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Abstract

Since the invention of electronic computers, their performance has been constantly
advanced. The recent progress of micro processors in performance has been mainly
achieved by increasing the number of cores on a device, instead of increasing working
frequency. In addition, because of increasing of density of semiconductors, not only
computational performance but also density of power consumption has been steadily
growing, and this trend is expected to restrict the performance of computers as a mono-
lithic system. Therefore, increasing energy efficiency of the computers along with com-
putational performance is now a critical issue. Against a backdrop of these trends, both
hardware and software have new challenges; a) suppressed operating frequency; b)
large amount of but poor processors; c) power consumption wall; and d) narrow band-
width technologies for external memory. Both Graphics Processing Unit (GPU) and
Field Programmable Gate Array (FPGA) have considerable performance/cost benefits
because these are massively manufactured as consumer devices, and thus these are ex-
pected to be applicable as parallel computing accelerators in various fields. In addition,
this dissertation focuses high-level synthesis tools that generate desired hardware logic
using high abstraction layer descriptions. Although parallel computing accelerators
include GPUs and FPGAs are available, efficient mapping of desired applications on
the accelerators is still an important and difficult issue. Therefore, this dissertation ad-
dresses efficient application mapping on parallel computing accelerators using on-chip
memories. This dissertation focuses stencil computation and stream-oriented process
as design patterns on the accelerators, and demonstrate concrete application mappings
from the design patterns.

After describing motivation and background of this study in Chapter 1 to Chapter 3,
in Chapter 4, implementation of Smith-Waterman algorithm on GPUs is presented.
Operations of the algorithm are massively parallelizable. In addition, the computation
requires relatively high ratio of integer arithmetic to memory access. Therefore, costs
of synchronizing arithmetic cores and on-chip memory access impact computational
performance significantly. Implementing the algorithm on a GPU shows the impor-
tance of effective utilization of the warp-level parallelism on a GPU. Central to this
technique is a divide and conquer approach to alignment matrix calculation in which a
whole pairwise alignment matrix is subdivided. This leads to the efficient calculation
of data by 32 threads, and the reduction in the number of load/stores to/from external
memory. As a result of evaluation, the implementation of the algorithm achieved a
throughput ranging between 9.09 Giga Cell Updates Per Second (GCUPS) and 12.71
GCUPS on a single-GPU version, and a throughput between 29.46 GCUPS and 43.05
GCUPS on a quad-GPU platform, which was the world fastest GPU implementation
of the algorithm at that time.

In Chapter 5, an implementation of electro-magnetical simulation by a finite-deference
time-domain (FDTD) method for analysis of micro strip antenna characteristics on
a GPU is presented. The algorithm is known as a kind of stencil computation that
has a high degree of parallelism. The implementation uses Perfectly Matched Layer
(PML) as a boundary condition, hence memory accessing pattern and update-equations
are changed depend on location of grids. The transformation technique of update-
equations for partial boundary cells is also proposed. The empirical experiment showed
the memory bandwidth of 62.5 GB/s which corresponds to 55.8 % of the peak of the
target GPU.



In Chapter 6, implementation of human detection from video image using His-
tograms of Oriented Gradients (HOG) feature on an FPGA is presented. Since the
HOG features are extracted from luminance gradient of an image they have high ro-
bustness for lighting condition and are widely used to detect a human in an input video
image. In order to cope a lot of computation costs of the HOG feature extraction, the
architecture is designed in a data stream oriented deep pipelined manner. As a result
of evaluation, the throughput of 62.5 FPS was achieved without using any external
memory modules.

In Chapter 7, implementation of 3-D heat spreading simulation using MaxCom-
piler, which is a high-level synthesis tool based on Java on an FPGA is presented.
This chapter aims to establish estimation models for computational performance and
resource utilization using user parameters on high abstraction layer description. In
addition, energy consumption of accelerator is measured for various parameter con-
figurations. As a result of evaluation, the best configuration achieved about six times
faster than CPU implementation in performance, and the proposed estimation model
provided us reasonable estimation about performance and resource utilization.

In Chapter 8, implementation of ellipse estimation from video image using RANSAC
algorithm on an FPGA is presented. The algorithm needs to solve simultaneous equa-
tions as much as possible to get a reasonable solution. To solver simultaneous equa-
tions, three types of algorithms were implemented. As a result of evaluation, the
throughput of 62.5 FPS was achieved with 3.34 W power consumption. While the
optimal algorithm needs to be chosen depending on the amount of resources on FP-
GAs and required criteria, the FPGA based system that consists of streamed structure
is promised as a better solution for the application.

The results of implementation showed both GPUs and FPGAs have advantages over
existing microprocessor architectures in computational performance and energy con-
sumption. At the same time, modification of existing algorithms played a significant
role in achieving a high degree of computing efficiency with the parallel computing
accelerators. Especially, a view of making the best use of on-chip memory with a deep
pipelined manner was crucial.
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Chapter 1

Introduction

Since the invention of electronic computers, their performance has been constantly
advanced. The progress of micro processor architectures had been supported by a sig-
nificant increase in working frequency offered by rapid development of semiconductor
manufacturing technologies. However, after Intel NetBurst microarchitecture [7] was
developed in 2000, the working frequency progress began to stagnate. Therefore, re-
cent progress of micro processors in performance has been mainly achieved by increas-
ing the number of cores on a device. Now, parallel computing on computers connected
by interconnection is generally used for supercomputing and cluster computing, as well
as for mobile computers equipped with multi-core microprocessors [8, 9]. It suggests
parallel computing will be used for various fields more and more.

On the other hand, because of increasing of density of semiconductors, not only
computational performance but also density of power consumption has been steadily
growing, and it is expected the power consumption will be a main factor to restrict the
performance of computers as a monolithic system. It raises an issue about increasing
energy efficiency of the computers along with computational performance.

Against a backdrop of these trends, both hardware and software have new chal-
lenges; a) suppressed operating frequency; b) massively parallel processing; c) high
degree of energy efficiency; and d) narrow bandwidth technologies for external mem-
ory. Although ASIC based special hardware can achieve the highest performance in
many metrics, manufacturing cost and design time of ASICs keep increasing, and de-
veloping new ASICs for user applications may be an unrealistic solution in many cases.
Therefore, this paper focuses GPU, which was originally developed for graphics pro-
cessing, and Field Programmable Gate Array (FPGA), which consists of many arith-
metic elements and memory elements connected by user-configurable routing wires, to
address the above problems. Both devices have considerable performance/cost bene-
fits because these are massively manufactured as consumer devices, and thus these are
expected to be applicable in various fields.

GPUs have been grown to achieve high resolution and fast graphic processing. The
architectures are specialized for relatively simple control-flow and massively data par-
allel computations. The architecture is a kind of many-core architectures which con-
sists of many processors with a Single-Instruction-Multiple-Data (SIMD) mechanism
and a wide memory bandwidth to external DRAM. Additionally, these processors em-
ploy their own programming model in which the many cores have a common instruc-
tion flow to achieve a wide bit width to the memory interface and to make it easier to
hide memory access latencies. Because not only computer games but also some operat-
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ing systems require a certain amount of performance in graphic processing, GPUs are
widely used for personal computers and has good performance/cost benefits. There-
fore, some researches have reported attempts to use GPUs as accelerators for scientific
computations since the mid-2000s. After that Graphics Processing Unit (GPU) ven-
dors include NVIDIA and AMD officially released General-Purpose computation on
GPU (GPGPU) platforms for these kinds of computations and these platforms have
been widely known as acceleration platforms for scientific computations. In addition,
specialized products for GPGPU, which have high reliability and additional arithmetic
units for the scientific computations, have been released for workstations and super-
computers to achieve higher computation performance.

FPGA is a programmable semiconductor device which consists of an array of arith-
metic elements, memory elements, I/O pins and routing wires. Attributes of each ele-
ment and routing information can be configured by users to make desired digital logic
circuits. Generally, a structure of FPGAs is described as an array of Flip Flops (FFs),
Look-Up Tables (LUTs) and routing wires to connect these elements. But in recent
years, modern FPGAs are an aggregate of various hardware modules which consists
of clock managers, SRAM, multipliers, micro processors, PCI Express (PCIe) inter-
face controllers, DRAM interface controllers, Serializer/Deserializer (SERDES) mod-
ules, I/O drivers/receivers for various electric specifications and so on in addition to
above basic elements. This change is supported by the expanding FPGA market. For
example, Xilinx Virtex-7 FPGA family devices are manufactured with TSMC 28nm
process [10]. It shows the market has a need for FPGAs that use almost state-of-the-
art semiconductor manufacturing process for the products. Against a backdrop of the
above changes for FPGAs architecture, FPGAs have been used not only for the pro-
totype of ASIC or glue logics between devices, but also as accelerators which have
considerable performance/cost benefits and low energy consumption. One benefit to
use FPGAs as accelerators is we can optimize bit-width and number of pipeline stages
of arithmetic units and registers for each application. In microprocessor architectures,
the number of pipelines stages has a tendency to be a small number because the branch
misprediction penalty increases according with the number of pipelines stages. This is
because instruction flows are undefined at the designing stage of micro processors. On
the other hand, the functionality of FPGAs can be configured by users after manufac-
turing. It allows us to perform deep-pipelined structure for each application. Data-flow
computing is a way of performing efficient computation for FPGAs, where instructions
are spread spatially and data flow is focused instead of control flow of applications. Al-
though the data-flow computing have been researched from 80s, applications were lim-
ited by lack of enough resources on devices. However, the increase in the resources of
modern FPGAs allows us to perform various applications with the data-flow computing
manner, and the computer architecture with this paradigm will get attention more and
more. Since FPGAs require higher hardware cost to due to its flexible routing structure,
Application Specific Integrated Circuit (ASIC) can achieve better performance when
the same level manufacturing process is used. However, in addition to its economical
benefit, FPGAs are also focused for its dynamically reconfigurable features which can
reconfigure the circuit while the application is running. Some researches focus this
feature to support virtually large hardware and to realize fault-tolerance systems.

One of challenges for FPGAs is to support high level languages like C or Java to de-
scribe desired hardware logic instead of low abstraction layer descriptions by Hardware
Description Language (HDL) like Verilog HDL and VHDL. In contrast to software for
microprocessors which expands the instructions temporally, hardware design expands
for lack of the instructions spatially. It often requires a lot of re-design of the whole

2



architecture for lack of enough hardware resources. From this point of view, FPGAs
have problems about programmability, modifiability and reusability. In addition, de-
scribing the hardware design by HDL cannot take advantage of software resources for
microprocessors. Therefore, in recent years, high-level synthesis tools which allows
us to design hardware using high abstraction layer descriptions are focused [11–14].
Although current high-level synthesis tools have some restrictions, it provides us sim-
ilar development environments to software. One of reasons these high-level synthesis
tools started to attract attention is reducing hardware designing cost is sometimes more
important issues than designing optimal hardware because of increase in FPGA hard-
ware resources. This is similar to the relationship between assembly languages and
high-level languages. The high-level synthesis tools are expected to allow us to reuse
the resources and knowledge amassed through existing software development, and to
verify the behavior of described hardware quickly on microprocessors. On the other
hand, some high-level synthesis tools generate hardware designs from much higher
abstraction layer descriptions using Domain-Specific Languages (DSLs), description
languages specialized for specific application domains.

Important design strategies to accelerate applications using GPUs and FPGAs are to
access off-chip memories effectively and to massively utilize on-chip memories. Both
GPUs and FPGAs have on-chip memories consist of SRAM, and these memories are
distributed over the device. Therefore, the distance between arithmetic elements and
memory elements are close both logically and physically. These memories are com-
parable to cache memory of micro processors, but in contrast, users can utilize these
distributed memories in more explicit ways. In addition, as opposed to the cache which
provides data to a small number of arithmetic cores, all the distributed memories tightly
coupled with arithmetic elements can be accessed essentially in parallel. It achieves a
wide on-chip memory bandwidth, e.g. Xilinx Virtex-6 XC6VSX475T FPGA is re-
ported to have a maximum on-chip memory bandwidth of up to 21 TB/sec [15]. In
this way, from the aspect of using parallely-placed arithmetic elements and memory
elements offering a high peak performance in computation and a wide memory band-
width to external memories, both GPUs and FPGAs should share a core strategy to
optimize systems. This study therefore aims to reveal the methodology to efficiently
map various applications to these architectures.

The remainder of this paper is organized as follows. Chapter 2 shows backgrounds
of this study. In Chapter 3, challenges and purposes of this study are presented.
In Chapter 4, implementation of Smith-Waterman algorithm for biological sequence
alignment on GPU is presented. In Chapter 5, implementation of electro-magnetical
simulation by Finite-Difference Time-Domain (FDTD) method for antenna designing
on GPU is presented. In Chapter 6, implementation of human detection from video
image using HOG feature on FPGA is presented. In Chapter 7, implementation of heat
spreading simulation using MaxCompiler on FPGA is presented. In Chapter 8, im-
plementation of ellipse estimation using RANSAC algorithm on FPGA is presented.
Finally, this dissertation is concluded in Chapter 9.
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Chapter 2

Background

2.1 GPU
The origin and evoluation of GPU architectures intended to be accelerators of graphics
processing. Therefore the architectures had been evolved separately from that of CPUs.
The architectures are basically specialized for graphics processing with data-level par-
allelism, hence the GPUs have benefited from improvement of the transistor count as
increase of arithmetic units and on-chip memory. In addition, modern GPUs consist of
programmable arithmetic units, called Unified Shaders, instead of fixed-function units.
The interest let the GPUs obtain a position as an accelerator for scientific computations
exploiting data-level parallelism.

Figure 2.1 shows simplified architecture of NVIDIA GT200b GPU architecture.
The architecture can be classified as a Multiple-Instruction Multiple-Data (MIMD)
composed of multithreaded SIMD processors. Processors which support multithreaded
SIMD instructions, called Streaming Multiprocessor (SM), are connected external mem-
ories and a host system via an interconnection network. Each SM has a hardware thread
scheduler to execute threads by interleaving. This thread scheduling hides long laten-
cies of arithmetic units and external memory accesses. Therefore, GPUs are equipped
with external DRAMs with a highthroughput and a highlatency.

Figure 2.2 shows an overview of the SM architecture. The SM is specialized for
execution of SIMD instructions, all the processing units share a single instruction flow.
Each processing unit has its own register file which contains 1,024 32-bit registers.
The resiter file is not shared by processing units within an SM, while there is 16KB
memory which shared within an SM, called shared memory in terms of NVIDIA GPU
architecture. The shared memory consists of 16 banks, it thus performs high bandwidth
when the SM accesses all the banks without confliction. The shared memory is not
shared between SMs. All the SMs within a GPU share memory space on external
DRAM. Access to the external DRAM from an SM is basically assumed that all the
processing units access to a continuous region of the DRAM, and it performs high
bandwidth by coalescing memory access from an SM.

As mentioned above, a GPU contains some types of memory units like CPUs use
multilevel of caches. While the caches of the CPUs cannot be controled explicitly by
programmers, GPUs offer fine-grained control of the register files and the shared mem-
ories which have high bandwidth and locate close to processing units to programmers.
This is one of the key differences between CPUs and GPUs.
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Figure 2.1: Overview of GPU architecture.

Figure 2.2: Overview of GT200b GPU SIMD Processor.
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2.2 CUDA Programming Model
CUDA is a development environment for GPGPU offered by NVIDIA Corporation
[16]. The language specification is an extension of C/C++ with a multithread pro-
gramming model. There are a series of GPUs that are compliant with CUDA, and
each CUDA-compliant GPU device has a version known as “CUDA compute capabil-
ity”. Additionally, the amount of hardware resources can be different from one CUDA-
compliant GPU to another.

At the lowest level, the concept of CUDA is parallel processing with hierarchically
grouped multiple threads. The group of threads is called “Thread block” and the group
of thread blocks is called “Grid”. Each thread executes the same code which is de-
scribed as a sequential process, called “Kernel”. In CUDA, a kernel execution is called
“Kernel call”. Each thread has a unique ID within a grid and is able to execute different
instructions and/or operate on different data by using the ID, although they execute the
same code. There is a synchronization statement that is essential in parallel computing
as it synchronizes all threads within a thread block. There is no synchronization state-
ment that synchronizes all of the threads within a grid. However, it can be synchronized
all threads within a grid out of the kernel call by using CUDA API. Additionally, as
it is discussed later, actual processing goes along in 32-thread unit, called “Warps” or
16-thread unit that are called “Half-warps”.

Memory in CUDA-compatible GPUs is hierarchical. It is important to understand
the characteristics of these memories e.g. amount, bandwidth and region of sharing, to
optimize CUDA code [17] [18]. The following presents the memories that is used in
the implementation:

≤ Global memory: This memory has a large space (typically 1 to 6 GB or less) and
is shared by all of the threads within a grid, but latency is high and bandwidth is
lower than on-chip memory [17] . Additionally, it is not cached.

≤ Register: This is on-chip memory that is private to each thread. It is the fastest
memory within CUDA and there are 16 K 128-bit registers within a thread block
in GT200b GPU cores.

≤ Shared memory: This is on-chip memory that is shared by threads within a thread
block. It is as fast as registers but its size is not very large (16 KB per thread block
with GT200b GPU cores).

≤ Texture memory: This is read-only memory, shared by all threads within a grid
and is cached. It looks like the cached global memory, hence its size depends on
global memory.

≤ Constant memory: This is read-only memory like the texture memory. Its size is
not large (64 KB per grid with GT200b GPU core) but it is as fast as registers if
all threads within a half-warp access the same address.

2.2.1 Memory access issues with CUDA
One of the most important performance considerations is “Coalesced memory ac-
cess” [18]. In CUDA, memory access instructions for global memory from threads
within a half-warp can be packed into one or more wide memory access instructions. If
they are packed into just one wide memory access instruction, it is called the coalesced
memory access. If global memory accesses are not coalesced, then the performance of
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global memory access decreases considerably, at worst to one sixteenth [18]. More-
over, “Bank conflict” is an important consideration when shared memory is used. A
bank conflict happens if n threads within a half-warp attempt to access the same bank
at the same time. Here, the performance of shared memory access decreases to one
n-th [17]. To avoid this problem, the size of array elements that sit on shared memory
and the way to access them have to be considered carefully. It should be also consid-
ered memory alignment when data are passed between different types of memory. The
issue will be followed up in more detail in Section 4.3.2 and 4.3.4.

2.2.2 SIMD elements in SPMD
There are 30 multi-processors (MPs) in a GT200b with GeForce GTX 275, GTX 285
and GTX 295 and each MP has 8 Stream Processors(SPs). In CUDA, a thread block
means a group of threads that are executed on the same MP and thus can be synchro-
nized by the “ synchthreads()” statement. A thread block consists of some smaller
groups of threads called warps. Threads in the same warp share the same instruction
stream and executed simultaneously. Therefore, the GPU architecture looks like an
SPMD, but threads within the warp are always synchronized like in SIMD [19]. This is
because there is usually no need to use the “ syncthreads()” statement to synchronize
all threads in a thread block if each thread doesn’t access the shared memory or global
memory that other threads within other warps access.

2.3 FPGA
Field-Programmable Gate-Array (FPGA) consists of arrayed FFs, LUTs, and other
hard-macros and programmable interconnections as shown in Fig. 2.3. The LUTs and
the interconnections provide us high degree of flexibility, and the hard macros provide
area reduction and high operating frequency for commonly used hardware blocks such
as memory and multipliers as Block RAM (BRAM) and DSP modules. In addition,
I/O blocks for various signal specifications include LVCMOS and LVDS, serializer/de-
serializer (SERDES) blocks for high speed serial interface from 1Gbps to over 10Gbps,
and PCI Express interface block are also integrated into modern FPGA architectures.

LUTs assume important role to realize the high degree of flexibility within FPGAs.
m-Input n-Output LUT can encode any m-input n-output boolean functions and be
implemented as a memory which has m address bits wide and n data bits wide. Xilinx
Virtex-6 FPGA family has 6-input 1-output LUT some of them can be used as a 64x1bit
memory.

The programmable routing resources are also important component as well as arith-
metic and memory elements. Improvement of semiconductor manufacturing technolo-
gies makes routing delays one of the main factors in critical path [20]. It leads a trend
that logic elements become more complex to reduce complexity of routing resources.
For example, Xilinx Virtex-6 FPGA has a SLICE which consists of four 6-LUTs, eight
FFs, wide-function multiplexers, and carry logics while Xilinx Virtex-II Pro FPGA has
a one which consists of two 4-LUTs, two FFs, wide-function multiplexers and carry
logics.

Partial Reconfiguration is a feature to partially modify the configurations of LUT
and routing during other part of device is running. Since the partial configuration can
be stored in a memory e.g. SRAM or flush memory, the feature can reduce required
resources by switching modules used exclusively. In addition, the feature can support
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Figure 2.3: Overview of FPGA architecture.

virtual hardware mechanism which emulates bigger hardware than the target FPGAs
and reconfiguration of kernel region of FPGA accelerators during the PCI express in-
terface is running.

2.4 MaxCompiler
MaxCompiler is a kind of high-level synthesis tools which is developed by Maxeler
Technologies. MaxCompiler intends high-performance computing on special FPGA
accelerators and it provides a Java-based development platform with a stream-oriented
programming model. MaxCompiler generates modules include arithmetic pipelines
for FPGAs, PCIe interface, DRAM interface, FPGA-to-FPGA interface and APIs to
access the accelerator from host programs.

Components generated by MaxCompiler classified roughly into (a) kernels, (b)
managers, (c) streams and (d) host APIs. The kernels are main components for com-
putation which have pipelined-architecture consisting of arithmetic units and registers.
HDLs of the kernels are generated by the MaxCompiler from Java-based user source
code. In addition, the compiler hides latencies of arithmetic units and handles stall con-
trol for pipelines, so that users can describe desired operations without being aware of
pipeline stalls. The managers are components which handle I/O configurations of ker-
nels and provide communication between accelerators and the host. The components
are also generated by user descriptions. Attributes such as a clock frequency for ker-
nels, connections between other components, and configurations of interface between
the host program and kernels are managed by the managers. The streams are routes
which data flow along. Communications between the host, kernels and DRAM are es-
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Figure 2.4: Compiling flow of MaxCompiler.

tablished via streams. APIs are generated by the MaxCompiler to control accelerators
from applications on the host computer. The APIs are described in C language.

Figure 2.4 shows compiling flow of the MaxCompiler. There are high-level syn-
thesis tools to generate FPGA designs based on data flow computing from descriptions
in high level languages which are developed ahead of the MaxCompiler. For example,
SRC Computers CARTE generates FPGA design from user descriptions in C or For-
tran [13]. In CARTE, user descriptions directly express the form of data flow graph and
the compiler tries to translate all the user description into the FPGA design. It imposes
constraints heavily what user can describes.

In contrast, the MaxCompiler has a dedicated Java library for describing data flow
graphs and user describes relationships between nodes of the graphs with the library.
The data flow graphs for the compiler are generated by executing the user description.
Therefore, user descriptions for the MaxCompiler do not reflect the structure of opera-
tions, but instructions to generate the structure of operation as a kind of domain-specific
language. This is the radical difference between the CARTE and the MaxCompiler.

The benefits of the compiler are that user can use standard Java grammar and li-
braries to describe the data flow graph and execution performance of the code does not
affect the performance of the generated data flow graph. These benefits allow us to
write easy-to-read source code. One extension from the original Java grammar by the
MaxCompiler is overload of operators to describe the graph in a direct way.

The MaxCompiler mainly intends to achieve high-throughput processing by mak-
ing the best use of large-scale pipelines. Therefore, the Maxcompiler does not implic-
itly perform resource sharing which can reduce resource usage Users have to explicitly
describe the code so that resources are shared, when it is needed.
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2.4.1 MAX3424A Data Flow Engine
FPGA accelerators supported by MaxCompiler are called Data Flow Engines (DFEs).
The overview of MAX3424A DFE is shown in Fig. 2.5. There are a Virtex-6 SX475T
FPGA, six 4 GB DDRIII memories which achieve 31.2 GB/sec peak memory band-
width in total. The FPGA and the host processor are connected via PCIe gen2 x8
interface.
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Chapter 3

Aims of This Study

This chapter describes challenges and aims of this study.

3.1 Challenges

3.1.1 Using On-chip memory
As already mentioned, both GPUs and FPGAs consist of many arithmetic elements and
memory elements, and achieve high performance by working these elements in paral-
lel. The on-chip memories provide us larger memory space than registers, and faster
and lower latency memory space than off-chip memories. This study focuses highly ef-
ficient application mapping on GPUs and FPGAs using on-chip memories, especially
for stencil computation and stream-oriented process as described below. Aims of this
study include to demonstrate concrete application mappings from design patterns.

3.1.2 High-Level Synthesis Tools
Aspects of the high-level synthesis tools can be classified into two types; 1) Generat-
ing hardware design from software code for micro processors; and 2) Generating from
their own language or macros. The former tools allow us to re-use existing software
libraries, while the latter tools provide us hardware friendly description environment.
Although the high-level synthesis tools allow us to design desired hardware by sim-
ple descriptions in a highly-abstracted layer, details of relationship between user de-
scription and generated hardware might be unclear. This study also aims to establish
performance, resources usage and power consumption models from user parameters
for stencil computations on the MaxCompiler. These models are expected to provide
us reasonable estimations of computational performance and resource utilization from
user descriptions in a highly-abstracted level. In addition, these models can be used
to reduce development time by narrowing the range of the best user parameter space
before synthesizing, placing and routing the designs. This is useful for development of
large design especially when design needs a few days for synthesizing.
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3.2 Target application category

3.2.1 Stencil computation
Stencil computations are a computational scheme widely used for scientific computa-
tions including electro magnetic simulation and computational fluid dynamics. Since
the computations iterate the same operations for each point in a multidimensional grid,
the computations have been known as its high degree of data-level parallelism. In ad-
dition, the computations have a shape of neighborhood dependency to update each grid
point in an array. This performs some patterns of data accesses.

The stencil computations on GPUs are widely used for physical simulations. In
these computation, all the arithmetic operators require to access the data with high spa-
tial locality. Massive usage of on-chip memory as application specialized data cache
improves computational performance. On the other hand, using boundary condition
makes governing equations complex and thus proper assignment of computational re-
sources and on-chip memories is one of the most important issues.

3.2.2 Stream-oriented process
Stream-oriented process is a computation aspect which focuses data streams instead of
control flows or arithmetic. The computation aims for high efficiency of process by
series of pipelined units to decrease random accesses for memories. Since the stream-
oriented process expands operations spatially, it leads high operating frequency and
simplified control flows. The stream-oriented process can be implemented based on
stream-oriented architecture shown in Fig. 3.1 on FPGAs in particular.

The streamed architecture shown in Fig. 3.1 consists of three main parts: regis-
ters, a FIFO, and pipeline(s). The registers hold the data for pipeline parts and shift to
next registers or a FIFO. The FIFO part holds the data that is not required by pipeline
parts and passes the data to the next line of registers. The pipeline part does actual
computation and outputs results for next data processing. One advantage of this archi-
tecture is any huge memory to store whole input frame data is not used; instead, FIFO
to store only a few lines of data is needed. This is a preferable character also in term
of energy efficiency. Many previous researches were reported which used this external
memory-free architecture, especially for image processing [21–23].

The stencil computations are also widely used on FPGA for scientific simulation
and computer visions. In addition, some other types of computations can be imple-
mented as the stencil forms by transforming the definitions. The stream architecture
is a key component to perform the stencil computations on FPGA. This approach for
FPGA-based stream-oriented processing system to achieve faster, smaller and low en-
ergy consumption systems lacks enough knowledge about which applications are suited
and how these applications can be mapped to FPGA.

3.3 Purpose and schemes
This dissertation addresses efficient mapping of concrete applications on GPUs and
FPGAs based on the stencil computation and stream-oriented process. Details of each
project are described as follows.
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3.3.1 Smith-Waterman algorithm on a GPU
Smith-Waterman algorithm is a kind of biological sequential alignment algorithms.
The algorithm can be computed using a dynamic programming scheme and its oper-
ations are massively parallelizable. In addition, the computation requires relatively
high ratio of integer arithmetic to memory access. Therefore, costs of synchronizing
arithmetic cores and on-chip memory access impact computational performance sig-
nificantly. Implementing the algorithm on a GPU shows the importance of effective
utilization of the warp-level parallelism on GPUs.

3.3.2 FDTD method for a micro strip antenna on a GPU
FDTD method discretizes the Maxwell’s equation in spatial and time domains and
calculates the electric and magnetic potential at each point on spatial grids or lattices.
The algorithm is known as a kind of stencil computations that have a high degree
of parallelism. This project addresses to accelerate 3-D FDTD method for antenna
designing on a GPU. The implementation uses Perfectly Matched Layer (PML) as a
boundary condition, hence memory accessing pattern and update-equations depend on
location of grids. This project aims to reveal the implementation methodology the
stencil computation with complex boundary conditions.

3.3.3 Human detection system using HOG features on an FPGA
Histograms of Oriented Gradients (HOG) features are extracted from luminance gra-
dients of an image. It has high robustness for lighting conditions. This project aims to
extract the HOG features from input video images, and to detect a human in a frame
using Adaptive Boosting (AdaBoost) algorithm. In order to cope with a lot of com-

15



putation costs of the HOG feature extraction, the system is designed in a data stream
oriented deep pipelined manner. Performance evaluation includes computation perfor-
mance, working frequency and power consumption.

3.3.4 Heat conduction simulation using a MaxCompiler
This project aims to define the user parameters for stencil computations on MaxCom-
piler and MaxGenFD. This project also aims to establish estimation models for com-
putational performance and resource utilization. In addition, energy consumptions of
the accelerator which is connected via PCIe to reveal relationship between the user
parameters and energy consumption.

3.3.5 Comparison of pupil detection system implementation using
HDL and MaxCompiler

This project aims to perform ellipse estimation from input video images using RAN-
dom SAmple Consensus (RANSAC) algorithm. The algorithm needs to solve simulta-
neous equations as many as possible to get a reasonable solution. To solve simultane-
ous equations, three types of algorithms are implemented on an FPGA and compared
in performance and resource utilization.
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Chapter 4

Smith-Waterman Algorithm on
GPUs

This chapter describes a multi-threaded parallel design and implementation of the
Smith-Waterman (SW) algorithm on GPUs with NVIDIA corporation’s Compute Uni-
fied Device Architecture (CUDA). Central to this is a divide and conquer approach
which divides the computation of a whole pairwise sequence alignment matrix into
multiple sub-matrices (or parallelograms) each running efficiently on the available
hardware resources of the GPU in hand, with temporary intermediate data stored in
global memory. Moreover, the implementation focuses to use thread warps and padding
techniques in order to decrease the cost of thread synchronization, as well as loop un-
rolling in order to reduce the cost of conditional branches. While intermediate data
is stored in global memory for large queries, the most inner loop in this implemen-
tation will only access shared memory and registers. As a result of these optimiza-
tions, this implementation of the SW algorithm achieves a throughput ranging between
9.09 GCUPS (Giga Cell Update per Second) and 12.71 GCUPS on a single-GPU ver-
sion, and a throughput between 29.46 GCUPS and 43.05 GCUPS on a quad-GPU plat-
form. Compared with the best GPU implementation of the SW algorithm reported to
that date, this implementation achieves up to 46% improvement in speed.

4.1 Background
Biological sequence alignment is a widely used and crucial operation in bioinformatics
and genetics research. The purpose of it is to find the best possible alignment of a set of
sequences, with various real world applications including phylogenetic tree construc-
tion, disease diagnosis, and drug engineering. However, biological sequence alignment
is also a computationally expensive application as its computing and memory require-
ments grow rapidly with the size of the databases and queries which leads to massive
execution times on standard desktop computers.

Graphics Processing Units (GPUs) have been proposed recently as high perfor-
mance and relatively low cost acceleration platforms for biological sequence align-
ment [24]. As modern GPUs have become increasingly powerful, inexpensive and rel-
atively easier to program through high level API functions, they are increasingly being
used for non-graphic or general purpose applications (the so-called GPGPU comput-
ing). This chapter will present how Compute Unified Device Architecture (CUDA)
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GPUs can be used as hardware platforms to accelerate pairwise sequence alignment
using the Smith-Waterman (SW) algorithm [25] [26]. The SW algorithm adopts a dy-
namic programming mechanism which provides the best local alignment between two
sequences using exhaustive search, at the expense of a high computational load com-
pared to less accurate heuristics-based algorithms such as the BLAST algorithm [27].
However, with faster computing platforms, this trade-off need not take place as the ex-
haustive SW algorithm can be implemented efficiently. The remainder of this chapter
is organized as follows. First, relevant background on the SW algorithm is presented.
Then, the CUDA programming model is presented. After that, this multi-threaded
parallel design and implementation of the SW algorithm and pseudo code will be pre-
sented. A comparative evaluation between this implementation and the state-of-the-art
of GPU implementations as well as various micro-processor based implementations is
then presented before conclusions and ideas for future work are laid out.

4.2 The Smith Waterman Algorithm
The SW algorithm is a dynamic programming algorithm which finds the best local
fragment between two biological sequences. The search for the optimal local alignment
consists of two stages. Firstly, an alignment matrix of two biological sequences (e.g.
protein, DNA) is calculated and results in a maximum score. After that, the alignment
traces back from the maximum score until a zero element is found. Note that the final
trace back procedure will be done only for one or few subject sequences, the one(s) with
the highest scores, out of the most subject sequences, and hence is often performed on
the host CPU.

More specifically, let D = d0d1...dm 1 denotes a database sequence with length
m. Let Q = q0q1...qn 1 denotes a query sequence of length n. Let W(ai, b j) denotes
the substitution scoring matrix [28] , which gives a score describing the likelihood
of substitution between characters ai and b j. Let Ginit and Gext denote penalties for
opening a new gap and continuing an existing gap respectively.

With the above, the alignment matrix computation of the SW algorithm is described
by the following equations:

Ei, j = max

 Hi, j 1 Ginit

Ei, j 1 Gext

Fi, j = max

 Hi 1, j Ginit

Fi 1, j Gext

Hi, j = max


0
Ei, j

Fi, j

Hi 1, j 1 +W(ai, b j)

The values of Hi, j, Ei, j and Fi, j are defined as 0 if i < 0 or j < 0. The gap penalty is
called linear if Ginit = Gext, otherwise, it is called affine. From these equations, it is
observed that the value of Hi, j depends on the values of its upper neighbor Hi, j 1, left
neighbor Hi 1, j and left-upper neighbor Hi 1, j 1, as shown in Figure 4.1.

The above operations are massively parallelizable since the anti diagonal elements
of the alignment matrix are independent of each other (as labeled with the dot pattern in
in Figure 4.1), and hence can be computed in parallel. In addition, the computation of
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Figure 4.1: Data dependency of the SW dynamic programming algorithm. Arrows
indicate dependency for the lower right element.

different alignment matrices between a query sequence and different subject sequences
can also be done in parallel. Since GPUs have the ability of allocate thousands of
parallel threads to a particular task, it is a very appealing acceleration platform for
the SW algorithm. The GPU parallelization task is hence focused on the alignment
matrices’ calculation.

4.3 Implementation
There are many SW algorithm implementations on various parallel platforms [29] [30]
[31] [32] [33] [34], and one of the fastest CUDA-compatible GPU implementations
was presented by Liu et al. in [35]. This tried two types of implementations: “Inter-
task parallelization” and “Intra-task parallelization”. The “Inter-task parallelization” is
a method whereby each thread processes one alignment matrix between a database se-
quence and a query sequence. By contrast, the “Intra-task parallelization” is a method
whereby a thread block processes one alignment matrix between a database sequence
and a query sequence. In this implementation, each warp is used to process one align-
ment matrix between a database sequence and a query sequence. To use this technique,
it is important to reduce the resource usage per thread, the frequency of global memory
access per matrix calculation, and the frequency of the synchronization statement calls.

4.3.1 Calculation method
As already discussed, each warp is used to process one matrix. Since the number of
threads per thread block is set to 256, a total of eight matrices are processed by one
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thread block. This number depends on the target GPU architecture. In general, if the
number of threads per thread block is too small or too large, the performance decreases
significantly. Moreover, the number of threads per thread block must be as a multiple
of 32 [17].

Furthermore, the cost of conditional branch is quite high in GPU, especially when
some threads within the same warp take different instruction flows as the threads within
warp are synchronized like in a SIMD manner i.e. all threads within a warp have to
take the same instruction flow in reality. As shown in Section 4.2, the core of the SW
algorithm itself is not very complicated, and consists of two nested loops with simple
additions and a maximum function of 2 values. To reduce conditional branches, a tra-
ditional approach (other optimization methods have been proposed e.g. in [31] [33].) is
used. In the approach of this section, each sequence is padded with null entries(NEs) to
have the overall length of a multiple of 32, and the resulting alignment matrix is divided
into parallelograms as shown by Figure 4.2. Regions where padded null entries exist
lead to decreased performance because the cost of ineffective calculation increases.

The transfer of data, H and F, between each parallelogram is done using global
memory and the transfer of data within the parallelogram is done by using shared
memory. To use shared memory, each parallelogram was divided to 32-column sub-
parallelograms as shown in Figure 4.3. The pseudo code for the calculation of the data
from a sub-parallelograms (the most inner loop calculation) is shown in Figure 4.4.
The prefixes “r”, “s”, “t” and “c” relate to register, shared memory, texture memory
and constant memory, respectively. r Max is the maximum r H score that each thread
processes. Data that have to be passed to the downside large parallelogram, H and F
are the first 32 elements of s H and s F, stored in global memory. Data that have to
be passed to the next sub-parallelogram are the second 32 elements of s H and s F
stored in shared memory. r H diag, r Max and r E are also passed to the next sub-
parallelogram. tid is the unique ID of each thread and r score is the score of the sub-
stitution matrix. Note that global memory is not used within the most inner loop as it is
slower than shared memory and registers. After calculating all sub-parallelograms, the
alignment score is calculated by returning the maximum r Max of each thread within
the warp to the host.

The data that is passed to the next sub-parallelogram (r E and r H diag) propagates
in the lateral direction. Thus, it can be held by registers (since each thread processes
data laterally and this data is local to each thread).

4.3.2 Shared memory usage and occupancy
The GPU has 16 KB shared memory and 16 K registers per thread block. All of these
resources are open to users, but the “Occupancy” is one of the considerations [17] [18].
Occupancy is the ratio of the number of active warps to the maximum number of warps
that each multi-processor can process. The maximum number of warps is determined
by GPU hardware. In the case of GT200b, it is 32 warps. The number of active warps is
determined by 3 factors: number of threads per MP, register usage and shared memory
usage. The register and shared memory usages can be obtained by compiling results.
A higher the occupancy, the busier the hardware. So this metric is very important for
performance measurement. To get high occupancy, low utilization of shared memory
and register is required. In the implementation of this chapter, there are 256 threads
per thread block and 6216 bytes of shared memory per thread block and 24 registers
per thread are used. Therefore the occupancy is 0.5, and the number of active thread
blocks in each MP is 2. As a result of this, it was determined the number of thread
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Figure 4.2: Region of calculation of the SW kernel and padding entries of query
and database sequences. The square that is enclosed by a heavy line shows alignment
matrix.

Figure 4.3: Dividing parallelogram to sub-parallelogram. The most inner loops in the
SW kernel calculate each sub-parallelogram.
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for i = 0 to 31 do
// Load score
r query idx =
s query[tid + i + r query o f f set]
r score =
t score[r query idx][r sub ject idx]
// Calculate F
r F = max(
s F[tid + i] c Gap extend,
H[tid + i] c Gap init)
// Calculate H and Max
r H =
max(0, r E, r F, r H diag + score)
r H diag = s H[tid + i]
r Max = max(r H, r Max)
// Store H and F
s H[tid + i] = r H
s F[tid + i] = r F
//Calculate next E
r E =
max(r E c Gap extend,
r H c Gap init)

end for

Figure 4.4: The pseudo code for the most inner loop of SW kernel, when there are 32
threads per warp. The r E, r H diag, s H and s F are initialized to 0 at the start of
kernel execution.

blocks per kernel call to be 60 to make all multiprocessors busy.
In previous SW implementation studies, it was revealed that the maximum bit width

of H, F and E is less than 16 bits in most real world applications [34]. In that case, short
type variables (i.e. 16 bits) can be used to store these values. This would decrease
memory I/O traffic and hence improves performance. However, this also brings about
memory bank conflicts if shared memory is used in a straightforward way as shown in
Figure 4.5 [17]. It can be easily packed H and F to 32-bit variables as there are some
vector types like a “short2” in CUDA API.

4.3.3 Using multiple GPUs
In GTX295, there are two GPU cores in one module. Additionally, some motherboards
have multiple PCI-Express x16 bus interfaces, hence allowing for multiple GPUs in
one node. OpenMP gives users an environment to use multiple GPUs in one process.
A straightforward gain is achieved by dividing the database into multiple chunks and
allocating each chunk to one of the GPU cores to process them in parallel.

Since the execution time depends on the length of the query sequence and database
sequence, it is very important to balance the execution time between parallel GPUs to
achieve high efficiency. For this, the database was divided into equal-length subsets.
An easy way to do this dynamically is to assign the longest sequence to the GPU that
has the shortest total length of the already assigned sequences. This does not guarantee

22



1 / / ( a )
2 s h a r e d s h o r t s H [ 8 ] [ 6 4 ] ;
3 s h a r e d s h o r t s F [ 8 ] [ 6 4 ] ;
4 / / ( b )
5 s h a r e d s h o r t 2 s HF [ 8 ] [ 6 4 ] ;
6 / / ( c )
7 s h a r e d s h o r t s HF [ 8 ] [ 1 2 8 ] ;
8 / / ( d )
9 s h a r e d i n t s H [ 8 ] [ 6 4 ] ;

10 s h a r e d i n t s F [ 8 ] [ 6 4 ] ;

Figure 4.5: Examples of shared memory definition. (a): A bank conflict occurs be-
cause two adjacent elements e.g. s H[0] and s H[1] sit in the same bank with different
threads attempting to access them at the same time. (b): There is no bank conflict here
when some threads access each element of the array. (c): Interleaving H and F within
a array, there is no bank conflict here and there is no need for packing. (d): There is
no bank conflict here, and there is no need for packing. However, a larger memory is
needed compared to the other definitions.

the optimal distribution but resulting imbalance in subset sizes is negligible for large
databases (490,000 sequences in this implementation).

4.3.4 Other optimization issues
In addition to the aforementioned optimization techniques, this section presents further
optimizations for this implementation. First, loop unrolling is used, which is a very
well-known optimization technique that is effective in reducing conditional branching
overheads [36].

The second optimization technique used is optimized reduction used to find the
maximum element of the alignment matrix to be returned to the host. The optimized
reduction method used is described in [19]. In it, reduction is achieved with no syn-
chronized statement which improves its execution time considerably.

The third optimization technique used is concurrent memory copy and execution.
To use this technique, the implementation separated the calculation sequence to three
steps. First, the kernel call step which is the core calculation task executed on the GPU
and is the most time consuming step. The results of kernel call are stored in global
memory. Second, data is transferred from global memory to the host memory. In order
to parallelize data copy and kernel execution, the Stream asynchronous memory copy
statement and management organization [17] was used. For this, a double buffer is
used in the global memory whereby read/write from/to the buffer is toggled at each
iteration.

Third, data loaded from global memory to the host is sorted and tied up with the
sequence names in the database file. Here again, the implementation uses a double
buffer on the host to allow for concurrent execution of data sorting and data loading
from global memory.
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Table 4.1: Performance Evaluation of loop unrolling and concurrent memory copy
using Blosum50 scoring matrix with a penalty of 10-2k.The performance is in GCUPS.
Queries Length Default Unrolling Memory copy Both Total Speed-up[%]
P02232 144 7.17 8.30 7.71 9.04 26.18
P01111 189 8.38 9.72 8.94 10.48 25.13
P05013 189 8.38 9.72 8.94 10.48 25.14
P09488 218 8.64 10.03 9.15 10.73 24.23
P14942 222 8.79 10.22 9.31 10.92 24.25
P00762 246 8.83 10.27 9.30 10.91 23.58
P10318 362 9.45 11.02 9.81 11.52 21.90
P07327 374 9.77 11.39 10.14 11.90 21.90
P01008 464 10.05 11.73 10.36 12.17 21.14
P10635 497 10.18 11.90 10.49 12.31 20.92
P25705 553 10.24 11.97 10.51 12.35 20.60
P03435 567 10.50 12.27 10.78 12.66 20.61

4.4 Results and Evaluation
The cell updates per second (CUPS) is a commonly used measure for SW execution
performance as it normalizes in terms of the database and query sequence sizes. Given
a query sequence Q and a sequence database D, the Giga CUPS (GCUPS) is defined
as below:

GCUPS =
‖Q‖∗ ‖D‖
t ∗ 109

where ‖Q‖ represents the length of the query sequence, ‖D‖ the total length of the
database sequences, and t means the elapsed time in seconds. In this project, the
elapsed time t includes the transfer time of the query sequence from the host to the
GPU global memory, the calculation time of the SW algorithm scores on the GPU,
result data transfer time from global memory to host, and finally score sorting on the
host. The performance of the implementation of this chapter is evaluated by 12 query
sequences with lengths ranging from 143 to 567 (see Table 4.1). These sequences
include query sequences that are widely used in the literature to test sequence align-
ment algorithms, including Striped Smith-Waterman [29] and other Smith-Waterman
implementations [30] [35]. All queries were run against Swiss-Prot 57.6 which com-
prises 174,780,353 amino acids in 495,880 sequence entries. Blosum50 scoring matrix
was used with a gap penalty of 10-2k. GPU implementations were carried out on a
GTX 295 graphics card, which has 30 SPs and 896 MB RAM per GPU, installed on a
PC with a Core 2 Duo E7200 2.53 GHz processor, 2 GB DDR2 800 MHz, and running
Cent OS 5.0. This graphics card has a core frequency of 576 MHz and a memory clock
of 999 MHz.

4.4.1 Optimization techniques
This section evaluates further optimization techniques as shown in Section 4.3.2 and
4.3.4. Note that the shared memory definition used is the method (d) in Figure 4.5.

First, the effects of the loop-unrolling and concurrent memory copy techniques are
shown by Table 4.1. The loop-unrolling optimization unrolled 16 iterations resulting
in a loop of 2 iterations, and register usage increased from 20 to 22. Both optimization
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Table 4.2: Performance Evaluation of shared memory using Blosum50 scoring matrix
with a penalty of 10-2k.The performance is in GCUPS.

Queries (a) (b) (c) (d)
P02232 6.85 8.53 8.54 9.04
P01111 7.94 9.89 9.90 10.48
P05013 7.94 9.89 9.89 10.48
P09488 8.13 10.13 10.13 10.73
P14942 8.28 10.31 10.31 10.92
P00762 8.27 10.30 10.30 10.91
P10318 8.72 10.88 10.87 11.52
P07327 9.01 11.23 11.23 11.90
P01008 9.21 11.49 11.49 12.17
P10635 9.32 11.62 11.62 12.31
P25705 9.34 11.65 11.64 12.35
P03435 9.58 11.94 11.94 12.66

techniques worked well. By unrolling the most inner loop of the SW algorithm, the
evaluation result shows 17 % speed up in execution time. Additionally, by using con-
current copy and execution, performance improvement achieved an extra 9 % speed-up
of the SW execution. Overall, the evaluation results show over 26 % speed-up by using
both of techniques. Because of the use of loop-unrolling, the amount of register usage
increased, but this did not affect the occupancy in this instance.

Table 4.2 shows the performance of the four definitions of shared memory data
shown in Figure 4.5. This shows method (d) to be the fastest. Method (a) which
has the bank conflict problem is the slowest, whereas methods (b) and (c) are in the
same range. There is no bank conflict in methods (b) and (c), so it would appear that
reason behind the performance drop is not memory bandwidth, but rather the additional
computing cost due to data packing or index calculations. Although methods (a), (b)
and (c) are slower than method (d), resource usage is lower. In this instance, there is no
need to reduce the amount of shared memory usage but methods (b) and (c) are better
than method (d) when this is needed.

4.4.2 Evaluation of SW implementation
The implementation results are shown in Table 4.3. For a single GPU implementation,
it achieved the highest performance of 12.71 GCUPS, and the lowest performance of
9.09 GCUPS. For a quad-GPU implementation, it achieved the highest performance of
43.05 GCUPS, and the lowest performance of 29.46 GCUPS. The gap penalty has no
effect on performance. Next evaluation compares the performance of the implementa-
tion of this chapter with CUDASW++-2.0b2 which is one of the fastest SW implemen-
tations on CUDA-compatible GPUs [35]. The evaluation is performed with the Swiss-
Prot database release 57.6, using Blosum50 scoring matrix with a gap penalty of 10-2k.
The results are shown in Figure 4.6. Apart from the case of query P02232, the imple-
mentation of this chapter is clearly faster than the CUDASW++-2.0b2 (with the case of
query P02232 achieving a similar performance). In the multiple GPU implementation
of CUDASW++, the database sequences are transferred for each query sequence. By
contrast, the implementation of this chapter transfers the database sequences just one
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Table 4.3: Performance Evaluation using swiss-prot release 57.6 and Blosum50 scor-
ing matrix with a penalty of 10-2k.The performance is in GCUPS.

Queries Length 1 GPU 2 GPUs 4 GPUs
P02232 144 9.09 17.26 29.46
P01111 189 10.53 19.98 34.44
P05013 189 10.53 19.98 34.42
P09488 218 10.78 20.45 35.44
P14942 222 10.97 20.83 36.09
P00762 246 10.96 20.84 36.23
P10318 362 11.57 22.01 38.78
P07327 374 11.96 22.76 40.07
P01008 464 12.21 23.25 41.19
P10635 497 12.36 23.54 41.19
P25705 553 12.39 23.61 41.97
P03435 567 12.71 24.22 43.05

time. It is main the reason for the relatively large performance difference shown on
multiple GPU implementation.

Finally, an evaluation shows comparison of the performance of proposed imple-
mentation with several recent CPU-based implementations by Farrar [29] [31]. Farrar
reported the performance of a SW implementation on a number of processors including
Xeon and Cell B.E. The comparison used the performance of Farrar’s implementation
on two further processors, the first using a PC with a Core 2 Duo E7200 2.53 GHz
processor, 2 GB DDR2 800 MHz SDRAM running CentOS 5.0, and the second using
a PC with a Core i7 CPU 920 2.67 GHz, 4 GB DDR3 1066 MHz running the CentOS
5.0. Comparison results are shown in Figure 4.7. The data of Xeon and Cell B.E.
implementations were taken from Farrar’s paper [31]. In the case of a single GPU im-
plementation, the proposed implementation is slower than CPU-based implementations
for all query sequences, whereas the multiple GPU-based implementations are faster
than the CPU-based implementations for all query sequences.

4.5 Summary
This chapter has presented a novel technique for the implementation of the Smith-
Waterman algorithm on CUDA-compatible GPUs.

Compared with previous GPU implementations that calculate the alignment matrix
by thread blocks or threads, proposed implementation in this chapter focused on warp
level synchronization to decrease the cost of synchronization. Central to this technique
is a divide and conquer approach to alignment matrix calculation in which a whole
pairwise alignment matrix is subdivided into parallelogram regions. This leads to the
efficient calculation of the alignment matrix by 32 threads, and the reduction in the
number of loads/stores to/from global memory. Shared memory data definition was
very important in order to avoid bank conflicts as the implementation accesses shared
memory more frequently (instead of global memory). In addition, this project showed
that some other optimization techniques, namely loop-unrolling and double-buffering
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Figure 4.6: Performance comparison between the implementation of this chapter
and CUDASW++-2.0b2 using swiss-prot 57.6 and Blosum50 scoring matrix using a
penalty of 10-2k.
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Figure 4.7: Performance comparison between the implementation of this chapter and
the striped Smith-Waterman implementation using Blosum50 scoring matrix with a
penalty of 10-2k. The CPU implementations used all cores.
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to use concurrent memory copy and execution, which are used widely for CPU code
optimization, worked very well for GPUs. This project also presented the performance
of the SW implementation using multiple GPUs. When 4 GPUs are used, for instance,
the performance is much higher than the Farrar’s implementation that used two Cell
B.E. processors (50 % more), at a much lower cost ( 75 % less). It could have used more
GPUs to scale up the implementation even further if there were more PCI-Express slots
on the motherboard.
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Chapter 5

FDTD method on a GPU

5.1 Introduction
This chapter discusses optimization techniques to implement 3D Finite-Difference Time-
Domain (3D-FDTD) method with Absorbing Boundary Conditions (ABC) on a GPU,
for accelerating analysis of antenna characteristics.

Characteristics analysis for antenna design consists of two steps: simulation of
electromagnetic propagation in time domain and analysis of simulation results. Accel-
eration of simulation is needed since most of the execution time is occupied by the elec-
tromagnetic simulation. The FDTD method proposed by Yee discretizes the Maxwell’s
equation in spatial and time domains and calculates the electric and magnetic potential
at each point on spatial grids or lattices [37] [38]. Although its computational costs,
which are the number of floating point operations and memory accesses in this case,
and memory usage increase linearly with the size of a simulation model, the method
is widely used since performance of computers have been rapidly improved and the
algorithm is simple and easy to understand.

Absorbing boundary conditions(ABCs) are important when using the FDTD method
for unbounded problems. Since computers cannot handle an infinite space or infinite
number of elements on the grid, the method can only be used within a finite space.
To resolve this limitation, several types of ABCs were proposed to attenuate reflection
waves from boundaries of the computational space [39] [40] [41]. Among them, the
perfectly matched layer(PML) proposed by Bérenger is widely used [42]. However,
the PML needs additional floating point operations, memory accesses, and memory
resources.

The FDTD method is known as a kind of stencil computation that has a high degree
of parallelism but requires a large memory bandwidth. While GPU implementation is
attractive as a cost-effective acceleration approach, earlier work has shown that GPU
implementation of Absorbing Boundary Conditions (ABCs) tends to be a bottleneck
of the simulation [43]. This chapter discusses this issue. In concrete terms, the main
contributions of this chapter are as follows:

≤ Efficient GPU implementation of a Non-Uniform grid method is presented to
reduce memory requirements and its performance overhead is revealed.

≤ Novel implementation of ABCs is proposed and evaluated, which is coupled with
periodic boundary conditions in view of a SIMD nature of GPUs.
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≤ An implementation technique based on transformation of update equations of
ABCs is introduced to reduce both of the computation amount and memory us-
age.

The proposed ideas are empirically evaluated by practical simulation of a micro strip
antenna (MSA) in terms of performance and accuracy.

The rest of this chapter is organized as follows. Section 5.2 introduces related
works. Section 5.3 describes the 3D-FDTD method, the Split PML and basic imple-
mentation of 3D-FDTD method on a GPU. Section 5.4, 5.5 and 5.6 describe proposals
for the GPU implementation. The memory usage, performance, accuracy and compar-
ison with related works are evaluated in Section 5.7. Finally, Section 5.8 includes the
conclusions and some directions for future work.

5.2 Related works
So far, many researchers have reported the results of GPU acceleration of the stencil
computation [44] [45], including 3D-FDTD method with ABCs [6] [46] [5]. Nagaoka
et al. reported a performance comparison a 3D-FDTD method with the Split PML
on a CPU, SX-8R super computer and Tesla C1060 GPU [46]. They used a human
body model as a calculation target and pointed out that the performance varied with
the calculation domain and CUDA thread block size. Implementation of a 3D-FDTD
method was evaluated also on a variety of GPUs including CUDA incompatible GPUs
[6] . Chu et al. achieved the performance of approximately 160 M elements updates per
second using UPML [5]. While these works addressed parallelization and acceleration
of a 3D-FDTD method for a normal computational space, there have been few reports
that mainly discuss implementation techniques of ABCs and a non-uniform gird on
GPUs.

5.3 Background

5.3.1 3D FDTD Method
This section briefly describes a 3D FDTD simulation approach in this chapter. De-
tailed mathematical background can found in other literatures [37] [38]. The approach
assumed that a simulation target is isotropy and non-dispersive having the conductivity
of σ = 0. It also assumed permeability is uniform. After applying a typical substitution
of central differences for the time and space derivatives for Maxwell’s curl equations,
time-stepping expression of the approach can be written as for Ex for instance:
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(5.1)

where Δy and Δz are cell sizes of each dimension, εx is a permittivity in x dimension, Δt
denotes the time increment, and δu(u � }x, y, z| ) is a difference operator. For example,
δy is defined as δy f (i, j, k) = f (i, j, k) f (i, j 1, k).
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5.3.2 Equations for the Split PML
Since the 3D-FDTD method handles a finite computational space, the computational
space is generally surrounded by zero values that correspond the Perfect Electric Con-
ductor (PEC). The PEC reflects waves as a result of computation, and thus ABC are
required to attenuate the reflection waves.

As previously mentioned, boundary condition used Bérenger’s Split PML [47].
Each component of E and H is split to two components called subcomponents, and
the time-stepping equations of each subcomponent are defined as:
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(5.2)

where CE1u(p) and CE2u(p)(u � }x, y, z| ) are introduced for ease of describing the equa-
tions. CE1u(p) and CE2u are defined as

CE1u(p) =
2ε0 σu(p)Δt
2ε0 + σu(p)Δt

, u � }x, y, z| (5.3)

CE2u(p) =
2Δt

2ε0 + σu(p)Δt
× 1
Δu
, u � }x, y, z| (5.4)

where ε0 shows permittivity of free space and σu(p) shows conductivity at the coor-
dinate p on the dimension u. Note that σu(p) is 0 regardless of the value of p in non
PML regions. Since CE1u(p) and CE2u(p) are constants in the time domain, these val-
ues can be calculated in advance of the simulation process. The Split PML needs two
subcomponents for each component of E and H . Thus, the Split PML needs up to 12
additional memory elements compared to normal FDTD calculation.

5.3.3 Basic Implementation of 3D FDTD Method on CUDA-compatible
GPU

A general approach to implementation of the 3D-FDTD method on CUDA-compatible
GPUs divides the whole simulation space to fixed size blocks and makes CUDA thread
blocks process each block [44] [45]. An implementation in this chapter also divides
the whole simulation target of size (S x, S y, S z) into small blocks of size (Bx, By, Bz)
and makes CUDA thread blocks process each block. Each component of E and H
is stored memory as 3D-array so that dimension x has a unit-stride, dimension y has
a larger stride, and dimension z has the largest stride. Fig.5.1 shows the placement of
CUDA threads within a block and direction of processes. Bx ∗ By CUDA threads within
a CUDA thread block are placed on a 2D plane and each CUDA thread moves the
process along the line with z direction. Therefore, the CUDA thread on the coordinate
(x, y) processes a total of Bz cells from (x, y, 0) to (x, y, Bz 1). When CUDA threads
that have the same y coordinate in a block access to components of E and H at the
same time, these accesses can be coalesced because these components are continuous
on the GPU memory. Since the indices expressed in fractional numbers as like in Eq.
(5.1) are inconvenient for straightforward implementation, a set of offset values make
the coordinates integer numbers as shown in Table 5.1. Among possible candidates of
offset values, offsets in Table 5.1 are for the E and H in this chapter so that accesses
to the E and H components are coalesced as much as possible. Thus, Eq. (5.1) can be
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Figure 5.1: Placement of CUDA threads and direction of process within a block. The
gray boxes show CUDA threads.
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Table 5.1: Offsets for components of E and H

Components

Field x y z

E ( 1/2, 0, 0) (0, 1/2, 0) (0, 0, 1/2)
H (0, 1/2, 1/2) ( 1/2, 0, 1/2) ( 1/2, 1/2, 0)

rewritten as
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and the update equation of the Split PML for Ex can also be rewritten as
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where coordinates in square bracket intend the coordinates with the offsets. Hereafter,
the converted coordinates as shown in Eq. (5.5) and (5.6) are used to describe the
implementation.

5.4 The Non-Uniform grid

5.4.1 Introduction of the Non-Uniform grid
Since the size of the FDTD simulation is limited by available size of memory on a
GPU device in effect, the liner interpolated Non-Uniform grid [48] [49] is introduced
to reduce memory usage for simulation. By using multiple sizes of simulation cells, the
Non-Uniform grid approach aims at effective reduction of the memory usage, floating
point operations and data memory accesses while sustaining the simulation accuracy.
The computation error caused by the use of Non-Uniform grid is discussed in [49].
Applying a linear interpolation to Eq. (5.4), CE2u(p) is described as:

CE2u[p] =
2Δt

2ε0 + σu[p]Δt
× 2
Δu[p 1] + Δu[p]

,

u � }x, y, z|
(5.7)

where Δu[p] is a cell size of coordinate p in dimension u.

5.4.2 Implementation
Important things when introducing the Non-Uniform grid are that how much memory
usage can be reduced and how many additional costs, such as floating point operations
and data memory accesses, are required. Here, the additional costs to use the method
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are discussed. In the case of the Uniform grid, it is possible to use Δt/(ε0Δu) instead
of CE2u[p] in Eq. (5.1). Because Δt/(ε0Δu) is a constant, it need not be fetched from
the global memory. Therefore, the additional memory access cost for the Non-Uniform
grid is made by fetches of six float values; CE2u[p] and CH2u[p], (u � }x, y, z| ), that is
6 ∗ 4 = 24 Bytes, per cell.

Since CE2u[p] and CH2u[p] are constant values through the simulation, the constant
memory or texture memory can hold these values instead of the global memory to
mitigate the access penalty. In addition, appropriate thread placement and blocking
can make further reduction of the accesses. As described in Section 5.3.3, each CUDA
thread has the invariant coordinate (x, y) in proposed implementation. Therefore, each
CUDA thread needs to fetch the values for CE2x[i], CH2x[i], CE2y[ j] and CH2y[ j] only
once when the CUDA kernel is launched. Moreover, the values of CE2z[k] and CH2z[k]
can be shared by all of the threads within the same CUDA thread block, so that a total of
Bz fetches are required per CUDA thread block while processing a block of (Bx, By, Bz).

To summarize, the Non-Uniform grid method needs additional 4∗ (2Bx+2By+2Bz)
data fetches from the arrays of CE2u[p] and CH2u[p](u � }x, y, z| ) per block. Therefore,
the additional memory access amount per grid point becomes

4 ∗ (2Bx + 2By + 2Bz)
Bx ∗ By ∗ Bz

Bytes, (5.8)

which can be mitigated by an appropriate blocking size.

5.5 Novel Absorbing Boundary Condition

5.5.1 Motivation
As already shown, the Split PML as an ABC increases the number of memory accesses
and arithmetic operations per cell due to the subcomponents. Generally, the ABC forms
thin regions that are smaller than the size of block. When computation for the ABC
regions and other regions are allocated into the same block, instruction and data flows
make divergences which results in severe performance degradation due to a SIMD
property of GPU architectures. To avoid this situation, the ABC regions and other
regions should be placed in different blocks. However, in turn, since the ABC regions
are thin, the ABC blocks need a lot of padding cells to align the blocks especially in
the dimensions with a large block size. In addition, at least two ABC blocks are needed
per dimension. While the padding cells consume resources, they do not make any
contributions to the computation. However, the threads assigned for the padding cells
execute the same instruction flow as the ones for the ABC regions to keep the SIMD
property and thus to avoid the thread divergence in the block.

5.5.2 Introduction of the periodic boundary condition
In order to reduce the excess padding cells, this section proposes a novel implementa-
tion of an ABC introducing the idea of the periodic boundary condition. In the periodic
boundary condition, one side of the simulation space continues to the other side. Thus,
using this periodicity, the ABC regions can be gathered on one side of each dimension.

The periodic boundary condition can be introduced by changing the definition of
the difference operator δu in Eq. (5.1). For example, δy is defined as

δy f (i, j, k) = f (i, j, k) f (i, ( j + S y 1) mod S y, k) (5.9)
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Figure 5.2: (a) The model that has the Split PML and PEC. A dashed line shows re-
flected wave before attenuation. (b) The model that has the periodic boundary condition
instead of the PEC. (c) The proposed model.

where S y is the size of dimension y.
In the original configuration as shown as Fig.5.2a, emitted waves are finally re-

flected by the PEC, but before that, they are sufficiently attenuated by Split PMLs so as
not to affect the simulation results. Therefore, it is possible to use the periodic boundary
condition instead of the PEC as show in Fig.5.2b, since waves that leap the boundary
of the simulation space should be also enough weak not to affect the simulation. Ad-
ditionally, as shown in Fig. 5.2c, the Split PMLs can be gathered on one side in each
dimension for efficient blocking.

To summarize, by introducing the periodic boundary condition, the number of the
ABC blocks for each dimension can be reduced from 2 to 1, and thus the number of
padding elements can also be reduced. Note that the number of cells used for the Split
PMLs is not changed by introducing the periodicity.

5.6 Transformation of update equations of the Split PML

5.6.1 Motivation
It is independent in terms of dimension if a cell is in an ABC region or not. For exam-
ple, there can be a cell that is in an ABC region in dimension z but not in dimension
y.

For such cells, transformation of update equation of the Split PML Eq. (5.6) is
proposed to reduce the required memory size and access amount at the cost of slight
increase in the operation count, considering that the simulation size is limited by the
available memory size on the GPU device.
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Table 5.2: Comparison of memory access requirements of each update equation for Ex.
NON ABC shows the equation that both dimensions are in the normal region, ORIG-
INAL shows the original equation of the Split PML and TRANSFORMED shows the
transformed equation, respectively.

NON ABC ORIGINAL TRANSFORMED

Read 5 6 6
Write 1 3 2
Total 6 9 8
Ratio 1 1.5 1.333

5.6.2 Transformation
Given that a cell that is inside the normal space region in dimension y, the transforma-
tion provides the following equation:
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by substituting σy
[
j
]
= 0 to Eq. (5.6). The definition of subcomponents [47] provides

the subcomponent En 1
xy as:
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By substituting Eq. (5.11) into Eq. (5.10), En
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Comparing Eq. (5.6) and (5.12), it is clear that the transformation can reduce the
number of accesses to the subcomponent Exy as well as the total memory usage. On
the other hand, while original Eq.(5.10) includes the intermediate term which can be
reused for En

xz
[
i, j, k

]
, the transformed Eq.(5.12) does not, which means this techniques

required one additional operation for each cell. In this sense, this transformation ap-
proach is oriented for memory constrained devices like GPUs.

Table 5.2 shows the comparison of memory access of update equations for Ex.
Since the transformed equation saves one write access compared to the original equa-
tion, this technique can improve the performance for the region that only one dimension
is in the Split PML. Applying the same transformation to Ey and Ez provides a total of
23 = 8 time-stepping equations for E. In addition, it is also provided similar 8 equa-
tions for H . Note that these transformed equations are mathematically equivalent to
the original ones, so that simulation accuracy is not affected.
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Figure 5.3: The geometry of a stacked rectangular MSA.

5.7 Performance Evaluation and Analysis

5.7.1 Running Example
As a target example of numerical calculation, a stacked rectangular microstrip antenna
(MSA) with a shorting plate which has been proposed for dual band operation in [50],
was chosen. MSAs are widely used in mobile communications due to their lower
profile, weight, and manufacturing costs, as well as their compatibility with integrated
circuit technologies. The MSA proposed in [50] radiates a linearly polarized wave at
the lower frequency band and a circularly polarized wave at the higher frequency band.

Fig. 5.3 shows the geometry of a stacked rectangular MSA with a shorting plate.
The antenna consists of a dielectric substrate and a layer of air with a rectangular patch.
The upper and lower patches are the same size. The upper patch is shorted to the lower
patch at the apex by a conducting plate. The relative dielectric constant the upper and
lower layer are εr1 = 1.0 and εr2 = 2.6. The antenna is excited at the lower patch
by a coaxial feed through the lower dielectric substrate at point which lays around the
diagonal.

5.7.2 Modeling
Various previous work have reported the block size has a strong effect on the perfor-
mance [43]. Although the best size may depend on the presence or absence of each
optimization technique, it used the block size of (Bx, By, Bz)=(32, 4, 32) based primary
evaluation results.

Fig. 5.4 shows the initial simulation model that is based on the MSA shown in Fig.
5.3 with 10 layers of the Split PML. A total of (256 ∗ 216 ∗ 128) cells were used to
make the Non-Uniform grid, where 5 kinds of cell sizes were used; 1 mm to 0.1 mm.
The size of the block is (32, 4, 32) as aforementioned. S x, S y and S z in Fig. 5.4 show
the number of cells in each dimension and Px, Py and Pz are the number of cells in each
dimension of the ABC with padding.

Table 5.3 shows the number of blocks, the number of cells and memory usage for
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Figure 5.4: Numbers that provided in parentheses show the number of blocks. The
color of each region shows the group of update equations and darker colors show higher
computational costs for memory accesses. 10-cell thick PMLs are used for the bound-
aries of each dimension. Since the block size is 32 in both x and z dimension, 22
padding cells are required for both Px and Pz. On the other hand, since the block size
is four in y dimension, three blocks are used for Py to cover the 10-cell thick PMLs,
introducing two padding cells.

Table 5.3: The number of block, cells and memory usage.

region # of blocks # of cells rate memory ratio

NON ABC 576 2,359,296 .333 54.0 MB .143
PML1 840 3,440,640 .486 236.3 MB .625
PML2 288 1,179,658 .167 81.0 MB .214
PML3 24 98,304 .014 6.8 MB .018

Total 1,728 7,077,888 1 378.1 MB 1

each region of the model. All cells was classified into the four categories according to
presence or absence of the ABC; all dimensions are not in the ABC (NON ABC), any
one of three dimensions is in the ABC (PML1), any two of the three are in the ABC
(PML2), and all the dimensions are in the ABC (PML3). Approximately 67 % of the
cells including padding are in the ABC.

Evaluations in this chapter used an implementation platform with the GeForce GTX
295, which has 30 Streaming Processors and 896 MB GDDR3 memory per GPU core.
While the GPU has two GT200b GPU cores, proposed implementation used only one
GPU core in this implementation. Single precision floating point operations were uti-
lized through the simulation.

5.7.3 Effect of Non-uniform grid
First, the Non-Uniform Grid method was evaluated in terms of memory usage and
execution time. Table 5.4 shows comparison results of the Global memory usage on
the GPU. In the case of the Uniform Grid, all the cells have the same size as the finest
cells in the case of the Non-Uniform Grid. Although it depends on a simulation model
how much memory usage can be reduced, the reduction of 1/36 was achieved in this
running example.
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Table 5.4: Comparison of memory usage between the Non-Uniform grid and Uniform
gird in the running example.

# of cells memory usage

Uniform grid (1, 120 ∗ 1, 100 ∗ 224) + PML 13,584.6 MB
Non-Uniform grid (192 ∗ 192 ∗ 64) + PML 378.1 MB

Table 5.5: Execution time for the Non-Uniform grid and the Uniform grid. Both
methods processed the same number of cells.(256 ∗ 212 ∗ 128)

Execution time (sec)

Uniform 155.81
Non-Uniform 155.86

Next, the penalty of the Non-Uniform grid was evaluated. As already shown in
Section 5.4.2, additional costs of using the Non-Uniform grid arisen from additional
fetches of CE2u[p] and CH2u[p] in non ABC regions. To evaluate this penalty, modifi-
cations are applied to the implementation to fetch CE2u[p] and CH2u[p], and to use the
constant values of (Δt/ε0) and (Δt/μ0) instead of them. Table 5.5 shows the result us-
ing the simulation model shown in Fig. 5.4. Note that these evaluations focus only on
revealing the performance difference here and thus this modification does not preserve
the simulation results.

The results show that the Non-Uniform grid degrades the simulation performance
per cell by about 0.03% due to additional fetches of CE2u[p] and CH2u[p]. In view
of the 1/36 reduction of required number of cells, the implementation approach of the
Non-Uniform method is efficient for both reduction of memory usage and performance
improvement.

5.7.4 The periodic boundary condition with ABC
Fig. 5.5 shows the simulation model with the periodic boundary condition. Compared
to the model shown in Fig. 5.4, the number of blocks of ABC is smaller in all dimen-
sions. Table 5.6 shows the number of blocks, cells and memory usage. Clearly, the
periodic boundary condition reduces memory usage. Figs. 5.6a and 5.6b illustrate the
execution time of these models. By reducing cells for the ABCs, the periodic ABC
achieved 1.8 times faster performance than the Non-Periodic ABC.

The periodic boundary condition significantly reduces the computational region,
thus both memory usage and computational performance are improved. The boundary
condition was concerned that costly memory access with a long stride would decrease
the performance. However, as experiment results show, the method enabled efficient
implementation on a GPU.

5.7.5 Effect of Transformation
Table 5.7 shows the number of blocks, the number of cells and memory usage after the
transformation of the update expressions. The transformation reduces memory usage
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Figure 5.5: The simulation model with the periodic boundary condition to the model
shown in Fig. 5.5. Using the periodic boundary condition with ABC, 20 PML cells in
total are assigned to Px and Pz, reducing the nubmer of padding cells 22 to 12. In y
dimension, five blocks are required for Py to cover the 20 PML cells.

Figure 5.6: Execution time of each implementation.
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Table 5.6: The number of block, cells and memory usage with the non-uniform grid
and the periodic boundary condition.

region # of blocks # of cells ratio memory ratio

NON ABC 576 2,359,296 .518 54.0 MB .263
PML1 444 1,818,624 .399 124.9 MB .609
PML2 88 360,448 .079 24.8 MB .121
PML3 5 20,480 .004 1.4 MB .007

Total 1,033 4,558,848 1 205.1 MB 1

Table 5.7: The number of block, cells and percentage of total with the Non-Uniform
grid, the periodic boundary condition and transformation of update equations.

region # of blocks # of cells ratio memory ratio

NON ABC 576 2,359,296 .518 54.0 MB .375
PML1 444 1,818,624 .399 69.4 MB .482
PML2 88 360,448 .079 19.3 MB .134
PML3 5 20,480 .004 1.4 MB .010

Total 1,033 4,558,848 1 144.1 MB 1

of PML1 and PML2 so that the proposed implementation needs only 70 % of memory
usage in the case of the model shown in Table 5.6.

Figs. 5.6b and 5.6c summarize the performance comparison results for the trans-
formation of the expression. In the running example, the transformation of the Split
PML improved the execution performance by 8.9 %.

5.7.6 Simulation Accuracy
In order to evaluate the simulation accuracy of proposed implementation techniques,
the characteristics from simulation results are compared with the measured results by
the real antenna.

In analysis of antennas, radiation and feed point characteristics are discussed gen-
erally. Figs. 5.7 and 5.8 show the calculated axial ratio of a circularly polarized wave
as radiation characteristic and return loss as feed point characteristic at the higher fre-
quency band in the dual band MSA, respectively. The measured results are also shown
for comparison. The relative error of the frequency at the minimum axial ratio between
the calculated and measured results is 0.5 %. The calculated and measured minimum
axial ratios are 0.82 dB and 0.43 dB, respectively. In the return loss, the double peak-
ing behaviors are observed in both of the calculated and measured results. The relative
errors of the frequencies at the two peaks between the calculated and measured results
are 0.3 % and 0.7 %. The calculated return losses at the two peaks are -20.6 dB and
-27.6 dB and the measured ones are -19.6 dB and -26.9 dB. In both of the axial ratio
and the return loss, the calculated results agree well with the measured ones.

First, in order to assess how periodic boundary condition affected the simulation
accuracy, an implementation with the original non-periodic boundary condition was
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compared with the proposed implementation. As Figs. 5.7 and 5.8 show, slight dif-
ferences were observed in the trends of axial ratios, but the peak frequency found was
identical. On the other hand, the difference in the boundary condition hardly affected
the results in terms of the return loss.

Next, aiming at examining numerical error in the simulation, the simulation results
were compared with two different grid models with coarse cells: cells with double
size (coarse grid #1) and cells with quadruple size (coarse grid #2) in each dimension.
That is, these coarse grid models consist of 1/8 and 1/64 cells in total compared to the
original model, respectively. As Figs. 5.7 and 5.8 show, the finer the cell size, the more
accurate results were obtained for both the axial ratios and the return losses, suggesting
the reasonability of proposed simulation scheme.

Final evaluation of the proposed implementation in simulation accuracy explored
how arithmetic precision affected the simulation accuracy, by executing the simulation
with double precision arithmetic. As shown in Figs. 5.7 and 5.8, almost no differ-
ence were observed between the simulation results for the single precision and double
precession; the maximum relative error was less than 0.007%. This suggests single
precision arithmetic offers enough simulation accuracy as far as the application field is
concerned.

5.7.7 Memory bandwidth
Next, achieved memory bandwidth of the proposed implementation was evaluated,
since this often tends to become a performance bottleneck for GPU implementation
of stencil computation. The simulation model consists of three parts as follows:

≤ MODEL: A main part including the MSA

≤ PML: The Split PML part

≤ PADDING: Padding part.

Fig. 5.9 shows achieved memory bandwidth of whole application and ratios of each
part.

MODEL, PML and PADDING accounted 42.3%, 36.8% and 20.9% of the total
achieved memory bandwidth, respectively. These ratios differ a little from the ratios
of the number of cells shown in Table 5.7. This should come from the fact that the
process for PADDING cells is the same as that of the PML cells, and that the PML
needs 1.4←1.9 times greater memory access than the normal cells.

Compared with the peak memory bandwidth of the target GPU, proposed imple-
mentation achieved about 55.8% of the peak bandwidth when the accesses for PADDING
region are not taken account. If PADDING accesses are included, the achieved band-
width becomes 70.5% of the peak. These high memory bandwidth or efficiency of
3-D FDTD implementation with ABCs for the practical model is higher than previous
works. This suggests the effectiveness of the proposed techniques.

5.7.8 Performance Comparison
Table 5.8 shows performance comparison with related work. Note that Table 5.8 shows
peak bandwidth for one of two GPU cores on the GeForce GTX295 because the pro-
posed implementation used only one GPU core. Comparison metrics are chosen care-
fully to be fair comparison with other implementations which have different parame-
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Figure 5.7: Comparison of minimum axial ratio between the calculated and measured
results. ‘measured’: Measured data from actual antenna. ‘proposed’: Simulation re-
sults with the proposed method. ‘non periodic’: Simulation results with non periodic
ABC. ‘coarse grid #1’: Simulation results with double sized cells. ‘coarse grid #2’:
Simulation results with quadruple sized cells. ‘double’: Simulation results with dou-
ble precision floating operations. Note that the two lines, ‘proposed’ and ‘double’, are
almost overlapped.
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Figure 5.8: Comparison of the return loss between the calculated and measured re-
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Figure 5.9: Required memory bandwidth for each part of the antenna model. Band-
width of MODEL, PML and PADDING are 33.4 GB/s, 29.0 GB/s and 16.5 GB/s, re-
spectively.
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ters. The metrics include the simulation throughputs in million-point updates per sec-
ond (Mpoints/s) and the simulation throughputs per peak bandwidth in million-point
updates per giga bytes (Mpoints/GB) in order to alleviate differences in the size of sim-
ulation models and utilized GPU architectures. While ABC regions are excluded from
the model size, the execution time used for the throughput calculation includes those
of the ABC regions and Padding regions. The performance for the double precision
version of the simulation code was also presented, since arithmetic precision is not ex-
plicitly mentioned in the literature for some comparison targets. The proposed imple-
mentation shows good results for both metrics among the compared implementation,
suggesting effectiveness of the proposed implementation approach for GPU architec-
tures.

The performance with that of CPU-based implementation was also compared. While
parallel processing with multi-core, multi-thread and SIMD instructions ware not uti-
lized in this implementation, the code was optimized considering the cache structure.
Table 5.8 shows the performance of the GPU implementation achieved about 170 times
throughput than the CPU implementation.

5.8 Summary
This chapter addressed the efficient implementation of absorbing boundary conditions
of 3D-FDTD method for antenna designing on CUDA-compatible GPU. To reduce
memory usage and to improve the simulation performance, a Non-Uniform grid method
and the periodic boundary conditions were applied for Split PML implementation. The
transformation technique of update-equations for partial ABC cells was also proposed.
The empirical experiment showed that the proposed methods almost doubled the simu-
lation performance and eventually achieved the memory bandwidth of 62.5 GB/s which
corresponds to 55.8 % of the peak of the target GPU.
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Chapter 6

HOG feature extraction on an
FPGA

6.1 Introduction
This chapter presents external memory-free FPGA implementation of a real-time image-
based human detection system. The image-based human detection generally consists
of two stages; calculation of feature amount of given images and pattern classification
based on machine learning. In this implementation, histograms of oriented gradients
(HOG) [51] and AdaBoost classifiers [52] are used as feature amount and pattern classi-
fiers, respectively. The HOG feature roughly describes object shape of local regions of
given images and this is widely used for various object recognition such as pedestrian
and car detection [53–55]. High-performance and compact implementation is achieved
by making deep pipelined arithmetic structure and a high bandwidth on-chip RAMs.
The streamed processing approach described in Section 3.2.2 achieves real-time human
detection for input video frames without any external memory.

So far, hardware implementation of HOG-based object detection has been actively
investigated. Cao et al. [56] presented FPGA implementation of a stop sign detection
system using HOG features. By using a simplified 4-bin HOG method, their architec-
ture achieves a processing throughput of 60 frames per second (FPS) for 752 ∗ 480
images on a Virtex-4 SX35 FPGA. However, this simple detection method is not di-
rectly applicable for human detection. Kadota et al. [57] presented a novel simpli-
fication technique of the HOG feature extraction for efficient FPGA implementation.
Their architecture can process 640 ∗ 480 image at 30 FPS with operating frequency
127.49 MHz on Stratix II FPGA, but detection part is not implemented. After a pre-
liminary version of the HOG implementation was presented, Komorkiewicz et al. [58]
presented fully-pipelined HOG and SVM implementation without using any external
memory. To achieve superior accuracy, they used single-precision floating-point arith-
metic for all stages of processing on a Virtex-6 XC6VLX240T FPGA. Their archi-
tecture needs multiple clock domains: 25 MHz clock for the HOG feature extraction
and up to 237 MHz clock for SVM classifiers. Their architecture is able to process
640 ∗ 480 images at 60 FPS in real-time. While their system shares some architectural
concepts with proposed system here in terms of streamed processing, an aspect of low-
cost and low-energy implementation is more emphasized in the approach of this study.
Mizuno et al. [59] presented HOG and SVM implementation for HDTV resolution
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video images, which is able to process 1920 ∗ 1080 images at 30 FPS with a Cyclone
IV EP4CE115 FPGA operating at 76.2 MHz. Their architecture is based on an SoC
style, in which an HOG feature extraction module is connected to a soft-core processor
with on-chip buses on the FPGA. Contrasting to the approach, two types of external
memories with SDRAM and SRAM are attached to the FPGA and aggressively used
to process image data.

The contributions of this chapter are as follows: a) presenting a unified pipelined
architecture of HOG feature extraction; b) using AdaBoost classifiers for real-time hu-
man detection; c) only single clock frequency is needed for HOG feature extraction and
AdaBoost classifying; and d) proposed architecture is constructed without any external
memory. Section 6.2 explains fundamentals of the HOG feature extraction. Section 6.3
shows the reduction techniques of the calculation amount for efficient implementation
of human detection on an FPGA. Then, Section 6.4 details FPGA implementation with
on-chip Block RAM and shift registers. Section 6.5 presents evaluation of the proposed
architecture. Finally, Section 6.6 summarizes the chapter.

6.2 Algorithms
This section explains two algorithms for the implementation, the HOG algorithm for
feature extraction from an input image and AdaBoost classifiers for real-time human
detection. Along with the original HOG described in [51], some extended schemes are
used for compact FPGA implementation [57, 60].

6.2.1 HOG features
The histograms of oriented gradients (HOG) use local histograms of oriented gradients
of pixel luminance for feature extraction from a given image. In the implementation,
the process of HOG feature extraction roughly consists of the following four stages:

1. Luminance gradients calculation

2. Histogram generation

3. Histogram normalization

4. Feature binarization

The first step is to calculate luminance values from a given image using lightness
in the HDL color model as luminance for ease of luminance extraction from RGB full
color images. In this scheme, the luminance L for each pixel is given by the following
equation:

L =
max(R,G, B) +min(R,G, B)

2
, (6.1)

where R, G and B mean values of each color channel of given image. All the values
are presented as 8-bit unsigned integers, i.e., the value from 0 to 255.

Using the luminance, 1st-order central-differences in both x and y direction, gx and
gy, are given by:

gx(x, y) = L(x + 1, y) L(x 1, y)
gy(x, y) = L(x, y + 1) L(x, y 1),

(6.2)
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Figure 6.1: Orientation spacing of 8-bin.

where L(x, y), gx(x, y) and gy(x, y) mean values of luminance and central-differences at
the coordinate (x, y), respectively. Then a magnitude m as well as an orientation θ of
the gradient are computed by:

m(x, y) =
√

gx(x, y)2 + gy(x, y)2

θ(x, y) = tan 1 gy(x, y)
gx(x, y)

,
(6.3)

respectively.
After computing gradient magnitudes and orientations for each coordinate, the sec-

ond step, histogram generation, is started. A histogram is generated for each cell, a
square region of p ∗ p pixels, by accumulating the magnitude values according to each
orientation of all pixels in a cell. Note that cells have no overlap with neighbors which
means that a total of w

p ∗ h
p cells are defined for w ∗ h luminances of the given image.

In this implementation, p = 5.
To make histograms, the gradient magnitudes are voted into 8 bins according to

their orientations as shown in Fig. 6.1. When an orientation θ meets the following
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Figure 6.2: Voting magnitude for bins.

condition:
n
8
π
π

16
≥ θ < n

8
π +
π

16
, (6.4)

the corresponding magnitude is voted to the bin bn. Note that since the HOG does not
focus on gradient directions but orientations, the opposite direction locates in the same
bin. Since the gradients are voted into eight bins, eight-dimension feature vector is
eventually generated for each cell as shown in Fig. 6.2. Then the feature vector for the
cell is described as:

f = ( f0, f1, . . . , f7) (6.5)
where fn means the sum of voted gradient magnitudes for bin bn.

The third step, histogram normalization, is one of the most complex processes. A
histogram v for the block at (i, j), the larger spatial region which consists of 3 ∗ 3 cells
in this implementation, is defined as:

v = (
f (i, j),f (i + 1, j),f (i + 2, j),
f (i, j + 1),f (i + 1, j + 1),f (i + 2, j + 1),
f (i, j + 2),f (i + 1, j + 2),f (i + 2, j + 2)
),

(6.6)

where f (i, j) means the feature vector for the cell located at the i-th row and j-th
column. Since f is eight-dimension vector, v has 8 ∗ 9 = 72 dimensions. Note that the
block scans the entire image in a cell-by-cell manner (stride 1) and thus the number of
blocks is equal to that of cells.

The values of histograms in a block are normalized using the L1-norm scheme
described in [51]. The normalized histogram vn is computed as:

vn =
v

√v√1 + ε

√v√1 =
∑

√f√1,
(6.7)

where ε means regularization constants (here, ε = 1) to support empty histograms and
it is known to have little impact on final results over a large range [51].

The final step is feature binarization. As a result of normalization, the normalized
histogram has 72 real numbers. So the HOG features for w ∗ h luminance image occu-
pies approximately w

5 ∗ h
5 ∗ 72 ∗ 8 byte of memory capacity to store. This corresponds

about 6.75 MB for VGA image, if the 8-byte double-precision floating point format
is used for each value of histograms. This makes compact implementation with em-
bedded hardware difficult. Therefore, a binarized HOG scheme described in [60] was
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employed to reduce the size of the features. In this scheme, each value of normalized
histograms is binarized as:

vb =

⎧⎪⎪⎨⎪⎪⎩
1 if vn ∼ tb

0 otherwise,
(6.8)

where vb means a binarized result of a value vn in the normalized histogram and tb
means a scalar threshold value. The binarized histogram vb is generated by applying
the binarization to all the values within the normalized histogram vn. With this reduc-
tion scheme, the memory capacity required to store the HOG features for luminance of
w ∗ h is reduced to w

5 ∗ h
5 ∗ 72 bits. Compared with the original size of w

5 ∗ h
5 ∗ 72 ∗ 8

bytes, 1
64 of reduction is achieved.

In the boundaries of a given image, special conditions need to be set for genera-
tion of both cells and blocks. In this implementation, cells and blocks which cover
the outside of the image are ignored. Therefore the numbers of cells and blocks are(

w
5 2

)
∗
(

h
5 2

)
.

6.2.2 AdaBoost classifiers
AdaBoost is a machine learning method that combines multiple weak classifiers, each
of which only returns a true or false, so that an effective strong classifier is constructed
[52]. In the training phase, positive sample images and negative sample images are
repeatedly used by changing their weights, to select appropriate weak classifiers.

Since generation of classifiers using sample images is an offline process, AdaBoost
classifier generator was implemented as software tools. In this implementation, HOG
features that frequently appear in human sample images (positive samples) and rarely
observed in other images (negative samples), were employed for weak classifiers. In
addition, the block coordinates of such HOG features exist were also utilized. In Ad-
aBoost method, one training phase generates one weak classifier as:

Cw = }H ,P | , (6.9)
where H means the feature pattern and P means coordinate of the classifier. Given
a binarized histogram vb as a HOG feature, the weak classifier Cw returns true if any
one of the nine binarized feature vectors for the cells within a block is exactly matched
with the feature H of the classifier. The strong classifier Cs constructed through Nc

times of the training can be expressed as:
Cs = }Cw1,Cw2, . . . ,Cwi| . (6.10)

Note that since duplicated weak classifiers are eliminated, the number of weak clas-
sifiers in one strong classifier is not always equal with the number of trainings. An
example of a strong classifier constructed with three training phases is shown in Figure
6.3.

The strong classifier counts up the number of HOG features which weak classifiers
return true in a wc ∗ hc detection window. After that the region that surrounded by
the detection window is identified as a human image region if enough number of weak
classifiers return true (∼ tc).

The detection window moves the entire image from the upper left corner in a block-
by-block raster scan manner. The required number of window scans for wb ∗ hb blocks
using wc ∗ hc window is (wb wc + 1) ∗ (hb hc + 1). Therefore, the total number of
matching processes required by the Nc weak classifiers is (wb wc+1)∗ (hb hc+1)∗ Nc.
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Figure 6.3: Strong classifier generation by three times training.
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1: if (‖gx‖×tan
(

7
16π
)
≥ ‖gy‖) then

2: n ′ 4
3: else if (‖gx‖×tan

(
5
16π
)
≥ ‖gy‖) then

4: n ′ 3
5: else if (‖gx‖×tan

(
3
16π
)
≥ ‖gy‖) then

6: n ′ 2
7: else if (‖gx‖×tan

(
1
16π
)
≥ ‖gy‖) then

8: n ′ 1
9: else

10: n ′ 0
11: end if
12: if (sign(gx) � sign(gy)) then
13: n ′ (8 n) (mod 8)
14: end if

Figure 6.4: Simplified bin selection.

6.3 Simplification of the HOG feature process for hard-
ware

Some of the processes of the HOG feature extraction described in the previous section
consist of mathematical functions such as a trigonometric function and division. These
functions make the system design difficult to fit in small FPGAs. Thus, approximation
schemes were introduced to reduce the calculation complexity.

6.3.1 Approximation for gradient orientations
The first approximation is for choosing the best bin bn according to a given gradient
orientation θ as described in [56]. A naive scheme requires computation of the arc
tangent function as shown in Eq. (6.3). Since it is only needed to choose the best bin
bn to vote from eight bins, a more compact scheme to compute Eq. (6.3) and Eq. (6.4)
can be introduced. The best bin bn for given orientation θ can be defined as:

gx ×tan
(n
8
π
π

16

)
≥ gy < gx ×tan

(n
8
π +
π

16

)
. (6.11)

Equation (6.11) allows us to choose the bin using simpler functions. Figure 6.4 shows
pseudo code for simplified computation of the bin selecting. This scheme only requires
four multiplications with constants, four comparisons, comparison of signs, subtraction
and modulo operation.

6.3.2 Approximation for normalization of histogram
The second approximation is for normalization process in Eq. (6.7). Kadota et al. in-
troduced an approximation scheme for L2-norm normalization in [57]. In this scheme,
divisors for the normalization are approximated to power-of-two values, so that the
division is replaced by a shift operation. Enhanced-version of this approximation is
applied in Eq. (6.7).
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1: α ′ �log2 (√v√1 + ε){
2: if ((1 + 3

4 )2α 1 < √v√1 + ε) then
3: vn ′ f

2α

4: else if ((1 + 2
4 )2α 1 < √v√1 + ε) then

5: vn ′ f
2α +

f
2α+2

6: else if ((1 + 1
4 )2α 1 < √v√1 + ε) then

7: vn ′ f
2α +

f
2α+1

8: else
9: vn ′ f

2α +
f

2α+1 +
f

2α+2

10: end if

Figure 6.5: Simplified histogram normalization.

If the denominator of Eq. (6.7) is approximated to 2α such that 2α 1 < (√v√1 + ε) ≥
2α, the division for the normalization can be replaced by a shift operation. However,
this naive approximation to the nearest power-of-two value increases the normalization
error. To mitigate the error, sums of the number of the form 1/2k, like 1/2k + 1/2l, is
used.

The original interval (2α 1, 2α] is divided into n sub-intervals;

(
2α 1, (1 +

1
n

)2α 1
]
,

(
(1 +

1
n

)2α 1, (1 +
2
n

)2α 1
]
, ...,

(
(1 +

n 1
n

)2α 1, 2α
]
,

(6.12)

and shift amounts for each interval are precomputed. Figure 6.5 shows pseudo
code for the approximation. In the approximation, the minimum α which meets the
condition (√v√1 + ε) ≥ 2α is first computed. Then an appropriate interval is chosen
from n sub-intervals, and finally each value of normalized histogram is computed by
shift and addition. The original interval is divided into four sub-intervals (n = 4) and
three kinds of power of two values are used in this implementation.

Figure 6.6 shows comparison results of approximation errors between proposed
scheme and the naive power-of-two scheme, in the case that a numerator is 361 in
Eq. (6.7). The results show that the normalization errors are effectively reduced with
the relatively simple additional computation processes.

6.4 Implementation
Fig. 6.7 shows an overview of the proposed human detection system and Fig. 6.8 shows
the pipeline structure for HOG feature extraction. The camera module outputs bayer-
patterned image data sequentially in a pixel-by-pixel manner, and these data are di-
rectly passed to the HOG feature extraction pipeline. Then, extracted HOG features
are stored in on-chip BRAMs and are used by the human detection module consisting
of AdaBoost classifiers. Decision criteria for each weak classifier (AdaBoost data) are
provided by on-chip ROM also implemented with BRAMs. Finally, detection results
are indicated with markers on output images and outputted to an external display.

56



Figure 6.6: Normalization errors.

Virtex-5 XC5VLX40

HOG Feature

BRAM

AdaBoost

Data

BRAM

Camera

Controler

HOG Feature Extraction

AdaBoost classifiers

Display

Controler

Camera

Display

Bayer Image

HOG feature

HOG feature

Result

Figure 6.7: Overview of proposed architecture for human detection. Gray boxes show
what data are stored on BRAM.
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Figure 6.8: Overview of HOG feature extraction pipeline

6.4.1 Luminance
As an input device, an OmniVision Technologies OV9620 CMOS camera was used.
Since this device produces a raw 8-bit Bayer pattern image consisting of 640 ∗ 480
valid pixels as shown in Fig. 6.9, it is implemented 2 ∗ 2-pixel filter to convert a bayer-
patterned image to a full color image. Then, luminance values are calculated from
the full color image using Eq. (6.1). This filter can be implemented by the streamed
architecture shown in Fig. 3.1 with 2 ∗ 2 of 8-bit registers and a FIFO to store 638 of
8-bit pixels. As a result, a gray scale image of 320 ∗ 240 of 8-bit luminance values is
produced from an input image.

6.4.2 Luminance gradient
As shown in Fig. 6.10, calculation of central-differences of luminance gx and gy in
Eq. (6.2) requires the streamed architecture with 3 ∗ 3 of 8bit-registers and a FIFO
to store two lines. In a pipeline part, two subtractors for 8-bit integers is needed for
computing both gx and gy. Computation of the gradient magnitude m in Eq. (6.3)
requires two multipliers for 8-bit unsigned integers (‖gx‖and ‖gy‖), an adder for 17-bit
unsigned integers and a square root operator for 17-bit unsigned integers. Since the
maximum value of the gradient magnitude is 361(=

⌈∇
2552 + 2552

⌉
), m is expressed

as a 9-bit unsigned integer. The bin bn to be vote can be chosen with the algorithm
shown in Fig. 6.4. In order to simplify the implementation, ‖gx‖, ‖gy‖ and results of
tangent functions are expressed by fixed-point arithmetic with a 10-bit fraction part.
As a result, the computation for the bin bn requires four multipliers for ‖gx‖and 10-bit
constant unsigned integers, four comparators for 18-bit unsigned integers and other
small operators. The bin bn is expressed as a 3-bit unsigned integer.

Multipliers and a square root operator were generated by Xilinx CORE Generator.
Note that all the module is fully-pipelined to compute luminance gradients in the same
rate with the camera interface.

6.4.3 Histogram generation for cells
The histogram generation was also implemented using the stream processing approach.
Since each cell is not overlapped with others, histograms do not have to be computed
every clock cycle. Thus it does not need to handle 25 gradients at the same time.

As shown in Fig. 6.11, the first partial histogram of gradient histograms for five
consecutive luminance gradients in horizontal direction is computed using temporary
register in partially voting process. Then the stream of the partial histograms goes
through FIFO so that partial histograms for five lines are eventually summed up to
make the full histogram for the cell in fully voting process.

Since the gradient magnitude m is expressed with a 9-bit value, each orientation
of a partial histogram can be expressed as a 11-bit unsigned integer. Thus, required
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Figure 6.9: Bayer pattern of camera images. Each alphabet means valid color channel
at each location.

FIFO

Registers

S
U
B

S
U
B

P
O
W

P
O
W S
Q
R
T

A
D
D

M
U
X

0
1
2
3
4

M
U
L

C
O
M
P

A
B
S

A
B
S S
U
B

8

M
U
X

L
u
m
in
a
n
ce

Figure 6.10: Streamed architecture for computation of the gradient magnitude and the
bin.

59



Figure 6.11: Histogram generation for cells.

resources for streaming are registers corresponds to 11 bits ∗ 8 orientations ∗ 5 lines
and FIFOs corresponds to 11 bits ∗ 8 orientations ∗ 63 cells per line ∗ 4 lines. The
voter requires eight comparators for 3-bit unsigned integers and eight accumulators
for 11-bit unsigned integers. Finally, full histogram consists of eight 14-bit unsigned
integers.

6.4.4 Histogram normalization in a block
The normalization process is carried out for a moving 3∗ 3 windows of cell histograms.
Again, it can be implemented the streamed structure. For this process, three lines of
3-stage shift registers and 2 lines of 61-stage FIFOs are used to store cell histograms.
The histogram v is generated by concatenating all the cell histograms in a window.

Every time a new cell histogram is streamed in, all the 72 values of nine histograms
in the 3∗ 3-cell window are summed up to obtain a value of √v√1. This addition is done
in two clock cycles to avoid degradation of the clock frequency. Since the maximum
value of √v√1 is 81, 225, √v√1 + ε can be expressed as a 17-bit unsigned integer when
ε ≥ 49, 847, and the value of ε is ’1’ in this implementation.

In the next clock cycle, shift amounts for normalization are computed using the
approximation scheme shown in Section 6.3.2. Figure 6.12 shows more hardware-
oriented pseudo code for the approximation scheme. Lines from 1 to 4 of Fig. 6.12
can be implemented as a Look-Up-Table. Since a value of √v√1 + ε is expressed with a
17-bit unsigned integer, α is expressed with a 5-bit unsigned integer. In lines 5-16, the
shift amounts are computed with small shift operation and comparisons. Lines 6-7 are
needed for intervals which are too narrow to divide.

In the 4th clock cycle, values of the normalized histogram are computed by three
shift operations and two additions in line 17. Therefore, the normalization in a block is
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1: α ′ 0
2: while 2α < (√v√1 + ε) do
3: α ′ α + 1
4: end while
5: i ′ (√v√1 + ε) >> (α 3)
6: if (α ≥ 2) then
7: S 0 ′ α, S 1 ′ ∈ , S 2 ′ ∈
8: else if (i = 8) then
9: S 0 ′ α, S 1 ′ ∈ , S 2 ′ ∈

10: else if (i = 7) then
11: S 0 ′ α, S 1 ′ ∈ , S 2 ′ α + 2
12: else if (i = 6) then
13: S 0 ′ α, S 1 ′ α + 1, S 2 ′ ∈
14: else
15: S 0 ′ α, S 1 ′ α + 1, S 2 ′ α + 2
16: end if
17: vn ′

∑2
i=0(f >> S i)

Figure 6.12: Hardware oriented histogram normalization.

accomplished in four clock cycles.
Since the maximum shift amount is 19, each value of histograms is temporarily

expanded to a 33-bit fixed-point number with a 19-bit fraction part. As a result of the
normalization, each value of histograms is expressed as a 19-bit fixed-point number
with a 19-bit fraction part. Which means the normalized histogram for a block is
expressed as 72 of 19-bit fixed-point numbers.

6.4.5 Histogram binarization
As described in Section 6.2, the binarization process is relatively simple. The process
requires 72 comparators for 19-bit fixed-pointer numbers, and thus it is implemented in
a combinational circuit. As a result of the binarization, 72-bit HOG feature for a block
is extracted.

6.4.6 Data stream of HOG feature extraction
As summarized in Fig. 6.8, the whole process flow of the HOG feature extraction is
fully pipelined. All the HOG features obtained in this process flow are serially stored
in on-chip RAMs. The on-chip RAMs can hold all the normalized HOG histograms of
62 ∗ 46 blocks, which are obtained from a single frame image. Since each normalized
HOG histograms is expressed as a 72-bit value, whole HOG feature for a single frame
image occupies about 25 kBytes of the on-ship RAMs.

6.4.7 Human detection using AdaBoost classifiers
Fig. 6.13 shows an overview of the human detection module using AdaBoost classi-
fiers. The strong AdaBoost classifier Cs is stored in ROM which actually implemented
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Figure 6.13: Overview of human detection module using AdaBoost classifiers.

with BRAM. Since each weak classifier is expressed as two 8-bit values for a feature
pattern H and a block coordinates P , Nc weak classifiers occupies approximately 2Nc

byte of memory capacity to store. What the circuit for the strong classifier needs to
do is simply to compare the weak classifiers with HOG features extracted from input
images and to count the number of active classifiers.

Since each weak classifier corresponds to a difference block coordinate, random
access to on-chip RAMs which stores HOG feature is needed in contrast to the streamed
approach exploited in the HOG feature extraction.

In this implementation, the size of the detection window (wc ∗ hc) is set to 8 ∗
19 according to the size of training samples. While a strong classifier is constructed
by executing 500 times training trials, a total of 84 weak classifiers were eventually
generated with obtain a lot of duplications. Thus 168 bytes of memory capacity were
required to store the strong classifier.

The total number of matching processes required for the 84 weak classifiers is
(62 8 + 1) ∗ (46 19 + 1) ∗ 84 = 129, 360. The camera device generates one
frame image data in 400,000 clock cycles including synchronization intervals. The
proposed implementation requires 385,452 clock cycles to extract whole HOG features
for one frame data, while the AdaBoost detection process takes 129,360. To finish
whole the detection process within 400,000 clock cycles, the feature extraction and the
human detection processes are overlapped. As a result, the proposed implementation
processes whole computation for one frame in 387,820 clock cycles to enable in-frame
real-time processing. Due to the remainder can process additional 7 weak classifiers,
�12, 180/(55 ∗ 28)� = 7, this result suggests the strong classifier can be constructed of
up to 91 weak classifiers.
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Table 6.1: Resource utilization
Resource Used Available Percentage (%)

SLICE 6,607 7,200 91.8
FF 2,255 28,800 7.8

LUT 17,121 28,800 59.4
BRAM/FIFO 36 48 75.0

DSP48E 2 48 4.2

Figure 6.14: Example results of human detection process.

6.5 Implementation results and evaluation
The human detection process described in Section 6.4 was implemented on a Xilinx
ML501 board equipped with a Virtex-5 XC5VLX50 FPGA. The design was described
in Verilog HDL and a bitstream file was generated using Xilinx ISE design tools 13.4.

Table 6.1 shows implementation results of the design. While the maximum operat-
ing frequency of the design achieved 45 MHz, the camera device in the system restricts
the system clock to 25 MHz. In spite of the restricted relatively-low clock frequency,
the FPGA implementation achieved the throughput of 62.5 FPS for VGA frames and
execution latency was also fitted in a single frame time, that is, the real-time perfor-
mance was accomplished. Furthermore, if a high-speed camera device were used and
the FPGA design was operated with the maximum clock frequency of 45 MHz, the
execution throughput would be improved up to 112.5 FPS. An adder tree for comput-
ing L1-norm in Eq. (6.7) lies on a critical path. Figure 6.14 illustrates examples of
experimentation results. These images were obtained by a monitoring mechanism on
the FPGA board, which allows us to transmit actual result image data to the host PC.
The red frame markers were also generated by the FPGA circuit to display detected
regions.

The evaluation includes the quality of results of the approximation scheme by com-
paring to the original floating-point arithmetic algorithm. In this evaluation, two soft-
ware simulators in C for both of the schemes were implemented and NICTA Pedestrian
database [61] was used for benchmarking. To generate AdaBoost classifiers, 2,000
images from the database were used for offline machine learning, while other 1,000
images were used as the evaluation data. The size of each image is 64 ∗ 80 pixels.
As a result of 500 times of training, a strong AdaBoost classifier which consists of
84 weak classifiers were eventually generated. The threshold value for the histogram
binarization was set to 0.04.

Figure 6.15 summarizes the results of comparison as a chart of receiver operator

63



Proposed scheme

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
e

te
c
ti
o
n

 r
a

te

False positive rate

Original

Figure 6.15: ROC curves for the NICTA Pedestrian database.
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characteristics (ROC) curve. The chart shows the relationship between the false posi-
tive rate (x-axis) and the detection rate (y-axis) of the system. The closer to the upper
left area of the chart means better quality of results. The plots were made by chang-
ing the threshold number of weak classifiers for detection from 0 to 30. As a result,
the simplified scheme for hardware implementation shows 94.5 % of the detection rate
with 15.7 % of the false positive rate, while the original one shows 95.6 % of the de-
tection rate with 14.5 % of the false positive rate. Although the detection results for
original scheme might be improved by tuning parameters such as the threshold value,
the evaluation results suggest the negative impact of simplified scheme for hardware
implementation is limited in terms of detection rate.

Finally, the throughput of the FPGA implementation was compared to that of soft-
ware implementation. The software implementation was compiled by gcc 4.3.1 and
run on 2.67 GHz Intel Core i7 920 with 6 GB DDRIII operated by openSUSE 11.2.
As a result, the software implementation achieve about 15 FPS which means the FPGA
design is 4.2 times faster than the software implementation. Although another software
implementation using SIMD instructions is reported to achieve 20 FPS [58], the pro-
posed FPGA design in this study is still 3.13 times faster. Moreover, 7.5 times faster
throughput to the software implementation is expected if the camera device operates at
the maximum frequency of the design.

Although the proposed external memory free architecture was shown to be efficient
for the HOG-based human detection algorithm, this architecture will not be versatile
for every image processing application. For example, use of an external frame buffer
enables random access to image data and makes it easy to use a soft-core processor to
execute a part of tasks. Frame buffers are also useful for introducing multiple clock
domains in designs and absorbing differences in throughputs between the domains. On
the other hand, applications that have a relatively simple control flow and regular data
access patterns, especially a class of algorithms that use moving widow operators are
good candidates for the proposed architecture. Avoiding the use of frame buffers, the
architecture can reduce energy consumption for the external memories and off-chip
data communications as well as implementation size, which is advantageous especially
for embedded systems.

6.6 Summary
In this chapter, compact FPGA implementation of real-time human detection using the
HOG feature and AdaBoost classifier has been presented. As a result of evaluation, the
throughput of 62.5 FPS was achieved without using any external memory modules. If
a high-speed camera device was available, the maximum throughput of 112 FPS was
expected to be accomplished. While some simplifications were introduced to reduce
hardware complexity, the evaluation with ROC curves showed that the negative impact
of the simplifications is limited.
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Chapter 7

Heat Conduction Simulation
using a MaxCompiler

7.1 Introduction
With increase in integration density of semiconductors, Field Programmable Gate Ar-
rays (FPGAs) are getting new applications year by year. On the other hand, user de-
signs on FPGA are still described mainly in hardware description languages (HDLs)
like VHDL and Verilog HDL at register transfer level (RTL). Some IP core generators
like Xilinx CoreGenerator and Altera Megafunction support users to generate floating-
point arithmetic operators, PCI Express (PCIe) interface, DDRIII memory interface
and etc. However, adequate parameter settings of IP cores and data scheduling are still
up to users.

High-level synthesis tools improve productivity of hardware designing by gener-
ating HDL code from high-level specification described in a language such as C and
Java. Various tools including commercial tools are available [11, 12], and MaxCom-
piler developed by Maxeler Technologies is one of them [14, 62]. Using the high-level
synthesis, users can easily describe desired applications without much regard for de-
tailed hardware issues. On the other hand, synthesis, placement and routing processes
tend to dominate large part of development time. In addition, these time-consuming
processes are required to be carried out over and over in order to find the best architec-
tural parameters.

This study has aggressively investigated a stream-oriented processing framework,
in which input data are fed into a series of arithmetic operators and processed in a
pipelined manner, especially for real-time image processing applications [21–23, 63].
The stencil computation, which is widely used for various kinds of scientific applica-
tions, is also known to be suitable for the stream-oriented processing on FPGA-based
systems [64–67]. This chapter presents implementation of 3-D heat conduction simula-
tion as the stream-oriented process using the MaxCompiler and evaluates how resource
usage and performance are optimized by the high-level synthesis.

The contributions of this chapter include:

≤ Performance modeling of 3-D stencil computing a stream-based FPGA acceler-
ator, formulating how two important user space design parameters have effect on
the execution performance and resource amounts.
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≤ Evaluation of a set of implementation experiments of a 3-D heat conduction sim-
ulation, demonstrating the proposed model gives reasonable estimation of perfor-
mance and resource usage so that the best combination of the design parameters
are easily determined.

≤ Empirical measurements of power consumption of the FPGA accelerator, sug-
gesting proposed design space exploration framework is also valid in terms of
optimizing energy efficiency of application execution.

The remainder of this chapter is organized as follows. Section 7.2 shows Max-
GenFD, a domain specific framework for 3-D stencil computation on MaxCompiler,
and user-space parameters of MaxGenFD. Then, Section 7.3 shows implementation of
heat conduction simulation as a benchmark application. Section 7.4 presents evaluation
of the design with various configurations. Finally, Section 7.5 summarizes the chapter.

7.2 MaxGenFD
MaxGenFD is an application framework for 3-D stencil computations build on Max-
Compiler [14]. The MaxGenFD provides various libraries and features for users to
easily develop desired applications taking an advantage of stream-oriented processing.
This section describes an architecture overview for 3-D stencil computation which is
generated by MaxGenFD and two important parameters that affect the performance:
multi-pipelines and multi-steps.

7.2.1 Overview
In DFE design with MaxGenFD, users can specify size of a computational space dy-
namically at runtime. First, the user-specified computational region is split into sub-
regions called blocks. Block-splitting is performed in X and Y dimensions, but not in
Z dimension. Given computational size (X,Y,Z) and block size (BW , BH), computation
is performed per (BW , BH , Z) block.

Accesses to the off-chip DDRIII memory are performed per tile, (TW ,TH) 2-D
array. Tiles fetched from the memory are stored in on-chip memory called Block RAM
(BRAM) and necessary data are sent to the pipelines. Parameters of the block (BW , BH)
and the tile (TW ,TH) are specified by users at compile time.

7.2.2 Multi-pipelines and multi-steps
3-D stencil computation can be accelerated by parallelizing arithmetic pipelines and by
applying the update equations more than once per off-chip memory access; these meth-
ods are called multi-pipelines and multi-steps. Fig. 7.1 shows configuration example
of kernels with the multi-pipelines and the multi-steps.

The multi-pipelines shown in Fig. 7.1(b) are a method to parallelize arithmetic
pipelines in space and compute multiple grids at the same time. The method improves
computational performance if enough memory bandwidths are available. Since the
pipelines can share data caches, increase in the number of pipelines has a small impact
on the BRAM usage for caches. Note that MaxGenFD requires the number of pipelines
to be dividable by the tile width TW .
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Figure 7.1: Kernel configurations with multi-pipelines and multi-steps. (a) Simple
kernel. (b) Kernel with 4 multi-pipelines. (c) Kernel with 2 multi-steps. (d) Kernel
with 4 multi-pipelines and 2 multi-steps.

The multi-step shown in Fig. 7.1(c) is a method to cascade multiple steps of arith-
metic pipelines so that the update equation is applied more than once per off-chip mem-
ory access. In contrast to the multi-pipelines, this method can increase computational
performance without increasing bandwidth requirements for off-chip memory. In addi-
tion, the number of steps can be tuned in a unit of one step. This enables finner-grained
optimization unlike the multi-pipelines. On the other hand, this method has a large
impact on BRAM usage in proportion as the number of steps increases.

The multi-pipelines and the multi-steps can be used at the same time. In addition,
the number of pipelines Np and the number of steps Ns can be independently assigned
as shown in Fig. 7.1(d). Therefore determining the optimal combination of the param-
eters considering available resources on the FPGA and characteristics of the update
equations is important.

7.2.3 Resource estimation model
The parameters for multi-pipelines and multi-steps can be easily changed by just as-
signing desired numbers to variables on MaxCompiler. Exploration of the best values
of the multi-pipelines and the multi-steps aims to use FPGA resources for valid com-
putation as much as possible. Since these techniques inevitably increase synthesized
circuit size and time-cost of synthesis, placing and routing, it is important to narrow
down the large parameter space to a realistic size by formulating resource-performance
estimation models.

It shall be first addressed constraints for the user parameters by amounts of re-
sources. The number of DSP modules is one of main factors to restrict the degree of
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the multi-pipelines and the multi-steps. A constraint for Np and Ns imposed by the
number of DSPs is defined as:

Np ∗ Ns ∗ N(1,1)
DSP ≥ ADSP α (7.1)

where N(1,1)
DSP is the number of required DSPs for computation on the design of (Np,Ns) =

(1, 1), ADSP is the available number of DSPs on a target FPGA device and α is the num-
ber of DSPs which are used except for the arithmetic pipelines. Note that α smaller
than Adsp. In addition, on the assumption that BRAM utilization per step is linearly-
increasing with Np, a constraint for the parameters imposed by the number of BRAMs
is defined as: (

N(1,1)
BRAM +Cp ∗ Np

)
∗ Ns ≥ ABRAM β (7.2)

where N(1,1)
BRAM is the number of required BRAMs for computation on the design of

(Np,Ns) = (1, 1), Cp is a constant factor for Np, ABRAM is available number of BRAMs
on the FPGA, and β is the number of BRAMs which is used except for the pipelines.
Equations (7.1) and (7.2) give us available combinations of Np and Ns in the FPGA.
Note that Cp should be a small value because spatially parallelized pipelines can share
BRAMs.

It is assumed peak performance of a design is limited by the computational ability
or memory bandwidth of the design, whichever is smaller. Given that an FPGA has
infinite off-chip memory bandwidth, the ideal computational performance Pcompute can
be estimated as:

Pcompute = ηNpNsFs [elements/sec] (7.3)
where η is computational efficiency and Fs is clock frequency of pipelines. Since sten-
cil computations generally use neighboring elements to update each elements, comput-
ing all the elements in a block requires values of elements located outside of the block,
dubbed halo or ghost zone. Due to the halo region, pipelines require additional clock
cycles for a) loading elements at the halo region to shift registers and b) updating ele-
ments located the region for next time step. The computational efficiency η is defined
as a ratio of written elements to read elements per block:

η =
Gwrite

Gread
(7.4)

where Gwrite is the number of elements which are produced and written to off-chip
memory and Gread is the number of elements which are loaded from off-chip memory
per block computation. The number of written elements Gwrite is defined in a straight-
forward way, since it corresponds to the number of elements in a block:

Gwrite = BW ∗ BH ∗ Z (7.5)
where BW , BH and Z are sizes of a block. On the other hand, definition of the number
of read elements Gread is a bit more complex:

Gread =

(
BW + 2

⌈
S dNs

TW

⌉
TW

) (
BH + 2

⌈
S dNs

TH

⌉
TH

)
Z (7.6)

where TW and TH are sizes of a tile, S d is size of a stencil, a distance between an
updated element and the farthermost element which is needed for the calculation. Note
that the halo region is increased according to the degree of multi-steps. The ceiling
functions are needed to reflect the fact that all the memory accesses are handled by a
unit of the tile.
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The memory bandwidth performance Pmem is described as:

Pmem = Gwrite
Tmem

Bmem
Ns [elements/sec] (7.7)

where Tmem is the peak memory bandwidth of the system and Bmem is required amount
of data transfer between FPGA and memory including both read and write operations.
The peak memory bandwidth Tmem can be described as:

Tmem = 8 ∗ Nmem ∗ 2Fmem [Byte/sec] (7.8)
where Nmem is the number of memory channels and Fmem is frequency of I/O bus
clock. Since the amount of data transfer Bmem strongly depends on each application,
users have to calculate this value manually. It is sometimes difficult to know the exact
value of Bmem because data streams may be compressed. In this case, estimation value
of the size of compressed data from a target compression rate is used.

Finally, the peak performance P can be expressed as:

P = min
(
Pcompute, Pmem

)
(7.9)

and the best candidate of the parameters can be found as the pair which maximizes P
satisfying (7.1) and (7.2).

7.3 Benchmark application
In this work, a heat conduction simulation was implemented as a benchmark applica-
tion of 3-D stencil computation with the MaxCompiler and the DFE. The heat equation
is expressed as:

∂T (x, y, z, t)
∂t

= α (x, y, z) † 2T (x, y, z, t) (7.10)

where T is a temperature, t is a time variable and α is a thermal diffusivity. Eq. (7.10)
can be approximated by a finite-difference equation with the explicit scheme as:

Ti, j,k(t + Δt) = Ti, j,k(t) + α (x, y, z)Δt
(

Ti+1, j,k(t) 2Ti, j,k(t) + Ti 1, j,k(t)
Δx2

+
Ti, j+1,k(t) 2Ti, j,k(t) + Ti, j 1,k(t)

Δy2

+
Ti, j,k+1(t) 2Ti, j,k(t) + Ti, j,k 1(t)

Δz2

)
.

(7.11)

7.3.1 Computation kernel
Figure 7.2 shows a part of the main computation kernel on MaxGenFD which applies
a stencil computation to the 3-D array. Here, in T is an input stream of temperature
T , alpha is an input stream of constant α and out T is an output stream of temperature
T which becomes the output of this computation. At line 2, the kernel gets Ns which
is given as external parameters. At line 4, user-defined function getStencil() generates
a stencil. At lines 6-8, input stream curr is defined as an input temperature filed. At
line 10, input stream C is defined for a constant field. At lines 12-19, Eq. (7.11) is
computed. At line 21, the results are assigned for an output stream. The multi-step
is handled at lines 14-19 and the multi-pipeline is handled at outside of the kernel by
MaxGenFD.
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1 / ◦ Parame ter s ◦ /
2 i n t n s t e p = e n g i n e p a r a m s . getNumStep ( ) ;
3 / ◦ S t e n c i l ◦ /
4 S t e n c i l s = g e t S t e n c i l ( ) ;
5 / ◦ I n p u t s t r e am ◦ /
6 FDVar c u r r =
7 i o . w a v e F i e l d I n p u t ( ” i n T ” , 1 . 0 ,
8 n s t e p ◦ ( s s i z e / 2 ) ) ;
9 / ◦ C o n s t a n t s s t r e am ◦ /

10 FDVar C = i o . e a r t h M o d e l I n p u t ( ” a l p h a ” , 1 0 , 0 ) ;
11 / ◦ Computa t ions ◦ /
12 FDVar s i n p u t = c u r r ;
13 FDVar r e s u l t = c o n s t a n t . f d v a r ( 0 . 0 ) ;
14 f o r ( i n t t= 0 ; t <n s t e p ; ++ t ) }
15 FDVar l a p l a c i a n =
16 C ◦ c o n v o l v e ( s i n p u t , ConvolveAxes .XYZ, s ) ;
17 r e s u l t = s i n p u t + l a p l a c i a n ;
18 s i n p u t = r e s u l t ;
19 |
20 / ◦ Outpu t s t r eam ◦ /
21 i o . w a v e F i e l d O u t p u t ( ” o u t T ” , r e s u l t ) ;

Figure 7.2: An outline of the computation kernel of the benchmark

Table 7.1: Parameters of target design

Parameter Value

Block size BW ∗ BH (192 ∗ 120)
Tile size TW ∗ TH (16 ∗ 12)
Pipeline freq. Fs 150 MHz

Memory bus freq. Fm 303 MHz
Stencil size S d 1

7.4 Evaluation
The performance of the implementations was evaluated on a PC with Intel Core i7-
2600S 2.8 GHz, DDRIII 16 GB and a MAX3424A DFE running Cent OS 6.4. The
Virtex-6 XC6VSX475T FPGA on the MAX3424A DFE has 297,600 LUTs, 595,200
FFs, 4,788 KBytes of BRAMs and 2,016 DSPs. Proposed designs for the FPGA were
compiled and synthesized using MaxCompiler 2012.1, MaxGenFD 2012.1 and ISE 13.3.
Synthesis, place and route for each parameter were retried up to 16 times using different
cost tables until all the timing constraints were met. As a benchmark, a heat conduction
simulation for (512, 512, 512) of a computational space with 1,024 iterations was used.
Table 7.1 shows common parameters for evaluated designs.
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Figure 7.3: BRAM utilization

7.4.1 Resource usage
Resource utilization of all the combinations of Np and Ns in this chapter is shown
in Table 7.2. As a result of synthesis for the design of

(
Np,Ns

)
= (1, 1), N(1,1)

DSP and
α in (7.1) are estimated as 39 and 1, respectively. Then DSP usages NDSP follows
NDSP = 39 ∗ Np ∗ Ns + 1, and (7.1) can be transformed to Np ∗ Ns < 51.

BRAM utilization of all the combinations is shown in Fig. 7.3. Since the lines are
close to each other, the amounts of required BRAMs can be assumed to be sensitive to
Ns, but not affected by Np very much. This result shows BRAM usage can be managed
by the value of Ns. In addition, the designs with larger Np need fewer resources among
the configurations which have the same value of

(
Np ∗ Ns

)
.

Figure 7.4 shows limitations on the parameter space and synthesis results for each
parameter combination. Here, the dots indicate parameter combinations that were esti-
mated as available and actually succeeded in synthesis. The crosses indicate parameter
combiations which were failed to synthesis. The circled-dot indicates the best param-
eter at this time, (Np = 8,Ns = 5). Four lines on Fig. 7.4 illustrate each limitation
imposed by the number of DSPs, the number of BRAMs, the available memory band-
width and limitation of Np in MaxGenFD, respectively. The memory limitation line
locates at around Np = 44 and no available parameters violate the memory limitation.
This is because, while the minimum possible Np value that exceeds the memory limi-
tation is 64, the parameter (Np = 64,Ns = 1) is not available due to the DSP limitation.
The best synthesized parameter combination is the fourth best one in the estimation
model. Although a few parameter combination candidates anticipated to be more ef-
ficient were failed to synthesis, the performance model gives us a good direction to
easily choose parameters without exhaustive parameter space exploration.
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Figure 7.4: Estimated available parameters and synthesis results

Table 7.3 shows combinations of parameters which wire failed to build. Although
some of them were expected as best parameters and resource utilization is acceptable,
placing and routing phase could not meet design constraints. A combination of param-
eters (Np = 4,Ns = 10) was failed because of BRAM utilization. The result indicates
proposed estimation model has room to be improved in resource estimation taking into
account place and routing.

7.4.2 Computational performance
Next evaluation intends to reveal the performances of each configuration shown in
Fig. 7.5. The plotted marks indicate measured values and lines indicate estimation
values by (7.3). All the configurations in this work have the same computational effi-
ciency η = 0.714. The evaluation results show the performance is well estimated by
the proposed model.

The evaluation also compared the DFE designs with multi-threaded CPU imple-
mentation with SIMD instructions on the host PC. The CPU implementation achieved
the performance of 6.66 ∗ 108 grids/sec, and it is equivalent to the DFE designs which
have

(
Np ∗ Ns

)
= 6. The best configuration

(
Np,Ns

)
= (8, 5) was about six times faster

than the CPU implementation.

7.4.3 Power and energy consumption
Table 7.2 also shows measured values of power consumption as well as energy con-
sumption by the accelerator for each configuration. These data were measured by in-
serting 10 mΩ shunt resistors into power-supply lines of a PCI-Express slot and an ex-
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Figure 7.5: Performance of each design.

ternal power-supply connector of the DFE. Voltages between both ends of the resistors
were amplified by instrumentation amplifiers, Analog Devices’s AD623 and measured
by an oscilloscope. Note that these measurements are a kind of early-stage experiment
and aim to just compare among implementations of different parameter combinations
in a relative manner.

The evaluation results show the power consumptions are mainly sensitive to Ns,
suggesting BRAMs are dominant in the total power consumptions. Also in terms of
energy consumptions, it was shown that the fastest configuration of the parameters was
most efficient in this application.

7.5 Conclusion
This chapter presented the user-space parameters and the performance model for 3-D
stencil computation with the MaxCompiler and the MaxGenFD on the MAX3424A
Data Flow Engine. This study has used a heat conduction simulation as a benchmark
application and evaluated resource utilization, performance and energy consumption
for various parameter configurations. Performance comparison with multi-threaded
CPU implementation with SIMD instruction shows the DFE implementation is about
six times faster than the CPU implementation when a user chooses the best parameters.
The empirical experiments demonstrated the fastest configuration was most effective
in terms of energy consumption.
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Table 7.2: Resource utilization, performance, electric power and energy of each con-
figulation

Np Ns (NpNs) LUTs FFs BRAMs DSPs Performance Power Energy
[grids/sec] [W] [J]

1 1 1 49,105 70,074 175 40 1.07e+08 61.32 78,764
1 2 2 54,490 77,285 248 79 2.13e+08 62.28 40,186
1 3 3 58,349 83,804 345 118 3.18e+08 62.76 27,124
1 4 4 65,907 90,434 440 157 4.23e+08 62.76 20,391
1 5 5 70,782 96,401 535 196 5.27e+08 66.60 17,368
1 6 6 75,727 103,328 631 235 6.30e+08 66.84 14,581
1 7 7 82,076 110,125 727 274 8.38e+08 69.36 11,375
1 8 8 88,695 117,145 822 313 8.39e+08 69.96 11,460
1 9 9 93,314 123,686 917 352 9.39e+08 71.64 10,485
1 10 10 99,420 129,822 1,011 391 1.04e+09 72.60 9,594

2 1 2 52,603 75,163 178 79 2.12e+08 62.40 40,453
2 2 4 59,690 85,445 254 157 4.23e+08 63.36 20,586
2 3 6 67,938 95,837 350 235 6.32e+08 63.96 13,909
2 4 8 78,077 107,087 447 313 8.41e+08 64.32 10,511
2 5 10 84,601 115,832 546 391 1.05e+09 65.04 8,513
2 6 12 93,069 128,687 641 469 1.25e+09 66.84 7,349
2 7 14 100,655 136,433 739 547 1.45e+09 71.28 6,756
2 8 16 109,664 150,707 834 625 1.67e+09 71.88 5,915
2 9 18 117,755 157,225 931 703 1.87e+09 73.20 5,379
2 10 20 126,181 167,481 1,031 781 2.06e+09 73.80 4,923

4 1 4 58,949 84,050 183 157 4.21e+08 61.80 20,175
4 2 8 74,231 102,657 267 313 8.38e+08 62.76 10,293
4 3 12 89,764 121,454 369 469 1.25e+09 63.60 6,992
4 4 16 104,261 139,497 471 625 1.66e+09 64.20 5,315
4 5 20 119,424 157,814 573 781 2.08e+09 66.60 4,400
4 6 24 131,246 176,207 677 937 2.48e+09 69.00 3,823
4 7 28 147,648 194,462 780 1,093 2.88e+09 70.20 3,350
4 8 32 185,949 595,200 884 1249 3.30e+09 71.16 2,963

8 1 8 75,543 105,508 201 313 8.30e+08 62.16 1,0293
8 2 16 104,747 140,537 281 625 1.65e+09 63.60 5,297
8 3 24 132,534 175,847 381 937 2.45e+09 66.00 3,702
8 4 32 157,202 211,046 481 1,249 3.26e+09 68.16 2,873
8 5 40 188,686 247,667 577 1,561 4.06e+09 70.80 2,396

16 1 16 111,929 150,289 238 625 1.60e+09 62.76 5,391
16 2 32 165,106 218,620 326 1,249 3.18e+09 68.04 2,940
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Table 7.3: Failed parameters

Np Ns Np ∗ Ns Reason

4 9 36 Failed to place and route
4 10 40 Over BRAMs utilization (1,092 > 1,064)
8 6 48 Failed to place and route
16 3 48 Failed to place and route
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Chapter 8

Ellipse Estimation using
RANSAC on an FPGA

8.1 Introduction
This chapter presents FPGA implementation of image-based ellipse estimation for an
embedded eye tracking system based on Starburst algorithm [68]. While the Starburst
is known to be a robust algorithm, it requires high computational performance, making
it difficult to be implemented as a compact and portable system. The goal here is to
demonstrate highly efficient implementation of the Starburst algorithm on a compact
FPGA platform without using any external memories.

The Starburst algorithm mainly consists of three process steps; (1) pre-processing
for camera images, (2) extraction of feature points that represent a pupil contour, and
(3) estimation of the best fit ellipse for the feature points. For the former two steps, a
deep-pipelined stream-oriented image processing architecture is promising, which can
achieve a real-time throughput at a relatively low clock frequency and does not require
any external memories. This chapter firstly shows how the former two steps of the
Starburst algorithm can be restructured to be fitted with this framework.

The last process step in which ellipses are estimated with the RANdom SAmple
Consensus (RANSAC) algorithm [69], offers different computational properties. The
RANSAC algorithm can robustly estimate an ellipse from a set of extracted feature
points including some outliers. This robustness is achieved by a hypothesis-and-verify
matching approach that consists of three steps; (1) randomly selecting a fixed number
of feature points from the set of points including outliers, (2) generating hypothesis
(ellipse parameters) from the selected points, and (3) verifying the generated hypoth-
esis. The method repeats these three steps and finally returns the best hypothesis as
a result. The RANSAC algorithm needs to estimate as many ellipses as possible for
different point selection during a single camera frame, and this process easily becomes
a performance bottleneck.

In contrast to large matrix solvers, few attention has been paid so far to small ma-
trix manipulation on an FPGA. However, this issue is not obvious. For example, [70]
reported the efficient algorithm to calculate an inverse of a 4x4 matrix with SIMD in-
structions was Cramer’s rule, which is generally never used because of its high order of
computational complexity. As is well known, especially for a small data set, execution
performance becomes more sensitive to architectures and does not necessarily reflect
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computational complexity. Hence, in the latter half of this chapter, it compares three
kinds of FPGA implementation of equation solvers and discusses which approach is
appropriate for small matrix manipulation on an FPGA.

One of the highest developed FPGA implementation of ellipse estimation has been
reported by Martelli et al., aiming for detection of circular road signs [71]. In their
implementation, feature points are extracted using histogram stretching, intensity gra-
dients, and the edge extraction and thinning method. However, in order to avoid hard-
ware complication, they imposed a limitation on ellipses that they can detect; ellipses
with major axis 0• and 90• from the x axis can only be detected. In contrast, a pro-
posed implementation here does not have any limitations on ellipse to be detected,
since it is often needed to detect inclined ellipses in eye tracking. In addition, there
has been hardly any literature that focus on efficient solver implementation for a small
simultaneous equation system on an FPGA.

The rest of the chapter is organized as follows. Section 8.2 presents the Starburst
algorithm which includes pre-processing and the RANSAC. Section 8.3 presents the
implementation details. Section 8.4 shows evaluation results and discussion. And
finally, Section 8.6 shows the scope for future work and conclude the chapter.

8.2 Algorithms

8.2.1 Reflection removal
The first pre-processing step is the removal of reflections in a pupil, which often cause
extraction of undesired feature points as shown in Fig. 8.1(a). To relieve this unde-
sirable situation, a simple bilinear interpolation proposed in [72] was used. Let I(x, y)
denote luminance of the pixel at (x, y). Let R(x, y) denote a binary reflection map,
which is easily obtained based on a threshold luminance. R(x, y) = 1 means that the
pixel at (x, y) is in a reflection region and to be interpolated. Two points, (xr, y) and
(xl, y), are required for the interpolation and their coordinates are calculated as follows:

xr = min

⎧⎪⎪⎨⎪⎪⎩x∞:
L 1∑
i=0

R(x∞ i, y) = 0, x∞> x

⎫⎪⎪⎬⎪⎪⎭ (8.1a)

xl = max

⎧⎪⎪⎨⎪⎪⎩x∞:
L 1∑
i=0

R(x∞+ i, y) = 0, x∞< x

⎫⎪⎪⎬⎪⎪⎭ (8.1b)

where L is a parameter on the filter size. Using these two points, interpolated luminance
I∞(x, y) is calculated as:

I∞(x, y) =
I(xr, y) ×(xr x) + I(xl, y) ×(x xl)

xr xl .

(8.2)

Although this method executes the interpolation only in a horizontal direction, the
majority of reflections can be effectively removed in practical environments as shown
in Fig. 8.1(b).

8.2.2 Extraction of feature points of a pupil contour
The Starburst feature point extraction method starts to radially find feature points from
a base point Ps, and returns a set of the nearest points which have larger intensity
derivative than a threshold on each ray as shown in Fig. 8.1(c). In addition, another ex-
traction process starts from firstly extracted features towards the base point to improve
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(a) (b)

(c) (d)

Figure 8.1: Overview of the Starburst algorithm. (a) Original image. (b) Reflection
removal and box blur. (c) Starburst feature extraction. Green points denote feature
points and the red point denotes the base point for the extraction. (d) Estimated ellipse
(blue line) and the center point (purple). Red points denote inliers.
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(8.4)

the robustness. This chapter only focused on the single step Starburst feature extraction
for ease of compact hardware implementation.

8.2.3 RANSAC
The RANSAC is an iterative method that finds a model from a data set of points includ-
ing outliers. At first RANSAC randomly samples a subset from the extracted feature
points. The minimum size of subset depends on a target model, and an ellipse needs at
least five points.

After sampling a subset, a hypothesis is generated from the subset. The system
used the following ellipse equation,

x2 + Axy + By2 +Cx + Dy + E = 0 (8.3)
where A, B, C, D and E are parameters to be estimated. Using the method of least
squares, a system of simultaneous equations for estimating an ellipse is obtained as
shown in Eq. (8.4).

The generated hypothesis is verified by successively substituting all the feature
points and the obtained parameters into Eq. (8.3). The values of left-hand side are con-
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Figure 8.2: Overview of the proposed eye-tracking system.

sidered as error and the number of inliers is counted based on a threshold valued. The
above three steps, random sampling, hypothesis generating and verifying, are repeated
until a new dataset for the next frame image arrives. Finally the best hypothesis that
has the maximum number of inliers is returned as estimated parameters.

8.3 Implementation

8.3.1 Design overview
Fig. 8.2 illustrates the proposed system. Pixel data input from the camera interface are
streamed to Starburst module through cascaded pre-processing filters. The Starburst
module detects up to 128 feature points and the Trimming module eliminates invalid
feature points every one frame. The Random sampling module samples five points from
the valid points set and stores them into FIFO1. The Hypothesis generation modules
execute floating-point arithmetic operations for estimating elliptic parameters. The
Model verification module counts the number of inliers for the generated hypothesis
and updates the temporal best hypothesis when better hypothesis is found. Note that
all the modules only access to memories which are inside an FPGA, e.g., FFs, BRAM
and Distributed RAM.

8.3.2 Pre-processing
Although most of the pre-processing can be straightforwardly implemented on the
streamed architecture framework described in Section 3.2.2, the reflection removal
process is relatively complex. The process is split into two steps; the determination of
envelop pixels and the interpolation. As a result, dynamic control flows were mitigated
and all the pre-processing modules were implemented on the streamed architecture.

8.3.3 Pupil contour detection
The Starburst feature extraction process is also implemented on the streamed structure.
The process is split into three parts; (1) calculation of intensity derivatives for all the
pixels, (2) calculation of distances and angles from the center point, and (3) update of
the feature points table.
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Segmentation test is used to calculate intensity derivatives. The intensity derivatives
are calculated by a segmentation test that is inspired by FAST corner detection [73].
By comparing the intensity of a candidate pixel with each point on a 16-point ring that
surrounds the candidate pixel, it can extract possible directions in which the candidate
pixel is able to be recognized as a feature point.

The distance and angle between the candidate point and center point are calculated
using add, multiply and arctan operations. The i-th entry of the feature points table
holds the coordinate of the feature point that is most recently found on the i-th direction
and its distance from the center point. The table is updated when a new feature point
that is nearer to the center for each direction is found. After scanning all the pixels,
the table holds a set of the Starburst feature points for the corresponding frame. In the
proposed implementation, the number of entries for the feature points table is 128.

8.3.4 RANSAC
As shown in Fig. 8.2, the RANSAC part includes three clock domains and asyn-
chronous FIFOs and tables are provided for passing data between the clock domains.
Using a double buffering technique with the dual-port RAMs, the Hypothesis genera-
tion module and the Model verification module work in parallel. The Random sampling
module generates addresses for the feature point table randomly using a 32-stage liner
feedback shift register.

The Hypothesis generation module consists of two main steps; generation of a
system of simultaneous equations (Eq. (8.4)) based the received five feature points and
calculation of ellipse parameters as solution of Eq. (8.4). The implementation includes
three kinds of solvers for simultaneous equations based on Cramer’s rule, Gauss-Jordan
elimination and Doolittle LU decomposition.

8.3.5 Hypothesis generation
Cramer’s rule

Consider a system of n linear equations for n unknowns as follows:
Ax = b (8.5)

where A denotes an n∗ n matrix, x and b denote column vectors. According to Cramer’s
rule, the values for the unknowns are given by:

xi =
‖Ai‖
‖A‖ (8.6)

where Ai denotes a matrix formed by replacing the i-th column of A by the column
vector b. The determinant ‖A‖of an n ∗ n matrix A can be defined as:

‖A‖=
∑
σ� S n

sgn(σ)
n∏

i=1

Ai,σi (8.7)

where σ denotes a permutation of the set }1, 2, ..., n| , σi denotes i-th number of σ and
sgn(σ) denotes the signature of σ which is 1 or 1. Due to its high order of com-
putational complexity, the Cramer’s rule is generally never considered as a practical
solution. However, its dataflow has quite simple and regular structure with rich paral-
lelism.

There are two kinds of tables in the design for the calculation, a memory table
called order table, whose j-th entry contains j-th permutation σ j for column vectors of
the matrix (3 ∗ 5 bit) and the value of sgn(σ j) (1 bit) and five memories called column
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tables whose i-th memory contains i-th column vector of the matrix. These tables
simplify the calculation of the determinant. At first, addresses for column tables and a
sign are fetched from the order table. Then, the corresponding elements of the matrix
are fetched from the five column tables. After multiplying the five values and the sign,
the result is accumulated. Repeating this for 120 times (the number of permutations
for n = 5), determinant of the matrix is obtained.

For ellipse estimation, six determinant of matrices, ‖A‖, ‖A1‖, . . . , ‖A5‖, are required.
To calculate ‖Ai‖, i-th column table also contains the vector b. ‖Ai‖is calculated by using
bσ ji instead of ai,σ ji from the i-th column table at the j-iteration, where σ ji means i-th
number of the permutation σ j.

Since these multiplication steps are independent each other, pipelining can be fully
applied. The final accumulation step consisting of an adder with 6-cycle latency allows
the pipeline to avoid stalling by interleaving the calculation of determinants of the
six matrixes. Hence, after executing 720 sets of multiplication, six determinants are
obtained every clock cycle. Finally, the ellipse parameters are calculated by dividing
the last five determinants with the first determinant.

This hypothesis generator consists of two 42-bit integer multipliers and two double
precision floating point (FP) multipliers, one double precision FP adder, and one double
precision FP divider with some format converters. The estimated ellipse parameters are
output as single precision FP values.

Gauss-Jordan elimination

Gauss-Jordan elimination, also known as the sweep-out method is one of the com-
monly used algorithms for solving a system of simultaneous equations. While its com-
putational complexity is higher than that of the Gaussian elimination which is another
popular method, Gauss-Jordan elimination does not need backward substitution which
is an essentially sequential process.

Given an N-by-(N + 1) matrix M(0) = [A b] and integer K (≥ N), eliminated matrix
M(K) in the K-th step is defined as follows:

m(K)
i, j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

m(K 1)
i, j if j < K,

m(K 1)
i, j

m(K 1)
K,K

else if i = K,

m(K 1)
i, j

m(K 1)
i,K

m(K 1)
K,K

m(K 1)
K, j otherwise.

(8.8)

In the RANSAC algorithm, the accuracy of the best solution among the repetitive trials
is more important than that of each individual solution. Thus, the system requires no
pivot exchanging, which makes the control flow sequential and complicated.

A proposed hypothesis generator based on the Gauss-Jordan elimination consists
of cascaded five sub-modules, each of which corresponds to calculation of M(K) and
consists of three single precision FP operators; adder, multiplier and divider. Each sub-
module can work in a macro pipelined manner, that is, a new hypothesis can be started
to be generated after the first sub-module finish its calculation.

Doolittle LU decomposition

A third solver is based on Doolittle LU decomposition, which is also popular approach.
This consists of three steps; decomposing a given matrix into L and U, solving Ly = b,
and solving Ux = y. Compared to the Gauss-Jordan elimination, the computational
complexity of LU decomposition is simplified.
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Table 8.1: Resource usage of each implementation.

CRAMER GAUSS LU Available

FF 20,667 22,267 24,062 28,800
LUT 18,709 19,130 19,725 28,800

BRAM 39 39 34 48
DSP48 47 44 39 48

Table 8.2: Resource usage of solvers and dividers.

CRAMER GAUSS LU
FF/LUT FF/LUT FF/LUT

solver 11,735/9,816 13,335/10,229 15,130/10,816
div 5,982/3,207 6,760/3,840 6,760/3,840

ratio 51%/33% 51%/38% 47%/36%

Given an N-by-N matrix U(0) = A and integer K(≥N), the K-th step of calculation
for matrices U = U(N) and L = L(N) are defined as follows:

u(K)
i, j =


u(K 1)

i, j if i ≥ K,

u(K 1)
i, j

u(K 1)
i,K

u(K 1)
K,K

u(K 1)
K, j otherwise.

(8.9)

l(K)
i, j =


l(K 1)
i, j if j < K,
u(K 1)

i, j

u(K 1)
K, j

else if i ∼ K,

0 otherwise.
.

(8.10)

The LU decomposition can be executed with a similar architecture to the Gauss-
Jordan elimination. The solver includes three sub-modules each of which consists of
adder, multiplier and divider for single precision FP operations. After the decompo-
sition, y and x are calculated by the forward substitution and backward substitution,
respectively. Each substitution module also requires three operators; adder, multiplier
and divider for single precision FP values.

8.4 Evaluation and Discussion

8.4.1 Environment
An evaluation system was implemented on an ML501 prototype board equipped with a
Xilinx Virtex-5 XC5VLX50 and an OmniVision OV9620 CMOS camera device using
ISE 13.4 tool sets. Since the proposed FPGA implementation employs the streamed
structure, pre-processing and the Starburst feature extraction achieved the performance
of 62.5 fps, provided that the maximum frequency of the CLK CAM exceeds 25 MHz
which is the maximum frequency to communicate with the camera device. In the ex-
periment, the clock frequencies for both CLK SOLVER and CLK VERIFY were set
to 100 MHz. Note that any on-board memory devices were not used.
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8.4.2 Resource usage
Table 8.1 shows resource usages for each implementation with the available resource
amount on XC5VLX50 FPGA, and Table 8.2 shows how much portion of each solver
is occupied by dividers.

The solver based on Cramer’s rule (CRAMER) showed the lowest resource usage
in FFs and LUTs despite of only this solver requires double precision FP operators due
to accuracy requirements. This compact implementation is due to CRAMER needs the
smallest number of operators among the three solvers and most of the required opera-
tors are multipliers which can be efficiently built with DSP48E hard macro modules.

As Table 8.2 shows, FP dividers were dominant in terms of resource usage for each
solver. Although the Gauss-Jordan elimination (GAUSS) and the LU decomposition
(LU) use single precision FP operators, the largest part is still occupied by dividers
since they use multiple dividers. For GAUSS and LU solvers, it seems difficult to re-
duce the resource usage without performance degradation. However, for the CRAMER
solver, a fully pipelined FP divider is used only for five division operations. Thus, there
should be room to reduce the required resources while keeping the performance by
changing the structure of the divider.

8.4.3 Power consumption
Table 8.3 shows performance and power consumptions of each implementation. The
power consumptions were measured by inserting a 1- ohm shunt resistor between the
board and DC power supply. Note that these measured values include the power con-
sumed by the camera device, HDMI display interface, debug interface (including mem-
ories), and so forth.

The CRAMER showed the highest power consumption, which is about 5.6% higher
than the lowest one, despite the solver showed the lowest resource usage. The com-
parison results suggest that power consumptions are more sensitive for utilization of
DSP48Es and BRAMs rather than FFs and LUTs. The power consumption of the sys-
tem was only 3.34 watts even for the CRAMER, which demonstrates the effectiveness
of FPGAs in terms of a power performance ratio. Capability of tight and efficient in-
tegration of dedicated arithmetic and I/O interface makes a huge contribution to the
advantage of the FPGA implementation.

8.4.4 Throughput
A metric throughput is defined as the number of hypothesis generation per second. As
shown in Table 8.3, the GAUSS solver showed the highest throughput and the lowest
latency and this value corresponds to approximately 9 times of that for the CRAMER
solver. This is due to the high order of computational complexity of the Cramer’s rule.
However, the performance difference was smaller than the difference in the computa-
tional complexity because of the higher pipeline usage rate of arithmetic units in the
CRAMER solver.

For the RANSAC algorithm, improving the throughput of the hypothesis generation
improves the accuracy of ellipse fitting. As shown in Fig. 8.3, even the CRAMER
solver, which achieved the lowest throughput, successfully estimates reasonable ellipse
parameters for practical images. In this sense, it can be considered that the throughputs
obtained by the three solvers are enough for ellipse estimation, while detailed accuracy
evaluation will be needed for future work.
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Table 8.3: Performance of each implementation.

CRAMER GAUSS LU

Power [W] 0.33/3.34 0.28/3.29 0.15/3.16(Solver/Total)
Latency [us] 8.69 3.05 4.99
Throughput 1.1 ∗ 106 107 3.8 ∗ 106

Figure 8.3: Ellipse estimation result using the CRAMER solver. Crossing point shows
the center of eye.

8.5 Comparison between RTL design and the MaxCom-
piler

The application was also implemented with MaxCompiler 2012.1.1 on MAX2336B
DFE. The implementation used one of two FPGAs on the DFE and kernel frequency
was set 100 MHz.

8.5.1 Resource utilization
Resource utilization of each module generated by the MaxCompiler is shown in Ta-
ble 8.4. The HypothesisGen and Verify modules which play a central role in the
RANSAC algorithm used half of LUTs and FFs and 80% of the DSP48E modules
for whole design. In the preprocess modules, the reflection removal, the BoxBlur, and
the feature extraction modules used many resources. The MaxCompiler automatically
generates data scheduling modules and these occupy 30% of LUTs and 56% of FFs for
preprocess modules. In addition to user description, the PCIe interface generated by
MaxCompiler occupies 25% of LUTs and FFs for whole design. The PCIe interface
includes a data transfer mechanism between host computer and the DFE.
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Figure 8.4: Overview of MaxCompiler design.
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Table 8.4: Resource utilization - MaxCompiler

Module LUTs FFs BRAMs DSP48Es

Preprocess
- Bayer2RGB 165 161 0 0
- RGB2Luminance 185 185 0 0
- RefRemoval 609 834 1 4
- BoxBlur 1,052 852 0 0
- Gradient 240 192 0 0
- Starburst 1,003 1,059 2 9
- Others 1,478 3,505 0 0
FeatureTable 739 800 0 2
HypothesisGen
- MatrixGen 3,642 4,223 0 42
- Cramer 8,027 11,239 0 40
Verify 4,737 5,985 8 14
FIFOs 742 1,083 9 0
PCIe 7,407 10,465 19 0
Others 1,883 1,922 14 0

Total 31,909 41,905 82 111
Available 207,360 207,360 324 192

Table 8.5 shows resource utilization of the implementation in Verilog HDL. The
utilization shows a trend that the implementation in Verilog HDL needs smaller area
than the implementation with MaxCompiler. This is due to: (1) MaxCompiler does
not provide resource sharing; (2) Kernels of MaxCompiler massively use DSP blocks;
(3) MaxCompiler generates deeper-pipelines to achieve higher frequency; (4) Control
of streams needs additional resources; and (5) Difference between actually generated
design and indentation of user description.

8.5.2 Throughput
Throughput comparison between the HDL and the MaxCompiler implementation was
performed with the clock frequency of 100 MHz for the ellipse estimation part and
throughput of 62.5 FPS for input video stream. The throughput of the Verilog HDL
implementation was about 1.10 ∗ 105, while that of the MaxCompiler implementation
was about 1.05∗ 105. This result shows that the MaxCompiler implementation achieved
the equivalent level in performance with the HDL implementation.

One reason for the throughput decrease by the MaxCompiler compared with the
HDL is that the MaxCompiler implementation processes the feature extraction and
ellipse estimation steps sequentially. While the HDL implementation processes these
steps in parallel, controls are returned back to the host processor from DFE at each
video frame in the MaxCompiler implementation. The both steps therefore have to
wait until the host processor invokes the DFE.
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Table 8.5: Resource utilization - Verilog HDL

Module LUTs FFs BRAMs DSP48Es

Preprocess
- Bayer2RGB 107 141 1 0
- RGB2Luminance 41 28 0 0
- RefRemoval 1,120 1,600 4 2
- BoxBlur 778 1,226 2 0
- Gradient 403 426 2 0
- Starburst 543 476 0 2
FeatureTable 115 154 1 0
HypothesisGen
- MatrixGen 2,937 2,691 0 0
- Cramer 6,892 9,051 6 28
Verify 2,803 2,306 1 14
Others 2,970 2,568 22 1

Total 18,709 20,667 39 47
Available 28,800 28,800 48 48

Table 8.6: Line-based comparison of Verilog HDL and the MaxCompiler.

Module MaxCompiler [Lines] Verilog HDL [Lines]

Preprocess 1,300 3,530
FeatureTable 441 632
HypothesisGen 261 1,309
Verify 412 312
Others 631 3,321

Total 3,045 9,104

8.5.3 Lines of source codes
Table 8.6 shows the number of lines of source codes for the MaxCompiler and Verilog
HDL implementation for the application. The table does not include the lines of auto-
matically generated codes. There are noticeable differences between the MaxCompiler
and HDL implementation in the results for Preprocess and HypothesisGen kernels.
Both kernels form deep-pipelined structure, while other kernels include FeatureTable
and Verify kernels are described as state machines. This result shows the MaxCompiler
is easier to describe pipelined-structure than the HDL, but not for state machines.

8.6 Summary
This chapter presented that deep-pipelined FPGA implementation of real-time ellipse
estimation for eye tracking system is achieved high performance (62.5 fps) and low
power consumption (3.34 watt) without using any external memories. The ellipse esti-
mation consists of various processes, which include pre-processing, feature extraction
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and the RANSAC algorithm. This study focused the hypothesis generation process,
which solves a system of simultaneous equations repeatedly. The result of evaluation
shows resource usage, power consumption and throughput of three solvers. While the
optimal algorithm needs to be chosen depending on the amount of resources on FP-
GAs and required criteria, the FPGA based system that consists of streamed structure
and hypothesis generator with FP operators is promised as a better solution for the
application.
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Chapter 9

Conclusion

This dissertation aimed to reveal the methodology to efficiently map various applica-
tions to parallel architectures consisting of an array of arithmetic logic and memory
elements, such as GPUs and FPGAs. Especially, this dissertation focused on making
the best use of on-chip memories to achieve a high degree of execution efficiency. This
study will contribute to reduce the cost of implementation of applications on accelera-
tors to achieve high computational performance and low energy consumption.

The stencil computation was a main target of this study and various applications
which can be expressed as a kind of stencil computations were implemented on the
parallel architectures as case studies. The stencil computation is efficiently processed
on GPUs by decomposing the computational space into blocks, and is processed on FP-
GAs as stream-oriented process. This study demonstrated concrete application map-
ping methodologies in this design pattern. In addition, the high-level synthesis tool,
which enables us to design hardware using high abstraction layer, was also focused.
Some important user space parameters of the MaxCompiler for stencil computations
were pointed out, and estimation models to describe relationships among the parame-
ters, computational performance and resource utilization were presented.

The first project was the implementation of Smith-Waterman algorithm on GPUs.
This implementation achieved a throughput of 12.66 GCUPS on the NVIDIA GTX
295 GPU, and it was the fastest performance in speed as a GPU implementation of the
algorithm at the time. The implementation also achieved a throughput of 43.05 GCUPS
when 4 GPUs are used. These performances were led by decreasing the cost of syn-
chronization focused on the warp level synchronization. The key to the implementation
was a divide and conquer approach to the problem to process each sub-problem by a
warp. In addition, memory accessing optimization, including data caching by on-chip
memory and coalescing of external memory access from a warp, contributed to the in-
crease in performance. As well as these optimizations, loop unrolling and instruction
scheduling which are known as general optimization techniques not only for GPU but
for existing computer architectures also had a large impact on the performance.

The second project was the implementation of 3-D FDTD electromagnetic simula-
tion on a GPU. Since this project aims to accelerating analysis of a microstrip antenna,
the simulation must handle the artificial fundamental equations for boundary condi-
tions as well as the equations for the physical phenomenons. The split PML boundary
condition used for the implementation requires up to 12 additional elements for each
grid point and additional computations. In addition, the boundary condition needs
various types of equations depending on computational regions. The implementation
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therefore focused on the optimizations on the boundary regions. In particular, the pe-
riodic boundary condition was introduced into the split PML boundary condition to
decrease the load of computation and memory access by focusing the granularity of
control flow of GPUs. The achieved throughput for the implementation was 55.8 % of
the peak memory bandwidth of the GPU when the accesses for padding region were
not taken account. If padding accesses were included, it corresponded to 70.5 % of
the peak. Additionally, comparison of antenna characteristics obtained from the sim-
ulation with measured results showed reasonable concordance between the two. This
result indicates validity of the implementation.

The third project was the implementation of a human detection system by the HOG
features from a video stream on an FPGA. This project was one of the earliest FPGA
implementation of human detection systems with streamed HOG feature extraction.
The most complex part in the system is the HOG feature extraction process. This
study used the stream-oriented architecture consisting of FFs, distributed memories,
and BRAMs. In addition, approximate calculations were introduced to reduce the re-
source utilization as well as bit-width optimization at each stage of processes. As a
result, the implementation achieved a real-time throughput of approximately 60 FPS,
showing a potential of the stream-oriented approach. The implementation needed about
75 % of BRAMs on the FPGA for FIFOs of the stream-oriented architecture. This re-
sult indicates the amount of BRAM will be the main restriction for stream-oriented
video-stream processing for small-size FPGAs.

The fourth project was the implementation of heat spreading simulation using Max-
Compiler, a high-level synthesis tool, and the MaxGenFD, a framework for stencil
computation on the MaxCompiler. However, the MaxCompiler and the MaxGenFD
offer various design alternatives for stencil computation on FPGA accelerators, forcing
users of the tools to determine adequate design parameters for pipeline parallelization.
This project aims to define important user space parameters and to establish the esti-
mation models for computational performance, resource utilization, and a parameter
space. In addition, this project measured the power consumption of the accelerator
connected via the PCI Express bus, by inserting shunt resistors into power lines of
the accelerator. The result of the measurement showed that BRAM utilization gives
the largest impact on energy consumption when two implementations have the same
performance in speed.

The last project was the implementation of ellipse fitting process on a video stream
using the RANSAC algorithm on an FPGA. This project consists of two steps: fea-
ture points extraction from the video stream and ellipse fitting using the feature points.
Since the former process includes the Starburst feature extraction algorithm which re-
quires random memory access, the algorithm has been modified from the original one
to map the algorithm on the stream-oriented architecture. That modification to the de-
sign has achieved exclusion of external memory and random access to the memory
for the algorithm using additional logic elements and on-chip memories. At the el-
lipse fitting step, three types of algorithms to solve a system of simultaneous equations
were implemented. As a result of evaluations showed that an implementation of the
Cramer’s rule has lowest resource utilization and enough accuracy for the application.
In addition, this study also implemented the application using the MaxCompiler. The
MaxCompiler allowed us to implement the application from one third of description of
HDL in lines, while HDL implementation needed fewer resources because of resource
sharing and other optimizations. This is due to the MaxCompiler focused on generating
high-throughput designs rather than low resource utilization.

Through the empirical experiments of the five projects, Smith-Waterman algorithm,
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FDTD method for electro-magnetical simulation, HOG feature extraction, 3-D heat
spreading simulation and ellipse estimating using the RANSAC algorithm, this study
specifically demonstrated a basic strategy to efficiently implement various applications
on both GPUs and FPGAs. In addition, evaluation results of each project showed
both architectures have advantages over existing microprocessor architectures in com-
putational performance and energy consumption. The above results were achieved by
not only straightforward mapping of existing algorithms on GPUs and FPGAs, but
also needing modifications of the algorithms. The modifications especially intended
to adapt the algorithms to the stream-oriented process by eliminating random accesses
for effective use of on-chip memories and logic elements. On the other hand, there
is no bible for automatic modification of existing algorithms for GPUs or the stream-
oriented architectures on FPGAs, and therefore sometimes the modifications require a
lot of effort from designers and implementers. That issue can be reduced by promotion
of a design blocks catalog which consists of relatively small design examples used in-
side a large design framework like the stream-oriented architecture. In addition, it is
important challenge to create design frameworks not only the stream-oriented architec-
ture but also others, suck as the one intends to tree/graph data structures. This study is
expected to be referred as important knowledge to efficiently utilize fast and distributed
on-chip memories, which can be applied to implement various applications on parallel
computing accelerators.
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