

I(e) ·N e
d (5.12)

=
∑

ν∈P(S,N)

R(ν)
∑

d∈D

Jνd +
∑

e∈A

I(e)
∑

d∈D

N e
d (5.13)

Given Proposition 2, which states that all state variables and events required for calcu-

lating a reward variable are contained within the submodel containing the reward variable

itself, we have that:

Jν[t,t+l] =
∑

d∈D

Jνd (5.14)

N e
[t,t+l] =

∑

d∈D

N e
d (5.15)

The sums of our new indicator variables are the original indicator variables from Section

5.4. Thus,

Y[t,t+l] =
∑

ν∈P(S,N)

R(ν)Jν[t,t+l] +
∑

e∈A

I(e)N e
[t,t+l] (5.16)

= θ[t,t+l]. (5.17)

Interval-of-time reward variables calculated with our method are equivalent to those cal-

culated with typical discrete event simulators.

For time-averaged interval-of-time variables, we redefine the variable as
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W[t,t+l] =
Y[t,t+l]
l

. (5.18)

The above calculation is similar to one given in Section 5.4, but uses the method for

calculating interval-of-time variables that takes into account the subdivisions of the interval

[t, t+ l] given by D.

Proposition 5. For a given model M , a set of decomposed MDGs Ĝ′
M over the interval

[t, t+ l], and a time-averaged interval-of-time reward variable θ′[t,t+l], solving for W[t,t+l] using

Equation 5.18 and the appropriate submodel decompositions for each interval in D yields the

same result as the original model M .

Proof. Given equation 5.17, 5.18 is equivalent to the definition presented in Section 5.4. From

Equation 5.17, we know that Y[t,t+l] = θ[t,t+l]. Substituting θ[t,t+l] for Y[t,t+l] in Equation 5.18

yields Equation 5.5.

In this section we have detailed a method to identify all dependence relationships in a

model, M , using an MDG, GM . We then detailed how to identify rare faults in the model.

Using the set of identified faults, ER, and the MDG, we showed how to enlarge the set ER

to include mitigation, repair, and propagation actions. We then showed how to use ER with

GM to form a set of decomposed submodels, Ξ, which we then solved using Algorithm 2. In

the next chapter, we will use these methods to calculate reliability metrics for a real system

and draw conclusions about the impact of deduplication on the reliability of data.
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CHAPTER 6

ANALYZING THE RELIABILITY OF A

DEDUPLICATED STORAGE SYSTEM

6.1 Introduction

In Chapters 2, 3, 4, and 5 we have shown how to build models of complex systems using

a component-based methodology, provided detailed models of faults which impact modern

storage systems, and discussed methods for efficient solution of models based in these meth-

ods. In this chapter we apply the material of the previous chapters to a real deduplicated

file system in order to understand the impact of deduplication on the reliability of storage

systems.

6.2 Motivation

Data deduplication is increasingly being adopted to reduce the data footprint of backup

and archival storage, and more recently has become available for near-line primary storage

controllers. Scale-out file systems, highly scalable grid-based network-attached storage sys-

tems, are increasingly diminishing the silos between primary and archival storage by apply-

ing deduplication to unified petabyte-scale data repositories spanning heterogeneous storage

hardware. Cloud providers are also actively evaluating deduplication for their heterogeneous

commodity storage infrastructures and ever-changing customer workloads.

While the cost of data deduplication in terms of time spent on deduplicating and recon-

structing data is reasonably well understood [14, 15], its impact on data reliability is not,

especially in large-scale storage systems with heterogeneous hardware. Since traditional

deduplication keeps only a single instance of redundant data, it magnifies the negative im-

pact of data loss. Chunk-based deduplication [16, 5] divides a file into multiple chunks,
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meaning the loss of one chunk will create many lost chunks in the storage system. Delta

encoding [17, 19, 20, 21] deduplicates at the file level, storing the differences among files,

and creating the potential for losing multiple files when ever a file is lost.

Administrators and system architects have found that understanding the data reliability of

their system under deduplication to be important but extremely difficult [22]. Deduplication

itself poses two potential reliability problems. If any one of the devices upon which it

depends fails, the file itself is lost. This additional dependence may be counter-balanced,

however, depending on the degree of additional storage efficiency. By decreasing the number

of disks in the system with deduplication, we decrease the number of expected disk faults

as well. Understanding these complex relationships requires understanding the nature of

deduplication itself, as well as the complex interactions created by the underlying storage

system.

The existing literature relies on heuristics to address the issue of reliability in deduplication

systems; the key recommendation is to keep multiple copies of a data chunk instead of storing

only a single instance. The creators of Deep Store [5] proposed to determine the level of

redundancy for a chunk based on a user-assigned value of importance. It has been suggested

by D. Bhagwat et al. [16] that the number of replicas for a chunk should be proportional

to its reference count, i.e., the number of files sharing the chunk. A gap exists in the

current literature on the topic of quantifying the data reliability of a deduplication system

or providing a means to estimate whether a set of reliability requirements can be met in a

deduplication system.

A quantitative modeling of reliability in a deduplication system is nontrivial, even without

taking into account the petabyte scale of storage systems. First, there are different types of

faults in a storage system, including whole disk failures [41], latent sector errors (LSEs) [9,

10], and undetected disk errors [47, 40, 55]. To consider all these faults together, it is

necessary to have an understanding of how these faults manifest, and have a representative

model that takes into account dependencies and correlations with other, similar, faults as

well as the interactions of independent faults in the hardware environment. Second, these

faults can propagate due to the sharing of data chunks or chaining of files in a deduplication

system. In order to correctly understand the impacts of these faults and their consequences
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on the reliability of our storage system, we need to accurately model both the storage system

faults and faults due to data deduplication. We call storage system faults and faults due

to deduplication primary and secondary faults respectively, and discuss them in more detail

in Section 6.5. Third, it is important to note that many of the faults we wish to consider

are rare compared to other events in the system, such as disk scrubbing, disk rebuilds, and

I/O. Calculating the impact from rare events in a system can be computationally expensive,

motivating us to find efficient ways of measuring their effect on the reliability metrics of

interest.

The complexity of this problem arises from two different causes. The first is the state-

space explosion problem which can make numerical solution difficult. As our model grows

increasingly complex the state space grows rapidly. The simplified deduplication system

studied in [71] quickly grows to unmanageable size, having 1023 states with only 10 storage

subsystems, and 10222 states with 100 storage subsystems, exceeding the capabilities of

numerical solvers. A second issue comes from the stiffness that results from rare events. For

numerical solutions stiffness introduces numerical instability, making solution impractical.

When simulating stiffness increases the number of events we must process, causing a resulting

increase in simulation complexity. These factors, and a desire to precisely understand the

complex relationships present a need to use more sophisticated methods of analysis to fully

understand the implications of deduplication.

6.2.1 Our Contributions

In this chapter, we utilize the hybrid simulation approach detailed in Chapter 5 to quanti-

tatively analyze the reliability of a modeled deduplication system with heterogeneous data

on heterogeneous storage hardware, in the presence of primary faults and their secondary

effects due to deduplication. The analysis is based on three key dimensions that our model

takes into account:

• The fault tolerance characteristics of the underlying storage hardware.

• The statistical deduplication characteristics (e.g., reference count distribution) of a set
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of deduplicated data.

• The number of replicas of a given data chunk that are stored.

To validate our modeling approach, we studied data from an enterprise backup storage

system containing 7 terabytes of deduplicated data comprising over 2.7 million unique file

names and over 193 million references to 2.87 million unique deduplicated data chunks. We

analyzed the statistical properties of the real data, including the deduplication relationship

implied by references from each file to deduplicated chunks. To a user, different data sets

usually have different levels of importance and different reliability constraints. Treating all

files the same way is not the right strategy. Therefore, we break our analysis out into twelve

separate categories that are based on the file types and applications, characterizing each

category separately.

We derived a model of the data that has the same statistical characteristics as the original

data set, and evaluated the reliability impact of data deduplication on a variety of differ-

ent storage hardware with different reliability characteristics, different data categories with

different deduplication characteristics, and different numbers of replicas for deduplicated

chunks.

The primary goal of this chapter is to improve our understanding of deduplicated storage

systems. In doing so we also detail a modeling framework to evaluate the reliability of other

deduplication systems with varying hardware reliability characteristics, varying deduplica-

tion characteristics, and a varying number of copies of data chunks. We built our models

based on a given enterprise system using fault models described in the literature, but our

methods can be applied to other systems. In the remaining sections of this chapter, we will

not only show the results for this system we studied but detail the methods we used to model

this system given appropriate data, so that the same methods can easily be applied to other

systems.

We also provide a method for analyzing the effect of multi-copy deduplication on the

reliability of our studied storage system. We use our methods to determine the number of

copies of various data chunks or files needed to meet a specific reliability requirement while

minimizing storage utilization. For our system, we utilized category information along with

94



reference counts to determine the importance of a deduplicated chunk. We believe that this

is preferable to methods based only on the reference count of the deduplicated chunk, as in

[5, 16].

In this chapter, we model offline storage-side deduplication implemented through variable

chunk hashing. Our models can easily be extended to support other deduplication algo-

rithms, including fixed-size chunk hashing, whole file hashing, and delta encoding. Other

deduplication architectures can also be easily modeled, such as online storage-side and on-

line client-side architectures. Those extensions would involve computation of new empirical

distributions for the underlying deduplication system.

6.2.2 Related Work

While other studies have approached the question of reliability in data deduplication, they

tend to assess impact through an assumption that the number of files referencing a dedupli-

cated chunk is directly proportional to the importance of a chunk [5, 16]. While this may be

an appropriate assumption when studying data whose types are largely homogeneous [5, 16],

we believe this provides a limited picture of how deduplication affects fault tolerance on real

systems storing a large amount of heterogeneous data. Moreover, these studies [5, 16] do

not provide a way to quantify the data reliability of a deduplication system.

Our study differs in that it quantitatively analyzes the reliability of a deduplication system

with heterogeneous data and heterogeneous storage hardware. We use our methodology to

provide insight to help meet design goals for reliability while maintaining an improved storage

efficiency over a non-deduplicated system. Our quantitative analysis is performed utilizing

discrete event simulation and by exploiting identified near-independent relationships in the

underlying model to more efficiently solve a complex model in the presence of rare events as

described in [71].
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6.3 Overview of Our Reliability Analysis Methodology

The modeling methodology is composed of two main components: a deduplicated file system

model and a hardware system reliability model. These models are solved using a the methods

discussed in Chapter 5. Given the data to be stored in a deduplicated storage system

and the deduplication algorithm used on the system, including parameters such as chunk

size and similarity measures, we built a model of deduplication in our storage system that

represents the resulting deduplication process. Data in our system are categorized into

different classes based on either known application file extensions or user-specified criteria.

Our deduplication model summarizes the relationships implied by deduplication for each of

these classes. Section 6.4 describes the process by which we characterize data, along with

its application on a real data set.

The reliability model of our hardware makes use of system level configuration information

to build an on-line mathematical representation of our hardware environment. Specifically,

parameters that have more impact on reliability are considered, such as the type of disks

used in our system (nearline or enterprise), RAID type (1, 5, and 6) or erasure codes, the size

of a stripe on our arrays of disks, and the number and configuration of disks in a reliability

group. We model three types of storage-level faults explicitly, including whole disk failure,

latent sector errors, and undetected disk errors. Secondary faults due to deduplication are

deduced via our model of the deduplicated file system. An in-depth discussion of these topics

is provided in Section 6.5.

Given the model of deduplication, the hardware reliability model, and the parameters

of the target system (such as the replication factor and data distribution), our discrete

event simulator provides per-category estimates of expected reliability for our hardware,

deduplicated file system, and parameter sets. Section 6.6 summarizes the results of one such

estimation on several hardware systems using a real-world data set and various deduplication

parameters.
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Figure 6.1: Summary of categories that contain files that share deduplicated chunks with
other categories.

6.4 Deduplicated File System Description and Model

In order to evaluate the effects of data deduplication on fault tolerance in a real system, we

examined the deduplicated data stored in an enterprise backup/archive storage system that

utilizes variable-chunk hashing [72, 73]. Our example is a client/server system that provides

backup and archive solutions for a multi-vendor computer environment that can consist of

file servers, workstations, application servers, and other similar systems. Server-side data

deduplication is used for space management in this system.

We present a general model of the relationships implied by data deduplication, and their

consequences for fault tolerance, based on our analysis of the real system. We also present

refinements to the model necessary to model variable-chunk hashing, as used by the system

represented in our data. In order to demonstrate the flexibility of our model of deduplication,

we will also show how to adapt it for delta encoding.

6.4.1 Data Analysis

The data stored in the system consist of backups from about 150 workstations (the most

common operating system family for workstations in the backup group was Windows, though

MacOS and Linux were also represented), as well as backups of several IBM DB2, Oracle, and

Microsoft SQL database servers and several mail servers, including IBM Lotus Domino and

Microsoft Exchange. The data-set has approximately 7TB of deduplicated data. Without

deduplication, the system would require over 16TB to store all the data. The deduplicated

data have a total of 193,205,876 separate references to 2,870,681 unique data chunks.
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In order to better understand the deduplication relationships implied by our data, we

placed all files on the system into eleven categories based on their file extensions. A total of

2,735,894 unique file names were processed, featuring 55,688 unique file extensions. Of these

file extensions, only 14,910 appeared more than once, and only 1,520 appeared five times or

more. We identified four major categories and eleven subcategories based on file extensions.

• Databases : We specified four categories for files associated with database applications

db2, Oracle, SQL and DBGeneric. We use DBGeneric for those files we know to

be used by a database, but for which the specific database is unknown.

• Mail : We identified two categories of files associated with mail applications: Lotus

Domino and Exchange.

• User Data: We specified four categories for user data files: Archives, Documents,

Media and Code.

• VM : We grouped all virtual machine application data into a single category, VM.

We call our twelfth category Unclassified and use it to hold system files we assume to be

re-creatable from installation media or other sources that make recovery of the data possible,

files whose extensions do not match expected for our previous eleven categories, and those

files with no file extensions.

We do not suggest that these categories are the best or only ways to partition a dedu-

plicated file system. In fact, we assert that the proper way to partition a file system into

categories is context-sensitive and user-specific, based on legal and contractual obligations

as well as administrator goals. Categories should reflect groups of important files or ap-

plications. To understand the relationships that these categories of files shared through

deduplication, we constructed a graph with a set of nodes NI with an element for every

deduplicated chunk in our deduplicated system, and a second set NC with a node for each

category of file defined. When we encountered a reference in the data from a category to

some deduplicated chunk, we added the edge connecting the nodes, allowing duplicate edges.

The weight of an edge is equal to the number of duplicate edges and defines the number of

references to a given deduplicated chunk.
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References per Chunk
Unique Chunks 90th Quantile Maximum

Archive 50,240 24 174,720
Code 895,615 2 105,404
Document 574,222 2 16,128
Exchange 9,288 4 42,442
Lotus 9,790 14 60,216
Media 148,887 4 3,384
MSSQL 16,089 32 280,044
Oracle 30,460 4 21,476
db2 30,810 6 5,194
DBGeneric 20,456 6 77,120
VM 9,328 2 308,934
Unclassified 1,075,851 8 251,542

Table 6.1: Summary of the data obtained from analysis of deduplicated chunks.

Using this graph, we identified 351 chunks with references from exactly two categories,

and two with references from exactly three categories. The remaining 2,870,328 chunks had

references from only one category. Figure 6.1 shows the paths between nodes in NC that

pass through exactly one node in NI and no nodes in NC . It seems likely that the frequent

connections between the unclassified node and other nodes in NC , represented in Figure 6.1,

are indicative of a failure to properly classify files by their extensions, or files with misleading

extensions. In such cases, it seems safest to treat unclassified files that reference chunks that

share an edge with another category Ck as if they are from category Ck. For those nodes

shared between two categories Ci and Cj , where neither is the unclassified category, we

consider the node a legitimate cross category deduplication. For our analysis we treat a

deduplicated chunk as categorized with the highest level of importance of any referring file

or category.

The distribution of references to chunks varied based on which categories were connected

in our graph. Table 6.1 summarizes some of this information by showing the total number

of unique deduplicated chunks with at least one reference to each of the categories, the 90th

quantile for references per chunk for those chunks with at least one reference to a given

category, and the maximum number of references per chunk for those chunks with at least

one reference to a given category.
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6.4.2 Using Category Information to Define Importance

Determining the importance of a file on a deduplicated storage system is a difficult proposi-

tion, and is likely to be dependent on the needs and legal requirements of the organization

operating the storage system. While one could take the approach of keeping additional

copies of all files that have a certain reference count, we suggest that this is a poor measure

of importance, for two primary reasons. First, it assumes that chunks with few references

are less important. While it is true that the loss of a chunk with fewer references will cause

fewer secondary failures due to deduplication, deduplicated chunks fail at the same rate re-

gardless of their reference count, and those chunks with fewer references may be referenced

by critical data whose reliability is just as important as that of files that share a chunk with

many other files. Second, using reference count as a measure of importance can result in a

loss of storage efficiency to increase the reliability of files that are either easily re-creatable

system files, or files unimportant to the organization.

6.4.3 Model of a Deduplicated File System

In order to construct a model of our deduplicated file system for use with our methods from

Chapter 5, we must first develop an empirical understanding of deduplication in a real file

system. We view deduplication on this file system as a dependence relationship and construct

a graph, whose nodes represent files and deduplicated chunks in our file system, to model this

dependence relationship. Each deduplicated chunk in our file system is represented by a node

ni ∈ NI . Files themselves are represented by the set NF = {NF,C1
, NF,C2

, NF,C3
, . . . , NF,C12

},

where each subset NF,Ck
contains a node nj,Ck

for each file fj that is a member of category

Ck. Deduplication relationships are again represented by the set of edges E such that if a

chunk ni is referenced by a file fj in category Ck, an edge nj,Ck
ni ∈ E.

We suggest using the data summarized in Table 6.1 as an empirical estimate of the prob-

ability density function (pdf) for a random variable representing the number of references

for a chunk in the given category c. Using this pdf, fc(x), we define an inverse distribution

function (idf) F ∗
c : (0, 1)→ X , defined for all u ∈ (0, 1) as follows:
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Fc(x) = Pr(X ≤ x) =
∑

t≤x

fc(t) (6.1)

F ∗
c (u) = min

x
{x : u < Fc(x)} (6.2)

Using F ∗
c (u) and a uniform random variate U , we can generate realizations of the random

variable described by fc(x), allowing us to use our observations summarized in Table 6.1

to synthetically create a deduplication system with the same statistical properties as our

example system. The number of edges connecting to any node ni ∈ NI is defined by first

determining the primary category of files that refer to the chunk, and by using Equation 6.2

to generate a realization of the random variable described by fCk
(x).

While our study concerns only data deduplication that uses variable-chunk hashing, it is

a simple matter to adapt this model for delta encoding or whole file hashing. In those cases,

we simply remove the set NI and define edges between elements of NF directly. Then the

edges in the E must be represented as directed edges of the form
→

nfanfb , indicating that

the file nfa depends on nfb. Directed edges are not required for our variable-chunk hashing

representation, as it is implied that the relationship is a dependence of nodes in NF on nodes

in NI .

6.5 Hardware Reliability Models

When modeling hardware, we utilize models of traditional disk failures, LSEs and UDEs.

Traditional disk failures are assumed to be non-transient and unrepairable without drive

replacement. LSEs can be either transient or permanent [9]. It is important to note that

even in the case of a transient LSE, previous study of LSEs has indicated that data stored

in the sector are irrevocably lost, even when the sector can later be read or written to

properly [9]. In our system model, we consider LSEs to be correctable either when the disk

is subsequently rebuilt due to a traditional disk failure, or upon performance of a scrub of the

appropriate disk. UDEs represent silent data corruption on the disk, which is undetectable

by normal means [13, 47, 40]. UWEs are persistent errors that are only detectable during
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a read operation subsequent to the faulty write. We consider UDEs to be correctable when

the disk is rebuilt because of a traditional disk failure, upon performance of a scrub of the

appropriate disk, or when the error is overwritten before being read, although this type of

mitigation produces parity pollution [40].

6.5.1 Disk Model

In order to understand the effect of faults in an example system, we utilize a formal model

of disks in our underlying storage system. Each disk in our system is modeled as a set

of blocks. The state of a block is modeled using the variable block state. This variable

indicates whether the block is in a non-faulty state, or is faulty due to an LSE, UDE, or

total disk failure; those possibilities are represented as 0, 1, 2, or 3, respectively. Each block

model contains events which represent faults, fault propagation, fault mitigation, and repair.

A full representation for a given block is shown in Figure 6.2. The events and state variables

in the model are described in detail in Appendix A. A disk is the collection of all block

models on a disk that share a single disk failure event.

6.5.2 Fault Interactions and Data Loss

It is important to note that the occurrence of a fault within our system does not guarantee

that data loss has occurred. In many cases, the underlying storage system will utilize some

form of fault tolerance, such as RAID. For that reason it is important to separate the

modeling of faults and errors in our model. For the purposes of our model we consider faults

to include traditional disk failure, LSEs and UDEs, and errors to include data loss which

cannot be recovered, and serving corrupted data silently to the user. In general, for a fault

to manifest as a data loss error, we must experience a series of faults within a single RAID

unit. How these faults manifest as errors depends on the ordering of faults and repair actions

in a time line of system events, as shown in Figure 6.3. In the case of RAID 5, a single failure

can usually be tolerated before a data loss event occurs. For RAID 6, two failures can be

tolerated before data loss. UDEs cause a different kind of error, which is largely orthogonal
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Figure 6.2: Block model diagram
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(a) In the case when subsequent fault events arrive to the
system after a mitigation event for all previous faults has been
processed, there is no potential interaction.
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(b) Subsequent faults that arrive to the system before
mitigation events for previous faults have the potential to result
in data loss.

Figure 6.3: Example fault interactions.

to RAID, by silently corrupting data which can then be served to the user.

In order to determine if a combination of primary faults has led to data loss and potentially

a number of secondary faults, we examine the timing of events in a manner similar to the

window of vulnerability method described by [74]. Given a storage system that can tolerate

n faults before data loss occurs, we will see faults manifest as data loss only when the joint

effect of n faults occurs on overlapping portions of disks in the same reliability group before

mitigation. To evaluate that, we utilize the representations of the faults on the disk as

defined in Section 6.5.1.

Faults in the form of traditional disk failures can result in data loss if their arrival times

tf1, tf2 are such that for the time at which the initial fault is mitigated (mf1 > tf2)∧ (mf2 >

tf2). In such a case, the entire drive is lost to the failure.

Traditional disk failures can also result in data loss when combined with a subsequent LSE

on a read operation. Again, given arrival times of the failure events tf1, tf2 and a mitigation

time for the first fault mf1 (mf1 > tf2) ∧ (mf2 > tf2), an LSE on another disk in the RAID

group that corrupts data on the disk before mitigation will result in the rebuilding of an

unrecoverable sector on the disk.

UDEs form a special case of fault. While they can be detected by a scrub operation, repair
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Figure 6.4: DFA representing the combination of faults which lead to data loss on a stripe
from UDEs, LSEs, and traditional failures under RAID1, or RAID5.

is not possible. Scrubbing a disk tells us that an error is present in the stripe, but not where

the error is. An error in the parity or on any of the data drives creates an identical situation

for the scrub.

In order to characterize the interactions of faults in our model, we maintain a state-based

model of portions of the physical disk, as detailed by Section 6.5.1. Given a set of disks that

are grouped into an interdependent array (such as the set of disks in a RAID5 configuration,

or a pair of disks that are mirrored), each stripe in the array maintains its state using a state

machine appropriate to the number of tolerated faults the configuration can sustain without

data loss, such as shown in the example in Figure 6.4.

Each stripe is represented by a tuple (Q,Σ, δ, q0, F ). The set of states Q can be partitioned

into three different subsets; Qgood = {q0}, the fault-free non-degraded state and start state;

Qdegraded = {q1, q2, q3, q4}, states in which the stripe has suffered a fault but no data loss;

and Qfail = F = {q5, q6}, which represent the states that indicate that data have been

lost. When the simulator processes an event for a given stripe, it forwards information on

the processed event to the state machine in the form of the DFAs input alphabet, Σ =
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Figure 6.5: Stripe model diagram

{TF, LSE, UDE,Write, Read, Scrub, Repair}. Each of those symbols represents a fault, a

mitigation, or an action that causes a UDE to serve corrupt data undetectably. The DFA

transitions on these symbols based on the transition relation defined by δ : Q× Σ→ Q.

A DFA of that form is stored for every stripe in a disk group. The state of the DFA

is stored in a state variable called Stripe DFA (as shown in Figure 6.5), which takes on

values {0, 1, 2, 3, 4, 5, 6} to represent the states in Q for our DFA. Each of the symbols in

Σ are events in this stripe model whose enabling conditions are the presence of these faults

in a block in the given stripe on the system. Another state variable, Failure, is set to

1 when Stripe DFA has a value in {5, 6}. The DFAs maintained by stripes within our

modeled system are generated automatically using knowledge of potential fault interactions

and parameters that define the size of the disk array sarray and the number of disk faults

ntolerated faults that the array can tolerate without data loss, as defined by the array’s RAID

level [12].

106



Φ Φ

Failureblock_state

block_state block_state block_state

∆
∆ ∆

dedup_fail

Figure 6.6: Example MDG representing deduplication relationships.

6.5.3 Deduplication Model

When modeling the impact of errors in our system, we utilize a model of deduplication

based on the empirical data and analysis from Section 6.4. If a failure of a stripe causes a

deduplicated block to be lost, additional blocks will also be lost if the lost block represented

a stored deduplicated instance. These secondary faults would not have occurred, were it not

for the deduplication strategy used by the storage system. In the case of whole file hashing,

delta encoding, or other deduplication methods that allow for a chain of references, the loss

of a block implies not only the loss of all blocks that reference the data, but also, recursively,

the loss of all blocks associated with files dependent on the reference itself.

We encode those relationships in the model when it is generated as dependence relation-

ships and correlated failures that occur when an underlying block has failed, as shown in

the example in Figure 6.6. In the figure, when the block state state variable shown at the

bottom of the diagram has failed, and the Failure state variable indicates the failure of the

stripe an additional failure of deduplicated references occurs because of the loss of a required

instance. Multi-copy deduplication modifies the underlying model as shown in Figure 6.7.

In that scenario, each deduplicated instance is stored in two blocks, so the failure of both

the two blocks and their associated stripes must occur before the enabling conditions of the

deduplicated failure are met.
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Figure 6.7: Example MDG representing deduplication relationships with 2-copy
deduplication.

These relationships are encoded in the model of a storage system by randomly assigning

each block a category, then based on the category a status as either undeduplicated data,

deduplicated instance, or deduplicated reference as appropriate based on the empirical dis-

tributions we calculated from the data. The appropriate events and dependencies are then

encoded in the model.

6.6 Discrete Event Simulation Results

In order the understand the impact of data deduplication on fault tolerance we simulated

systems with data sets of 7TB (based on the system described in Section 6.4) and 1PB before

deduplication. Both systems are assumed to have a deduplication ratio of 0.5. We modeled

the systems with reliability provided by various RAID and erasure codes, including RAID1

(mirroring), RAID5 in 7 + p and 8 + p configurations, RAID6 in an 8 + 2p configuration,

and erasure codes in an 8 + 3p configuration. For each system we calculated two reliability

measures: the rate at which all copies of a deduplicated chunk were lost, and the rate at

which undetected corrupt data was served to applications.

We make the assumption that our modeled system features a workload of 100 io/s for
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7 TB

RAID1 RAID5

1 copy 2 copy 1 copy 2 copy

Archive 1.2e+02 ± 6.2e+01 8.6e-10 ± 2.2e-10 1.7e+03 ± 7.1e+02 1.8e-07 ± 2.9e-0
Code 2.9e+03 ± 6.4e+02 2.8e-08 ± 1.3e-09 6.8e+04 ± 3.0e+04 1.5e-05 ± 2.9e-06
db2 3.3e+03 ± 1.6e+03 5.4e-08 ± 1.3e-08 4.1e+04 ± 2.2e+04 8.6e-06 ± 2.5e-06
DBGeneric 6.5e+01 ± 8.5e+01 1.3e-09 ± 2.3e-09 1.9e+02 ± 1.3e+02 1.2e-08 ± 5.5e-09
Document 6.6e+01 ± 1.1e+02 1.3e-09 ± 3.3e-09 2.2e+02 ± 1.1e+02 1.4e-08 ± 3.5e-09
Exchange 4.0e+02 ± 1.5e+02 3.2e-09 ± 4.1e-10 5.6e+03 ± 1.3e+03 6.1e-07 ± 3.3e-08
Lotus 2.4e+01 ± 2.1e+01 1.1e-10 ± 7.6e-11 4.0e+03 ± 5.2e+03 2.8e-06 ± 5.0e-06
Media 1.3e+03 ± 2.6e+03 1.7e-07 ± 6.4e-07 1.3e+03 ± 8.7e+02 1.7e-07 ± 7.2e-08
Oracle 7.2e+01 ± 4.1e+01 7.4e-10 ± 2.4e-10 4.8e+02 ± 2.8e+02 3.3e-08 ± 1.1e-08
SQL 7.2e+01 ± 4.1e+01 4.9e-10 ± 1.6e-10 1.2e+03 ± 6.8e+02 1.3e-07 ± 4.4e-08
Unclassified 4.9e+03 ± 1.5e+03 6.5e-08 ± 6.3e-09 1.6e+05 ± 1.8e+05 7.0e-05 ± 8.4e-05
VM 2.6e+01 ± 2.7e+01 2.1e-10 ± 2.3e-10 2.7e+02 ± 1.1e+02 2.3e-08 ± 4.0e-09

Table 6.2: Estimated rate of file loss per year, for the 7TB system using RAID1 and
RAID5, and a single copy of each deduplicated chunk.

1 PB

RAID1 RAID5

1 copy 2 copy 1 copy 2 copy

Archive 8.2e+03 ± 4.1e+03 5.7e-08 ± 1.5e-08 1.2e+05 ± 4.7e+04 1.2e-05 ± 1.9e-06
Code 2.0e+05 ± 4.3e+04 1.9e-06 ± 8.8e-08 4.6e+06 ± 2.0e+06 1.0e-03 ± 1.9e-04
db2 2.2e+05 ± 1.1e+05 3.6e-06 ± 8.9e-07 2.8e+06 ± 1.5e+06 5.7e-04 ± 1.7e-04
DBGeneric 4.3e+03 ± 5.7e+03 8.7e-08 ± 1.5e-07 1.3e+04 ± 8.9e+03 7.9e-07 ± 3.7e-07
Document 4.4e+03 ± 7.0e+03 8.5e-08 ± 2.2e-07 1.4e+04 ± 7.3e+03 9.1e-07 ± 2.3e-07
Exchange 2.7e+04 ± 9.7e+03 2.1e-07 ± 2.8e-08 3.7e+05 ± 8.7e+04 4.1e-05 ± 2.2e-06
Lotus 1.6e+03 ± 1.4e+03 7.0e-09 ± 5.1e-09 2.6e+05 ± 3.5e+05 1.9e-04 ± 3.3e-04
Media 8.8e+04 ± 1.7e+05 1.1e-05 ± 4.2e-05 8.9e+04 ± 5.8e+04 1.1e-05 ± 4.8e-06
Oracle 4.8e+03 ± 2.7e+03 4.9e-08 ± 1.6e-08 3.2e+04 ± 1.9e+04 2.2e-06 ± 7.5e-07
SQL 4.8e+03 ± 2.7e+03 3.3e-08 ± 1.1e-08 8.0e+04 ± 4.6e+04 8.9e-06 ± 2.9e-06
Unclassified 3.3e+05 ± 1.0e+05 4.4e-06 ± 4.2e-07 1.1e+07 ± 1.2e+07 4.7e-03 ± 5.6e-03
VM 1.7e+03 ± 1.8e+03 1.4e-08 ± 1.5e-08 1.8e+04 ± 7.6e+03 1.5e-06 ± 2.7e-07

Table 6.3: Estimated rate of file loss per year, for the 1PB system using RAID1 and
RAID5, and a single copy of each deduplicated chunk.
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each data disk in the system with reads making up 95% of the workload. Disks themselves

are assumed to be 750GB with 128k strips, with read and write requests simulated only for

those portions of a disk containing data. We assume data is distributed uniformly across

all disks, and that reads and writes are likewise uniformly distributed. We derive the rate

of traditional disk failures from [41], and latent sector errors from [10] using the parameters

given for system A − 1 in the paper. We derive rates for UWEs are the same as described

in [55] for enterprise drives.

Reliability is effected by deduplication in two ways: the incidence and impact of faults.

We found in our simulations, that the incidence of faults is reduced by a factor equal to

the deduplication ratio, due to the reduction in the number of disks required to store the

same data set. The impact, however, of each fault was increased for all categories of data

by a factor larger than the reduction provided by deduplication, resulting in a net decrease

in fault tolerance for all categories of files. The impact of a fault during simulation was

calculated using empirical cumulative probability distributions calculated from the data set.

First the file or files suffering an error were assigned a category randomly, next based on the

category, we randomly determined whether the segment of the file or files lost contained a

deduplicated chunk based again on empirical distributions from our data. Finally, if the file

lost was a deduplicated chunk we generated a random number of references to the chunk,

and assigned them randomly generated locations in the storage system so that in the case

of errors spanning multiple files, a file and adjacent reference were not double counted when

both were lost to the initial error. An example CDF for the number of references to a

deduplicated for files in the SQL category is shown in Figure 6.8.

The rate of permanent data loss due to unrecoverable faults is shown in Tables 6.2 and 6.3

for RAID1 and RAID5. The rate of loss increases for all categories when only a single instance

is kept per deduplicated chunk. For configurations with higher fault tolerance (RAID6 and

8 + 3p erasure codes), we saw no significant decrease in fault tolerance during the expected

lifespan of a typical storage system. Any increase in the impact of data deduplication on

the unrecoverable loss of system data is masked by the low incidence of unrecoverable data

loss during the expected system lifespan in the systems we studied.

The dramatic improvements witnessed when two copies are kept of each deduplicated
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chunk are to do to the circumstances which must occur in order to permanently lose the

data stored in the chunk. In addition to the requisite correlated faults shown in Figure 6.3,

the same situation must occur on the independent storage unit which holds the other copy

of the instance before the first storage unit is restored. When the correlated faults involve a

LSE, the situation becomes even more unlikely, requiring the other copy of the deduplicated

chunk to not only reside on the same disk as the error, but the same stripe.

For those systems which did suffer unrecoverable data loss, we kept a tally of the error

scenarios leading to unrecoverable loss. All witnessed data loss events involved at least one

disk failure. More than 50% also contained a LSE, while less than 2% contained a UWE. The

high proportion of LSEs contributing to unrecoverable data loss stems from the temporal

locality described by [10]. Unrecoverable data loss usually occurred during a campaign of

LSEs coupled with a drive failure in the effected RAID unit (66.9% of the time), or an failure

of two drives in a RAID unit before a rebuild could be accomplished (31.8% of the time).

The decrease in fault tolerance due to data deduplication is easily offset by maintaining

multiple copies of each deduplicated instance. Keeping as few as one additional copy results

in a system more fault tolerant than the original, while still resulting in a mean increase in

storage efficiency for all categories. It is important, however, to ensure additional copies are

kept on separate RAID units to reduce the chance of correlated losses.

Multi-instance data deduplication maintains more than one copy for a distinct data chunk.

It increases the resiliency of the system by orders of magnitude at the cost of increased

space usage. The performance characteristics of such a system, i.e. write characteristics

(data injection) and read characteristics (data reconstruction) are highly dependent on the

architecture of the system, specifically the architecture of the meta-data manager. Un-

like traditional single instance deduplication systems where hash maps or indices maintain

data-signature to data-location mappings, in multi-instance deduplication systems, these

bookkeeping data structures now have to accommodate more complex mappings. Further,

managing (create/use/delete) these complex mappings adds overhead to both the CPU and

IO.

While UWEs did not significantly contribute to unrecoverable data loss, it is important to

remember that they are fail silent, and largely orthogonal to RAID [40, 55]. When a UWE
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data sets of size 7TB and 1PB.
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occurs on a system, it can cause corrupted data to be silently served when requested, before

a disk scrub corrects the error. Figures 6.9a and 6.9d show the difference in the rate of

corrupt data served for three different storage configurations for our 7TB and 1PB systems

respectively for a sample data category. The first bar for each RAID configuration shows the

rate of corrupt data being read for a non-deduplicated system. The second bar, to illustrate

the different effects of incidence and impact, shows the different incidence only. The third

bar shows the full effect of both incidence and impact. While the incidence of corrupt data

is reduced, i.e. the smaller amount of data stored results in a lower number of corrupted

files, the increased number of references results in a higher incidence of corrupted data being

served. Not only are reads to the corrupted file effected, but any read to a referring file will

result in silently serving corrupt data to the user, increasing the overall rate of corrupted

reads to the system due to a UWE.

Again, we find a solution by keeping multiple copies of each deduplicated instance. Figures

6.9b and 6.9d compare the rate of corrupted data being read of deduplicated systems with

a single copy of each instance, to systems which keep two copies for a fraction of all files in

a category. The graph shows the results for keeping two copies for the 1%, 10% and 50% of

files within a category containing the largest number of references. In the case of the SQL

category, this results in large improvements for just the top 1% most referenced files. Figure

6.10 shows similar results for the VM category. While the general trends are the same, it

is useful to note that the results of keeping additional copies is dependent on the category.

Unlike the SQL category, increasing the portion of the category which maintains multiple

copies from 1% to 10% and then again to 50% does not provide a significant reduction in

the rate of corrupt data served, due to a small number of deduplicated instances accounting

for a large number of the references within the category. This highlights the importance of a

detailed analysis, using category information when making assumptions about the underlying

deduplicated system.
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6.7 Conclusions

Our evaluation of the effect of deduplication on our example system leads us to conclude

that deduplication has a net negative impact on reliability, both due to its impact on unre-

coverable data loss, and the impact of silent data corruptions, though the former is easily

countered by using higher level RAID configurations. In both cases, system reliability can

be increased by maintaining additional copies of deduplicated instances, and for the cate-

gories identified in our example system, typically by keeping multiple copies for a very small

percentage of the deduplicated instances in a given category.

Our results emphasize the importance of detailed analysis of deduplicated systems to fully

understand the impact of deduplication on fault tolerance. Even within our example system,

individual categories features very different distributions, resulting in differing behaviors

and trade-offs for multi-copy deduplication. Reliability returns decrease sharply for the VM

category with increased proportions stored as multiple copies, due to the high portion with

only a few references. For the VM category 90% had two or fewer references. Conversely,

only 38% of deduplicated instances in the MSSQL category had two or fewer references.

While data deduplication helps to achieve goals of storage efficiency, its increasing preva-

lence raises legitimate reliability concerns. Given the increased regulatory pressure, and a

desire to meet customer requirements for long-term data integrity, it is important to develop

a further understanding of the reliability consequences of these methods.

For our example system, we show that reliability goals can still be met while maintaining

some of the storage efficiency provided by deduplication by storing multiple copies of a

portion of deduplicated instances. Our methodology could be applied to other systems to

generate similar evaluations, and to evaluate configurations to meet design goals for both

reliability and storage efficiency.
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CHAPTER 7

CONCLUSIONS

As storage systems continue to grow in scale and complexity, it becomes more important to

understand how they fail, and the effectiveness of various methods of preventing failure. In

response to the increased amount of data that needs to be stored, and the length of time

the data is expected to be stored, it is likely that new techniques for improving storage

efficiency will continue to be developed Those techniques, like deduplication, are likely to

have complex and potentially adverse effects on the fault tolerance of the underlying storage

systems to which they are applied. Efficient methods for analyzing potential designs, and

their ability to achieve reliability and storage efficiency goals, will grow more important.

To provide system designers with tools to analyze designs, we have presented models of the

current faults affecting modern and next-generation storage systems, and the hardware and

process layers of large-scale deduplicated file systems. We have detailed methods to analyze

dependence relationships in these systems, and methods to exploit patterns that improve

the efficiency of solution methods when applied to these storage systems in fault-tolerance

studies. In this chapter, we briefly review the work we have presented in this dissertation

and describe potential avenues for expansion of our work, before concluding with some final

remarks.

7.1 Contribution Review

We first presented a detailed set of models that can affect modern storage systems, including

a novel model for UDEs. The models were expanded throughout our dissertation to account

for complexities present in large-scale systems, fault interaction, and the ways in which faults

interact with recovery techniques. These models improve our understanding of how complex
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systems fail and provide a rich environment of failures in which to conduct reliability studies.

To provide a methodology for building large-scale models we utilize the idea of component-

based models using data from real systems to extrapolate models of planned systems which

have not yet been built. Those methods allow us to develop a better understanding of

systems being designed by studying the types of components in existing systems, the ways

they interact, and dependence relationships found between components. We explore the

methods by modeling a large-scale, production, clustered file system and the design of its

replacement.

We next presented a method for efficient simulation of large-scale storage systems that

takes advantage of the component-based approach to model individual RAID subsystems

and scale an existing system to the petascale level. To solve large-scale models with many

components quickly through decomposition of our model, our method exploits the regular

structure of that model, the insight that dependence relationships within a RAID system

matter only when faults are present, and the fact that separate RAID systems do not nor-

mally interact.

To expand the utility of our analysis of system interdependence, and our ability to exploit

dependence relationships in reliability models to enable more efficient simulation, we looked

at deduplicated file systems. Deduplication presents us with more complex dependence rela-

tionships that we proposed to study with MDGs, a novel structure for encoding dependence

relationships in storage systems. We presented methods for identifying failure and recovery

actions, along with methods for decomposing models based on their current state, and the

relevance of various identified dependencies to the reward variables defined for our model.

Finally we applied our methods to a large-scale production deduplicated file system. We

presented a novel method for generating models of deduplicated file systems based on em-

pirical data, and used this model, along with a detailed system model, to answer questions

about the impact of deduplication on reliability. We showed for the system analyzed that

deduplication resulted in a net reduction of fault tolerance, and provided a method to achieve

improved reliability by maintaining multiple references for a subset of the system data. In

doing so we showed how to achieve improved reliability, along with improved storage effi-

ciency, even over non-deduplicated systems. Our methods provide more fault coverage than
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RAID systems do, by allowing us to identify UDEs, which are normally orthogonal to RAID.

7.2 Future Work

We have identified three primary avenues of future work. In Section 7.2.1, we discuss plans to

expand existing fault models to allow for solid state storage media, a type of storage medium

for which fault tolerance is poorly understood. In Section 7.2.2, we explain ways to extend

our work to account for the use of deduplication in primary storage applications, and the

unique design challenges that need to be explored to extend our proposed fault-tolerance

methods to this domain. In Section 7.2.3 we discuss methods for using the information

provided by a deduplication server with or without actually deduplicating data to guard

against UDEs and other difficult faults in primary storage systems.

7.2.1 Solid-State Disks

Models for SSD reliability are still in their infancy, but some do exist. Failures in SSDs

are usually modeled as a bit error rate, and more importantly as an uncorrected bit error

rate (UBER). Common sources of errors include program disturb (due to tunneling or hot-

electron injection), quantum noise effects, erratic tunneling, SILC-related data retention,

read disturb, and detrapping-induced retention. These can be broken down into three major

categories: write errors, retention errors, and read-disturb. [75]

A basic type of write error is the program disturb. Program disturb occurs when a cell

becomes unintentionally programmed due to the programming of another cell. Overpro-

gramming due to noise, tunneling, or other reasons is another possibility, causing a cell that

is being programmed to receive an incorrect number of pulses. A cell being programmed

can also suffer from a program disturb in such a way that it results in overprogramming.

[76, 77, 78, 79, 80, 81, 82, 83, 84]

Retention errors are caused by stresses outside of the program/erase cycle, and affect the

ability of a cell to retain data over time. Bit errors due to retention problems are usually

related to charge loss, moving from one voltage threshold to another; the primary causes of
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which are stress-induced leakage current (SILC) and detrapping of tunnel-oxide charge that

was trapped during cycling. [85, 86, 87, 88, 89, 90, 91, 92, 93, 94]

Read-disturb errors represent errors which occur due to interference during a read opera-

tion. When a cell is read, all deselected wordlines in the block have a voltage applied. This

can disturb bits either through SILC, or through the filling of traps in the tunnel oxide.

[85, 86, 87, 88, 89, 90, 91, 92, 93, 94]

Reasonable models for the UBER that results from these effects are given in the literature,

along with information of how they interact. [75] [95]

Failure rates, however, have been shown not to be stationary, and more complex models

are needed to account for the age of NAND memory and how this variable affects RBER.

Distributions of NAND memory age within a storage system are also necessary.

7.2.2 Primary Storage Deduplication

We have shown the application of our methods to archival storage systems, but deduplication

has been increasingly used for primary storage as well. Primary storage adds the challenge

of requiring a much higher standard of performance than archival storage does. In order to

apply our multi-copy deduplication methods to deduplicated primary storage systems, we

would need to use our fault tolerance results to inform a performance model of a primary

storage system to assess the impact of multi-copy deduplication on performance measures

of interest for various systems.

We plan to investigate those systems, and to develop an understanding of the differences

between the underlying models of deduplication-based dependence relationships in primary

storage systems, versus archival systems. Since primary storage tends to be more diverse

than archival storage, it is likely that the deduplication ratio will be lower, potentially

requiring other methods to retain storage efficiency when multi-copy deduplication is used.
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7.2.3 UDE-Tolerant Storage Systems

We have discussed the use of multi-copy deduplication in storage systems to mitigate the

negative impact of deduplication on fault tolerance. However, another potential use of

our methods includes non-deduplicated systems. It is possible to develop a method for

counteracting UDEs that uses the information provided by a deduplication server about

redundancy in a storage system, without completely eliminating that redundancy. UDEs

represent a real challenge as detecting them has traditionally been too expensive, given

their orthogonality to RAID. However, given proper file placement to ensure that redundant

information can be read in parallel, deduplication meta-data could be used to check on read

operations for corrupt, stale, or otherwise incorrect data due to a UDE.

In order to assess the suitability of those methods, we plan to analyze their performance

consequences in the presence of real workloads for both primary and secondary storage, to

assess the reduction in throughput required to perform these checks with enough frequency

to meet reliability goals for data despite the presence of UDEs.

7.3 Concluding Remarks

As storage technology companies continue to expand the horizon of storage technology, it

is critical that we also continue to expand our understanding of the systems in question.

As systems scale-up, faults that once had no noticeable effect become common, and can

threaten the integrity of system data. New technologies that are intended to address certain

customer requirements often have complex effects on other requirements that are not well

understood. Our understanding of the fault environments present in next-generation storage

systems and their complex inter-dependencies needs to keep pace with technology.

Work in this area has often relied on incomplete models of the extant fault environments

and incomplete models of the underlying file relationships in storage systems have led to

incorrect or incomplete conclusions about the effect of the application of deduplication to

storage systems. Our goal at the outset of the research that led to this dissertation was to

develop realistic models based on data from real systems to improve our understanding of
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the fault tolerance characteristics of modern storage systems. That entailed derivation of

new models of emerging faults, models of dependence relationships in the stored data, and

models of the important characteristics of the hardware portions of storage systems.

The models we created proved to be large, and, due to the stiffness of the underlying sys-

tems, difficult to analyze. Our early efforts to decompose simple, non-deduplicated systems,

while successful, lacked the expressiveness to handle complex dependence relationships. We

thus set out to develop methods to analyze those more complex relationships, and exploited

the characteristics we found in reliability models of deduplicated storage systems to improve

the efficiency of our solution methods, which we then applied to a real production system.

That enabled us to improve our understanding of the fault-tolerance properties of modern

systems, and to propose new ways to improve fault-tolerance that has been degraded by

deduplication.

There is still a wide range of unsolved problems in storage modeling. Further models

need to be developed to handle nonmagnetic media, such as SSDs, and newer technologies

on the horizon, such as phase-change memory. As these new types of storage become more

affordable, they will see increased use in production systems. Already, solid-state devices

fulfill the local storage requirements of mobile devices and many laptops. Next-generation

storage systems are already being proposed that integrate magnetic and solid-state storage.

We believe our approach provides practical models and methods to tackle current storage

system design problems, and provides a foundation upon that to develop new research which

has the potential to provide understanding of even more complex systems, allowing system

architects to design, understand, and deploy reliable and efficient storage systems despite

the many challenges inherent in such systems.
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APPENDIX A

EXAMPLE IDENTIFICATION OF

FAULT-DEPENDENT RARE EVENTS

In this appendix, we present the results of the application of our algorithm from Chapter 5

to a model of the state of a block from the system described in Chapter 6.

Figure A.1 shows a partial model of a single block from the system from Chapter 6. Four

state variables are shown in this representation:

• scrub process - A state variable that holds the scrub token, indicating it is available

to initiate a scrub of the disk associated with this block.

• block state - The state of the current block; the value of this state variable indicates

whether the block has suffered from a fault, and the type of the fault.

• parity state - The state of the parity block on another disk in the RAID group,

associated with this block.

• LSE count - A counter that holds a number of LSEs that can affect blocks in proximity

to the current block, should it suffer an initial LSE.

Ten events are also shown in Figure A.1:

• advance scrub - Two events with this label are shown. They serve to move the scrub

token between disks in a loop, as the scrub process examines each disk in the larger

storage system in turn.

• scrub - This event fires only when a scrub-detectable state (LSE or UDE) is present

in block state, and the scrub token is present in scrub process. When firing, it

corrects an LSE or UDE in block state.
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Φ

∆ Φ

∆

Φ

∆
Φ

scrub rebuild

Initial_LSE UDE

Figure A.1: Initial block model

• rebuild - This event only fires when block state indicates that the block is part of a

disk that has suffered a whole disk failure. It represents the RAID rebuild action that

corrects the state, and it affects all blocks on the disk.

• write block - This event only fires when block state indicates that a UDE has

occurred, and changes the state of block state and parity state to indicate parity

pollution has occurred.

• Initial LSE - This event represents the occurrence of the first of a series of LSEs on

a given disk, originating in the sector containing the modeled block.

• Secondary LSE - Two events share this label. The first represents secondary LSEs

that occur when LSE count > 0; the second representing a similar action from another

block spatially close to the modeled block.

• UDE - This event represents the occurrence of a UDE in our modeled block.
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Figure A.2: Block model with initial rare events indicated.

• Total Disk Failure - This event represents the failure of the entire disk that contains

the modeled block.

We begin the process by marking those events in our model that are locally rare due to

their rates, in this case Initial LSE, UDE, and Total Disk Failure, as shown in Figure

A.2.

We then process the model using Algorithm 1 and assuming a system with no initial

faults. The first step of the algorithm is to remove all ∆-dependencies from rare events in

ER, shown in Figure A.3.

Next, we mark as constant any state variable whose value can no longer change, except

for the firing of an event in ER. LSE count fits this category, having no remaining ∆-

dependencies, and so is marked constant with a value of 0. Likewise, the equivalent state

variable is also marked constant for the incoming secondary LSEs to our block model. The

result is shown in Figure A.4.

We then remove all Φ-dependencies that cannot be satisfied by the constant marking of
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Figure A.3: Block model, with ∆-dependencies eliminated.
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Figure A.4: Block model with state variables marked constant.
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Figure A.5: Block model with Φ-dependencies removed, and new events labeled in P .

state variables, and take those events whose enabling conditions can no longer be satisfied

and place them in the set P , as shown in Figure A.5.

We repeat the previous step of removing ∆-dependencies from events in P , which we now

add to the set ER, shown in Figure A.6.

Again we mark as constant those state variables whose values can no longer change, in

this case block state, as shown in Figure A.7.

We remove all Φ-dependencies that cannot be satisfied by the constant marking of state

variables, and take those events whose enabling conditions can no longer be satisfied and

place them in the set P , as shown in Figure A.8.

We repeat the previous step of removing ∆-dependencies from events in P , which we now

add to the set ER, as shown in Figure A.9.

At this point no further events can be removed, and the algorithm halts, having identified

our mitigation actions and added them to ER.
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Figure A.6: Block model, with ∆-dependencies eliminated.
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Figure A.7: Block model with state variables marked constant.
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Figure A.8: Block model with Φ-dependencies removed, and new events labeled in P .
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Figure A.9: Final block model with all mitigation actions identified.
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