Effects of surface modification of noble-metal sensing electrodes with Au on the hydrogen-sensing properties of diode-type gas sensors employing an anodized titania film

Takeo Hyodo^{*}, Tomoki Yamashita, and Yasuhiro Shimizu

Graduate School of Engineering, Nagasaki University

1-14 Bunkyo-machi, Nagasaki 852-8521, Japan

*Corresponding author:

Takeo Hyodo, Dr.

Graduate School of Engineering, Nagasaki University

1-14 Bunkyo-machi, Nagasaki 852-8521, Japan

Tel: +81-95-819-2644

Fax: +81-95-819-2643

E-mail: hyodo@nagasaki-u.ac.jp

Abstract

Diode-type gas sensors employing an anodized TiO₂ film and noble-metal (Pt, Pd and Pd-Pt) sensing electrodes modified with and without a small amount of Au (Au/M/TiO₂ and M/TiO₂, respectively, M = Pt, Pd, Pd-Pt (Pd : Pt = 58 : 42 in weight)) have been fabricated, and the effects of surface modification of the electrodes with Au on their H₂-sensing properties have been investigated at 250°C in both air and N₂ under dry and wet atmospheres. H₂ response of all the M/TiO₂ sensors in N₂ was much larger than that in air under both dry and wet atmospheres. The Pt/TiO₂ sensor showed the smallest H₂ response in air among them, but the surface modification of the Pt electrode with Au was quite effective in enhancing the H₂ response of the Pt/TiO₂ sensor in air. Therefore, the response of the Au/Pt/TiO₂ sensor to 8000 ppm H₂ in air was comparable to that in N₂, especially under wet atmosphere, and thus the response of the Au/Pt/TiO₂ sensor to 8000 ppm H₂ was almost independent of oxygen concentration under wet atmosphere. In addition, the annealing of the sensor at 600°C did not affect the response of the Au/Pt/TiO₂ sensor to 8000 ppm H₂. The homogeneous mixing of Au into the Pt electrode also improved the H₂ response of the Pt/TiO₂ sensor, but the effectiveness was much lower than that of the surface modification of the Pt electrode with Au. On the other hand, the response of the as-fabricated Au/Pd/TiO₂ and Au/Pd-Pt/TiO₂ sensors to 8000 ppm H₂ in air were much larger than that of the Au/Pd/TiO₂ and Au/Pd-Pt/TiO₂ sensors annealed at 600°C, especially under wet atmosphere. The large H₂ response observed with the Au/Pt/TiO₂ sensor and the as-fabricated Au/Pd/TiO₂ and Au/Pd-Pt/TiO₂ sensors can be explained by large suppression of H₂ oxidation by Au components remained at the surface of their sensing electrodes and then increased amount of dissociativelyadsorbed hydrogen species at the sensing electrode surface.

Keywords: diode-type gas sensor; surface modification; gold; platinum; hydrogen

1. Introduction

Numerous efforts have been directed to developing various kinds of highly sensitive and selective H₂ sensors [1-9], which were indispensable for operating next-generation power-supply systems utilizing H₂ as an energy source (e.g., fuel cells) as well as various industrial plants producing H_2 as a by-product (e.g., chlor-alkali electrolysis) safely and effectively. We have also demonstrated that sensing properties of various semiconductor-type H_2 sensors were improved by the strict control of mesopores and/or macropores of gas-sensing materials by utilizing self-assembly of surfactants in water [10-12] or polymer microspheres [13, 14] as a template as well as the control of sensor structure (especially, optimization of thickness and hetero-stacking of the sensing layer) by spin-coating [15-17], dipping [18] or slide-off transfer printing [19-21]. However, it is really difficult to operate the semiconductor-type H₂ sensors under O₂-free atmosphere, because the formation of negatively oxygen adsorbates on the oxide surface is essential for the reaction with the H₂ molecules. On the other hand, our interests have also been focused on the developing a diode-type H₂ sensor employing an anodized TiO₂ film and a sensing Pd electrode, because the sensor shows extremely large H₂ response even under O₂-free atmosphere as well as relatively excellent H₂ selectivity to other inflammable gases [22-25]. In addition, we have also reported that a diode-type H₂ sensor employing a Nb₂O₅ film fabricated by anodization of a Nb metal, in place of the anodized TiO₂ film, also showed the attractive H₂ response especially at low temperatures [26, 27], and the alloying of Pd with Pt was quite effective in improving the H_2 response and the long-term stability [28-30]. However, the H₂ response of the diode-type H₂ sensors was very sensitive to a change in oxygen concentration, and thus the magnitude of the H₂ response drastically increased with a decrease in the oxygen concentration. For example, we have reported that the H_2 response of these diode-type gas sensors in N₂ (i.e., ca. 0 vol% O₂) was about three orders of magnitude larger than that in air (i.e., 21 vol% O₂ in N₂) [24-26]. Therefore, we have attempted to decrease the large influence from O₂ concentration on the H₂ response by various techniques such as the alloying of Pd with Pt [28-30], the optimization of operating conditions (injection of moisture into the sample gas and drastic reduction in the applied forward bias [27-29]), and the coating of the surface of the noble-metal electrodes with various kinds of polymers [31-33]. However, these attempts had only limited effectiveness in reducing the influence from the O₂ concentration on the H₂ response. In this paper, therefore, the effects of surface modification of Pt, Pd and Pd-Pt electrodes with Au on the H₂ sensing properties of the diode-type gas sensors employing an anodized TiO₂ film have been investigated in both air and N₂ under dry and wet atmospheres. To confirm the role of Au, the effect the homogeneous mixing of Au into the Pt electrode on the H₂ sensing properties has also been tested.

2. Experimental

2.1 Fabrication of diode-type gas sensors

After a Ti plate $(5.0 \times 10.0 \times 0.5 \text{ mm}^3)$ was heat-treated at 600°C for 1 h in air, the half part of the Ti plate was anodized in 0.5 M H₂SO₄ aqueous solution at 20°C for 30 min at a current density of 50 mA cm⁻². A pair of noble-metal (Pt or Pd) electrodes was fabricated on the surface of both the TiO₂ thin film and the Ti plate by radio-frequency (rf) magnetron sputtering (Shimadzu, HSR-552S). The mixing of Pd or Au with Pt was also conducted by simultaneous deposition utilizing Pd and Pt targets or Pt and Au targets, which were denoted as Pd-Pt or Pt*n*Au, *n*: the amount of Au (wt%), respectively. The composition of Pd-Pt and Pt-*n*Au was measured by electron dispersive X-ray spectroscopy (EDS, JEOL Ltd., JED-2300) equipped with scanning electron microscopy (SEM; JEOL Ltd., JSM-7500F). The ratio of Pd to Pt (Pd : Pt) of the Pd-Pt electrode was adjusted to 58 : 42 in weight, while the amount of Au (wt%) contained in the Pt electrode, *n*, of two kinds of Pt-*n*Au electrodes was 6 (Pt : Au = 94 : 6 in weight) or *16* (Pt : Au = 84 : 16 in weight). In some cases, a small amount of Au was additionally deposited on the surface of the Pd, Pt, or Pd-Pt electrode by the rf magnetron sputtering. Each condition for the rf magnetron sputtering of noble metals is shown in Table 1, together with the thickness of the electrodes fabricated. Each electrode was connected with Au lead wire by using a Pt paste, and the electrical contact was ensured by firing at 600°C for 1 h in air. The obtained sensors with noblemetal electrodes modified with and without Au were denoted as Au/M/TiO₂ and M/TiO₂ (M: Pd, Pt, Pd-Pt, or Pt-*n*Au), respectively. The schematic drawing of the diode-type gas sensor obtained is shown in Fig. 1. The change in the chemical state of Au, Pd and Pt of the electrode surface was characterized by X-ray photoelectron spectroscopy using Al K_a radiation (XPS, Kratos, ACIS-TLATRA DLD), and the binding energy was calibrated using the C 1s level (284.5 eV) from usual contamination.

2.2 Measurements of H₂-sensing properties

A dc voltage of 100 mV was applied to the sensor under forward bias condition (M(+)-TiO₂-Ti(-)) and the sensing properties to 8000 ppm H₂ balanced with air or N₂ under dry or wet (absolute humidity (AH): 6.80, 9.40 or 12.8 g m⁻³) atmospheres were measured at 250°C after annealing under the same gaseous condition at 600°C for 1 h. The magnitude of H₂ response was defined as " $I_g - I_b$ ", where I_g and I_b represented sensor-current values in 3~8000 ppm H₂ balanced with air or N₂ (at 10 min after the exposure to H₂) and in a base gas (air or N₂), respectively. 90% response time was defined as a period necessary to reach 90% sensor-current value of " $I_g - I_b$ ", while 90% recovery time was defined as that necessary to reach 90% sensor-current value of " $I_b - I_g$ ". Current (*I*)-voltage (*V*) characteristics of the sensors were also measured in an applied voltage range of -1.0 ~ +1.0 V in air or N₂ containing with and without 8000 ppm H₂ under dry or wet (AH: 6.80, 9.40 or 12.8 g m⁻³) atmospheres at 250°C, after annealing under the same gaseous condition at 600°C for 1 h.

3. Results and Discussion

3.1 H₂-sensing properties of M/TiO₂ and Au/M/TiO₂ sensors (M: Pt, Pd and Pd-Pt) annealed at 600°C

Figure 2 shows *I-V* characteristics of annealed Pt/TiO₂ and Au/Pt/TiO₂ sensors in base gases (air and N_2) and in 8000 ppm H₂ balanced with the base gases under dry and the most humidified atmospheres (AR: 12.8 g m⁻³) at 250°C. Both the sensors apparently showed nonlinear I-Vcharacteristics under H₂-free and dry atmospheres, as shown in Fig. 2(a)(i). This behavior indicated that the Schottky barrier was formed at the interface between the electrode and the TiO₂ film. The forward current of both the sensors in dry air was extremely small even at a forward bias of +1.0 V (\leq 50 µA) due to the too high Schottky barrier, but an extreme reduction in oxygen concentration in the base gas (namely, dry N₂ atmosphere) drastically increased the forward current. The work function of Pt in dry N₂ is smaller than that in dry air, because the amount of O₂ molecules dissociated and then negatively adsorbed onto the Pt surface is small in comparison to those in dry air [34, 35]. Therefore, the height of the Schottky barrier at the electrode/TiO₂ interface in dry N₂ is smaller than that in dry air, and thus the amount of electrons transferred from TiO₂ to the electrode in dry N₂ are much larger than that in dry air under a forward bias. The surface modification of the Pt electrode with a small amount of Au slightly increased the forward current of the Pt/TiO₂ sensor in both dry air and N₂. This behavior shows that the surface modification with Au has little influence on the work function of Pt as well as the height of the Schottky barrier at the electrode/TiO₂ interface.

Variations in the *I-V* characteristics of the Pt/TiO₂ and Au/Pt/TiO₂ sensors induced by the addition of 8000 ppm H₂ into the dry atmospheres was largely affected by both the oxygen concentration in the sample gas and the surface modification with and without Au of the Pt electrode, as shown in Fig. 2(a)(ii). The addition of H₂ into dry air slightly increased the forward

current of the Pt/TiO₂ sensor, while that into dry N₂ drastically enhanced both the forward and reverse currents and the nonlinearity in the I-V curve almost collapsed, implying a large decrease in the height of the Schottky barrier at the electrode/TiO₂ interface. The increase in the sensor current induced by the H₂ addition into the dry atmosphere is due to dissociative adsorption of H₂ molecules on the Pt electrode, subsequent dissolution of the hydrogen species into the Pt electrode and in turn reduction of the Pt work function, leading to a decrease in the height of the Schottky barrier at the electrode/TiO₂ interface. Especially, the forward current of the Pt/TiO₂ sensor in dry N₂ containing 8000 ppm H₂ became larger than that in dry air containing 8000 ppm H₂ by three orders of magnitude. This indicates negligible consumption of H₂ at the Pt electrode in dry N₂, whereas a certain percentage of H₂ is likely consumed by the oxidation with oxygen adsorbates on the Pt surface in air. Thus the magnitude of the current of the Pt/TiO₂ sensor was quite sensitive to changes in the O₂ concentration under the atmosphere containing H₂. On the other hand, the surface modification of the Pt electrode with Au dramatically enhanced the forward current by ca. two orders of magnitude in dry air containing 8000 ppm H₂ with maintaining the nonlinear *I-V* characteristics. This indicated that the modified Au component largely inhibited the oxidation of H₂ molecules on the Pt surface and thus the amount of dissociatively-adsorbed hydrogen species drastically increased. The Schottky barrier at the electrode/TiO₂ interface perfectly disappeared in dry N₂ containing 8000 ppm H₂, and thus the Au/Pt/TiO₂ sensor showed linear *I*-V characteristics with the large current at low voltage (ca. +120 mA even at +300 mV). In addition, the effect of O₂ concentration on the magnitude of the forward current of the Au/Pt/TiO₂ sensor seems to be substantially smaller than that of the Pt/TiO₂ sensor, since the *I-V* characteristics of the Au/Pt/TiO₂ sensor in both dry air and N_2 containing 8000 ppm H_2 are in almost the same forward-current range.

The Pt/TiO₂ and Au/Pt/TiO₂ sensors showed nonlinear *I-V* characteristics also in most humidified air as well as N₂ (AH: 12.8 g m⁻³) as shown in Fig. 2(b)(i). The forward current of

both the sensors in wet N_2 was much larger than that in wet air, as was observed with their *I-V* characteristics under dry H₂-free atmospheres. In addition, the surface modification of the Pt electrode with Au was relatively effective in increasing the forward current under wet H₂-free atmospheres in comparison with that under dry H₂-free atmosphere. Variations in the I-V characteristics of the Pt/TiO₂ and Au/Pt/TiO₂ sensors induced by the H₂ addition into wet air and N₂ (Fig. 2(b)(ii)) were roughly similar to those observed under dry air and N₂ atmospheres. Namely, 1) the forward current of all the sensors in both wet air and N₂ containing 8000 ppm H₂ was much larger than that in both wet H₂-free air and N₂, 2) the Au/Pt/TiO₂ sensor showed linear I-V characteristics in wet N₂ containing 8000 ppm H₂, and 3) the forward current of the Au/Pt/TiO₂ sensor was relatively larger than that of the Pt/TiO₂ sensor in both air and N₂ containing 8000 ppm H₂. However, the addition of H₂ into wet air drastically increased the reverse current of the Au/Pt/TiO2 sensor and then the magnitude of the reverse current was saturated at around -0.03 A. In addition, the forward current of both the sensors in wet air containing 8000 ppm H₂ was larger than that in dry air containing 8000 ppm H₂, probably because water molecules inhibited the re-adsorption of O2 molecules (i.e., the production of negatively-charged oxygen adsorbates) and thus the amount of dissociatively-adsorbed H₂ molecules relatively increased on the electrode surface. On the other hand, the addition of moisture into dry N₂ containing 8000 ppm H₂ reduced the forward current of both the sensors, probably because the adsorbed water molecules directly inhibited the dissociative adsorption of H₂ molecules. Therefore, the magnitude of the forward current of the Au/Pt/TiO₂ sensor in wet air containing 8000 ppm H₂ was comparable to that in wet N₂ containing 8000 ppm H₂. These results confirm that the Au/Pt/TiO₂ sensor shows the H₂ response less-dependent on oxygen concentration under wet atmosphere.

Figure 3 shows *I-V* characteristics of other annealed M/TiO₂ and Au/M/TiO₂ sensors (M: Pd and Pd-Pt) in air and N₂ containing 8000 ppm H₂ under dry and the most humidified

atmospheres (AH: 12.8 g m⁻³) at 250°C. The *I-V* characteristics of these sensors under both dry and wet H₂-free atmospheres are not shown in this paper, but they were all nonlinear and the magnitude of the forward current of these sensors was almost comparable to that of the Pt/TiO2 and Au/Pt/TiO₂ sensors under all gaseous atmospheres (see Fig. 2(a)(i) and Fig. 2(b)(i)). The forward current of the Pd/TiO₂ sensor was larger than that of the Pt/TiO₂ sensor under all H₂containing atmospheres, because the amount of hydrogen solubility into Pd is generally much larger than that into Pt and thus the work function of Pd under the H₂-containing atmospheres is expected to be much smaller than that of Pt. The alloying of Pd with Pt (i.e., Pd-Pt) further enhanced the forward current of the Pd/TiO₂, especially in dry and wet air containing H₂, because the mixing of Pt into Pd reduced the coverage of oxygen adsorbates and/or the amount of PdO species on the electrode surface and thus promoted the dissociative adsorption of H_2 molecules and subsequent dissolution of the hydrogen species into the electrode, as reported in our previous study [30]. Both the Pd/TiO₂ and Pd-Pt/TiO₂ sensors showed entirely linear I-V characteristics and quite large forward current (several hundred mA at +1.0 V) in dry and wet N₂ containing H₂, and the alloying of Pd with Pt was hardly effective in enhancing the magnitude of current. The surface modification with Au enhanced the forward current of both the Pd/TiO₂ and Pd-Pt/TiO₂ sensors in dry and wet air containing 8000 ppm H₂, whereas the forward current of the Au/Pd/TiO₂ and Au/Pd-Pt/TiO₂ sensors in dry and wet N₂ containing 8000 ppm H₂ was almost comparable to that of the Pd/TiO₂ and Pd-Pt/TiO₂ sensors. These results show that the surface modification of the electrodes with Au was not effective enough in improving the oxygen dependence of the forward current of both the Pd/TiO₂ and Pd-Pt/TiO₂ sensors, in contrast to the case of the Pt/TiO₂ sensor.

Figure 4 shows response transients of the M/TiO₂ and Au/M/TiO₂ sensors (M: Pt, Pd and Pd-Pt, annealed at 600°C) to 8000 ppm H₂ in dry air and N₂ at 250°C at a forward bias of +100 mV. The Pt/TiO₂ sensor showed extremely low H₂ response (ca. 3.5×10^{-6} A) with overshooting

behavior and the H₂ response of the Pd/TiO₂ sensor (ca. 2.6 x 10⁻⁵ A) was slightly larger than that of the Pt/TiO₂ sensor in dry air. In addition, the alloying of Pd with Pt was effective in improving the H₂ response in dry air (ca. 1.8 x 10⁻⁴ A), and thus the Pd-Pt/TiO₂ sensor showed the largest H₂ response in dry air, among all the M/TiO₂ sensors, also as reported in our studies [28-33]. The H₂ response of these sensors in dry N₂ was extremely larger than that in dry air, as expected from their *I-V* characteristics (Figs. 2 and 3), and the ratio of the H₂ response in N₂ to that in air (*Res*_{N/}/*Res*_{air}) under dry atmosphere was ca. 1.9 x 10³, ca. 4.8 x 10³ or ca. 3.1 x 10² for the Pt/TiO₂, Pd/TiO₂ or Pd-Pt/TiO₂ sensor, respectively. These results indicated that the H₂ response of all these sensors largely depended on oxygen concentration, but the alloying of Pd with Pt slightly decreased the influence of oxygen concentration on the H₂ response and the *Res*_{N/}/*Res*_{air} of the Pd-Pt/TiO₂ sensor was the smallest among them. These effects of electrode components on the H₂ response were also well-coincident with those on the magnitude of forward current of their *I-V* characteristics (Figs. 2(a)(ii), 3(a)(i) and 3(b)(i)).

The surface modification of the M electrodes with Au drastically improved the H₂ response of some sensors, especially in dry air. Namely, the effects of the surface modification with Au enhanced were pronounced in the case of the pure Pt and Pt containing (i.e. Pd-Pt electrode) electrodes and then the magnitude of the H₂ response of the Au/Pt/TiO₂ sensor was three orders of magnitude larger than that of Pt/TiO₂ sensor in dry air. On the other hand, the surface modification of the M electrodes with Au was not sufficiently effective in improving the H₂ response of these sensors in dry N₂, in contrast to the case observed in dry air. The H₂ response of the Au/Pt/TiO₂ sensor was slightly larger than that of the Pt/TiO₂ sensor, while the H₂ response of the Au/Pd/TiO₂ and Au/Pd-Pt/TiO₂ sensors was slightly smaller than that of the Pd/TiO₂ and Pd-Pt/TiO₂ sensors, respectively, in dry N₂. Thus, it was confirmed that the surface modification with Au could enhance the H₂ response of Pt more effectively than that of Pd in dry air, and thus oxygen concentration dependence of the H₂ response could be reduced by the surface modification with Au in the case of the pure Pt and Pt containing (i.e. Pd-Pt electrode) electrodes. Actually, the Res_{N_2}/Res_{air} of the Au/Pt/TiO₂ and Au/Pd-Pt/TiO₂ sensors (ca. 12 and ca. 15, respectively) was much smaller than that of the Au/Pd/TiO₂ sensor (2.6 x 10²).

Response properties of the M/TiO₂ and Au/M/TiO₂ sensors (M: Pt, Pd and Pd-Pt, annealed at 600°C) to 8000 ppm H₂ in wet air and N₂ (AH: 6.8, 9.4 and 12.8 g m⁻³) at 250°C were also measured at a forward bias of +100 mV, and the variations in the response of all the sensors to 8000 ppm H₂ with absolute humidity are summarized in Fig. 5, and the response transients of the M/TiO₂ and Au/M/TiO₂ sensors (M: Pt, Pd and Pd-Pt, annealed at 600°C) to 8000 ppm H₂ at a forward bias of +100 mV in representative wet air and N₂ (AH: 12.8 g m⁻³) at 250°C are shown in Fig. 6. The H₂ response of these M/TiO₂ sensors in air gradually tended to increase with an increase in humidity, but the magnitude of H₂ response was extremely small even in the most humidified air, compared with that of these sensors in wet N_2 . Among them, the Pt/TiO₂ sensor showed the smallest H₂ response under all wet air atmospheres. However, the surface modification of the Pt electrode with Au was quite effective in improving the H₂ response of the Pt/TiO₂ sensor in wet air as well as in dry air, and the H₂ response of the Au/Pt/TiO₂ sensor in air also gradually increased with an increase in humidity. The degree of the enhancement in the H₂ response of the Pt/TiO₂ sensor in N₂ induced by the surface modification with Au gradually decreased with an increase in humidity, and the H₂ response of the Au/Pt/TiO₂ sensor was comparable to that of the Pt/TiO₂ sensor in the most humidified N₂. Therefore, it was confirmed that the Au/Pt/TiO₂ sensor showed the excellent H₂ response which was scarcely dependent on oxygen concentration in wet N₂ (Res_N/Res_{air} : ca. 1.0 under the most humidified atmosphere) as shown in Figs. 5(a) and 6(a), as predicted also from their *I-V* characteristics (Fig. 2(b)(ii)). The oxygen concentration-independent H₂ response properties are considered to arise from the following reasons: 1) the Au component modified on the Pt electrode largely inhibited the oxidation of H₂ molecules on the sensing electrode and thus the amount of dissociativelyadsorbed hydrogen species which dissolved into the electrode drastically increased in air, 2) the amount of the dissociatively-adsorbed hydrogen species on the sensing electrode decreased in wet N₂ by the adsorption of water molecules, and 3) the amount of oxygen adsorbates as well as the ratio of the amount of oxygen adsorbates to the amount of the dissociatively-adsorbed hydrogen species decreased with an increase in the humidity in air. On the other hand, the H₂ response of both the Pd/TiO₂ and Pd-Pt/TiO₂ sensors in wet air could not be enhanced effectively by the surface modification with Au. In addition, the H₂ response of both the Pd/TiO₂ and Pd-Pt/TiO₂ sensors slightly decreased by the surface modification with Au under all wet N₂ atmospheres. Therefore, the Res_{N/2}/Res_{air} of both the Au/Pd/TiO₂ and Au/Pd-Pt/TiO₂ sensors under wet atmospheres (ca. 290 and ca. 85 under the most humidified atmosphere, respectively) was much larger than that of the Au/Pt/TiO₂ sensor.

The surface modification of the Pt electrode with Au also affected the response and recovery behavior. Table 2 shows 90% response and recovery times of the Pt/TiO₂ and Au/Pt/TiO₂ sensors in air and N₂ under dry and the most humidified (AH: 12.8 g m⁻³) atmospheres. The response and recovery speeds of the Pt/TiO₂ sensor in dry and wet air were relatively fast with the small H₂ response. In addition, the surface modification with Au reduced both the speeds with the large H₂ response, except for the recovery speed in dry air. The Au components on the Pt electrode surface may retard the rate of the reaction of H₂ molecules with oxygen adsorbates and/or the re-adsorption of O₂ molecules on the Pt electrode in air, leading to longer time to achieve steady-state conditions. The response and recovery speeds of the Pt/TiO₂ sensor in dry and wet N₂ were seriously slow, but the surface modification of the Pt electrode with Au drastically improved only the response speed of the Pt/TiO₂ sensor in dry and wet N₂. The fact may indicate that the surface modification with Au promotes the rate of the dissociative adsorption of H₂ molecules and/or the dissolution of hydrogen species into the Pt electrode. On the other hand, the response and recovery speeds of the Pd/TiO₂ and Pd/Pt/TiO₂ sensors remained almost unchanged by the surface modification with Au.

3.2 Effects of the annealing conditions on H₂-sensing properties of Au/M/TiO₂ sensors (M: Pt, Pd and Pd-Pt)

Since the amount of Au modified on the M electrode was very low, the most Au atoms might migrate into the electrode, leading to alloying with Pd and Pt and then changing the composition and morphology of the electrode surface during the annealing process. Therefore, the H₂-sensing properties of the as-fabricated Au/M/TiO₂ sensors (M: Pt, Pd or Pd-Pt, only heattreated at 250°C (operating temperature) for 1 h before the sensor measurement) were also measured at a forward bias of +100 mV in air and N₂ under dry and wet atmospheres at 250°C, and the variations in the response to 8000 ppm H₂ of the as-fabricated Au/M/TiO₂ sensors with absolute humidity are summarized in Fig. 7. For the comparative purpose, the data obtained with the annealed Au/M/TiO₂ sensors was plotted again in the same figure. The as-fabricated Au/Pt/TiO₂ sensor showed the H₂ response nearly identical to the annealed Au/Pt/TiO₂ sensor, but the H₂ response of the as-fabricated Au/Pt/TiO₂ sensor is slightly larger than that of the annealed Au/Pt/TiO₂ sensor in wet N₂ and thus the H₂ response of the as-fabricated Au/Pt/TiO₂ sensor was slightly dependent on oxygen concentration in wet N₂. Small differences in the composition and/or morphology of the surface of the Au/Pt electrodes between the as-fabricated and annealed Au/Pt/TiO₂ sensors may have a little influence on the adsorption state of hydrogen and/or oxygen adsorbates as well as water molecules in wet N₂. Surprisingly, the H₂ response of both the as-fabricated Au/Pd/TiO₂ and Au/Pd-Pt/TiO₂ sensors in air was much larger than that of the annealed Au/Pd/TiO2 and Au/Pd-Pt/TiO2 sensors in air, especially under wet atmosphere, and the magnitude of their H₂ response was quite comparable to that of the Au/Pt/TiO₂ sensor. Thus, the H₂ response of the as-fabricated Au/Pd/TiO₂ and Au/Pd-Pt/TiO₂ sensors was also nearly independent of oxygen concentration under wet atmosphere (*Res*_{Ny}/*Res*_{air} of the as-fabricated Au/Pd/TiO₂ and Au/Pd-Pt/TiO₂ sensors under the most humidified atmosphere: ca. 3.8 and ca. 3.1, respectively)), as is the case with that of the Au/Pt/TiO₂ sensor. It is considered that the electrode surface of the as-fabricated Au/Pd/TiO₂ and Au/Pd-Pt/TiO₂ sensors was modified effectively with a small amount of Au, because they were not annealed at elevated temperatures. Therefore, the oxidation of H₂ with oxygen adsorbates largely limited on the Au-modified electrode surface and thus the amount of the dissociatively-adsorbed hydrogen species increased on the electrode surface, in comparison with Au-unmodified Pd and Pd-Pt electrodes. These are considered to be the possible reasons for large H₂ response in wet air observed for the as-fabricated Au/Pd/TiO₂ and Au/Pd-Pt/TiO₂ sensors.

3.3 Analysis of chemical states and depth profiles of Au/Pt and Au/Pd electrodes by XPS

All results obtained in sections 3.1 and 3.2 demonstrated that the effects of the surface modification of the electrodes with Au on the H₂-sensing properties are largely dependent on the difference of the main electrode composition (Pt or Pd). Therefore, the chemical states and depth profiles of the electrode materials (Au, Pt and Pd) of both Au/Pt/TiO₂ and Au/Pd/TiO₂ sensors as a representative were analyzed by XPS. Figures 8 and 9 show XPS spectra of Au and Pt, respectively, on the surface and in the bulk of the electrodes of the Au/Pt/TiO₂ sensors (i) as-fabricated, (ii) annealed at 600°C for 1 h in dry air and (iii) annealed at 600°C for 1 h in dry air, followed by at 600°C for 1 h in dry N₂. In addition, Fig. 10 shows XPS depth profiles of Au and Pt in the electrodes of these Au/Pt/TiO₂ sensors. Most of the Au and Pt on the surface of all the Au/Pt electrodes existed as a metal, irrespective of the different heat-treatment conditions, by referring to the binding energy reported in the literature [36]. However, the Au spectra on the electrode surface of the as-fabricated Au/Pt electrode shifted to lower binding energy (ca. 0.3 eV) and the intensity of the Au spectra largely reduced after annealing at 600°C. In addition,

the Au spectra of the as-fabricated Au/Pt electrode also shifted to lower binding energy with an increase in the etching depth, while that of other two Au/Pt electrodes annealed tended to slightly shift to higher binding energy with an increase in the etching depth. Bastl et al. reported that the XPS spectra of Au $4f_{7/2}$ of Au deposited on a Pt foil shifted to lower binding energy with a decrease in the Au coverage on the Pt surface (e.g., -0.78 eV for 0.01 monolayer-Au on Pt, -0.35 eV for 1 monolayer-Au on Pt) and more than 5 monolayer-stacking of Au atoms on the Pt surface was required to achieve the binding energy of Au bulk [37]. Berg et al. also demonstrated that the Au bulk showed the highest binding energy and isolated Au atoms showed a lower binding energy (ca. -0.3 eV for Au atoms deposited on Au surface (3 monolayer-stacked Au islands on Pt), -0.5 eV for Au atoms at the Au/Pt interface (1 monolayer-Au islands on Pt)) [38]. Considering the results of these previous studies, the XPS spectra of Au shown in Fig. 8 indicate that several ~ several tens of Au monolayers with bulk-like characteristics as a film or an island existed on the Pt surface and cluster-sized Au aggregates in the Pt bulk for the as-fabricated Au/Pt electrode. In addition, the size of Au aggregates is suggested to decrease with an increase in distance from the surface to the bulk. Both for the annealed two electrodes, however, highly-dispersed and/or 1~3 monolayer-stacked Au islands were suggested to exist even on the electrode surface. On the other hand, the Pt binding energy of the Au/Pt/TiO₂ electrode remained almost unchanged from the electrode surface to the balk, even after the annealing at elevated temperature. The asymmetric tail on the higher binding energy side of the Pt spectra of all the Au/Pt/TiO₂ electrodes is probably due to a shake-up effect, and the shape of all the asymmetric Pt spectra was independent of the annealing conditions as well as the depth from the surface of the electrode. Thus, no platinum oxide such as PtO was formed on the surface as well as bulk of the electrode. In addition, the ratio (R_{Au}) of Au to the total noble metals (Au+Pt) was ca. 30 at% even on the surface of the as-fabricated Au/Pt electrode, and it was smaller than the ratio (R_{Pt}) of Pt to the total noble metals on the surface, ca. 70 at%. The R_{Au} drastically reduced within ca. 20 nm from the surface, and it mildly decreased with a further increase in the distance from the surface. The depth profile indicates that a small amount of Au apparently existed in the bulk of the electrode even though Au was merely sputtered on the surface of the Pt electrode. The reason for this result is not clear, but the Au sputtered on the Pt electrode, which was formed on the anodized TiO₂ film with quite large surface roughness [22-24, 28, 30] may migrate into the Pt electrode by heat of argon plasma in the rf magnetron sputtering. A similar tendency was confirmed also in the XPS depth profiles of the annealed Au/Pt electrodes, while the R_{Au} on the surface of both the Au/Pt electrodes annealed at 600°C was smaller than that of the as-fabricated Au/Pt electrode. It is considered that the small amount of Au components remained on the surface of the Au/Pt electrode even after the annealing at 600°C could play an important role in both limiting the oxidation of H₂ molecules on the electrode surface and increasing the dissociatively-adsorbed hydrogen species, and thus enhancing the H₂ response in air drastically, as discussed in sections 3.1 and 3.2.

On the other hand, the chemical states and depth profiles of Au and Pd of the Au/Pd electrode was largely different from those of the Au/Pt electrode after annealing at 600°C. Figures 11 and 12 show XPS spectra of Au and Pd, respectively, on the surface and in the bulk of the electrodes of the Au/Pd/TiO₂ sensors (i) as-fabricated, (ii) annealed at 250°C for 1 h in dry air, (iii) annealed at 600°C for 1 h in dry air and (iv) annealed at 600°C for 1 h in dry air, followed by at 600°C for 1 h in dry N₂. Figure 13 shows the XPS depth profiles of Au and Pt in the electrodes of these Au/Pd/TiO₂ sensors. Most of Au on the surface of all the Au/Pd electrodes was also metal. The binding energy of Au in the bulk of the annealed electrodes was also smaller than that on the surface of the as-fabricated electrode, as is the case with the Au/Pt electrodes. In addition, the XPS depth profiles of Au in the Au/Pd electrodes as-fabricated

and annealed at 250°C for 1 h in dry air were approximately similar to those in the Au/Pt electrodes as-fabricated and annealed at 600°C. Thus it was confirmed that a certain amount of Au remained on the surface of the Au/Pd electrode after annealing at 250°C. This may be a reason for the large H₂ response of the as-fabricated Au/Pd/TiO₂ sensor in air at 250°C, which was comparable to that of the Au/Pt/TiO₂ sensors as-fabricated and annealed at 600°C, as shown in Fig. 7. On the other hand, the Pd spectra of the Au/Pd electrodes as-fabricated and annealed at 250°C indicated that most of Pd in these Au/Pd electrodes existed as a metal but the a small amount of Pd on the surface and at the subsurface (etching depth: 3.2 nm) of the Au/Pd electrode might be oxidized to PdO because of slight increases in both the intensity of the asymmetric tail on the higher binding energy side and the half width of the Pd spectra. However, the annealing at 600°C in dry air perfectly oxidized the Pd to produce PdO on the electrode surface and the oxidation of Pd partly proceeded even in the bulk of the electrode, while Au on the electrode surface completely disappeared and the amount of Au slightly increased with an increase in the distance from the surface. In addition, the PdO was mostly reduced to Pd metal and a fraction of Au was observed on the surface as well as at every depth spot of the electrode, by the post annealing at 600°C in dry N₂ (Figs. 11(d) and 12(d)). Our previous study have demonstrated that submicron-sized Pd metal agglomerates were formed after annealing of a Pd film at 600°C in dry N₂ [28]. Therefore, the formation of large voids among such Pd metal agglomerates may enable us to obtain the XPS signal from Au in the electrode bulk without etching by Ar⁺ sputtering. And therefore, this may the reason for the appearance of small and depth-independent Au spectra, as shown in Figs. 11(d) and 13(d). From these results, the considerably smaller H₂ response in air of the Au/Pd/TiO₂ sensor annealed at 600°C (see Figs. 4(b)(i), 5(b) and 6(b)(i) than those of the as-fabricated Au/Pd/TiO₂ sensor as well as the asfabricated and annealed Au/Pt/TiO₂ sensors can be explained by the following scenario: H₂ molecules are likely consumed at the outer surface of the Au/Pd electrode annealed at 600°C

by the reduction of PdO to Pd and then high catalytic activity of Pd itself due to disappearance of Au on the electrode surface and therefore the amount of dissolved hydrogen species into the electrode is expected to be reduced.

3.4 Effects of homogeneous mixing of Au into the Pt electrode on H₂-sensing properties of the Pt/TiO₂ sensor

Two kinds of Pt- nAu/TiO_2 sensors (n: 6 or 16) were fabricated by utilizing simultaneous rf magnetron sputtering utilizing both Pt and Au targets, and their H₂-sensing properties after annealing at 600°C were measured at a forward bias of +100 mV in air and N2 under dry and wet atmospheres at 250°C, to investigate the effects of Au addition into the bulk of the Pt electrode on the H₂-sensing properties. The variations in the response to 8000 ppm H₂ of the Pt- nAu/TiO_2 sensors (n: 6 or 16) with absolute humidity are summarized in Fig. 14. For comparative purpose, the data obtained with the Pt/TiO₂ sensor after annealing at 600°C is also plotted in the same figure. The addition of 6 wt% Au into the Pt electrode enhanced the H₂ response of the Pt/TiO₂ sensor under both air and N₂, but, the H₂ response of the Pt-6Au/TiO₂ sensor became lager than that of Pt/TiO₂ sensor, especially under air, and thus the Res_{N₂}/Res_{air} of the Pt-6Au/TiO₂ sensor became smaller than that of the Pt/TiO₂ sensor. In addition, the H₂ response of the Pt-6Au/TiO₂ sensor in N₂ was comparable to that of the Pt/Au/TiO₂ sensor (see Fig. 5(a)). However, the H₂ response of the Pt- $6Au/TiO_2$ sensor in air was smaller than that of the Au/Pt/TiO₂ sensor, indicating that the amount of Pt on the electrode surface of the Pt- $6Au/TiO_2$ sensor was larger than that on the electrode surface of the Au/Pt/TiO₂ sensor, due to the simultaneous deposition of both Au and Pt, and thus the oxidation of H₂ molecules easily proceeded on the Pt-6Au electrode in comparison with the Au/Pt electrode. Therefore, the effectiveness of the addition of Au to both the surface and bulk of the Pt electrode by the simultaneous sputtering was quite low in comparison with that of the surface modification of a Pt electrode with a small amount of Au. The further increase in the amount of Au addition into the Pt electrode reduced the H₂ response of the Pt/TiO₂ sensor under all gaseous conditions in both air and N₂ under dry and wet atmospheres, and the Pt-*16*Au/TiO₂ sensor showed the large value of Res_{N_2}/Res_{air} (ca. 4.2 x 10³ under the most humidified atmosphere), probably because the amount of both dissociative adsorption of H₂ molecules and dissolution of the hydrogen species into the electrode drastically reduced by too large amount of Au addition to the surface and the bulk of the Pt electrode. These results strongly supported that the surface modification of the Pt electrode with Au was quite effective in improving the H₂ response of the Pt/TiO₂ sensor, again.

3.5 Concentration dependence of H₂ response of the Au/Pt/TiO₂ sensor

Variations in H₂ response of the Au/Pt/TiO₂ sensor annealed at 600°C with H₂ concentration in air and N₂ under dry and wet (AH: 12.8 g m⁻³) atmospheres and representative two response transients to H₂ are shown in Fig. 15. The magnitude of response to high-concentrated (8000 ppm) H₂ was less-dependent on the oxygen concentration, especially under wet atmosphere, also as shown in Figs. 4~6. This sensor showed extremely large H₂ response (over 10 mA, for more than 20 ppm H₂) in the all H₂ concentration range tested under both dry and wet N₂ atmospheres, and the addition of moisture decreased the H₂ response in the H₂ concentration range less than 10 ppm. However, the response value to 3 ppm H₂ in wet N₂ was relatively very large with maintaining the excellent signal to noise (S/N) ratio, as shown in Fig. 15(b). On the other hand, the H₂ response in dry air steeply decreased with a decrease in the H₂ concentration, while the H₂ response was improved in wet air, especially in the H₂ concentration range higher than 350 ppm. The lower limit for the H₂ detection under both dry and wet air atmospheres was ca. 20 ppm and it was much insensitive compared with that under both dry and wet N₂ in Fig. 15(b). Therefore, oxygen concentration dependence of the H₂ response (i.e., Res_{N_2}/Res_{air}) increased with a decrease in the concentration of H₂ in a sample gas, because the ratio of the amount of H₂ to be oxidized on the electrode to the initial concentration of H₂ in air increased with a decrease in the initial concentration of H₂.

However, the effect of oxygen concentration on the H_2 response properties was tested only at two points, i.e. 0% and 21% in volume, in the present study. Therefore, much more investigations on both the H₂-sensing properties of the Au/Pt/TiO₂ sensor at various oxygen concentrations between 0~21% in volume and the H₂-oxidation activity over the Au/Pt electrode are presently required to understand the effects of the oxygen concentration on the sensing mechanism accurately.

4. Conclusions

Effects of surface modification of noble-metal (M: Pt, Pd, or Pd-Pt) electrodes with Au on the H_2 -sensing properties of M/TiO₂ sensors mainly have been investigated at 250°C in air and N_2 under dry and wet atmospheres. H_2 response of all the M/TiO₂ sensors in N_2 was much larger than that in air. The Pt/TiO₂ sensor showed the smallest H_2 response in air among all the M/TiO₂ sensors tested, but the surface modification of the sensing electrode with Au was quite effective in enhancing the H_2 response of the Pt/TiO₂ sensor especially in wet air and then the Au/Pt/TiO₂ sensor showed the largest H_2 response among all the Au/M/TiO₂ sensors annealed at 600°C. Thus, the H_2 response of the Au/Pt/TiO₂ sensor in wet air was comparable to that in wet N_2 . In addition, the similar effect of the surface modification with Au was confirmed also for H_2 response of all the as-fabricated Au/M/TiO₂ sensors, but the homogeneous mixing of Au into the Pt electrode was not effective in improving the H_2 response of the Pt/TiO₂ sensor, when it is compared with case of the surface modification of the Pt electrode with Au. The XPS results indicated that a certain amount of Au components remained on the electrode surface of the annealed Au/Pt/TiO₂

sensors and all the as-fabricated Au/M/TiO₂ sensors limited the oxidation of H_2 molecules and increased the dissociatively-adsorbed hydrogen species on the electrode surface, and thus enhanced the H_2 response in air drastically.

References

- N. Yamazoe, New approaches for improving semiconductor gas sensors, Sens. Actuators B 5 (1991) 7-19.
- J. Mizsei, How can sensitive and selective semiconductor gas sensors be made?, Sens. Actuators B 23 (1995) 173-176.
- S. Zhuiykov, Hydrogen sensor based on a new type of proton conductive ceramic, Int. J. Hydrogen Energy 21 (1996) 149-759.
- A. Katsuki and K. Fukui, H₂ selective gas sensor based on SnO₂, Sens. Actuators B 52 (1998) 30-37.
- 5. W. Shin, K. Tajima, Y. Choi, N. Izu, I. Matsubara, N. Murayama, Planar catalytic combustor film for thermoelectric hydrogen sensor, Sens. Actuators B 108 (2005) 455-460.
- G. Korotcenkov, S. D. Han, J. R. Stetter, Review of electrochemical hydrogen sensors, Chem. Rev. 109 (2009) 1402-1433.
- 7. T. Watanabe, S. Okazaki, H. Nakagawa, K. Murata, K. Fukuda, A fiber-optic hydrogen gas sensor with low propagation loss, Sens. Actuators B 145 (2010) 781-787.
- T. Hübert, L. Boon-Brett, G. Black, U. Banach, Hydrogen sensors a review, Sens. Actuators B 157 (2011) 329-352.
- S. A. Anggraini, M. Breedon, N. Miura, Zn-Ta-based oxide as a hydrogen sensitive electrode material for zirconia-based electrochemical gas sensors, Sens. Actuators B 187 (2013) 58-64.
- 10. T. Hyodo, N. Nishida, Y. Shimizu, M. Egashira, Preparation and gas-sensing properties of

thermally stable mesoporous SnO₂, Sens. Actuators B 83 (2002) 209-215.

- 11. G. S. Devi, T. Hyodo, Y. Shimizu, M. Egashira, Synthesis of mesoporous TiO₂-based powders and their gas-sensing properties, Sens. Actuators B 87 (2002) 122-129.
- T. Hyodo, S. Abe, Y. Shimizu, M. Egashira, Gas sensing properties of ordered mesoporous SnO₂ and effects of coatings thereof, Sens. Actuators B 93 (2003) 590-600.
- T. Hyodo, K. Sasahara, Y. Shimizu, M. Egashira, Preparation of macroporous SnO₂ films using PMMA microspheres and their sensing properties to NOx and H₂, Sens. Actuators B 106 (2005) 580-590.
- K. Hieda, T. Hyodo, Y. Shimizu, M. Egashira, Preparation of porous tin dioxide powder by ultrasonic spray pyrolysis and their application to sensor materials, Sens. Actuators B 133 (2008) 144-150.
- Y. Shimizu, Y. Nakamura, M. Egashira, Effects of diffusivity of hydrogen and oxygen through pores of thick film SnO₂-based sensors on their sensing properties, Sens. Actuators B 13-14 (1993) 128-131.
- C.-D. Feng, Y. Shimizu, M. Egashira, Effect of microstructure of an SiO₂ thin film on the H2-sensing property of an SnO₂ sensor in an SiO₂/SnO₂ double-layered structure, Denki Kagaku (presently Electrochemistry) 61 (1993) 905-906.
- 17. C.-D. Feng, Y. Shimizu, M. Egashira, Effect of gas diffusion process on sensing properties of SnO₂ thin film sensors in a SiO₂/SnO₂ layer-built structure fabricated by sol-gel process, J. Electrochem. Soc. 141 (1994) 220-225.
- K. Wada, M. Egashira, Improvement of gas-sensing properties of a Pd/SnO₂ sensor by SiO₂ coating films formed by dipping method, J. Ceram. Soc. Jpn. 106 (1998) 84-88.
- A. Kawahara, H. Katsuki, M. Egashira, Fabrication of semiconductor oxide thick films by slide-off transfer printing and their NO₂-sensing properties, Sens. Actuators B 49 (1998) 273-278.

- A. Kawahara, K. Yoshihara, H. Katsuki, Y. Shimizu, M. Egashira, Gas-sensing properties of semiconductor heterolayers fabricated by a slide-off printing method, Sens. Actuators B 65 (2000) 17-22.
- T. Hyodo, T. Mori, A. Kawahara, H. Katsuki, Y. Shimizu, M. Egashira, Gas-sensing properties of semiconductor heterolayer sensors fabricated by slide-off transfer printing, Sens. Actuators B 77 (2001) 41-47.
- 22. Y. Shimizu, N. Kuwano, T. Hyodo, M. Egashira, High H₂ sensing performance of anodically oxidized TiO₂ Film contacted with Pd, Sens. Actuators B 83 (2002) 195-201.
- T. Iwanaga, T. Hyodo, Y. Shimizu, M. Egashira, H₂ sensing properties and mechanism of anodically oxidized TiO₂ film contacted with Pd Electrode, Sens. Actuators B 93 (2003) 519-525.
- 24. T. Hyodo, T. Iwanaga, Y. Shimizu, M. Egashira, Effects of electrode materials and oxygen partial pressure on the hydrogen sensing properties of anodically oxidized titanium dioxide films, ITE Letters, 4 (2003) 594-597.
- H. Miyazaki, T. Hyodo, Y. Shimizu, M. Egashira, Hydrogen-sensing properties of anodically oxidized TiO₂ film sensors: effects of preparation and pretreatment conditions, Sens. Actuators B 108 (2005) 467-472.
- 26. T. Hyodo, J. Ohoka, Y. Shimizu, M. Egashira, Design of anodically oxidized Nb₂O₅ films as a diode-type H₂ sensing material, Sens. Actuators B 117 (2006) 359-366.
- T. Hyodo, H. Shibata, Y. Shimizu, M. Egashira, H₂ sensing properties of diode-type gas sensors fabricated with Ti- and/or Nb-based materials, Sens. Actuators B 142 (2009) 92-104.
- Y. Shimizu, K. Sakamoto, M. Nakaoka, T. Hyodo, M. Egashira, H₂ sensing performance of TiO₂-based diode-type sensors, Adv. Mater. Res. 47-50 (2008) 1510-1513.
- 29. M. Nakaoka, T. Hyodo, Y. Shimizu, M. Egashira, Hydrogen sensing properties of an

anodized TiO₂ film equipped with a Pd-Pt electrode, ECS Trans. 16(11) (2008) 317-323.

- 30. T. Hyodo, M. Nakaoka, Y. Shimizu, and M. Egashira, Diode-type H₂ sensors using anodized TiO₂ films -structural and compositional controls of noble metal sensing electrodes, Sensor Letters 9 (2011) 641-645.
- 31. T. Hyodo, M. Nakaoka, Y. Shimizu, M. Egashira, Diode-type gas sensors fabricated with a titania film on a Ti plate and Pd-Pt electrodes -effects of polymer coating on the hydrogen-sensing properties-, IOP Conference Series: Materials Science and Engineering 18 (2011) 212006.
- 32. G. Yamamoto, T. Yamashita, K. Matsuo, T. Hyodo, Y. Shimizu, Diode-type sensors fabricated with anodized TiO₂ films equipped with Pd-Pt electrodes: effects of polytetrafluoroethylene or polyimide coating on their H₂ sensing properties, Sens. Actuators B 183 (2013) 253-264.
- 33. T. Hyodo, G. Yamamoto, K. Kamada, Y. Shimizu, Improvements in H₂-sensing properties of diode-type gas sensors using anodized TiO₂ films and Pd-Pt electrodes –polymer coating on the electrodes II–, Chemical Sensors, in press.
- 34. C. S. Shern, Changes in work function of hydrogen and oxygen adsorption on Pt(110) surface measured by mirror electron microscope-LEED, Chinese Journal of Physics, 30(6), pp. 841-850 (1992).
- 35. N. Guillet, A. Rives, R. Lalauze, C. Pijolat, Study of adsorption of oxygen on β-Al₂O₃ + Au and β-Al₂O₃ + Pt work function measurements proposition of a model, Appl. Surf. Sci. 210 (2003) 286-292.
- C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, G. E. Muilenberg, Handbook of Xray Photoelectron Spectroscopy, Perkin-Elmer Corp., Minnesota (1978).
- 37. Z. Bastl, Š Pick, Angle resolved X-ray photoelectron spectroscopy study of Au deposited on Pt and Re surface, Surf. Sci. 566-568 (2004) 832-836.

38. C. Berg, H. J. Venvik, F. Strisland, A. Borg, Nucleation and growth of Au overlayers on Pt(100)-hex-R0.7° studied by STM and photoelectron spectroscopy, Surf. Sci. 409 (1998) 1-15.

Figure Captions

- Fig. 1. (a) Top and (b) cross-sectional schematic drawings of a diode-type gas sensor.
- Fig. 2. *I-V* characteristics of annealed Pt/TiO₂ and Au/Pt/TiO₂ sensors in base gases (air and N₂) and in 8000 ppm H₂ balanced with the base gases under dry and the most humidified atmospheres (AR: 12.8 g m⁻³) at 250°C.
- Fig. 3. *I-V* characteristics of M/TiO₂ and Au/M/TiO₂ sensors (M: Pt, Pd and Pd-Pt, annealed at 600°C) in air and N₂ containing 8000 ppm H₂ under dry and the most humidified atmospheres (AR: 12.8 g m⁻³) at 250°C.
- Fig. 4. Response transients of M/TiO_2 and $Au/M/TiO_2$ sensors (M: Pt, Pd and Pd-Pt, annealed at 600°C) to 8000 ppm H₂ at a forward bias of +100 mV in dry air and N₂ at 250°C.
- Fig. 5. Variations in the response to 8000 ppm H₂ of M/TiO₂ and Au/M/TiO₂ sensors (M: Pt, Pd and Pd-Pt, annealed at 600°C) with absolute humidity at 250°C.
- Fig. 6. Response transients of the M/TiO₂ and Au/M/TiO₂ sensors (M: Pt, Pd and Pd-Pt, annealed at 600°C) to 8000 ppm H₂ at a forward bias of +100 mV in wet air and N₂ (AH: 12.8 g m⁻³) at 250°C.
- Fig. 7. Variations in the response to 8000 ppm H₂ of as-fabricated Au/M/TiO₂ sensors (M: Pt, Pd and Pd-Pt, just heat-treated at 250°C (operating temperature) for 1 h before the sensor measurement) with absolute humidity at 250°C, together with those of the Au/M/TiO₂ sensors annealed at 600°C.
- Fig. 8. XPS spectra of Au on the surface and in the bulk of the electrodes of the Au/Pt/TiO₂ sensors (i) as-fabricated, (ii) annealed at 600°C for 1 h in dry air and (iii) annealed at 600°C for 1 h in dry air, followed by at 600°C for 1 h in dry N₂.
- Fig. 9. XPS spectra of Pt on the surface and in the bulk of the electrodes of the Au/Pt/TiO₂ sensors (i) as-fabricated, (ii) annealed at 600°C for 1 h in dry air and (iii) annealed at 600°C for 1 h in dry air, followed by at 600°C for 1 h in dry N₂.

- Fig. 10. XPS depth profiles of Au and Pt in the electrodes of the Au/Pt/TiO₂ sensors (i) asfabricated, (ii) annealed at 600°C for 1 h in dry air and (iii) annealed at 600°C for 1 h in dry air, followed by at 600°C for 1 h in dry N₂.
- Fig. 11. XPS spectra of Au on the surface and in the bulk of the electrodes of Au/Pd/TiO₂ sensors (i) as-fabricated, (ii) annealed at 250°C for 1 h in dry air, (iii) annealed at 600°C for 1 h in dry air and (iv) annealed at 600°C for 1 h in dry air, followed by at 600°C for 1 h in dry N₂.
- Fig. 12. XPS spectra of Pd on the surface and in the bulk of the electrodes of Au/Pd/TiO₂ sensors (i) as-fabricated, (ii) annealed at 250°C for 1 h in dry air, (iii) annealed at 600°C for 1 h in dry air and (iv) annealed at 600°C for 1 h in dry air, followed by at 600°C for 1 h in dry N₂.
- Fig. 13. XPS depth profiles of Au and Pd in the electrodes of Au/Pt/TiO₂ sensors (i) asfabricated, (ii) annealed at 250°C for 1 h in dry air, (iii) annealed at 600°C for 1 h in dry air and (iv) annealed at 600°C for 1 h in dry air, followed by at 600°C for 1 h in dry N₂.
- Fig. 14. Variations in the response to 8000 ppm H₂ of the Pt- nAu/TiO_2 sensors (n: 6 or 16) with absolute humidity, together with that of the Pt/TiO₂ sensor annealed at 600°C.
- Fig. 15. (a) Variations in H₂ response of the Au/Pt/TiO₂ sensor annealed at 600°C with H₂ concentration in air and N₂ under dry and wet (AH: 12.8 g m⁻³) atmospheres and (b) representative two response transients to H₂.

Sensor	Power to	o target / W	(Time / s)	Thiskness of slastrade / nm		
	Pd	Pt	Au	- Thickness of electrode / him		
Pd/TiO ₂	300 (1080)		-	287		
Pt/TiO ₂	-	300 (480)	-	78		
Pd-Pt/TiO ₂	300 (180)	200 (180)	-	177		
Au/Pd/TiO ₂	300 (300)	-	40 (10)	111		
Au/Pt/TiO ₂	-	300 (360)	40 (10)	84		
Au/Pd-Pt/TiO ₂	300 (180)	200 (180)	40 (10)	79		
Pt-6Au/TiO ₂	250 (300)	-	40 (300)	138		
Pt-16Au/TiO ₂	200 (600)	-	80 (300)	310		

Table 1. Sputtering conditions and thickness of electrodes of all sensors.

Sensor	90% response time / min				90% recovery time / min			
	Dry		Wet		Dry		Wet	
	Air	N_2	Air	N ₂	Air	N_2	Air	N_2
Pt/TiO ₂	0.42	5.58	0.68	7.19	1.29	2.28	1.03	2.12
Au/Pt/TiO ₂	1.42	0.46	1.58	1.05	0.68	2.92	2.22	3.97

Table 2. 90% response and recovery times of Pt/TiO_2 and $Au/Pt/TiO_2$ sensors in air and N_2 under dry and the most humidified (AH: 12.8 g m⁻³) atmospheres.

Fig. 1. Hyodo et al.

(a) Dry atmosphere

(b) Wet atmosphere (AH: 12.8 g m⁻³)

Fig. 2. Hyodo et al.

Fig. 3. Hyodo et al.

Fig. 4. Hyodo et al.

Fig. 5. Hyodo et al.

Fig. 6. Hyodo et al.

Fig. 7. Hyodo et al.

Fig. 8. Hyodo et al.

Fig. 9. Hyodo et al.

Fig. 10. Hyodo et al.

Fig. 11. Hyodo et al.

Fig. 12. Hyodo et al.

Fig. 13. Hyodo et al.

Fig. 14. Hyodo et al.

Fig. 15. Hyodo et al.