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ABSTRACT

With growing global populations and human activities, the problems of sedi-

ment transport and environmental hydraulics have been becoming more and

more important and valued. Computational fluid dynamics is a very use-

ful and powerful tool in those studies. In 2008, Dr. Liu developed a two-

dimensional model HydroSed which solves for 2D shallow water equations and

sediment bedload transport equation at Hydrosystems Laboratory, UIUC. In

this thesis, the author further modifies and improves the HydroSedv1.0 model

so that the model is able to deal with the transport of contaminant. In ad-

dition, the transport of suspended sediment is added and it is coupled with

bed evolution.

The 2D advection-diffusion equation with source/sink terms is solved by fi-

nite volume method using Godunov scheme explicitly on unstructured meshes.

Roe’s approach is used to solve Riemann problem because the analytical

solver is much computationally slower. Slope-limiter approaches are applied

in order to get higher accuracy. Several pure advection tests are simulated

to evaluate the performance of the model and the effect of different slope-

limiter approaches. Furthermore, a dye-tracer study in the Chicago River

is simulated for verifying the model in a real-world project. The numerical

results show satisfactory matches with the field measurement data. A widely

used three-dimensional model EFDC is also used for comparison. Both pure

advection tests and dye-tracer study demonstrate that the performance of

the model is satisfactory.

The model is applied to study the potential impacts of planned hydraulic

structures in the Cañar River, Ecuador. The effects to both water flow during

flood and sediment transport are studied. Due to the lack of field data in

terms of water surface elevation, flow discharges and velocities in this river,

the HydroSed model can help to a large extent to understand the problem and

work together with a 1D model and other techniques for optimized designs.
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CHAPTER 1

INTRODUCTION

Numerical modelling is a very important and useful approach in the study

of environmental hydraulics and sediment transport which have been becom-

ing more and more valued in the context of civil and hydraulic engineering

practice (MacArthur et al. [1]). Researchers have put a lot of efforts and

many 1D, 2D or 3D numerical models have been developed in those study

areas. Although three-dimensional models are able to give more information

about the turbulent flows and the vertical variety, they may need huge com-

putational efforts (Liu and Garcia [2]). However, two-dimensional models

are relatively computational faster and also are able to deal with more com-

plicated problems and provide more details than one-dimensional models.

1.1 A Review of Existing 2D Models

Many 2D flow models with contaminant transport or sediment transport

have been done. The review and comments of recent models are as follow.

Sladkevich et al. ([3]) developed 2D and 3D models to simulate the con-

taminant transport phenomena in shallow aquatic environment. In the 2D

model, shallow water equations were solved without considering turbulence

model. Wu ([4]) solved flow equations, bedload and suspended load transport

by using finite volume method on a curvilinear non-orthogonal grid. The

depth-averaged parabolic model and the standard k − ε turbulence model

were applied. Hudson and Sweby built a model to simulate bed load trans-

port ([5]). A high-resolution scheme based on Roe’s scheme is used. Murillo

et al. ([6], [7]) solved coupled shallow water and solute flow equations by

using upwind scheme based on finite volume method. Castro-Dı́az et al.

([8]) developed a 2D model solving for coupled flow equations and sediment

bedload transport equations based on a second order finite volume approach

1



on unstructured meshes. Kimura et al. ([9]) modelled suspended sediment

transport in a shallow side-cavity. The depth-averaged parabolic turbulence

model was employed and the effects of secondary currents were considered.

As far as turbulence model is concerned, Nadaoka and Yagi ([10]) developed

a SDS (sub-depth scale) turbulence model to simulate the evolution of hor-

izontal large-scale eddies in shallow water and showed that the SDS model

can predict turbulence-mixing better than the k − ε model.

In 2008, Liu et al. ([11]) developed a two-dimensional depth-averaged

model, HydroSed, which solved shallow water equations and sediment bed-

load transport equation. The equations were solved by finite volume method

on unstructured meshes. This thesis improves the HydroSed model in or-

der to simulate the transport of contaminant and suspended sediment. The

2D advection-diffusion equation with source/sink terms is solved by finite

volume method using Godunov scheme explicitly on unstructured meshes.

Roe’s approach is used to solve Riemann problem. Slope-limiter approaches

are applied in order to get higher accuracy. The modified model is well tested

and applied to study the sediment transport problem in the Cañar River in

Ecuador.

1.2 Thesis Outline

The thesis is organized as follow:

Chapter 2 presents the derivation of governing equations used in the model.

Chapter 3 explains the numerical schemes based on finite volume method.

Chapter 4 verifies the modified HydroSed model by using several pure

advection tests and a dye-tracer study in the Chicago River.

Chapter 5 presents the application of the model in the Cañar River in

Ecuador.

Chapter 6 proposes possible future work after summarizing conclusions

from this study.
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CHAPTER 2

GOVERNING EQUATIONS

2.1 2D Shallow Water Flow Model

The governing equations for water flow in a 2D depth-averaged model are

derived from the 3D governing equations.

2.1.1 3D Flow Equations

The mass conservation equation is derived according to the relation that in

a control volume the change of fluid mass is equal to the net inflow rate of

mass.

d

dt

∫
Ω

ρdV = −
∫
S

ρu · ndA (2.1)

The control volume is fixed in space, so the equation can be rewritten as:∫
Ω

∂ρ

∂t
dV +

∫
S

ρu · ndA = 0 (2.2)

Note that according to Gauss’s theorem,∫
S

ρu · ndA =

∫
Ω

∇ · (ρu) dV (2.3)

So, ∫
Ω

(
∂ρ

∂t
+∇ · (ρu)

)
dV = 0 (2.4)

The above expression should be true anywhere and for any volume. There-

fore,

∂ρ

∂t
+∇ · (ρu) = 0 (2.5)
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If density ρ can be taken as a constant, e.g. incompressible fluid, the

continuity equation reduces to

∇ · u = 0 (2.6)

According to the momentum conservation, the time rate of change of total

momentum in control volume is equal to the sum of the net momentum flux

across boundary of the control volume, the body forces action and surface

forces action.

d

dt

∫
Ω

ρudV = −
∫
∂Ω

(ρu)u · ndA+

∫
Ω

ρfbdV +

∫
∂Ω

τ · ndA (2.7)

Applying Gauss’s theorem gives

d

dt

∫
Ω

ρudV +

∫
Ω

∇ · (ρuu) dV −
∫

Ω

ρfbdV −
∫

Ω

∇ · τdV = 0 (2.8)

Assuming that ρu is smooth, the Leibniz integral can be used herein.∫
Ω

(
∂ (ρu)

∂t
+∇ · (ρuu)− ρfb −∇ · τ

)
dV = 0 (2.9)

The formula should satisfy for arbitrary control volume, so

∂ (ρu)

∂t
+∇ · (ρuu)− ρfb −∇ · τ = 0 (2.10)

That is,

∂ (ρui)

∂t
+

∂

∂xj
(ρuiuj) = ρfbi +

∂τji
∂xj

(2.11)

Similarly, if ρ is constant,

∂u

∂t
+∇ · (uu)− fb −

1

ρ
∇ · τ = 0 (2.12)

Or,

∂ui
∂t

+
∂

∂xj
(uiuj) = fbi +

1

ρ

∂τji
∂xj

(2.13)

Gravity is one kind of body forces. Other body forces may include Coriolis
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force, et al. In surface forces term, for a Newtonian fluid, we know that

τij = −pδij + µ

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.14)

Substituting it into the momentum equation for constant ρ gives:

∂ui
∂t

+
∂

∂xj
(uiuj) = −1

ρ

∂p

∂xi
+ fbi + ν

∂2ui
∂xj∂xj

(2.15)

2.1.2 3D Reynolds-averaged Flow Equations

Considering the turbulence phenomenon, Reynolds decomposition is expressed

as

ui = ui + ui
′ (2.16)

where ui
′ represent fluctuation velocities and ui represent Reynolds-averaged

velocities. Applying Reynolds averaging to continuity equation for incom-

pressible Newtonian flow gives:

∇ · u = 0 (2.17)

∇ · u′ = 0 (2.18)

Similarly, the momentum equations for incompressible Newtonian flow can

be reduced to

∂ui
∂t

+
∂

∂xj
(uiuj) = −1

ρ

∂p

∂xi
+ fbi + ν

∂2ui
∂xj∂xj

(2.19)

That is,

∂ui
∂t

+
∂

∂xj
(uiuj) = −1

ρ

∂p

∂xi
+ fbi + ν

∂2ui
∂xj∂xj

− ∂

∂xj

(
ui′uj ′

)
(2.20)

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂

∂xj

(
pδij + ρui′uj ′ − µ

∂ui
∂xj

)
+ fbi (2.21)

Usually for simplicity, the “bar” is omitted and the term of Reynolds
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stresses −ρui′uj ′ is expressed as τij.

To sum up, the Reynolds-Averaged continuity equation is expressed as

∂ui
∂xi

= 0 (2.22)

The Reynolds-Averaged momentum equations are

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+

∂

∂xj

(
τij + ν

∂ui
∂xj

)
+ fbi (2.23)

Considering that

τij = νT
∂ui
∂xj

We can get

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+ (νT + ν)

∂2ui
∂xj∂xj

+ fbi (2.24)

2.1.3 2D Depth-averaged Flow Equations

When vertical characteristics are relatively not important in evaluating the

behavior of water flows, the depth averaged 2D model can be used to simplify

the problem. In Cartesian coordinate system,

ui =
1

h

h∫
0

uidz (2.25)

where i = 1, 2 which correspond to the two components in horizontal

direction.

The integral of continuity equation gives:

h∫
0

(
∂u1

∂x1

+
∂u2

∂x2

+
∂u3

∂x3

)
dx3 = 0 (2.26)

∂

∂x1

h∫
0

u1dx3 +
∂

∂x2

h∫
0

u2dx3 + u3|h0 = 0 (2.27)

∂ (hui)

∂xi
+
∂h

∂t
= 0 (2.28)
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The integrals of momentum equations show:

h∫
0

∂ui
∂t
dx3 +

h∫
0

∂uiuj
∂xj

dx3 = −1

ρ

h∫
0

∂

∂xj

(
pδij − τij − µ

∂ui
∂xj

)
dx3+

h∫
0

fbidx3

(2.29)

Note that

p = p (z) = ρgh

One can get

∂ (hui)

∂t
+

∂

∂xj

h∫
0

uiujdx3 = −gh ∂h
∂xi

+ ν
∂ (hui)

∂xj∂xj
+

1

ρ

∂

∂xj

h∫
0

τijdx3+

τ is − τ ib
ρ

+ hfi

(2.30)

∂ (hui)

∂t
+
∂ (huiuj)

∂xj
=
∂ (huiuj)

∂xj
− ∂

∂xj

h∫
0

uiujdx3 − gh
∂h

∂xi
+

ν
∂ (hui)

∂xj∂xj
+

1

ρ

∂

∂xj

h∫
0

τijdx3 +
τ is − τ ib
ρ

+ hfi

(2.31)

∂ (hui)

∂t
+
∂ (huiuj)

∂xj
= − ∂

ρ∂xj

h∫
0

ρ (ui − ui) (uj − uj) dx3 − gh
∂h

∂xi
+

ν
∂ (hui)

∂xj∂xj
+

1

ρ

∂

∂xj

h∫
0

τijdx3 +
τ is − τ ib
ρ

+ hfi

(2.32)

Using U , V as the notation of depth-averaged velocity at x, y direction

respectively, the continuity and momentum equations are
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∂h

∂t
+
∂ (hU)

∂x
+
∂ (hV )

∂y
= 0 (2.33)

∂ (hU)

∂t
+
∂ (hUU)

∂x
+
∂ (hUV )

∂y
= − ∂

ρ∂xj

h∫
0

ρ (ui − ui) (uj − uj) dx3

−gh∂h
∂x

+ ν
∂ (hU)

∂xj∂xj
+

1

ρ

∂

∂xj

h∫
0

τijdx3 +
τ 1
s − τ 1

b

ρ
+ hf1

(2.34)

∂ (hV )

∂t
+
∂ (hV U)

∂x
+
∂ (hV V )

∂y
= − ∂

ρ∂xj

h∫
0

ρ (ui − ui) (uj − uj) dx3

−gh∂h
∂y

+ ν
∂ (hV )

∂xj∂xj
+

1

ρ

∂

∂xj

h∫
0

τijdx3 +
τ 2
s − τ 2

b

ρ
+ hf2

(2.35)

Neglecting the turbulence term, dispersion term and viscous tem, the nor-

mal 2D shallow water equations can be got as:

∂h

∂t
+
∂ (hU)

∂x
+
∂ (hV )

∂y
= 0 (2.36)

∂ (hU)

∂t
+
∂ (hUU)

∂x
+
∂ (hUV )

∂y
= −gh∂h

∂x
+
τ 1
s − τ 1

b

ρ
+ hf1 (2.37)

∂ (hV )

∂t
+
∂ (hV U)

∂x
+
∂ (hV V )

∂y
= −gh∂h

∂y
+
τ 2
s − τ 2

b

ρ
+ hf2 (2.38)

Considering the viscous term and the Coriolis force, the original HydroSed2D

model gives:

∂h

∂t
+
∂ (hU)

∂x
+
∂ (hV )

∂y
= 0 (2.39)
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∂ (hU)

∂t
+
∂ (hUU)

∂x
+
∂ (hUV )

∂y
− ν

(
∂2 (hU)

∂x2
+
∂2 (hU)

∂y2

)
=

−gh∂h
∂x

+
τ 1
s − τ 1

b

ρ
+ hfV

(2.40)

∂ (hV )

∂t
+
∂ (hV U)

∂x
+
∂ (hV V )

∂y
− ν

(
∂2 (hV )

∂x2
+
∂2 (hV )

∂y2

)
=

−gh∂h
∂y

+
τ 2
s − τ 2

b

ρ
− hfU

(2.41)

where f is the Coriolis parameter.

The author modified the original model to consider the turbulent term by

applying the depth-averaged parabolic model.

∂ (hU)

∂t
+
∂ (hUU)

∂x
+
∂ (hUV )

∂y
− (ν + νT )

(
∂2 (hU)

∂x2
+
∂2 (hU)

∂y2

)
=

−gh∂h
∂x

+
τ 1
s − τ 1

b

ρ
+ hfV

(2.42)

∂ (hV )

∂t
+
∂ (hV U)

∂x
+
∂ (hV V )

∂y
− (ν + νT )

(
∂2 (hV )

∂x2
+
∂2 (hV )

∂y2

)
=

−gh∂h
∂y

+
τ 2
s − τ 2

b

ρ
− hfU

(2.43)

where

νT = αThu∗

u∗ is the bed shear velocity; h is water depth; U and V are depth-averaged

velocities in the x and y directions; ν is water viscosity; νT is turbulent

viscosity; g is gravity; τ 1
s and τ 2

s are surface shear stresses caused by wind in

x and y directions; τ 1
b and τ 2

b are bed shear stresses in x and y directions.
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2.2 Contaminant Transport Model

The equation to describe the transport phenomena in shallow water is the

two-dimensional advection-diffusion equation with source/sink term which is

shown below. The details of derivation can be found in Elder’s book ([12]).

∂ (hC)

∂t
+
∂ (hUC)

∂x
+
∂ (hV C)

∂y
=

∂

∂x

(
hDxx

∂C

∂x

)
+

∂

∂y

(
hDyy

∂C

∂y

)
+

∂

∂x

(
hDxy

∂C

∂y

)
+

∂

∂y

(
hDyx

∂C

∂x

)
+Qc

(2.44)

where C is the depth-averaged concentration; Dxx, Dyy, Dxy and Dyx are

the components of generalized effective diffusion tensor; Qc is the source/sink

term or some expression for the decay of contaminant.

There are two options available in the current model to deal with the

dispersion coefficients. One way is to specify those coefficients artificially.

In this way, those coefficients are taken actually like calibration parameters.

The other way is to use the follow formulas [3].

Dij = εsδij +Dh
qiqj
q2

(2.45)

where i, j correspond to x and y respectively; δij is Kronecker’s delta; and

qx = hU (2.46)

qy = hV (2.47)

q =
√
q2
x + q2

y (2.48)

Dh = 5.86
√
λq (2.49)

εs = 0.22
√
λq (2.50)

λ = gn2h−1/3 (2.51)
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where n is Manning’s roughness coefficient.

2.3 Sediment Transport and River Morphodynamics

Model

With growing global populations and human activities, the sediment trans-

port problem has been becoming more and more important and valued, espe-

cially in the context of civil and hydraulic engineering practice ([13]). Based

on the mechanism of transport, sediment transport load is divided into bed

load and suspended load. The original HydroSed2D model only takes the

bed load in consideration. Thus, besides the calculation of contaminant

transport, another important goal of this study is to incorporate suspended

load module into the original HydroSed2D model, which is also coupled with

morphodynamical equation.

There are two methods existing in the model to compute bedload trans-

port: Grass formula ([14]) and Meyer-Peter and Muller formula ([15]).

2.3.1 Bedload Transport Equations

Grass Formula

qsx = AU
(
U2 + V 2

)m−1
2 (2.52)

qsy = AV
(
U2 + V 2

)m−1
2 (2.53)

where A and m are parameters. For fine sand, A = 0.001 and m = 3 are

recommended.

Advantage of the Grass method is that this method can be easily used

in numerical models, because it directly links the bed transport rates to

velocities by applying the two parameters, A and m. Problems of this method

may be the uncertainties and difficulties in the evaluation of the parameters

A and m. Also, in this method, as long as the velocities are larger than zero,

there will always be sediment bed load transport, thus, threshold condition

for sediment movement is can not be considered using Grass method.
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Meyer-Peter and Muller Formula

q∗ = 8(τ ∗ − τ ∗c )3/2 (2.54)

where

τ ∗c = 0.047 (2.55)

q∗ =
qb

D
√
gRD

(2.56)

τ ∗ =
τb

ρgRD
(2.57)

qsx = qb
τx
τb

(2.58)

qsy = qb
τy
τb

(2.59)

2.3.2 Suspended Load Transport Equations

The 2D depth-averaged equation for suspended transport can be expressed

as follow:

∂ (hC)

∂t
+
∂ (hUC)

∂x
+
∂ (hV C)

∂y
=

∂

∂x

(
hDxx

∂C

∂x

)
+

∂

∂y

(
hDyy

∂C

∂y

)
+
∂

∂x

(
hDxy

∂C

∂y

)
+

∂

∂y

(
hDyx

∂C

∂x

)
+ vs (Es − cb) +Qc

(2.60)

It can be found that the governing equation for suspended load transport is

similar to the one for contaminant transport. They share the same advection

and diffusion terms. The only difference is that the suspended load transport

equation has two terms corresponding to the interaction between the flow

and the bed: sediment entrainment rate and deposition rate. The term Qc

is still in the equation in order to consider the boundary conditions or other

source/sink terms. vs is the sediment fall velocity which relates to the size

of the sediment particles.
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Deposition Rate

According to Parker et al. ([16]),

cb = roC (2.61)

ro = 1 + 31.5

(
u∗
vs

)−1.46

(2.62)

where u∗ is the shear velocity.

Entrainment Rate

The sediment entrainment rate is computed according to Garćıa and Parker

([17], [18]):

Es =
AZ5

u

1 + A
0.3
Z5

u

(2.63)

where A = 1.3E-7

Zu =
u∗s
vs
R0.6

ep (2.64)

For fine-grained non-cohesive sediments and Rep < 3.5,

Zu = 0.708
u∗
vs
R0.6

ep (2.65)

Rep =
D
√
gRD

ν
(2.66)

Note that u∗s is the shear velocity associated with skin friction.

u∗s =
√
gHsS (2.67)

where S is calculated according to Manning’s formula:

S = n2
(
U2 + V 2

)
h−4/3 (2.68)

Hs =
h4/3

gn2

(
1

κ
ln

(
11
Hs

ks

))−2

(2.69)

13



where κ is the von Karman’s constant, 0.4; ks = 2D

2.3.3 River Morphological Equation

The 2D Exner’s equation is used herein to calculate the river morphological

changes due to the sediment transport.

(1− λp)
∂z

∂t
+

(
∂qsx
∂x

+
∂qsy
∂y

)
= vs (cb − Es) (2.70)

where λp is the bed porosity.
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CHAPTER 3

NUMERICAL METHODS

The governing equations are discretized using the finite volume method on

unstructured meshes. The previous HydroSed2D model solved for shallow

water equations, sediment bedload transport equations and the morphody-

namical equation. The details of the numerical methods used in the previ-

ous model can be found in Liu et al. (2008) ([11]). The sediment bedload

transport equation can be either coupled or decoupled with shallow water

equations mainly depending on the speed of the scour process. Cao et al.

(2002) ([19]) compared those two approaches and found that for slow scour

process, both of them can give good evaluation while for fast scour coupled

approach is needed. However, in natural rivers, mostly the scour is not so

fast and the uncoupled approach allows use of different time scales for hydro-

dynamics and bed evolution which can make the simulation much faster. As

shown in Chapter 2, the governing equations for contaminant transport and

suspended load transport are both 2D advection-diffusion equations. The

difference can be taken as only in the source/sink terms.

Since the change of density with the contaminant or suspended sediment

concentration is not considered, the transport module can be physically de-

coupled with the shallow water equations. Therefore, the model will first

solve the shallow water equations. After getting the velocities, i.e., the flow

field, the transport module will be solved and the concentration at new time

step will replace the one at old time step.

3.1 Finite Volume Method

The 2D advection-diffusion equation (2.44) can be reorganized as follow:
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∂ (hC)

∂t
+

∂

∂x

(
hUC − hDxx

∂C

∂x
− hDxy

∂C

∂y

)
+

∂

∂y

(
hV C − hDyy

∂C

∂y
− hDyx

∂C

∂x

)
= Qc

(3.1)

Applying Gauss’s theorem and integral through the mesh cell gives

∂

∂t

∫∫
Ω

QdΩ +

∮
S

F · ndS =

∫∫
Ω

QcdΩ (3.2)

where

Q = hC ; F · n = FA − FD =
(
fA − fD

)
nx +

(
gA − gD

)
ny;

fA = hUC ; gA = hV C ; fD = hDxx
∂C

∂x
+ hDxy

∂C

∂y
;

gD = hDyy
∂C

∂y
+ hDyx

∂C

∂x

where the superscript A represents advection terms and D represents dif-

fusion terms. They are differentiated because they will be solved by different

approaches.

In the first term on the left hand side and the term on the right hand side,

Q and Qc are taken as constant throughout one cell. Therefore,

∂

∂t

∫∫
Ω

QdΩ =
∂ (QAΩ)

∂t
(3.3)

∫∫
Ω

QcdΩ = QcAΩ (3.4)

Explicit method is applied for temporal discretization.∮
Si

F · ndS =
∑
j

(
Fi,j

A − Fi,j
D
)
Lj (3.5)

where L is the edge length in the computation cell.

For advection terms, Roe’s approximate solver ([20], [21]) is used instead of

the analytical solver of the Riemann problem. The Riemann problem comes

out from the framework of Godunov ([22]). Godunov suggested using the

explicit solution of the Riemann problems at cell interfaces to solve hyper-
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bolic problems. The Riemann problem is related to a discontinuous initial

distribution and theoretically is able to be solved analytically. However, the

analytical solver is much slower. Thus, the model assumes a one dimen-

sional Riemann problem in the direction normal to the cell interface edge,

and solves it using Roe’s flux function (as follows) instead:

FA
i,j =

1

2

[
FA
(
Qi,j

+
)

+ FA
(
Qi,j

−)− A (Qi,j
+ −Qi,j

−)] (3.6)

A =
∂ (F · n)

∂Q
= Unx + V ny (3.7)

where Q+
i,j and Q−i,j are the values of Q on the downstream and upstream

sides of the interface edge respectively. Note that the values of U and V are

evaluated by Roe’s average state shown below.

U =
U+
√
h+ + U−

√
h−√

h+ +
√
h−

(3.8)

V =
V +
√
h+ + V −

√
h−√

h+ +
√
h−

(3.9)

where the superscripts have the same meaning as the equation (3.6).

For the diffusion terms,
∂C
∂x

and ∂C
∂y

on the cell-interface edge are evaluated by using the average

value between two cells weighted by the area of each cell as follows.

∇Cedge =
∇C−A+ +∇C+A−

A+ + A−
(3.10)

where the superscripts still have the same meaning as the equation (3.6).

3.2 Limiter for Higher Order Scheme

As mentioned above, the computation of advection terms need the values at

the cell-interface edge. However, the variables are stored at the center of the

cells and considered as constant throughout each cell in the simplest case. In

order to get higher order accuracy, extrapolation is needed. One simple way

is using piecewise linear assumption as follows.
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Q (x, y) = Q0 +∇Q0 · r (3.11)

where Q0 is the cell center value; r is the vector from cell center to the any

location we need.

However, in order to get second or higher order accuracy of data extrapola-

tion, non-linear limiters are usually used. After applying non-linear limiters,

the new extrapolation form is expressed as follows.

Q (x, y) = Q0 + Φ∇Q0 · r (3.12)

Compared with the equation (3.11), the new introduced parameter Φ is

termed as “limiter”. When it equals to 1, the form goes to the equation

(3.11); when the limiter is set to 0, it goes to the piece-wise constant case.

There are many forms of limiters ([23]). The form applied in this model is

the same as the one used by Anastasiou and Chan ([24]) which is defined as:

Φ = min (Φj) ; j = k (i) (3.13)

Φj (rj) = max [min (βrj, 1) ,min (rj, β)] (3.14)

rj =


(Q0

max −Q0) / (Qj −Q0) if (Qj −Q0) > 0(
Q0

min −Q0

)
/ (Qj −Q0) if (Qj −Q0) < 0

1 if (Qj −Q0) = 0

(3.15)

Q0
min = min (Q0, Qneighbor) ;Q0

max = max (Q0, Qneighbor) (3.16)

Qj = Q0 +∇Q0 · r (3.17)

where β can be set as any values between 1 and 2. In particular, when β

equals to 1, the form goes to minmod limiter and when β equals to 2, it goes

to Superbee limiter. One important and interesting point of this method is

that it allows trying something between by setting β to be something between

1 and 2, e.g. 1.5.
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CHAPTER 4

MODEL VERIFICATION

4.1 Pure Advection Tests

Several pure advection tests are simulated in order to validate the model.

The numerical results got by using different forms of limiters are shown and

compared with the analytical solution and also with each other, to verify the

effects of limiters on restricting numerical dispersion. The governing equation

for pure advection test with initial concentration reduces to

∂ (hC)

∂t
+

∂

∂x
(hUC) +

∂

∂y
(hV C) = 0 (4.1)

where h, U and V are all taken as constant.

4.1.1 Model Settings

The study domain is a 10 m by 10 m square. The regular triangular mesh

is generated by using a commercial grid generation software GAMBIT (by

ANSYS Inc.). The model so far can read the grid files generated by either

GAMBIT or Gmsh (free to the public). The whole domain is firstly divided

by 0.1 m by 0.1 m squares and then the squares are divided into triangular

cell. Therefore, there are totally 20,000 cells and 10,201 nodes (see figure

4.1).

The initial concentration condition is set as

C =

{
10 (1 < x < 3, 1 < y < 3)

0 other places
(4.2)

The water depth is taken as constant, h = 10m. Other important param-

eters are shown in table 4.1 below.
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Figure 4.1: Unstructured meshes (20000 cells, 10201 nodes)

Figure 4.2: Initial concentration condition

Table 4.1: Time parameters in the numerical simulations

Time Step 0.0001 s
Starting Time 0 s
Ending Time 5 s
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Figure 4.3: Numerical results of test 1 at t = 1s

Several different cases are simulated and the summary is shown in table

4.2 below.

Table 4.2: The summary of numerical tests

Test 1 U = 1.0; V = 0.0 Φ =0
Test 2 U = 1.0; V = 1.0 Φ = 0
Test 3 U = 1.0; V = 1.0 minmod limiter (β = 1)
Test 4 U = 1.0; V = 1.0 Superbee limiter (β = 2)
Test 5 U = 1.0; V = 1.0 β = 1.5

4.1.2 Test 1

In test 1, the contaminant is supposed to move in only x direction with a

constant speed 1.0 m/s. With Φ = 0 which corresponds to upwind scheme,

the numerical results are shown below in figures 4.3 to 4.7.

As expected, simulation results show that the transport rate in x direction

is 1.0 m/s. However, there is obvious numerical dispersion. Instead of keeping

the shape of square, the domain stretches in x-direction. The length of the

domain in x direction is getting bigger and bigger and the peak is changing

from platform to be sharper and lower. In the x-y plane, the domain shape

changes from square shape to bell shape.

Several parameters are used to evaluate the performance of the numerical

model. They are the maximum of concentration, minimum of concentration,

mean absolute error, root mean square error and relative global mass error.

The mean absolute error (MAE), root mean square error (RMSE) and
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Figure 4.4: Numerical results of test 1 at t = 2s

Figure 4.5: Numerical results of test 1 at t = 3s

Figure 4.6: Numerical results of test 1 at t = 4s
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Figure 4.7: Numerical results of test 1 at t = 5s

relative global mass error (RGME) are defined as

MAE =
1

n

n∑
i=1

|fi − yi| (4.3)

RMSE =

√√√√ 1

n

n∑
i=1

(fi − yi)2 (4.4)

RGME =
TotalMassnumerical − TotalMassanalytical

TotalMassanalytical
(4.5)

where n is the number of nodes (in order to see the results better in Tecplot

software the concentration values are interpolated from cell centers to nodes);

fi is numerical results; yi is analytical results. A test code is written using

FORTRAN in order to calculate those parameters.

Table 4.3: The performance of numerical test 1

t(s) Cmax Cmin Mean Absolute Error Root Mean Square Error Global Mass Relative Error

1 9.99989 -3.19E-25 0.05333 0.34560 -9.09E-16

2 9.98174 -6.60E-34 0.08149 0.44479 1.71E-15

3 9.89669 -1.28E-42 0.10336 0.50936 -3.52E-15

4 9.74089 -2.39E-51 0.12188 0.55882 -9.80E-13

5 9.53894 -5.17E-60 0.13824 0.60001 -2.51E-06

From the table 4.3 above we can see that the performance of global mass

balance is very good which can also be seen in the later simulations. At

t = 5s the global mass balance is relatively much bigger than the previous

time steps because some mass is lost and out of the domain due to numerical

dispersion. The maximum concentration is getting smaller and smaller. Even
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Figure 4.8: Numerical results of test 2 at t = 1s

Figure 4.9: Numerical results of test 2 at t = 2s

at t = 1s it is already less than 10 while at t=5s it becomes 9.54. There is

negative concentration due to numerical oscillations. However the negative

value is quite close to 0 and even hard to be observed because the negative

area is so small. The errors are acceptable though getting a little bit bigger

as time increases.

4.1.3 Test 2

In test 2, the velocity field in diagonal direction is tested instead of only in x

direction, namely U = V = 1.0 m/s. With Φ = 0, the numerical results are

shown in the figures 4.8 to 4.12.

Compared with test 1, the numerical dispersion is more obvious and the

errors are considerably more significant. As shown in table 4.4, the maximum

concentration at t = 5s is only 8.1 and the root mean square error is as high

as 0.97. The negative concentration also exists but it is still quite small. The
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Figure 4.10: Numerical results of test 2 at t = 3s

Figure 4.11: Numerical results of test 2 at t = 4s

Figure 4.12: Numerical results of test 2 at t = 5s
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Figure 4.13: Distribution of negative area (blank) at t=1s (left) and 3s
(right)

Figure 4.14: Numerical results of test 3 at t = 1s

negative area at t = 1s and 3s is shown in figure 4.13.

Table 4.4: The performance of numerical test 2

t(s) Cmax Cmin Mean Absolute Error Root Mean Square Error Global Mass Relative Error

1 9.99564 -2.69E-21 0.12992 0.57590 1.82E-15

2 9.80101 -2.20E-26 0.19137 0.72958 -8.41E-15

3 9.32428 -1.79E-31 0.23676 0.83048 -3.18E-15

4 8.72305 -1.43E-36 0.27363 0.90884 -2.69E-09

5 8.11311 -1.12E-41 0.30492 0.97462 -7.24E-05

4.1.4 Test 3

In test 3, the effect of minmod limiter will be seen in figures 4.14 to 4.18. The

applications of limiters significantly help to regulate numerical dispersion and

to produce more satisfactory simulation results.
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Figure 4.15: Numerical results of test 3 at t = 2s

Figure 4.16: Numerical results of test 3 at t = 3s

Figure 4.17: Numerical results of test 3 at t = 4s

Table 4.5: The performance of numerical test 3

t(s) Cmax Cmin Mean Absolute Error Root Mean Square Error Global Mass Relative Error

1 10 -1.59E-23 0.04630 0.29696 1.71E-15

2 10 -9.62E-29 0.06500 0.37702 -5.68E-16

3 9.99999 -1.39E-33 0.07912 0.42769 -5.68E-16

4 9.99993 -1.28E-33 0.09114 0.46727 3.98E-15

5 9.99962 -6.91E-34 0.10188 0.50123 3.82E-10
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Figure 4.18: Numerical results of test 3 at t = 5s

Figure 4.19: Numerical results of test 4 at t = 1s

As shown in table 4.5 and figure 4.14 to 4.18, the performance of minmod

limiter is proven to be good. Though a little bit numerical dispersion still

exists, the minmod limiter can limit the reduction of maximum concentration

to be in the order of 10−4 at t=5s. Also, the errors are much smaller than

that in test 2 and the global mass balance is improved.

4.1.5 Test 4

Similarly, the performance of Roe’s Superbee limiter (β = 2) is tested and

the results can be found in figures 4.19 to 4.23.

Shown in the figures 4.19 to 4.23 and table 4.6, the Roe’s Superbee limiter

is found to be overly “anti-diffusive” which was also shown by Anastasiou and

Chan ([24]). Obvious ripples can be seen directly from the figures especially

at the lower left corner and those ripples seem to be bigger and bigger as

time increases. At t = 5s, the maximum concentration is found to be almost
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Figure 4.20: Numerical results of test 4 at t = 2s

Figure 4.21: Numerical results of test 4 at t = 3s

Figure 4.22: Numerical results of test 4 at t = 4s

Table 4.6: The performance of numerical test 4

t(s) Cmax Cmin Mean Absolute Error Root Mean Square Error Global Mass Relative Error

1 10.8492 -8.37E-01 0.02327 0.16417 1.25E-15

2 11.9499 -1.94E+00 0.04099 0.25961 6.82E-16

3 12.8819 -2.91E+00 0.05794 0.35028 -6.82E-16

4 13.5137 -3.64E+00 0.07503 0.43345 2.16E-15

5 13.9594 -4.12E+00 0.08863 0.50317 -1.85E-11
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Figure 4.23: Numerical results of test 4 at t = 5s

Figure 4.24: The distribution of negative area (blank) at t = 3s (left) and
5s (right)

14 and the minimum is -4.12. The negative area at t = 3s and 5s is shown in

figure 4.24. The area is considerably big. However, the global mass balance

is still pretty satisfactory and the errors are smaller than minmod limiter. If

we only focus on the area where the concentration C is less than -0.001, the

blank areas are not that big (see figure 4.25).

4.1.6 Test 5

According to the limiter approach used in the model, the parameter β can be

any value between 1 and 2. In order to see how β could affect the numerical

result, β = 1.5 is tried in test 5. The results are shown in figures 4.26 to

4.30.

β = 1.5 shows the behaviour between minmod and Superbee limiters. It

is also overly anti-diffusive but better than Superbee limiter. At t = 5s, the
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Figure 4.25: The distribution of the area where C < −0.001 (blank) at t =
3s (left) and 5s (right)

Figure 4.26: Numerical results of test 5 at t = 1s

Figure 4.27: Numerical results of test 5 at t = 2s
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Figure 4.28: Numerical results of test 5 at t = 3s

Figure 4.29: Numerical results of test 5 at t = 4s

Figure 4.30: Numerical results of test 5 at t = 5s

Table 4.7: The performance of numerical test 5

t(s) Cmax Cmin Mean Absolute Error Root Mean Square Error Global Mass Relative Error

1 10.4874 -4.87E-01 0.02495 0.16720 1.59E-15

2 10.9785 -9.67E-01 0.03620 0.22683 -2.73E-15

3 11.436 -1.39E+00 0.04738 0.27875 0.00E+00

4 11.7765 -1.68E+00 0.05704 0.32449 4.55E-16

5 12.0367 -1.89E+00 0.06684 0.37004 2.74E-11
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maximum concentration is around 12, smaller than the one in test 4 (around

14). Also, the ripples develop mostly at lower left corner. The minimum

concentrations is not as small as those in test 4. The comparison between

test 2, 3, 4 and 5 at t = 5s is shown in table 4.8.

Table 4.8: Comparison among test 2 - 5 at t = 5s

Test Cmax Cmin Mean Absolute Error Root Mean Square Error Global Mass Relative Error

Φ=0 8.11311 -1.120E-41 0.30492 0.97462 -7.2400E-05

minmod 9.99962 -6.910E-34 0.10188 0.50123 3.8200E-10

Superbee 13.95940 -4.120E+00 0.08863 0.50317 -1.8500E-11

β=1.5 12.03670 -1.895E+00 0.06684 0.37004 2.7383E-11

Shown in the comparison, the optimal scheme could possibly be achieved

by adjusting the value of β. It probably should be between 1 and 1.5. How-

ever more tests need to be run before making any decision because the rela-

tionship is probably not linear.

4.1.7 Summary

Those pure advection tests show that the numerical calculation of 2D ad-

vection equation has been correctly implemented in the model with the ap-

plication of limiter approaches, which can improve simulation accuracy and

alleviate numerical dispersion. In the case of diagonal velocities, the numer-

ical errors may be bigger than the ones in the case of unidirectional velocity.

The upwind scheme has a relatively big problem of numerical diffusion. The

limiters do help a lot to improve the results and offer higher accuracy. It

is shown that Roe’s Superbee limiter is overly anti-diffusive under this con-

dition and an optimal limiter may be achieved by adjusting the value of β

which need to be further proved by more tests.

Overall, the numerical results show that the model is verified in those test

cases. Moreover, they help us understand the behaviours of the different

limiters. However, one should note that those cases only test the advection

part of the 2D advection-diffusion equation without considering the diffusion

part. The velocities are taken as constant so that the transport module

is actually not coupled with the flow module in those tests. Although the

numerical methods used herein have no trouble to deal with unstructured

meshes, regular triangular mesh is used in order to conveniently compare the

numerical results with the analytical solution. Therefore, after those pure
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advection tests, it can be good to further test the model in a real-world

project.

4.2 Dye Tracer Study in the Chicago River

To verify the model’s applicability to real world problems, the model is ap-

plied to simulate a dye tracer study, which was done in the Chicago River

by USGS in December 2009. The numerical results are compared with the

field measurement data got by USGS. Also, the study could help to identify

possible problems which may not be revealed by simply pure advection tests,

for example, the link between hydrodynamic results and transport module.

4.2.1 Background

The Chicago River flows through the downtown of Chicago which is the third

largest city in U.S.. The river used to flow into the Lake Michigan. In 1900,

people built the Chicago Sanitary and Ship Canal and artificially made the

water flow away from the Lake Michigan, in order to protect the water supply

for the city of Chicago.

Recently, people in the United States paid much attention to the threat

of some alien species, Asian Carps. Asian carp is a general term including

silver carp (Hypophthalmichthys molitrix), bighead carp (H. nobilis), black

carp (Mylopharyngodon piceus) and grass carp (Ctenopharyngodon idella),

which are all native to Asian countries and were introduced into U.S. about

30 years ago. Bighead and silver carp were first introduced to Arkansas

in 1972 with the purpose of improving water quality. Asian carps feed on

plankton so they were good for the control of algae blooms. However, the

problem of biological invasion of Asian carps were put forward in recent years

because of their tremendous advantageous biological characteristics, such as

powerful environmental suitability and high growth rate ([25]), and the lack

of natural enemies in U.S. The establishment of Asian carps badly threat-

ened native species and can potentially cause ecological harm by changing

the aquatic environment. The researchers have found that the distribution

of Asian Carps is expanding and approaching to the Great Lakes. It is be-

lieved that once the Asian Carps reach the Great Lakes, it will be possible
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Figure 4.31: Study area of the dye tracer study simulation

for them to go almost everywhere in the United States through the water-

ways connected to the Great Lakes. Many researches and action have been

conducted including the fish kill operation in the Chicago River by using

piscicide Rotenone. Before injecting piscicide, a dye tracer study was done

by the USGS in December 2009, using Rhodamine, in the zone of the river,

where piscicide will be injected, so that the dispersal and other important

environmental characteristics of the river can be studied. The study domain

of the river was the south branch of the Chicago River, from Lemont Street

upstream to Lockport downstream (see figure 4.31).

4.2.2 Some Basic Information

The total length of the river in the study domain is around 11.5 miles. The

topography data of this study domain was got from field measurement and

provided by USGS (see figure 4.32). The upstream discharge and water

height data can be found from USGS Lemont Station. The discharge data

is used as upstream boundary condition (see figure 4.33). The water height

data is used to do model validation. The downstream end of the study
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Figure 4.32: Topography data of the study area

domain is the Lockport Powerhouse. Unfortunately, there is no continuous

measurement or any station there, but the flow discharge was estimated

according to some field measurement data during the same period (see figure

4.34).

During this study, the Rhodamine dye was injected into the river with the

discharge of 177.3 ml/min and the concentration of the dye at the injection

point was 2.3E8 ppb. The injection duration is 9 hours, from 19:51 Dec. 2nd

to 04:47 Dec. 3rd in 2009 (see figure 4.35).

It is worthy mentioning that the depth of the river is around 9m, while the

width is around 70m. The dye is easily mixed in the vertical direction. Thus

a 2D depth-averaged model is applicable in this study. Another noticeable

issue about this domain is that there is a power plant along the river which

takes the water from the river for the cooling purpose. The power plant

intake and outfall are shown in the figure 4.36. Compared with the length

of the study domain, the distance between intake and outfall is quite small.

The power plant may help enhance the mixing in the transverse direction of

the river. However, because the river is not too wide, the observation shows

that the dye was well mixed quickly and easily in the transverse direction

after injection. Therefore, the power plant does not affect too much in this

dye tracer study, especially in the areas far away from the power plant.
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Figure 4.33: Upstream discharge data from USGS Lemont Station

Figure 4.34: Downstream discharge at the Lockport Powerhouse
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Figure 4.35: The location and other information of the dye injection

Figure 4.36: Power plant in the study domain
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Figure 4.37: Location of observation points

In the field study, USGS set up fluorometer at 6 different points in the

domain as shown in figure 4.37, and recorded the evolution of dye with time.

4.2.3 Model Settings

Mesh Generation

The triangular meshes were generated by using the software GAMBIT (see

figure 4.38). The size of the triangular edges was around 20 m. There were

totally 7974 cells and 5057 nodes.

Boundary Conditions

The discharge data (figure 4.33) at upstream inlet was taken as upstream

boundary condition. The previous HydroSed model can only use constant

discharge or water height as boundary conditions. The new model is able

to handle changing boundary conditions which mean upstream boundary

condition (e.g. inflow rate) and downstream boundary condition (e.g. water
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Figure 4.38: Unstructured meshes for the study in Chicago River (7974
cells and 5057 nodes)

surface elevation) can vary with time. The upstream discharge data can

be input through the input file “qt.txt”, and the downstream water surface

elevation data may be input by using “ht.txt”. The format of those files and

more details can be found in the user’s manual in the Appendix.

The lack of downstream measurement data did result in some troubles

for specifying downstream boundary condition. Fortunately, the slope of the

river in this study is quite small and the bed is generally flat except some side-

slip structures (see figure 4.32). Many numerical tests showed that the water

surface elevation in the whole domain was basically the same at the same

time. In July 2010, USGS set up another temporary station near Lockport

(USGS 05536998 CHICAGO SS CANAL AT LOCKPORT CONTROLLING

WORKS, IL). The comparison of water surface elevation between that sta-

tion and Lemont station during the period of July 4 - September 7, 2010

also showed that the water surface elevation was very close. Therefore, a

simplified sketch of the upstream water height data was used as downstream

boundary condition (see figure 4.39). Furthermore, the numerical results of

upstream water surface elevation was validated later.
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Figure 4.39: Downstream boundary condition

The injection of dye was read into the model by using the file “ct.txt”

where the location of injection and injection rate varying with time were

specified (see Appendix for more details). As discussed above, the power

plant was not considered in the model. Two methods were used to deal

with the dispersion coefficients: specifying them as constant and using the

formulas (see equation (2.45)).

4.2.4 Brief Introduction to EFDC model

In order to better evaluate the performance of the new 2D HydroSed model,

it is useful to use another widely used 3D numerical model in the same

project and compare the results. The Environmental Fluid Dynamics Code

(EFDC) is chosen to perform that task. The EFDC model was developed

at the Virginia Institute of Marine Science (Hamrick, 1992 [26]), which is a

public domain code maintained by Tetra Tech, Inc. with the supported of

US EPA. It has the modules of hydrodynamics model, eutrophication model

and sediment contaminant transport model. The model has been widely used

over the world in environmental fluid studies (Sinha et al. 2010 [27]; Liu and

Garcia, 2008 [28]; Ji et al., 2007 [29]; Jiang and Shen, 2009 [30]) and river

morphodynamics studies (Kong et al. 2009 [31]).

The model uses a curvilinear-orthogonal horizontal grid and a sigma verti-

cal grid. In hydrodynamics part, it solves the three-dimensional free surface

flow equations for continuity, momentum, salinity and temperature. The

governing equations are as follow.
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where mx and my are the square roots of the diagonal components of the

metric tensor; m = mxmy; u and v are the horizontal velocities in the curvi-

linear orthogonal coordinates x and y; w is the dimensionless velocity in co-

ordinate z; H is total water depth which equals the sum of h (depth below the

undisturbed free surface) and ζ (surface elevation); p is the amount of physi-

cal pressure in excess of the reference density hydrostatic pressure normalized

by the reference density ρ0; f is the Coriolis parameter; Av is the vertical tur-

bulent viscosity; Qu and Qv are momentum source and sink terms modelled

by subgrid-scale horizontal diffusion; S and T represents salinity and tem-

perature respectively; QS and QT are the source and sink terms for salinity

and temperature respectively; Ab is vertical turbulent diffusivity. Av and Ab

are computed by second moment turbulent model developed by Mellor and

Yamada ([32]) and modified by Galperin et al. ([33]). For the computation

of contaminant transport, the advection-diffusion equation which is similar

to equation (4.12) and (4.13). The details about numerical schemes used in

EFDC can be found in reference [26].

The mesh was generated by using the software Gridgen. There were totally

8111 horizontal cells, which is similar with the number of horizontal cells in

HydroSed simulation, and 8 vertical layers in the mesh (see figure 4.40). It

is notable that EFDC uses curvilinear-orthogonal meshes in horizontal di-

rections. Due to this orthogonal requirement, fitting computational mesh

smoothly to real boundaries is quite challenging and the orthogonal quality

of meshes is very important, while the unstructured meshing techniques used

in HydroSed model offers an advantage in generating grids for complex to-

pographies compared to structured ones. The power plant was considered in

the simulation. The settings of boundary conditions were the same as the

ones used in HydroSed simulation. The numerical results are shown together

with the results got in HydroSed model in the following section.

4.2.5 Numerical Results

Validation of Upstream Water Surface Elevation

It became important to check how the hydrodynamics simulation was be-

cause of the assumption we made for downstream boundary condition. The
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Figure 4.40: Computation mesh for EFDC simulation

comparison between field measurement data, EFDC simulation result and

HydroSed simulation result is shown in figure 4.41. Generally both of the

simulation results match the measurement data well, which on the other

hand verifies the assumption made before. As far as water surface elevation

is concerned, the performance of HydroSed is as good as that of EFDC, which

further proves that the employment of varying boundary conditions is fine.

The error is shown in figure 4.42. The mean absolute error is around 0.04m

which is acceptable.

Dye Concentration Results

As mentioned above, the numerical results of the evolution of the dye con-

centration was compared with the field measurement at six locations (see

figure 4.37). The comparison is shown in figures 4.43 to 4.48. There are

two series of HydroSed results in the figures. The series of “HydroSed2D

result” correspond to the numerical results by using constant dispersion co-

efficients. Although one can find recommended ranges from Fischer et al.

[34], many different constants need to be tried in order to find the ones

which worked best. However, it was very time consuming and impractical

in the real-world projects which require prediction. On the other hand, the

series of “HydroSed2D formula result” show the numerical results by using

formula (2.45). It is shown that the formula works very well in this study. It

gives better performance than constant coefficients in downstream location

291 and 292. However, it must be mentioned that the formula needs more

check since this dye tracer study is an advection dominated problem and the
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Figure 4.41: Comparison of upstream water surface elevation

Figure 4.42: Error Analysis
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Figure 4.43: The evolution of dye concentration at location 296

dispersion coefficients are relatively small.

4.2.6 Summary

The study of the Chicago River further verified the model. The contaminant

transport equation was solved with the water flow equations. Irregular trian-

gular meshes were used. It was a good test for varying boundary conditions

and the formulas for calculating dispersion coefficients. A widely used 3D

model EFDC was conducted together with the HydroSed model in order to

better evaluate the performance of the HydroSed model. Basically speaking,

the transport module in the new HydroSed model works very well.
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Figure 4.44: The evolution of dye concentration at location 295

Figure 4.45: The evolution of dye concentration at location 294
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Figure 4.46: The evolution of dye concentration at location 293

Figure 4.47: The evolution of dye concentration at location 292
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Figure 4.48: The evolution of dye concentration at location 291
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CHAPTER 5

MODEL APPLICATION

5.1 Background

In this chapter, the modified HydroSed model was used to study the po-

tential impacts of planned hydraulic structures in the Guayas watershed,

Ecuador (see figure 5.1). The Guayas watershed is a key region for economic

development in Ecuador because of abundant aquatic product in this area.

However, due to seasonality of the rain distribution, its production capacity

has been adversely affected by the problems related with flooding, sediment

transport and inefficient natural drainage. In order to overcome those prob-

lems, a series of hydraulic projects are planned to be built in the southeast

of the Guayas watershed including three sub basins, the Bulubulu River, the

Cañar River and the Naranjal River with a total extension of around 5,000

km2. This study focused on one of those projects, a diversion dam located in

the Cañar River. The sluice gates are going to set across the existing river.

On the other hand, spillway is designed followed by man-made channels for

separated water to flow into another areas. The hydraulic structures aim at

diverting a portion of the flow of Cañar River from its natural course so that

the flood control ability in downstream region can be improved. The poten-

tial impacts of this diversion dam should be carefully studied, especially the

issue of sedimentation process.

The Cañar River has three tributaries: Patul, Piedras and Norcay Rivers.

The domain of interest is approximately 38 km long. In figure 5.2, the

bathymetry information in the whole domain is given. Upstream of the

domain is situated in a mountainous area therefore the bed elevation changes

quite dramatically over the first 10-15 km of the domain. The maximum

expected flow discharge in Cañar River is estimated to be around 1700 m3/s.

Due to variation of rainfall distribution over the year, the region experiences
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Figure 5.1: The location of study area

flooding events frequently. The natural drainage is poor in the watershed

and furthermore, Cañar River is observed to have high sediment transport

capacity. The local authorities have carried out geological and geotechnical

surveys and designed the diversion dam to be built in the area, which aims to

reduce the discharges in Cañar River in high flow seasons. The anticipated

location of the planned structure is shown in figure 5.2.

For the purpose of design, a 1D hydrodynamics model using the HEC-RAS

model was developed by the research and academic unit PROMAS (Soil and

Water Management Program) at the University of Cuenca-Ecuador. HEC-

RAS (River Analysis System) is a standard riverine 1D numerical model that

solves the full 1D St. Venant equations for unsteady open channel flow ([35]).

This model was developed by the United States Army Corps of Engineers

and is considered to be one of the most widely used floodplain hydraulics

models in the world ([36]).

However, even though a detailed topographical survey of the area is pro-

vided, unfortunately field data in terms of water surface elevation, flow dis-

charges and velocities are found lacking. With this limitation, the numerical

model can hardly be calibrated and validated. Moreover, the 1D model

cannot capture the effects of complex bank and bed geometry. Although 1D

HEC-RAS model can be used to estimate sediment transport, the limitations

are obvious due to its one-dimensional assumptions and lack of considering
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Figure 5.2: Bed elevation information in the research domain

river morphodynamics. Therefore, it is necessary to use some other higher

dimensional numerical models so that results got by different models can be

compared and checked reciprocally which can surely make researchers more

confident. The author and his colleagues applied the HydroSed model and

other two 3D models (EFDC, FLUENT) in this study. The specific study

area of each model can be seen in figure 5.3.

The new HydroSed model was used to evaluate hydrodynamics and sed-

iment transport in two areas: one is the downstream domain very close to

planned hydraulic structures; the other one is the bypass channel where the

water drained from the Cañar River flows (see figure 5.4).

5.2 Numerical Results of Case 1

In order to see the impact of hydraulic structures more clearly, a short reach

of the river downstream of the planned location of hydraulic structures was

selected as the simulation domain by using the HydroSed2D model (see figure

5.3). As shown in figure 5.5, triangular elements were used as computational
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Figure 5.3: The specific study area of different numerical models
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Figure 5.4: Original bed elevation in drainage areas
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grids. Two cases were modelled: one was using the original wall boundaries

from field survey; the other one was using designed levees as wall boundaries.

In the former one, total of 2442 elements were used in this 2 km long reach,

while in the latter one 1874 elements were used. Constant discharge flow

conditions were simulated and the time step of both computations is 0.1

second. Q = 1568.1 m3/s represented the 50-year flood event based on the

design hydrographs that were constructed for each river of the watershed,

namely 1039.6 m3/s and 528.5 m3/s as inflow boundaries of Cañar and Patul

Rivers respectively. The hydraulic structures were designed to drain 1100

m3/s from the main river under this flood condition. Thus, the case of Q =

468.1 m3/s was also modelled to study what could happen to the flow and

sediment transport after the hydraulic structures were built.

(a) (b)

Figure 5.5: Computational domain and unstructured meshes in
HydroSed2D model: (a) original boundaries; (b) designed levees as
boundaries

The simulation domain for HydroSed2D applications started downstream

of planned diversion dam and reaches to the confluence where Piedras River

meets Cañar River (see figure 5.3). As discussed above, two simulation sce-

narios were modelled with constant inflow Q = 1568.1 m3/s and Q = 468.1

m3/s, respectively. The high discharge case simulated 50-year flood event

that combined the inflows from Cañar and Patul Rivers; while the low dis-

charge case represented the expected effect of hydraulic structures, which

was designed to divert 1100 m3/s flow into a by-pass channel in case of an

upstream flood. The downstream water surface elevation boundary condi-

tions were taken from the results of 1D HEC-RAS simulations. In rest of
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the domain the water depth and flow velocity were evaluated based on up-

stream discharge and downstream water surface elevation conditions. Firstly,

the flow-only simulations without considering sediment transport had been

running until equilibrium states were reached.

The results of HydroSed2D simulations in terms of depth-averaged velocity

magnitude and water depth for both scenarios are shown in figure 5.6. The

code shows the capability to predict dry areas in low flow situations. Some

dry areas can be seen clearly in the low discharge case especially near left

bank (see figure 5.6c). In low discharge case, the water depth ranges between

0.5 m and 2 m in the reach while in high flow case it mostly changes between

2 m and 3 m. Similarly, flow velocities are reduced acutely in simulation

where diversion dam is assumed to divert 1100 m3/s of flow from this reach

compared to high discharge case.

Figure 5.6: HydroSed2D simulation results of depth-averaged velocity
magnitude and water depth

However, even though the dry areas can be seen in the case of low discharge

in figure 5.6, flood areas still exist which may result in troubles during flood

event. The model demonstrates that it is still necessary to design levees

besides the construction of the diversion dam. Levees were designed to be

placed downstream of the dam in the Cañar River to further prevent flooding

in the region. In order to test the design of levees, another simulation with
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designed levees as wall boundaries was modelled. The simulation run until

reaching equilibrium state. In figure 5.7, the water surface elevation contours

are shown together with the designed levees for low discharge case. In this

simulation the locations of designed levees were taken as wall boundaries

instead of the original boundaries. The elevation of the levees is shown using

the same color scale as water surface elevation. The effectiveness of the levees

could be assessed using simulation results in this reach. If one assumes that

diversion dam works as designed, the numerical results show that the levees

are high enough to avoid water inundation to flood plain. It is also shown

that there is some space to lower or optimize the designed levees in order to

cut down the cost of construction projects.

Figure 5.7: HydroSed2D simulation result of water surface elevation with
the designed levees (represented by colourful squares)

Moreover, the sediment transport problem after building the structures

was considered. The field survey data showed that the sediment particles

in this domain were mainly gravel with the median size D50 = 28.6 mm.

Therefore,
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Note that the Garćıa and Parker formula for suspended sediment transport

was developed based on the sediment size data range from 0.09 mm to 0.44

mm, which was much less than 28.6 mm. The suspended sediment transport

module was not applicable in this study domain. However, the Meyer-Peter

and Muller formula for bedload transport has been verified with data for

gravel ([13]), so only bedload transport of sediment was modelled in this

case study. The equilibrium state in flow-only simulation was taken as initial

conditions. The volume bedload transport rate per unit width qb at time t

= 1 hr is shown in figure 5.8. The black arrows in the river domain shows

the direction of sediment bedload transport.

Figure 5.8: The volume bedload transport rate per unit width qb

From figure 5.8, it is seen that in most areas the bedload transport rate

is quite small. However, in the areas where the flow width is shrank, the

transport rate is relatively much higher. Since it is actually the divergence

of qb which works for the evolution of bed elevation, one should notice that

high change rate of bed elevation may happen at the edges of those high-qb

areas. Special attention or protection may be considered there.
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5.3 Numerical Results of Case 2

Figure 5.4 shows the original bed elevation of the study domain surveyed

by local researchers and engineers. During flooding events, some water will

flow passing weirs which forms bypass flow and reduces the flow in the Cañar

River. Since the bypass flow discharge may be very high and the sediment

particle size in this area is quite small, the flow may be able to carry a

large number of sediment downstream. However, the downstream of this

area is so productive that people do not want it to be affected badly by

sediment transport problems. Although the diversion can help solve the

flooding problems in the Cañar River, it is necessary to make sure it will

not destroy the drainage areas instead. Sediment transport problems are

a big concern in this study domain. Therefore, the engineers designed two

man-made lakes (see figure 5.4). When water flows into the lakes, the water

velocities will be decreased and most of sediment is expected to deposit into

those lakes.

5.3.1 Numerical simulations with original bed elevation

HydroSed model is applied to simulate the hydrodynamics under the condi-

tion of original bed elevation information of two lagoons. The meshes are

shown in figure 5.9. The meshes are generated by using GAMBIT. There

are totally 1887 nodes and the number of elements is 3266. The time step is

0.1 second. Mannings coefficient n is taken as 0.03. Q = 1100 m3/s, which

corresponds to 50-year flood event, is taken as upstream boundary condi-

tion and downstream boundary condition is that the water surface elevation

equals to 2.25 m.

From the simulation results (see figure 5.10), it can be found that the water

depth varies a lot inside the upstream lagoon. In order to verify the results,

the 3D EFDC model is also applied to the same problem. The EFDC result

is shown in figure 5.11. The comparison shows general agreement between

each other. Due to the natural bed elevation in the upstream lagoon, the

water depth will be relatively high at somewhere and very low at somewhere

else. In that case, the function of the lagoon will not be fully developed.

Meanwhile it is difficult to design the height of the levees.

Therefore, it is necessary to re-design the bed of the lagoon to be more
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regular. First, it will help design the height of the levees. Second, there

should be always waterway connecting upstream channel and downstream

channel. Third, it will maximize the function of the lagoon because we

should take advantage of this area and use this area as much as possible.

Figure 5.10: HydroSed results of depth-averaged velocity magnitude and
water depth in the upstream lagoon area

5.3.2 Numerical simulations with new designed lagoon and
channels

As explained above, the bed elevation of the lagoon is re-designed. Levees

are also designed in order to separate the flow into three parts at the entrance

of the lagoon (see figure 5.12).

The domain can be divided into two parts by the weir located at the

downstream of lagoon so that two models are built by using HydroSed model.

In the upstream part (part A), the meshes contain 7412 cells; in part B there

are 1294 cells (see figure 5.13. The size of cells is smaller in part A in order

to capture the effect of levees inside the lagoon.
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Figure 5.11: EFDC results of depth-averaged velocity magnitude and water
depth in the upstream lagoon area

The upstream boundary condition for both parts is Q = 1100m3/s. For the

upstream part, the water surface elevation equals to 22.34 m at downstream

boundary according to the design of the weir. For the downstream part,

the downstream boundary condition is still that the water surface elevation

equals to 2.25 m. Regardless of sediment transport and bed evolution, the

flow simulation results are shown in figure 5.14. The flow velocity magnitude

in the channels is around 2 m/s. The water depth inside the upstream lagoon

is around 1 m to 4.5 m, which is helpful for levees design. As expected, the

flow velocity magnitude decreases dramatically when water flows into the

lagoons.

The equilibrium state under flow-only condition is taken as the initial

condition for sediment transport and bed evolution simulation. For bedload

transport, Meyer-Peter and Muller formula is used.

The figure 5.15 shows that the upstream lagoon is very helpful for sediment

deposition. The concentration of suspended sediment is reduced dramatically

after a short distance in the lagoon. In the downstream channel, the water

again takes sediment from the channel bed. When it reaches the downstream
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Figure 5.13: Computation meshes in HydroSed model
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Figure 5.14: The results of flow velocity and water depth in HydroSed
simulations

lake, the concentration (volume rate) can be as high as 0.1. In the down-

stream lagoon, the concentration is high inside the small channels which are

designed for sediment to deposit. From the simulation, it shows that in the

end of the domain the concentration is quite small.

The figures 5.16 and 5.17 show the change of bed elevation after certain

time under the condition of flood flow Q = 1100 m3/s. In the upstream

part A, from the initial bed elevation, it is seen that in order to reduce

the slope sequential steps are designed inside the lagoon. The results show

those areas are obvious deposition area. On the contrary the entrance of the

lagoon, especially the entrances to side channels, is easy-erosion area. In the

downstream part B, the entrance also shows big erosion since the channel

is narrowed down there. In the areas of designed channels, much deposition

happens as expected. Also, there is much erosion happening on the bank of

the channels because the domain is fully submersed under the condition of

flood flow. Special protection should be applied because the bank slope is

very big. However, the protection cannot be considered in the model.
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Figure 5.15: The concentration of suspended sediment at t = 5 hours

Figure 5.16: The change of bed elevation in part A after 5 hours
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Figure 5.17: The change of bed elevation in part B after 10 hours

66



CHAPTER 6

CONCLUSIONS

The original HydroSedv1.0 model has been modified and improved so that

the transport of contaminant and suspended sediment can be simulated. The

new model has been tested by using several pure advection simulations and a

dye-tracer study in the Chicago River. In the pure advection tests, numerical

diffusion and oscillation are observed. By applying face-limiter approaches,

the numerical accuracy is dramatically improved. The behaviours of different

limiters are evaluated and discussed. The dye-tracer study in the Chicago

River further proves the model’s applicability in real-world projects. A widely

used three-dimensional model EFDC is used for more comparisons.

The model is applied to study potential impacts of planned hydraulic struc-

tures in the Cañar River, Ecuador. The flow condition and potential sediment

transport problems during floods are considered. The model is able to be a

very useful tool for verifying and optimizing project designs.

In the end, the author would like to mention several ideas which may

be future works. The turbulent model used currently is a simple 0-equation

model, the depth-averaged parabolic model. More complicated and advanced

turbulent models, such as k−ε, may be applied. The change of water density

is not considered in the existing model, so is water temperature. The term

of water density ρ varying with water temperature and solute concentration

may also be employed. Furthermore, as far as river morphodynamics is con-

cerned, bank migration is another important problem besides bed evolution

in meandering rivers. The author is considering taking advantage of the

HydroSed model to do numerical studies of bank migration too.
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APPENDIX A

COMPLEMENT OF USER’S MANUAL

A.1 Introduction

Dr. Xiaofeng Liu wrote a User’s Manual for HydroSedv1.0 which can be

downloaded at the following website:

http://sourceforge.net/projects/hydrosed2d/

One can also find the original code of HydroSedv1.0 in that package. In

that manual, Dr. Liu concisely explained the numerical model and gave

several examples simulated by using HydroSedv1.0. Also, some information

about mesh generation and a tool code for interpolating bed elevation was

introduced. Since modifications have been done in the new HydroSed model,

the author think it is necessary to write this complement material for the

previous User’s Manual and explain more about how to operate the input

files and some announcements which could be useful for users.

The users are recommended to read User’s Manual for HydroSedv1.0 and

the previous content of this thesis for better understanding the techniques

inside the HydroSed model. In this appendix, the author tries to write from

user’s point of view in order to help users operate the model more easily and

efficiently.

A.2 Mesh Generation and Interpolation Tool

Two kinds of mesh format can be read in HydroSed: Gambit neutral format

and GMSH format ([37]). The boundaries need to be specified in the mesh

file. Note that 1 for inlet boundaries, 2 for outlet boundaries and 3 for wall

boundaries. For example, after generating meshes and specifying boundaries

in Gambit, a “.neu” will be built. In Gambit v2.3.16, the boundary infor-
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Figure A.1: Boundary information in Gambit mesh file

mation appears in the end of the mesh file (see figure A.1). Originally, all

boundaries are flagged as “6”. They need to be changed to 1, 2 or 3 as

mentioned above.

Usually when generating meshes in Gambit or GMSH, users may not con-

sider the z coordinate, e.g. bed elevation, and focus on 2D horizontal meshes.

In a normal mesh file (see figure A.2), the number of total nodes and elements

and other information are firstly introduced. Then from line 10, one can see

that only x and y coordinates are shown. However, before reading this mesh

file into the model, the z coordinate need to be added. Usually users may

have field survey data for real-world project or some coordinates information

at representative locations for conceptual or experimental channels. What

need to be done is to do interpolation from known data to the computa-

tion nodes. A useful tool code written in FORTRAN95 is provided together

with the HydroSed model in the downloadable package. The author further

modified and optimized the code so that one can choose how many points

are needed to do interpolation for each node and one can use either direct

averaging or distance-weighted averaging in which 1/L is taken as weight-

ing parameter so that the nearer point has a larger weight. Moreover, the
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Figure A.2: Coordinates information in Gambit mesh file

Figure A.3: Example of the dem.dat file

code is able to interpolate Manning’s coefficient for each node. In the previ-

ous model, the Manning’s coefficient n is always taken as constant which is

specified in the master input file. Now n can vary in different locations too.

This tool contains four “.f90” files, namely “module.f90”, “DEMInterpola-

tion.f90”, “readGambitMesh.f90” and “readGMSHMesh.f90”. “DEMInter-

polation.f90” is the main program file and “module.f90” is the file where

different options and parameters need to be specified (see figure A.4). The

input files needed are mesh file and a “dem.dat” file in which the topography

database is saved (see figure A.3). x, y and z coordinates of each point is put

separately by blank space in one line.

In figure A.4, users can specify the maximum number of computation

nodes, elements and boundary edges in line 4. It is recommended to use a

bigger number than the minimum requirement of meshes.

In line 7, the maximum edges of each element is specified. For example,

it is 3 when triangular meshes are used, or 4 when rectangular meshes are

used.

In line 10, the name of the old mesh file and the processed mesh file is

filled in.
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Figure A.4: Parameters in the interpolation tool

Figure A.5: Example of master input file ctr.txt

In line 13, 1 means GMSH file and 2 means Gambit file.

In line 15, the total number of points in the database, e.g. dem.dat file, is

specified.

In line 18, 1 means using distance-weighted averaging; 2 means using direct

averaging.

In line 21, one can specify how many points from database will be used to

do interpolation for each computation node.

A.3 The Master Input File (ctr.txt)

The master input file of the HydroSed model is the file of “ctr.txt”. One

example is shown in figures A.5, A.6 and A.7.

In line 2, 0 means running the model from start, while 1 means running
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Figure A.6: Example of master input file ctr.txt (continued)

from restart which needs read a reload file named in line 4.

In line 6, some parameters about time steps and starting/ending time are

specified. “dt” is the time step in the calculation of flow. The time scale of

bed evolution is normally much bigger than that of flow. In order to speed

up the simulation, one can use a bigger time scale for sediment transport.

“nts” = 10 means the time step for sediment transport is 10 times bigger

than that for flow. “ts” is the starting time; “tstop” is the ending time of

the simulation.

In line 8, the gravity acceleration g, water viscosity ν are specified firstly.

The limiter parameter β can be chosen. 1 corresponds to minmod limiter

and 2 means Roe’s superbee limiter. One can also try other numbers be-

tween 1 to 2, like 1.5. “n” is Manning’s coefficient. If n >0, a constant

Manning’s coefficient will be used for all nodes. Otherwise, the model will

read Manning’s coefficients for different modes automatically from the mesh

input file. “turb” = 0 means no turbulent model is considered; while 1 means

the depth-averaged parabolic turbulent model will be applied. “alphat” is

the parameter αT used in the turbulent model.

In line 10, “drydeep” and “mindeep” are used to deal with wet/dry. When

the water depth is less than “drydeep”, the computation cell will be taken

as dry area and its edges will be taken as wall boundaries.

In line 12, three options of inlet boundary conditions can be chosen. 1

means the water height is given; 2 means the velocities are given; 3 means

inflow discharge is given.

In line 14, constant inlet boundary conditions can be specified according

to the option chosen in line 12.

In line 16, similarly as inlet boundary, the types of outlet boundary con-
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Figure A.7: Example of master input file ctr.txt (continued)

ditions can be specified. Also, constant condition can be further specified in

line 18.

In line 20, one can choose how often the output file will be generated. The

format of output files is “.dat” and directly readable in the software Tecplot.

In line 22, similarly, one can specify the frequency for outputting output files

for the purpose of running form restart.

In line 24, one can choose if sediment transport module is activated. Fur-

thermore, one can activate bedload transport only or suspended load only.

As always, 0 means inactivation and 1 means activation.

In line 26, 1 means the format of mesh file is GMSH file; 2 means it is

Gambit neutral file. The name of mesh file should be written in line 28.

In line 30 and 32, it offers the option for applying varying boundary con-

ditions. For example, in line 30, one can set 1 to read varying discharges as

upstream boundary condition. Likewise, setting 1 in line 32 can allow users

ready varying water height as downstream boundary condition.

In line 34, one can set up initial condition including water surface elevation

and velocities.

In line 36, “transportcontrol” equals to 1 corresponding to activation of

contaminant transport module. “discoefcontrol” equals to 1 corresponding

to constant dispersion coefficients; 2 corresponding to applying formulas to

compute dispersion coefficients. In “ct.txt” file, the location of injection and

flow rate can be specified.
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Figure A.8: Sediment properties input file sediment.txt

A.4 Additional Input Files

A.4.1 Sediment Properties Input (sediment.txt)

In figure A.8,

Line 1 “rhos” : the sediment density;

Line 2 “rhow” : the water density;

Line 3 “diam” : the sediment particle diameter;

Line 4 “porosity” : the bed porosity, λp;

Line 5 “thita cri b” : the critical Shields number for bed load, τ ∗c ;

Line 6 “angleofRepose” : the angle of repose for sediment;

Line 7 “C slope” : a constant for slope effect in bedload transport;

Line 8 : bedload transport formulas: 1 - Meyer-Peter and Muller’s formual;

2 - Grass’ formula;

Line 9 : parameters A and m in Grass’ formula;

A.4.2 qt.txt

This input file provides inflow discharges varying with time. It is worthy

mentioning that the name of the file can be changed in line 30 in the master

input file. In the figure A.9, the total number of time-discharge pair is

specified firstly. Then, in each line, a pair of time and discharge is provided.

The unit of time is hour; the unit of discharge is m3/s.

74



Figure A.9: Example of input file qt.txt

Figure A.10: Example of input file ht.txt
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Figure A.11: Example of input file ct.txt

A.4.3 ht.txt

The figure A.10 shows the input file which provides water height varying

with time. The format is the same as the file of qt.txt. The unit of time is

hour; the unit of water surface elevation is meter.

A.4.4 ct.txt

The figure A.11 shows an example of ct.txt file. There are two parts in this

file: one is to specify the injection location; the other one is to provide varying

inflow rate. 8 at line 2 and 6 at line 12 correspond to the total number of

location and time-flow rate pairs separately. The location is expressed as

the computation element code which can be found in the mesh input file.

The unit of time is hour. The contaminant flow rate is equal to QwC. Qw

represents water discharge and C represents the contaminant concentration

in the water injected.
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A.5 Compiling and Executing the Code

Compaq Visual Fortran v6.6 compiler in Windows system and Intel Fortran

v10.1.013 compiler in Linux system have both been tested and working fine.
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