Female pygmy squid cryptically favour small males and fast copulation as observed by removal of spermatangia

Noriyosi Sato^{1, 2}, Takashi Kasugai³, Hiroyuki Munehara⁴

¹ Division of Biosphere Science, Graduate School of Environmental Science,

Hokkaido University, Hokkaido, 0600810, Japan.

² Graduate School of Fisheries Science and Environmental Studies, Nagasaki

University, Nagasaki, 8528521, Japan.

³ Port of Nagoya Public Aquarium, Aichi, 4550033, Japan.

⁴ Usujiri Fisheries Station, Field Science Centre for Northern Biosphere,

Hokkaido University, Hokkaido, 0411613, Japan.

Author for correspondence:

Noriyosi Sato

E-mail address: norico3000@gmail.com.

Headings: female pygmy squid choose small male via CFC

Word counted: 4328

26 June 2014

1 Abstract

 $\mathbf{2}$ Females can express mate (or fertilisation) preferences after copulation. In the Japanese pygmy squid, Idiosepius paradoxus, in which males do not show any 3 conspicuous pre-copulatory displays, the females remove the spermatangia 4 attached to their bodies after copulation. In this study, we observed pre- and $\mathbf{5}$ 6 post-copulatory behaviours and analysed which variables associated with $\overline{7}$ copulation were correlated with spermatangia removal. When females mated with 8 larger males or copulation lasted longer female squid elongated their buccal mass after copulation and removed more spermatangia. We also investigated the effects 9 10 of spermatangia removal on the retained spermatangia to predict whether cryptic female choice (CFC) influenced fertilisation success. Spermatangia removal by 11 females had a stronger effect on the number of spermatangia retained than did the 1213number of spermatangia ejaculated by males. These results suggest that spermatangia removal after copulation by buccal mass elongation works as a CFC 1415in Japanese pygmy squid, and females cryptically favoured small males and fast 16 copulation.

17 Keywords: cryptic female choice, post-copulatory sexual selection, mate choice,

18 spermataniga removal, cephalopod, Idiosepius paradoxus

 $\mathbf{2}$

26 June 2014

19 Introduction

20 Most studies of sexual selection are of animals that show courtship or antagonistic displays before mating (Anderson 1994). Sexual selection is not 2122thought to arise in animals that do not show pre-copulatory displays. However, over the past 30 years, research has explored the development of post-copulatory 23sexual selection, such as sperm competition (Parker 1970; Birkhead and Møller 241998) and cryptic female choice (CFC) (Thornhill 1983; Eberhard 1996). 25Group-spawning males that do not show pre-copulatory displays invest their 26energy at the testis via sperm competition, suggesting that post-copulatory sexual 2728selection takes place in these animals (Byrne et al. 2002; Ota and Kohda 2006). Few studies have examined CFC in these animals because it is thought that 2930 females choose males based on their pre-copulatory traits. Furthermore, no study 31has examined post-copulatory mate choice in animals that do not expressed conspicuous pre-copulatory traits. 3233 Cryptic female choice can arise when females might be unable to reject 34males or prevent them from mating, or when it could be very costly to do so. For instance, many crustacean species forcefully mate and females receive sperm 35from multiple males (Sainte-Marie et al. 1999; Thiel and Hinojosa 2003), and 36 37sexual harassment by males can halve the foraging efficiency of female mosquitofish, Gambusia holbrooki (Pilastro et al. 2003). In these cases, females 38may accept mating and then choose the sperm to use for fertilisation by CFC. 39 Even with post-copulatory mate choice, males can choose their preferences based 40 on general sexual traits (e.g., body size and colour), which males can assess 41

42 before copulation. In insects, however, males show various behaviours during and

43 after copulation (e.g., spiders using their legs to drum or rub on the female's

26 June 2014

44	abdomen), which is called copulatory courtship (Eberhard 1991, 1994). Some
45	studies report that females increase the chances of paternity based on the intensity
46	of the copulatory courtship behaviour (Edvardsson and Arnqvist 2000; Peretti and
47	Eberhard 2010). Therefore, even if males do not perform any pre- or
48	post-copulatory displays, females may express a preference using copulation itself
49	(e.g., copulation duration and copulation movement) as a basis for the selection
50	criteria and choose a male based on CFC.
51	The Japanese pygmy squid, Idiosepius paradoxus, shows neither
52	antagonistic behaviour nor courtship displays, and males usually copulate with
53	females freely (Kasugai 2000). Pygmy squid mate in a head-to-head position; the
54	male darts toward the female, grasps hold of her, and attaches spermatangia,
55	capsules containing spermatozoa, to the base of her arms. The squid do not engage
56	in group spawning or any copulatory courtship behaviours. Recently, we observed
57	that females frequently elongated their buccal mass, picked up the spermatangia,
58	and removed them after copulation by eating them or by blowing water from the
59	funnel (Sato et al. 2013). This behaviour may be a type of CFC.
60	Spermatangia or spermatophore removal is an ideal mechanism for
61	studying CFC because we can directly observe sperm selection processes. In some
62	field crickets (Orthoptera: Gryllidae), females remove the externally attached
63	spermatophores during and after copulation (Sakaluk 1984; Simmons 1986).
64	Sperm are transferred from the spermatophore to the spermathecae (sperm storage
65	organs) on the females, and the longer the spermatophore remains attached, the
66	higher are the chances of paternity (Sakaluk 1984; Simmons 1986; Bussière et al.
67	2006). Teleogryllus commodus females remove spermatophores before sperm
68	transfer is complete when their mates are unattractive (Bussière et al. 2006; Hall

26 June 2014

et al. 2010). These studies suggest that these females cryptically chose males viaspermatophore removal.

Coastal squid males also transfer spermatophores to females (Hanlon and 7172Messenger 1996). During spermatophore transfer, a spermatophoric reaction occurs such that a spermatangium is extruded from the spermatophore and 73attaches to the female's body using a type of cement (Marian 2012; Sato et al. 742013). Sperm are transferred from the spermatangia to the seminal receptacle 7576located around the buccal mass (mouth) and stored until spawning (Sato et al. 2010). The seminal receptacle is a simple sac that does not connect to the ovary in 7778the mantle. It is thought that fertilisation occurs outside the body. Spermatangia 79are also able to act as a sperm storage tank, and the sperm contained therein directly contribute to fertilisation in the cuttlefish Sepia apama (Naud et al. 2005). 80 81 Therefore, spermatangia removal by female pygmy squid would influence fertilisation success. 82

Female pygmy squid have been observed elongating their buccal mass 83 84 and picking up the spermatangia within five minutes after copulation (Sato et al. 2013). The length of time taken to elongate the buccal mass is a criterion for 85 measuring effective spermatangia removal and, therefore, female preference. If 86 87 the female changes the duration of buccal mass elongation and thereby the number of spermatangia removed in response to a male's morphological and 88 behavioural traits, one might suggest that sexual selection via CFC is occurring in 89 90 these pygmy squid. Male pygmy squid produce large spermatangia, which are attached to the base of the female's arms. The number of spermatangia removed 91 92and the number remaining can be counted, the number ejaculated can be evaluated, 93 and the final storage can be assessed. In this study, we observed pre- and

 $\mathbf{5}$

26 June 2014

94 post-copulatory behaviour using video data from a previous experiment (Sato et al.

2013) and analysed which variables associated with copulation resulted inspermatangia removal.

97 To test whether CFC influences fertilisation success, we investigated the 98 effects of male traits and spermatangia removal behaviour on the final number of 99 spermatangia retained. Finally, we examined the number of spermatangia retained 100 and investigated the effects of buccal mass elongation, copulation time, and the 101 numbers of spermatangia passed to the females to ascertain what effects these 102 variables had on the numbers retained by the females.

103 Material and Methods

104 Analysis of copulatory and post-copulatory behaviours

105We collected and reared pygmy squid as previously described (Sato et al. 106 2013) from the near-shore waters of the Chita Peninsula, central Honshu, Japan 107 (34°43'N, 136°58'E), using a small dragnet on 12 and 29 April 2009. Live 108 specimens were transported to the Usujiri Fisheries Station, Field Science Centre 109 for Northern Biosphere, Hokkaido University, Japan (41°56'N, 140°56'E). Before 110 being introduced into the experimental aquarium, all squid were separated by sex 111 and maintained in four aquaria $(60 \times 45 \times 45 \text{ cm})$ with closed circulation systems. One male and one female were introduced into an experimental aquarium 112 $(30 \times 40 \times 20 \text{ cm})$. A plastic bar $(1 \times 15 \text{ cm})$ was placed on the sand in the bottom 113 114 as a substrate for the squid to adhere to. The water temperature in this aquarium was the same as in the stock aquaria and maintained at 22°C. Since the squid 115116needed several hours to become accustomed to the aquarium conditions, we split the aquarium into two areas using a partition and assigned each sex to an area (30 117

26 June 2014

118	\times 20 \times 20 cm) 3 h before the experiment began. All trials were conducted between
119	1000 and 1900 hr.

Thirty-two trials were conducted between 16 April and 12 May 2009. In 120121total, 32 females (dorsal mantle length (DML); 11.89 ± 1.61 mm) and 32 males (DML; 8.65 ± 0.95 mm) were used, and each squid was used in only one trial. At 122123the start of the experiment, the partition was removed, and copulation was 124observed. Males copulated with females immediately after the partition was removed. After one copulation was observed, the male was removed from the 125aquarium, and the post-copulatory behaviour of the female was recorded by video 126127for 1 h. All trials were analysed from the video data, and copulation duration (defined as the time from when the male began to grasp the female to the time 128129when he left the female) and elongating duration (defined as the time from when 130 the female began to elongate the buccal mass to the time when she finished) were recorded. In five trials, the males were removed after two copulations because 131132they copulated again immediately after the first copulation. We counted the 133number of spermatangia passed during copulation, the number of attached spermatangia (i.e. spermatangia not blown off by a water jet soon after 134copulation), the number of spermatangia removed by buccal mass elongation, and 135136 the number of spermatangia retained on the female's body until the end of the experiment. 137All squid observed were anaesthetised with 1% ethanol and fixed in 138

140 mm.

139

141 Statistical analysis

 $\mathbf{7}$

Bouin's solution after the experiment, and DML was measured to the nearest 0.01

26 June 2014

142	We used a generalised linear model (GLM) with a Poisson binomial
143	distribution and log link function to analyse whether the duration of buccal mass
144	elongation influenced the number of spermatangia removed. The significance of
145	buccal mass elongation duration on the number of removed spermatangia was
146	assessed using the likelihood ratio test.
147	A GLM was used to analyse the association between buccal mass

elongation and other variables. The duration of buccal mass elongation (BE) for
each trial was set as the response variable and the data were assumed to follow a
gamma distribution. We incorporated potential factors that could affect buccal
mass elongation duration and formed the initial model using the following log link
function:

153
$$\log (BE) = \alpha_0 + \alpha_1 MS + \alpha_2 FS + \alpha_3 SR + \alpha_4 AS + \alpha_5 CD,$$

154where MS is the male DML, FS is the female DML, SR is the size ratio (male DML / female DML), AS is the number of attached spermatangia, CD is the 155156copulation duration (for the five trials in which the males copulated twice, we 157used the average duration of the two copulations), and $\alpha_0 - \alpha_5$ are the estimated parameters of interest. To identify factors affecting elongation duration, we 158159performed model selection based on Akaike's information criteria (AIC). The 160 model with the smallest AIC value was chosen as the best fit. We then evaluated the effects of the explanatory variables based on increments of the AIC (Δ AIC) by 161 removing variables from the best-fit model one at a time. 162163 We used a GLM with a negative binomial distribution and log link function to analyse whether male traits (copulation duration and male DML) 164

- 165 influenced the numbers of spermatangia removed and retained until the end of the
- 166 experiment. GLM was also used to assess which sex strongly influenced the

26 June 2014

167	number of spermatangia retained until the end of the experiment by evaluating the
168	effects of copulation duration and buccal mass elongation on this number. The
169	number of spermatangia retained until the end of the experiment was set as the
170	response variable and was treated as count data that followed a Poisson
171	distribution. The significance of the fixed effects on the dependent variable was
172	assessed with a likelihood ratio test using the log likelihood model (including the
173	fixed effect) and the null model (without the fixed effect). Finally, we investigated
174	whether the numbers of attached spermatangia and removed spermatangia
175	influenced the number of spermatangia retained until the end of the experiment.
176	We evaluated the effects of the explanatory variables based on ΔAIC by removing
177	variables from the model. We used R version 2.15.2 for all analyses (R
178	Development Core Team 2012).

179 **Results**

180 The number of spermatangia passed by males to females during 181 copulation (mean \pm SD = 3.64 \pm 1.72, *n* = 37) was positively correlated with copulation duration (4.57 \pm 2.59 s, n = 37; Spearman's rank correlation: $r_s = 0.41$, 182P = 0.013). Neither male DML (8.65 ± 0.95 mm, n = 32) nor female DML (11.89 183184 \pm 1.61 mm, n = 32) was significantly related to copulation duration (male DML: $r_{\rm s} = -0.03, n = 37, P = 0.87$; female DML: $r_{\rm s} = -0.13, n = 37, P = 0.44$) or the 185number of spermatangia (male DML: $r_s = 0.18$, n = 37, P = 0.28; female DML: r_s 186 = -0.15, n = 37, P = 0.38). 187All the females blew water from the funnel immediately after copulation. 188 189An average of 1.67 ± 0.87 spermatangia were removed in nine of 32 trials, and all

190 the spermatangia were removed by water jetting in two trials. The number of

26 June 2014

In 28 trials, the females elongated the buccal mass within 5 min after 194 copulation. Fifteen females picked up 3.47 ± 2.00 spermatangia and removed 195these by either eating them or jetting. In eight females, all the spermatangia were 196 removed. The remaining 13 females had not picked up any spermatangia by the 197 198 end of the observation period. In 28 trials, 20 females stopped elongation even if some spermatangia remained on the body. Elongation duration had a significant 199effect on the number of spermatangia removed (GLM with likelihood ratio test: γ^2 200 = 9.609, P < 0.01, see Fig. 1). Four females did not elongate their buccal mass by 201202the end of the observation period in 32 trials; in one of these, all of the 203spermatangia were removed by a water jet.

204For buccal mass elongation duration, the optimal model selected by AIC 205was as follows: log (BE) = $\alpha_0 + \alpha_1 MS + \alpha_3 SR + \alpha_4 AS + \alpha_5 CD$. The estimated 206parameters in the GLM are shown in Table 1. The best-fit models did not include 207 female DML. Male DML and copulation duration had large effects in the models, 208and the effect of buccal mass elongation duration increased with male size and 209copulation duration. Both male DML and copulation duration were significantly related to removed spermatangia (GLM with a likelihood ratio test: male DML γ^2 210= 6.388, P < 0.05, see Fig. 2a; copulation duration $\chi^2 = 4.544$, P < 0.05, Fig. 2b). 211212Neither copulation duration nor male DML had a significant effect on the 213number of spermatangia kept until the end of the experiment (GLM with a likelihood ratio test: copulation duration $\chi^2 = 0.332$, P = 0.56; male DML $\chi^2 =$ 2140.003, P = 0.96). The GLM model for the final number of spermatangia showed 215

26 June 2014

216	that numbers of removed spermatangia and attached spermatangia had a large
217	effect on the final number of spermatangia, with the former having a stronger
218	effect than the latter ($\Delta AIC = 41.65$ and 22.10, respectively, Table 2). Copulation
219	duration did not have a significant effect on the final number of spermatangia
220	(GLM with a likelihood ratio test: $\chi^2 = 0.013$, $P = 0.91$), but elongation duration
221	did have a significant effect (GLM with a likelihood ratio test: $\chi^2 = 6.867$, $P <$
222	0.01, Fig. 3).

223 **Discussion**

224Female pygmy squid cryptically favoured small males and short copulation duration as ascertained by the numbers of removed spermatangia. 225226 Eberhard suggested that female bias during or after copulation could be associated 227with particular male characteristics, indicating CFC (Eberhard 1996). Our study 228suggested that spermatangia removal by buccal mass elongation following 229copulation is a mechanism of CFC in Japanese pygmy squid. The number of 230spermatangia removed increased with the duration of buccal mass elongation, which suggested that females attempted to decrease the number of retained 231232spermatangia by buccal mass elongation. Duration of buccal mass elongation 233models showed that male traits (male DML and copulation duration) had large effects. There was a significant relationship between male traits and the numbers 234235of spermatangia removed. 236When females copulated with larger males or when the copulation

duration was longer, female squid elongated the buccal mass for a longer period of time after copulation, and more spermatangia were removed. This suggests that small males with short copulation duration were favoured. Generally, larger males

26 June 2014

240	are favoured because a larger body is better for male-male rivalry or male-female
241	interactions (Cote and Hunte 1989; Cooper Jr. and Vitt 1993; Shine and Mason
242	2005; Charlton et al. 2007). In flying animals, small males are preferred, as they
243	have lower flight costs and increased agility. For example, in the polygynous bat
244	Saccopteryx bilineata, small males are better at defending the harem than are
245	larger ones (Voigt et al. 2005), and in the kestrel Falco tinnunculus, small males
246	are better providers in courtship and at feeding offspring (Hakkarainen et al. 1996).
247	Although we do not know whether small pygmy squid are highly agile, agility
248	would not be of a great benefit because they do not form harems or provide
249	parental care.
250	Female pygmy squid also preferred short copulation duration. This
251	preference may relate to predation risk. Predation risk is higher during copulation
252	because of the increased conspicuousness of a mating pair (Magnhagen 1991;
253	Magurran and Nowak 1991; Siemers et al. 2012). Fast copulation would be less
254	conspicuous, which may increase survival rates. Predation risk may be high for
255	pygmy squid because many fish live in the seagrass beds where pygmy squid
256	mate (Nakamura et al. 2003; Horinouchi and Sano 2000), and the pygmy squid is
257	so small that most fish may predate on them. Additionally, they do not show
258	pre-copulatory displays, which may support this hypothesis.
259	Having a small body might also be an advantage in avoiding predation.
260	The pygmy squid can adhere to the substrata, such as seagrass, using an adhesive
261	organ on the dorsal mantle, where they can hide to avoid predation (Sasaki 1923).
262	Their small body size would make them less conspicuous and thus increase their
263	survival rates. This could be why females prefer small males; however, further
264	studies are needed to investigate the relationships among predation risk,

26 June 2014

copulation duration, and body size.

266Criptic female choice might be an important mechanism in the 267determination of fertilisation success in the pygmy squid. The most important 268variable in the final spermatangia model was not ejaculation but the number of spermatangia removed. Moreover, only buccal mass elongation duration, which 269270indicated effort directed toward spermatangia removal, was significantly related to 271the number of spermatangia that remained. Male traits did not influence the 272number of spermatangia that remained. In these cephalopods, spermatangia attached to the female body release sperm from the oral end after completion of 273274the spermatophoric reaction (Drew 1919; Marian 2012). A previous study on 275pygmy squid suggested that sperm from released spermatangia actively swam to 276the seminal receptacle (Sato et al. 2010). This would suggest that the volume of 277sperm stored would increase with the number of attached spermatangia. 278Unfortunately, it is not known whether sperm volume stored in the seminal receptacle is related to fertilisation success in cephalopods. In a mating pair of 279280loliginid squid, a male can pass spermatangia at the opening of the egg duct, which ensures the highest paternity (Iwata et al. 2005); however, this does not 281appear to be a priority in cuttlefish, which pass spermatangia around the buccal 282283mass (Naud et al. 2005). The sperm storage system in the pygmy squid, which would be similar to that in cuttlefish, relied on the seminal receptacle. Histological 284285studies in cephalopods have found that spermatozoa are not layered in the seminal 286receptacle (e.g., Drew, 1911; Naud et al. 2005; Sato et al. 2010). The sperm 287 volume in the seminal receptacle might be directly related to fertilisation success. 288However, many studies of sperm competition have shown that sperm precedence influences fertilisation success (Birkhead and Møller 1998; Urbani et al. 1998; 289

26 June 2014

Price et al. 1999). To confirm this hypothesis, it would be necessary to conductpaternity analysis.

292The longer male pygmy squid copulate, the more spermatangia they pass 293to the females. However, females dislike longer copulation and remove more spermatangia when the copulation duration is longer. These results suggest 294295possible conflict between the sexes over copulation duration (Arnqvist and Rowe 2962005). Pygmy squid transfer spermatangia two to three times during one 297copulation (Sato et al. 2013). Males change the location of spermatangia attachment during each transfer, which may be a defence against spermatangia 298removal by females. 299

300 However, the possibility that spermatangia removal is not CFC remains 301 because we did not know the exact sperm volumes of the spermatangia passed by 302males and those retained spermatangia in females, or fertilisation success. A large 303 amount of sperm might not be needed for storage or fertilisation in pygmy squid. 304 Surplus sperm passed by males might serve as a nuptial gift and provide 305nutritional resources. For example, female land snails can digest stored sperm 306 (Rigby 1963). The behaviour might also be performed simply to keep clean. To 307 resolve this issue, we should clarify the mechanism of sperm transfer and storage 308 in cephalopods and determine how many sperm are stored in the seminal 309 receptacle and used for fertilisation.

In conclusion, although pygmy squid do not show any pre-copulatory behaviour, females cryptically favour small males and fast copulation, as demonstrated by post-copulatory spermatangia removal. Even without copulatory displays, sexual selection may arise via CFC because females can keep or reject sperm by establishing mate preference during copulation.

315 Acknowledgments

316	We thank T. Takegaki for his critical comments on the manuscript and F.
317	Takeshita for his advice on the statistics and R graphics. We also thank two
318	anonymous referees for their helpful comments. This research was supported
319	financially by the Mikimoto Fund for Marine Ecology and Research Fellowships
320	of the Japan Society for the Promotion of Science for Young Scientists (to NS).

321 **References**

322	Anderson	M. (1994) Sexual selection. Princeton, NJ: Princeton University Press.
323	Arnqvist,	G., & Rowe, L. (2005) Sexual conflict. Princeton, NJ: Princeton University Press.
324	Birkhead.	T. R., & Møller, A. P. (1998) Sperm competition and sexual selection. London, UK:
325	,	Academic Press
326	Duccière	I E Hunt I Jonniona M D & Prooka D (2006) Sovual conflict and aruntic
320	Bussiere,	L. F., Hunt, J., Jennions, M. D., & Diooks, K. (2000) Sexual conflict and cryptic
327	-	remale choice in the black field cricket, <i>Teleogryllus commodus</i> . Evolution, 60(4),
328		792-800.
329	Byrne, P. 0	G., Roberts, J. D., & Simmons, L. W. (2002) Sperm competition selects for
330	1	increased testes mass in Australian frogs. Journal of Evolutionary Biology, 15(3),
331		347-355.
332	Charlton,	B. D., Reby, D., & McComb, K. (2007) Female red deer prefer the roars of larger
333		males. Biology Letters, 3(4), 382-385.
334	Cooper. Jr	: W. E., & Vitt, L. J. (1993) Female mate choice of large male broad-headed skinks.
335	,	Animal Behaviour 45(4) 683-693
336	Cote I M	& Hunte W (1989) Male and female mate choice in the redlin blenny: why
337		higger is better Animal Bahaviour 38(1) 78-88
220	Drow C	A (1011) Sexual activities of the squid Lalice neglii (Les.) 1 Convlation and
220	Diew, G. A	A. (1911) Sexual activities of the squid, <i>Longo peuli</i> (Les.) 1. Copulation, egg
222		Taying and return zation. Journal of Morphology, $22(2)$, $527-559$.
340	Drew, G. A	A. (1919) Sexual activities of the squid, <i>Loligo pealii</i> (Les.) 2. The spermatophore;
341		its structure, ejaculation and formation. <i>Journal of Morphology</i> , 32(2), 379-436.
342	Eberhard,	W. G. (1991) Copulatory courtship and cryptic female choice in insects. <i>Biological</i>
343		<i>Reviews</i> , 66(1), 1-31.
344	Eberhard,	W. G. (1994) Evidence for widespread courtship during copulation in 131 species
345		of insects and spiders, and implications for cryptic female choice. <i>Evolution</i> , 48(3),
346		711-733.
347	Eberhard,	W. (1996) <i>Female control: sexual selection by cryptic female choice</i> . Princeton, NJ:
348		Princeton University Press
349	Edvardsso	on, M., & Arnovist, G. (2000) Copulatory courtship and cryptic female choice in red
350		flour beetles Tribolium castaneum Proceedings of the Royal Society Series
351		R-Biological Science 267(1443) 559-563
359	Hakkarain	Debiological Science, 207(1443), 557-565.
959	Паккаган	(1006) A test of male moting and hunting success in the leastful the advantages of
000 0 7 4		(1990) A test of mate mating and numming success in the kester. the auvantages of
354		smallness. Behavioral Ecology and Sociobiology, 39(6), 375-380.
355	Hall, M. L	D., Bussiere, L. F., Demont, M., Ward, P. I., & Brooks, R. (2010) Competitive PCR
356	1	reveals the complexity of postcopulatory sexual selection in <i>Teleogryllus commodus</i> .
357	L	Molecular Ecology, 19(3), 610-619.
358	Hanlon, R	. T., & Messenger, J. B. (1996) Cephalopod behaviour. Cambridge, UK: Cambridge
359	1	University Press.
360	Horinouch	ni, M., & Sano, M. (2000) Food habits of fishes in a Zostera marina bed at
361		Aburatsubo, central Japan. Ichthyological Research, 47(2), 163-173.
362	Iwata, Y.,	Munehara, H., & Sakurai, Y. (2005) Dependence of paternity rates on alternative
363	, ,	reproductive behaviors in the souid Loligo bleekeri. Marine Ecology Progress
364		Series 298 219-228
365	Kasugai T	Γ (2000) Reproductive behaviour of the pygmy cuttlefish <i>Idiosenius paradoxys</i> in
366	Kasugai, I	an aquarium Vanus 50(1) 37 14
367	Maanhaaa	an aquation. Vertus, $57(1)$, $57(-74)$.
207	wiaginiage	En, C. (1991) Fledation fisk as a cost of reproduction. Trends in Ecology and
300		$E_{VOLULION, 0}(0), 34-50.$
369	Magurran,	, A. E., & Nowak, M. A. (1991) Another battle of the sexes: the consequences of
370	1	sexual asymmetry in mating costs and predation risk in the guppy, <i>Poecilia</i>
371		reticulata. Proceedings of the Royal Society Series B-Biological Science, 246(1315),
372		31-38.
373	Marian, J.	E. A. R. (2012) Spermatophoric reaction reappraised: novel insights into the
374		functioning of the loliginid spermatophore based on Doryteuthis plei (Mollusca:
375		Cephalopoda). Journal of Morphology, 273(3), 248-278.

$376 \\ 377$	Nakamura, Y., Horinouchi, M., Nakai, T., & Sano, M. (2003) Food habits of fishes in a seagrass bed on a fringing coral reef at Iriomote Island, southern Japan.
378	Ichthyological Research, 50(1), 15-22.
379	Naud, M-L. Shaw, P. W., Hanlon, R. T., & Havenhand, J. N. (2005) Evidence for biased use
380	of sperm sources in wild female giant cuttlefish (Senia anama) Proceedings of the
381	Royal Society Series B. Biological Science, 272(1567), 1047-1051
360	Ota K - & Kohda M (2006) Description of alternative male reproductive testics in a
004 909	ota, K., & Konda, W. (2000) Description of alternative male reproductive factics in a
000 004	shen-brooding cichid, <i>Telmalochromis villatus</i> , in Lake Tanganyika. <i>Journal of</i>
384	Ethology, 24(1), 9-15.
385	Parker, G. A. (1970) Sperm competition and its evolutionary consequences in the insects.
386	Biological Reviews, 45 (4), 525-567.
387	Peretti, A. V., & Eberhard, W. G. (2010) Cryptic female choice via sperm dumping favours
388	male copulatory courtship in a spider. Journal of Evolutionary Biology, 23(2),
389	271-281.
390	Pilastro, A., Benetton, S., & Bisazza, A. (2003) Female aggregation and male competition
391	reduce costs of sexual harassment in the mosquitofish Gambusia holbrooki. Animal
392	<i>Behaviour</i> , 65(6): 1161-1167.
393	Price, C. S. C., Dyer, K. A., & Coyne, J. A. (1999) Sperm competition between <i>Drosophila</i>
394	males involves both displacement and incapacitation. Nature, 400(6743), 449-452.
395	R Development Core Team. (2012) R: a language and environment for statistical computing.
396	Vienna, Austria: R Foundation for Statistical Computing.
397	Rigby, J.E. (1963) Alimentary and reproductive systems of Oxychilus cellarius (Müller)
398	(Stylommatophora). Proceedings of the Zoological Society of London, 141(2),
399	311-359.
400	Sainte-Marie, B., Urbani, N., Sévigny, J.M., Hazel, F., & Kuhnlein, U. (1999) Multiple choice
401	criteria and the dynamics of assortative mating during the first breeding season of
402	female snow crab Chionoecetes opilio (Brachyura, Majidae). Marine Ecology
403	Progress Series, 181, 141–153.
404	Sakaluk, S. K. (1984) Male crickets feed females to ensure complete sperm transfer. <i>Science</i> ,
405	223(4636), 609-610.
406	Sasaki, M. (1923) On an adhering habit of a pygmy cuttlefish. <i>Idiosepius pygmaeus</i> steenstrup.
407	Annotationes zoolodicæ Japonenses, 10(6), 209–213.
408	Sato, N., Kasugai, T., Ikeda, Y., & Munehara, H. (2010) Structure of the seminal receptacle
409	and sperm storage in the Japanese pygmy squid. Journal of Zoology, 282(3).
410	151-156.
411	Sato, N., Kasugai, T., & Munehara, H. (2013) Sperm transfer or spermatangia removal: post
412	conulatory behaviour of picking up spermatangium by female Japanese pygmy
413	souid. Marine Biology, 160(3), 553-561.
414	Sato, N., Yoshida, M–A., Fujiwara, E., & Kasugai, T. (2013) High-speed camera observations
415	of conulatory behaviour in <i>Idiosenius paradoxus</i> : function of the dimorphic
416	hectocotyli Journal of Molluscan Studies 79(2) 183-186
417	Shine R & Mason R T (2005) Does large body size in males evolve to facilitate forcible
418	insemination? A study on garter snakes <i>Evolution</i> 59(11) 2426-2432
419	Siemers B M Kriner E Kaipf I Simon M & Greif S (2012) Bats eavesdrop on the
420	sound of conulating flies <i>Current Biology</i> 22(14) 563-564
421	Simmons I. W (1986) Female choice in the field cricket Grvllus himaculatus (De Geer)
422	Animal Behaviour 34(5): 1463-1470
423	Thiel M & Hinoiosa I A (2003) Mating behaviour of female rock shrimp <i>Rhynchocinetes</i>
120	typus (Decanoda: Caridea) indication for convenience polyandry and cryptic female
121 195	choice <i>Bahavioral Ecology and Sociabiology</i> 55(2) 113-1121
420	Thornhill R (1983) Cryntic female choice and its implications in the scornionfly
420 197	Harpohittacus nigricans The American Naturalist 122(6) 765-788
121 198	Urbani N Sainte-Marie B Sévigny I M Zadworny D & Kuhnlein II (1008) Snorm
420	compatition and paternity assurance during the first breading period of formals group
449 190	competition and paterinty assurance during the first dreeding period of temale snow
400 491	and Aquatic Science, 55(5), 1104, 1112
491 430	Unit C Hackel C & Mayer F (2005) Sevuel selection features small and summetries
404	volgt, C., neckel, G., & Mayer, F. (2003) Sexual selection favours small and symmetric

Noriyosi 🕯	Sato
------------	------

- males in the polygynous greater sac-winged bat *Saccopteryx bilineata* (Emballonuridae, Chiroptera). *Behavioral Ecology and Sociobiology*, 57(5),
- 457-464.

Fig. 1, The relationship between the number of spermatangia removed and the duration of buccal mass elongation by females after copulation (n = 28). The solid line represents a Poisson regression ($y = e^{(0.0591x + 0.0007)}$, P < 0.001).

- 441 **Fig. 2**, The relationship between the number of spermatangia removed by females
- 442 after copulation and (a) the size of the mating partner (n = 28) and (b) copulation
- 443 duration (n = 28). The solid lines represent a negative binomial regression ((a): y
- 444 = $e^{(0.8120x 7.7308)}$, P < 0.01; (b): $y = e^{(0.2341x 7.7308)}$, P < 0.05).

Fig. 3, The relationship between the final number of spermatangia kept until the end of the experiment and the duration of buccal mass elongation by females after copulation (n = 32). The solid line represents a Poisson regression ($y = e^{(-0.0007x + 1.1533)}$, P < 0.05).

Table 1.

The coefficient estimates in the optimal model for the elongation duration of buccal mass. \triangle AIC indicates the increment of Akaike information criteria if the explanatory variable is removed from the best-fit model. *P* indicates *P* value based on Wald statistics.

explanatory variable	estimate (SE)	Р	
malaDMI	Δ AIC = 11.67		
maeDML	0.851 (0.208)	< 0.001	*
femaleDML	_		
size ratio	$\Delta AIC = 0.34$		
	-2.380 (1.495)	0.125	
	Δ AIC = 0.36		
attached spermatangia number	-0.121 (0.080)	0.144	
convolution duration	Δ AIC = 7.88		
copulation duration	0.183 (0.055)	0.003	*
* Significant at $P = 0.01$ level: explanatory variables removed			

* Significant at P = 0.01 level; -explanatory variables removed through model selection.

 $\begin{array}{c} 449 \\ 450 \end{array}$

Table 2.

The coefficient estimates in the optimal model for the number of finally retained spermatangia. P indicates P value based on Wald statistics.

explanatory variable	estimate (SE)	Р	
namous d charmatancia	Δ AIC = 41.65		
removed spermatangia	-0.560 (0.113)	< 0.001	*
accord anomaton air muchan	Δ AIC = 22.10		
passed spermatangia number	0.374 (0.079)	< 0.001	*
* Significant at $P = 0.01$ level			

 $\begin{array}{c} 451 \\ 452 \end{array}$