
c© 2011 PATRICK DANIEL KUANG

ROBOBAT: DYNAMICS AND CONTROL OF FLAPPING FLIGHT MICRO AERIAL
VEHICLES

BY

PATRICK DANIEL KUANG

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Aerospace Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2011

Urbana, Illinois

Adviser:

Assistant Professor Soon-Jo Chung

Abstract

Flapping flight micro aerial vehicles (MAVs) are of interest to the aerospace and robotics

communities for their maneuverability in comparison to tradition fixed wing and rotary air-

craft. However they present numerous challenges in the fields of dynamics, stability and

control. This thesis examines the dynamics and kinematics of robotic flapping flight, the

design and construction of a robotic bat test bed mounted on a 3-DOF pendulum, and

subsequent control experiments using the test bed. The robotic bat test bed is capable of

exhibiting different wing motions and is used to test the feasibility of controlling the mo-

tions of the robotic bat by using the phase differences between coupled nonlinear oscillators

called central pattern generators (CPGs). A dynamic model for the robotic bat based on the

complex wing kinematics is presented, and the wing kinematic motions themselves are ana-

lyzed using a high-speed motion capture system. Mechanical coupling effects which deviate

from theoretical assumptions are investigated as well. Open loop experiments analyzing the

steady state behavior of the bat’s flight with varying phase differences showed a change of the

pitch angle while elevation and forward velocity remains constant. Closed loop experiments

indeed validate that control dimension reduction is achievable by controlling the phase dif-

ferences of CPG oscillators. Unstable longitudinal modes are stabilized and controlled using

only control of two parameters: phase difference and flapping frequency. Transition between

flapping flight and gliding flight is analyzed. This shows promising results regarding the

relation between phase differences of wing motions and longitudinal stability, and lays the

groundwork for future research and experimentation in flapping flight MAVs.

ii

To my parents, for their love, support, and wisdom.

iii

Acknowledgments

The last two years of my life have been quite an adventure to say the least. My time as

a graduate student would not have been successful without the help and support of many

people I have met. I owe much graditude to my advisor, Professor Soon-Jo Chung, for helping

me grow and develop as a researcher, engineer, and person and giving me the opportunity

to learn and work in a dynamic environment. The project was supported by the Air Force

Office of Scientific Research (AFOSR) under the Young Investigator Award Program (Grant

No. FA95500910089) monitored by Dr. W. Larkin. I also am deeply grateful for my fellow

labmates and colleagues, who have provided indispensable help and support during my time

here. There are many great fellow students, current and former, whom I have had the good

fortune of knowing and working with thanks to this research, but in particular I would like

to thank PhD students Michael Dorothy and Aditya Paranjape for their help in countless

different topics for my work and thesis. Several undergraduate students have also helped

make this research possible including Harry Rocha, Ryan Cook, James Holtman, Andrew

Meister, Matt Schipp, and Danny Park. Most of all, I would like to thank my family for

supporting me in graduate school; none of this would have ever been possible without their

unconditional love.

iv

Table of Contents

List of Figures . vii

Nomenclature . ix

Chapter 1 Introduction . 1
1.1 Motivation and Related Work . 2
1.2 Thesis Organization . 5

Chapter 2 A Review of Flapping Flight MAVs 6
2.1 Introduction . 6
2.2 Biological Inspiration . 6

2.2.1 Flapping Flight in Nature . 6
2.2.2 Central Pattern Generators . 8

2.3 State of the Art of Flapping Flight MAVs 11

Chapter 3 Flapping Flight Kinematics and Dynamics 12
3.1 Introduction . 12
3.2 Testbed Kinematics and Unsteady Aerodynamics 12

Chapter 4 Description of the Robotic Bat Test Bed 23
4.1 Introduction . 23
4.2 Design of Robotic Bat . 23

4.2.1 Previous Work . 23
4.2.2 Current Robobat Design . 23

4.3 Design of 3DOF Test Bed . 30
4.4 Controller Design . 32
4.5 VICON Motion Capture System . 37

Chapter 5 Experimental Setup and Results with Robotic Bat 41
5.1 Introduction . 41
5.2 Open Loop Control Experiments . 41
5.3 Closed Loop Control Experiments . 45
5.4 Glide Transition . 53
5.5 Force and Moment Calculations . 58
5.6 Measurements of Mechanical Coupling . 63

v

Chapter 6 Supplemental Implementations 73
6.1 Introduction . 73
6.2 Implementation of CPGs on FPGAs . 73

Chapter 7 Conclusions and Future Work 78
7.1 Conclusion . 78
7.2 Future Work . 79

References . 83

vi

List of Figures

3.1 RoboBat Testbed . 12

4.1 Previous robotic bat design[1] . 24
4.2 Front and back views of robotic bat, mounted on Quanser 3DOF Helicopter

stand . 25
4.3 Positive wing motion directions . 26
4.4 Wing of robotic bat . 27
4.5 Drive shaft to actuate flapping, with motor and encoder shown 27
4.6 Shoulder joint, with pushrods for flapping, pitch, and lead-lag 28
4.7 Pitch (top) and lead-lag (bottom) servos . 28
4.8 Close-up of amplitude controlling servo and drive shaft 29
4.9 dSPACE connector board . 30
4.10 Schematic of test bed setup . 31
4.11 Components of test bed . 33
4.12 View of test bed set up. 34
4.13 Linear actuator functioning as pitch counterweight 35
4.14 Encoders on Quanser 3DOF helicopter stand 36
4.15 Robotic bat fitted with markers . 38
4.16 Vicon cameras . 38
4.17 Vicon cameras setup on tripods . 39
4.18 Vicon cameras around robotic bat . 39
4.19 Robotic bat, as seen by Vicon Tracker . 40

5.1 Open-loop pitch control via phase differences (2 Hz). 42
5.2 Open-loop pitch control via phase differences (2.5 Hz). 43
5.3 Open-loop pitch control via phase differences (3 Hz). 44
5.4 Experimental Results of Pitch Control at 2.5 Hz 47
5.5 Experimental Results of Pitch Stability by Control at 3Hz 48
5.6 Experimental Results of Pitch Control at 3Hz 48
5.7 Velocity Control Tracking . 49
5.8 Pitch Stability after Large Perturbation . 49
5.9 Pitch control with corresponding control input 50
5.10 Pitch control tracking with corresponding control input 51
5.11 Pitch control tracking with corresponding control input 52
5.12 Pitch control response to large perturbation 53

vii

5.13 Velocity control tracking with corresponding control input 54
5.14 Velocity control tracking with corresponding control input 55
5.15 Pitch tracking with active velocity control 56
5.16 Change in desired pitch results in velocity tracking 57
5.17 Change in desired velocity results in pitch tracking 58
5.18 Flapping-Glide Transition . 59
5.19 Flapping-Glide Transition, using flapping angle 60
5.20 Flight path angle of flapping-glide transition 61
5.21 Flapping-Glide-Flapping Transition . 62
5.22 Numerically calculated lift, thrust, and moment 64
5.23 Experimental Left wing rotations with 10 deg input ∆75 66
5.24 Experimental Right wing rotations with 10 deg input ∆31 66
5.25 Experimental Left wing rotations with 60 deg input ∆75 67
5.26 Experimental Right wing rotations with 60 deg input phase ∆31 67
5.27 Measured vs Commanded phase differences between lead-lag and flapping

motions (∆75) for left wing . 68
5.28 Measured vs Commanded phase differences between lead-lag and flapping

motions (∆31) for right wing . 69
5.29 Relation between ∆75 and ∆76 for left wing 70
5.30 Relation between ∆31 and ∆32 for right wing 70
5.31 Relation between ∆75 and ∆65 for left wing 71
5.32 Relation between ∆31 and ∆21 for right wing 71

6.1 Schematic for sine wave PWM signal generation 75

viii

Nomenclature

MAV Micro Aerial Vehicle

CPG Central Pattern Generator

DOF Degree of Freedom

CFD Computational Fluid Dynamics

FFT Fast Fourier Transform

FPGA Field Programmable Gate Array

GUI Graphical User Interface

SDK Software Development Kit

CL, CD coefficients of lift and drag

Cm,ac coefficient of pitching moment about the aerodynamic center

α, β angle of attack, sideslip

ψ, θ, φ Euler angles

γ flight path angle

φw, ψw, θw Flapping, lead-lag, and pitch angles of each wing (left, right)

xi = (ui, vi)
T State vector of the i-th Hopf oscillator

f(xi; ρi) Hopf nonlinear equations in the vector form with radius ρi

ρi Radius of the limit cycle from the i-th Hopf oscillator

λ Common rate of convergence of Hopf oscillators

ω Common oscillation frequency of Hopf oscillators, rad/s

ai Amplitude bias of the i-th Hopf oscillator

ix

σ Bifurcation parameter. σ = 1 for a stable limit cycle or σ = −1 for convergence
to ai.

R(∆ij) 2× 2 rotational transformation matrix

∆ij Phase lead of the i-th Hopf oscillator from the j-th

n Total number of Hopf oscillators in the CPG network

k Coupling gain of the coupled Hopf oscillators

Subscripts

i Variable number of the coupled Hopf nonlinear oscillators

R, L Right or left wing

x

Chapter 1

Introduction

Animals such as birds, bats and insects are capable of agile flight motions and rely mostly on

flapping their wings for stability and control. The relatively small size of these animals limits

their flight regime to a Reynolds number on the order of 104 − 105. Moreover, MAVs fly

in low Reynold number regimes similar to that of small birds. MAVs with wings equipped

with multiple degrees-of-freedom such as flapping, wing twist, and sweep provide greater

maneuverability than conventional fixed-wing aircraft. At such a flight regime, flapping

winged aircraft may have advantages over fixed wing aircraft. [2]. Thus a main goal of this

project is to emulate and adapt these methods of flight, which have been time-tested over

millions of years, to MAVs. These MAVs can be used for intelligence gathering, surveillance,

and reconnaissance missions in tightly constrained spaces such as forests and urban areas.

The design of flapping flight micro aerial vehicles presents numerous control and dynamic

challenges, as well as challenges in several other engineering fields. Structural materials must

also be of consideration for both weight constraints and load capabilities. Actuators must not

be too big or too heavy and are constrained by available power sources, but at the same time

must be capable of generating sufficient aerodynamic forces for flight and must be of sufficient

speed and precision. Avionics such as video cameras, sensors and an onboard computer would

form the brain of the aircraft and control the aircraft’s actuators and motion, and again would

be constrained by weight and power availability. Thus, minimizing the dimensionality of the

main controller of a flapping flight micro aerial vehicle would be greatly beneficial. This is

achieved using central pattern generators (CPG’s), a neurobiologically inspired scheme [1],

which are discussed in Chapter 2.

1

While ornithopters capable of flapping their wings about a single axis have existed for

some time, in nature animals flap their wings to yield several complex movements in three

dimensions. Animals capable of flight utilize several, different complex three dimensional

wing motions at the shoulder joint such as flapping, pitching and a lead-lag motion. These

motions must be understood and controlled in phase with each other in order to achieve

fully autonomous flapping flight. A test-bed modeled after a bat was designed and built

to simulate flapping, pitching and lead-lag motions. The wing motions are controlled by

CPGs. The test-bed was originally stationary and mounted on a stand and force torque

sensor, meant to be used in a wind tunnel to measure aerodynamic forces. More information

on this first model can be found in [3].

1.1 Motivation and Related Work

There is a growing interest in the aerospace and robotics community in the development of

MAVs to learn and mimic avian flight. Advances in actuators and control systems have led

to development and analysis of articulated and flapping MAVs inspired by animals [4, 5, 6,

1]. Birds achieve remarkable stability and perform agile manuevers using their wings very

effectively [7]. One of the goals of reverse-engineering avian and bat flight is to learn more

about the various aspects of avian flight such as stability, maneuverability and control from

the dynamics of MAV.

From a controls standpoint, we should distinguish between insect scale flight and bird/bat

scale flight. Biological insect flight utilizes small musculature to produce passive pitching

dynamics over the course of several wingbeats [8]. From a controls standpoint, we can

utilize averaging theorems to greatly aid control design around trim states such as hover

condition [5, 9, 10]. On the other hand, bat scale flight is low frequency enough that averaging

theorems do not directly apply in practice and intra-wingbeat effects are significant [11].

Biologically, bat flight looks more like walking locomotion in other mammals, where many

2

joints must be coordinated in a rhythmic fashion to produce motion. Bats have anatomical

similarities with other mammals. While we are not aware of tests specifically on bats, it

makes sense that they would coordinate their joints in a similar fashion to many other

mammals: CPGs [12, 13]. A main objective and contribution of this paper is to establish

the importance of phase difference control in bird or bat sized flapping MAVs. We also aim

to demonstrate possible uses and experimentations using a robotic bat testbed and how this

can be used as a stepping stone for future work.

Previous robotic flapping flyers and their control design consider one or two degrees of

freedom in the wings [5, 9, 14, 6]. However, even insects like the dragonfly (Anax parthenope)

are reported to have complex three-dimensional movements by actively controlling flapping

and twisting of four independent wings [15]. Furthermore, prior studies in flapping flight [15,

16, 2, 17, 18, 19, 6] assumed a very simple sinusoidal function for each joint to generate

flapping oscillations, without deliberating on how multiple limbs (or their nervous systems)

are connected and actuated to follow such a time-varying reference trajectory. Other studies

consider articulated wings, where steady-states are found for behavior that more resembles

gliding [7, 2, 20]

In order to utilize the knowledge gained from CPGs in biological fliers, we have built a

robotic bat with dimensionality far lower than the animals. These experiments are an early

step toward strict modeling of biological fliers, but are more helpful for design of an artificial

flapping flier. We exploit the dimensional reduction made possible by simple CPG rules to

make control design and aerodynamic testing feasible. In time, we expect to gain insight into

the stability and agility of animal flight, though we hope to encounter engineered solutions

that are even more efficient than their biological counterparts.

Moderately large birds and bats often spend their time in either a low-frequency flapping

mode or a gliding mode. The proposed CPG based controller can switch smoothly to the

gliding mode by changing a bifurcation parameter. The gliding mode is not unlike that

explored in the traditional flight mechanics literature. However, fully articulated wings

3

inherent in flapping flight create additional control possibilities and concerns. A gliding

mode may be used for soaring and to shed energy in preparation for a perching maneuver.

Perching can be described as a high angle-of-attack pull-up with high lift and a large drag.

The large lift and drag forces cause the MAV to climb and lose speed significantly. A planted

landing can be achieved in the process.

Birds successfully perch on a variety of structures such as building ledges, power lines,

cliff side, and tree branches. Such perching capability in MAVs can significantly reduce

the landing distance. However, perching requires the ability to maintain trajectory very

accurately. Furthermore, a typical perching maneuver would not last more than a few

seconds. Because of its duration and highly unsteady flight profile, perching is an important

agility metric for MAVs. The unsteady flight profile makes control design for perching a

challenging problem.

The aerodynamics of perching has been explored for conventional, fixed-wing aircraft

by Crowther [21] who showed that perching could be performed with essentially a simple

pitch-up maneuver and used genetic algorithm to optimize the maneuver. Wickenheiser

and Garcia demonstrated perching manuever with controlled wing twist and variable tail

incidence [22, 23]. Roberts et al. [24] examined the perching problem from controllability

aspects. One of the most outstanding experimental demonstrations of a perching maneuver

was reported by Cory and Tedrake [25], where they obtained reliable estimates of the open

loop dynamics and used them to perform an maneuver optimized to minimize the error in the

final position. In contrast with the aforementioned work, [7] considers a completely different

mechanism (wing dihedral) to control the flight path angle as well as lateral-directional

dynamics during perching. The lateral-directional control, in particular, is often neglected

in the literature on robotic perching. More perching work can be found in [26].

4

1.2 Thesis Organization

We first introduce some basic dynamics of our flapping flight model in Chapter 3. The

next goal was to design and engineer a flapping flight test-bed capable of moving in three-

dimensions, as opposed to remaining static on a stand. This test-bed can be used to verify

previous research regarding the synchronization and control of phase differences between

wing motions to achieve stability [1]. A Quanser 3DOF Helicopter is a commercially available

platform for control experiments and includes a set of rotors, mounted on a base embedded

with encoders in three directions. Using the base of a Quanser 3DOF Helicopter, the rotors

of the helicopter were replaced with the robotic bat itself. The experimental hardware

is discussed in further detail in Chapter 4. We conducted numerous experiments using

the testbed to test control schemes for longitudinal stability and velocity during flapping

flight, and also experiments which transition from flapping flight to gliding flight. The

experiments and results are detailed in Chapter 5. Finally, we review some further possible

implementations of flapping flight control in Chapter 6.

5

Chapter 2

A Review of Flapping Flight MAVs

2.1 Introduction

This chapter presents a literature review of research regarding biological inspiration from

animal flight, CPGs, and other research regarding flapping flight MAVs.

2.2 Biological Inspiration

2.2.1 Flapping Flight in Nature

Flapping flight has historically been inspired by flying creatures found in nature; birds

flight formed the basis of inspiration for most early attempts at flight, such as the gliding

experiments conducted by Otto Lilienthal. Leonardo da Vinci is thought to have designed a

ornithopter (an aircraft that flaps its wings to propel itself into flight) as a method of flight

for humans. Therefore, there are several important examples of flapping flight in nature

that we derive our design from. Mass, beating frequency, and Reynolds number of flying

creatures varies greatly over a spectrum ranging from large birds to the smallest of insects.

Power required for steady flight also varies widely. For forward flight, air must be accelerated

rearward and downward to generate sufficient thrust and lift to counter the weight and drag

sustained by the flying creature.

Insects have been a popular choice because of the relatively simple configuration of their

flight system. Insects are generally smaller than birds or bats, and thus operate at a lower

6

Reynolds number and fly in more viscous air. The flapping frequency is quite high (often

exceeding several hundred Hz, see [15] for data relating body mass to beating frequency)

and the wing is usually not a streamlined airfoil, but is instead simpler in structure by

consisting of a membrane reinforced with a fiber structure [15]. They require only two

control inputs (stroke angle and pitch angle) which can be modeled sinusoidally. Control

design is much easier, as averaging methods are valid within the high frequencies in insect

flight. Unfortunately, the aerodynamics of insect flight vary significantly from the mechanics

of bat flight and bird flight. Unsteady effects dominate their flight regime because of the

extremely low Reynolds number [15]. For example, a species of dragonfly, Anax parthenope,

is observed to have high maneuverability and adept at catching prey. Fast and skillful flight

is enabled by its large wing load and high beating frequency, which can be represented as a

combination of flapping and pitching motions [15].

In bird flight, the wings and method flight become quite complex. A bird’s wings must

generate lift and thrust to support the animal’s weight and provide forward propulsion. Thus,

the wing structure is adapted to bear the aerodynamic force and moment without adversely

affecting the bird’s flight performance during gliding or flapping. The wings are usually

flexible and collapsible, with some exceptions [15]. Light weight bone structures in the wing,

the complex airfoils formed by the feathers, and the addition of the elbow and wrist joints

make birds more difficult to simulate [15]. Their flight mechanics also differ significantly from

insects as well. Bird flight spans a large range of sizes, shapes, and methods. Specific power

required to maintain a hovering flight decreases with disc loading (defined as weight divided

by wing area, W/S) of wings. Thus, for birds, hovering is believed to only be possible with

birds of smaller mass such as humming birds. Humming birds are small and heavily rely on

unsteady effects to maintain their amazing hovering performance. Larger birds which are

specialized for traveling long distances rely much more on soaring and the use of air currents,

with flapping propulsion being used sparingly. In between these extremes are many other

types of birds, some specialized for agility and others specialized for diving to catch prey

7

at high speed. Birds have muscles located mostly inside their body acting on the shoulder

joint. Most of the motions are controlled by the shoulder, while the elbow helps fold the wing

to shorten the span. There are smaller muscles inside the arm which allow the actuation

of the elbow and wrist joints to control the shape of the wings during flapping flight [15].

The range of motion of the joints on the wing is limited by the physical constraints of the

bird’s body structure. An adequate phase lag is maintained between the flapping, pitching,

and lead-lag wing motions to maintain an approximately elliptical wing orbit with respect

to the body of the bird. The stroke plane is defined as the major axis of this elliptical wing

trajectory. Extremum of lifts are obtained midway through the downstroke and upstroke

respectively [15].

Bat flight differs from both bird and insect flight. They operate in a Reynolds number

range where unsteady effects are important at low speeds but decreasingly less important

at the higher range of flight speeds[27]. The tension on the wing membrane is controlled by

a combination of several joints, the legs and the numerous finger joints. Larger species of

bats behave similarly to large birds, relying more on soaring than flapping. Smaller bats,

specialized as insect hunters, have developed extremely high agility and flap continuously.

Because bats are equally or even more complicated than birds, and because of their flight

performance, we have chosen to model our robotic test bed after a bat. Bat flight is also well

suited to central pattern generator control because it relies heavily on the synchronization

of phase differences between several different oscillatory motions.

2.2.2 Central Pattern Generators

A principle factor in choosing how many degrees of freedom were necessary for the test

bed was based on biological principles. Another biological principle followed in the design

of the bat was choosing the control scheme to be used. Many creatures produce their

motion by synchronizing periodic motions of limbs, such as running, swimming or flapping.

They do this by coupling biological oscillators and synchronizing their outputs. Biological

8

oscillators rely on short timescale (ms) neuron dynamics including spike-bursting, spike

frequency adaptation, and post-inhibitory rebound. Herrero-Carrón, et. al. [28] designed a

control law for modular robots by approximating short timescale neuron dynamics. Because

there is such a short timescale required for integration, the neuron dynamics were integrated

offline. We are unlikely to be able to perform such strict mimicry in an online controller as we

add additional neurons for feedback, active control of phase differences, or gait transitions.

In order to make online control more feasible, we can emulate these biological oscillators

by using limit cycle oscillators coupled together. A limit cycle oscillator is a nonlinear

model that converges to a stable trajectory which is called the limit cycle. Because of this

convergence the oscillator will quickly forget disturbances and converge back to the stable

limit cycle. If the oscillator itself is a smooth vector field, we can smoothly transition between

desired trajectories without abrupt changes being required in the motor output.

Following Chung and Dorothy [1], we use the following limit-cycle model called the Hopf

oscillator, named after the supercritical Hopf bifurcation model with σ = 1:

d

dt

u− a
v

 =

−λ
(

(u−a)2+v2

ρ2
− σ

)
−ω(t)

ω(t) −λ
(

(u−a)2+v2

ρ2
− σ

)

u− a

v

+ u(t)

Or, ẋ = f(x; ρ;σ) + u(t), where x = (u− a, v)T

(2.1)

where the λ > 0 denotes the convergence rate to the symmetric limit circle of the radius

ρ > 0 and u(t) is an external or coupling input. A rigorous proof that coupled networks of

Hopf oscillators on balanced graphs exhibit smooth exponentially stable behavior in both

oscillatory mode and fixed point mode can be found in [1].

The possibly time-varying parameter ω(t) > 0 determines the oscillation frequency of

the limit cycle, which in our case refers to the frequency of any of the flapping, pitching,

or lead-lag wing motions. A time-varying a(t) sets the bias to the limit cycle such that

it converges to u(t) = ρ cos (ωt+ δ) + a and v(t) = ρ sin (ωt+ δ) on a circle. The output

9

variable to generate the desired oscillatory motion of each joint is the first state u from the

Hopf oscillator model in Eq. (2.1).

Synchronization means an exact match of the scaled amplitude or the frequency in this

paper. Hence, phase synchronization permits different actuators to oscillate at the same

frequency but with a prescribed phase lag. In essence, each CPG dynamic model in Eq. (2.1)

is responsible for generating the limiting oscillatory behavior of a corresponding joint, and the

diffusive coupling among CPGs reinforces phase synchronization. For example, the flapping

angle has roughly a 90-degree phase difference with the pitching joint to maintain a positive

angle of attack. A relation between mean efficiency, defined as the ratio of work performed

by mean thrust with speed to required power, reduced frequency and the phase shifts of

wing motions is derived in detail in [15]. Through theoretical computations of the unsteady

aerodynamics characteristics of a two-dimensional thin airfoil based on studying harmonics,

the phase difference between flapping and pitching motions which exhibits optimal mean

efficiency is shown to be close to 90 degrees. Observations of the flight of dragonflies show

that the phase difference between flapping and pitching motions is shown to be also close to

90 degrees [15]. The oscillators are connected through diffusive couplings, and the i-th Hopf

oscillator can be rewritten with a diffusive coupling with the phase-rotated neighbor.

ẋi = f(xi; ρi)− k
mi∑
j∈Ni

(
xi −

ρi
ρj
R(∆ij)xj

)
(2.2)

where the Hopf oscillator dynamics f(xi; ρi) with σ = 1 is defined in Eq. (2.1), Ni denotes

the set that contains only the local neighbors of the i-th Hopf oscillator, and mi is the number

of the neighbors. The 2×2 matrix R(∆ij) is a 2-D rotational transformation of the phase

difference ∆ij between the i-th and j-th oscillators. The positive (or negative) ∆ij indicates

how much phase the i-th member leads (or lags) from the j-th member and ∆ij = −∆ji.

The positive scalar k denotes the coupling gain.

10

2.3 State of the Art of Flapping Flight MAVs

Some previous examples of flapping flight models can be found in [5], [29], [30], [31], [32],

[33], and [6], as well commercially available products. More examples and research can be

found in [2]. Most of these systems use a crankshaft mechanism to produce the flapping

motions by converting a rotary motion from a motor to a linear oscillating motion, and are

therefore limited to producing sinusoidal motions of a fixed amplitude with possibly variable

frequency. However, experiments with high speed cameras have shown that the flapping

motions in bats are not sinusoidal [34]. Furthermore, several parameters of the flapping

motion change depending on flight conditions. The amplitude of wing motions vary, along

with the phase difference between different wing motions, the wing beat frequency and the

angle of attack. Studies of insect flight such as in [5]] and [29] accurately model insect

flight by allowing changes in pitch and stroke plane angle. However, these systems do not

allow changes in stroke amplitude, and thus there is no ability to generate arbitrary stroke

motions.

While there are freely flying ornithopters, capable of flying only by flapping their wings,

there are some issues and/or simplification issues which still exist. Some flapping flight

vehicles have a large wing span on the order of 2 meters; as tall if not taller than the average

human being. Thus, their large size allows the aircraft to take advantage of gliding effects.

Other flapping flight MAVs are small, closer to a hummingbird or insect in size. The beating

frequency of these vehicles is fast enough such that they can use averaging to control their

flight instead of finely tuned, precise wing movements. Moreover, many of these ornithopters

or otherwise flapping flight aerial vehicles use a tail; that of which bats do not usually have.

Their wing motions are often simplified and constrained to move only in certain directions

in certain fashions. Thus, flapping flight inspired by bats remains, as of this writing, fairly

novel with many things still unknown or not well understood.

11

Chapter 3

Flapping Flight Kinematics and
Dynamics

3.1 Introduction

We derive some basic kinematics, dynamics, and aerodynamics for our test bed and show

they can and will be used for further experimentation and research regarding flapping flight

MAVs.

3.2 Testbed Kinematics and Unsteady Aerodynamics

Figure 3.1: RoboBat Testbed

12

The current RoboBat is not intended to be a free flying platform. It is intended as a

testbed for CPG control designs, experimental confirmation of unsteady aerodynamics, and

experimental determination of optimal wing motions. The weight and power requirements

have not been optimized for free flight. In order to test longitudinal control strategies, it has

been attached to a Quanser pendulum platform, which provides encoder feedback signals

that we use for control. Figure 4.12 shows the three degrees of freedom: travel, elevation,

and pitch (λ,ε,p).

Of note is the fact that the pitch rotation point is not near the center of gravity of

the bat. To make experimentation feasible, we have affixed a counterweight on the pitch

arm. By moving this counterweight or changing its mass, we can alter the natural stability

of the pitch motion. One consequence of this scheme is that the pitch motion has an

artificially high moment of inertia. Therefore, we expect that our moment-producing control

schemes for a tailless vehicle will have even more effectiveness in a free flier. To move toward

computations of actual forces and moments generated, we desire dynamic modeling of the

pendulum set-up and the unsteady aerodynamics. If we define our generalized coordinates to

be [q1, q2, q3] = [ε, p, λ], then using Lagrange’s equations, d
dt
∂L(q,q̇)
∂q̇
− ∂L(q,q̇)

∂q
= F and algebraic

manipulations, we can transform the EOM to standard robot form [35].

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ. (3.1)

13

M(q) is known to be a symmetric positive definite matrix [35]. In this case, we have elements

M11 = `a
2mb + `a

2mc + `w
2mw

+`b
2mb cos(q2)2 + `c

2mc cos(q2)2

M12 = M21 = −`a sin(q2) (`bmb − `cmc)

M13 = M31 = sin(q2)
(
mb cos(q1) cos(q2) `b

2

+`amb sin(q1) `b +mc cos(q1) cos(q2) `c
2

−`amc sin(q1) `c

)
M22 = mb `b

2 +mc `c
2 (3.2)

M23 = M32 = −mb sin(q1) `b
2 + `amb cos(q1) cos(q2) `b

−mc sin(q1) `c
2 − `amc cos(q1) cos(q2) `c

M33 = `b
2mb + `c

2mc + `a
2mb cos(q1)2

+`a
2mc cos(q1)2 + `w

2mw cos(q1)2

−`b2mb cos(q1)2 cos(q2)2 − `c2mc cos(q1)2 cos(q2)2

−2 `a `bmb cos(q1) cos(q2) sin(q1)

+2 `a `cmc cos(q1) cos(q2) sin(q1)

where `x and mx are length and mass, respectively. Subscripts a,w,b, and c denote the point

of pitch rotation, elevation counterweight, RoboBat, and pitch counterweight, respectively.

The skew-symmetric C(q, q̇) matrix is defined as [35]

cij =
1

2

n∑
k=1

∂Mij

∂qk
q̇k +

1

2

n∑
k=1

(
∂Mik

∂qj
− ∂Mjk

∂qi

)
q̇k (3.3)

14

and is computed to be

C11 = − q̇2 sin(2 q2) (mb `b
2+mc `c

2)
2

C12 = − cos(q2)
(
`b

2mb q̇1 sin(q2) + `c
2mc q̇1 sin(q2)

+`a `bmb q̇2 − `a `cmc q̇2

−`b2mb q̇3 cos(q1) cos(q2)− `c2mc q̇3 cos(q1) cos(q2)

−`a `bmb q̇3 sin(q1)

+`a `cmc q̇3 sin(q1)
)

C13 = `a
2mb q̇3 cos(q1) sin(q1) + `a

2mc q̇3 cos(q1) sin(q1)

+`w
2mw q̇3 cos(q1) sin(q1)− `a `bmb q̇3 cos(q2)

+`a `cmc q̇3 cos(q2) + `b
2mb q̇2 cos(q1) cos(q2)2

+`c
2mc q̇2 cos(q1) cos(q2)2 + `a `bmb q̇2 cos(q2) sin(q1)

−`a `cmc q̇2 cos(q2) sin(q1)− `b2mb q̇3 cos(q1) cos(q2)2 sin(q1)

−`c2mc q̇3 cos(q1) cos(q2)2 sin(q1) + 2 `a `bmb q̇3 cos(q1)2 cos(q2)

−2 `a `cmc q̇3 cos(q1)2 cos(q2)

15

C21 = cos(q2)
(
`b

2mb q̇1 sin(q2) + `c
2mc q̇1 sin(q2)

−`b2mb q̇3 cos(q1) cos(q2)

−`c2mc q̇3 cos(q1) cos(q2)

−`a `bmb q̇3 sin(q1)

+`a `cmc q̇3 sin(q1)
)

C22 = 0 (3.4)

C23 = −
(
q̇1 cos(q2) + q̇3 cos(q1) sin(q2)

)
∗(

mb cos(q1) cos(q2) `b
2 + `amb sin(q1) `b

+mc cos(q1) cos(q2) `c
2 − `amc sin(q1) `c

)
C31 = −

(
cos(q3)2 + sin(q3)2

)(
`a

2mb q̇3 cos(q1) sin(q1) + `a
2mc q̇3 cos(q1) sin(q1)

+`w
2mw q̇3 cos(q1) sin(q1) + `b

2mb q̇2 cos(q1) sin(q2)2

+`c
2mc q̇2 cos(q1) sin(q2)2 + `b

2mb q̇1 cos(q2) sin(q1) sin(q2)

+`c
2mc q̇1 cos(q2) sin(q1) sin(q2)− `a `bmb q̇1 cos(q1) sin(q2)

+`a `cmc q̇1 cos(q1) sin(q2)− `b2mb q̇3 cos(q1) cos(q2)2 sin(q1)

−`c2mc q̇3 cos(q1) cos(q2)2 sin(q1) + `a `bmb q̇3 cos(q1)2 cos(q2)

−`a `cmc q̇3 cos(q1)2 cos(q2)− `a `bmb q̇3 cos(q2) sin(q1)2

+`a `cmc q̇3 cos(q2) sin(q1)2
)

16

C32 = cos(q1)
(
`b

2mb q̇1 cos(q2)2 − `c2mc q̇1 − `b2mb q̇1

+`c
2mc q̇1 cos(q2)2 − `a `bmb q̇2 sin(q2)

+`a `cmc q̇2 sin(q2) + `b
2mb q̇3 cos(q1) cos(q2) sin(q2)

+`c
2mc q̇3 cos(q1) cos(q2) sin(q2) + `a `bmb q̇3 sin(q1) sin(q2)

−`a `cmc q̇3 sin(q1) sin(q2)
)

C33 = `a `bmb q̇1 cos(q2)− `a2mc q̇1 cos(q1) sin(q1)

−`w2mw q̇1 cos(q1) sin(q1)− `a2mb q̇1 cos(q1) sin(q1)

−`a `cmc q̇1 cos(q2) + `b
2mb q̇1 cos(q1) cos(q2)2 sin(q1)

+`b
2mb q̇2 cos(q1)2 cos(q2) sin(q2) + `c

2mc q̇1 cos(q1) cos(q2)2 sin(q1)

+`c
2mc q̇2 cos(q1)2 cos(q2) sin(q2)− 2 `a `bmb q̇1 cos(q1)2 cos(q2)

+2 `a `cmc q̇1 cos(q1)2 cos(q2) + `a `bmb q̇2 cos(q1) sin(q1) sin(q2)

−`a `cmc q̇2 cos(q1) sin(q1) sin(q2)

The gravity term g(q) = ∂V(q)
∂q

is computed to be

g1 = g
(
`amb cos(q1) + `amc cos(q1)

−`wmw cos(q1)− `bmb cos(q2) sin(q1) + `cmc cos(q2) sin(q1)
)

g2 = −g cos(q1) sin(q2) (`bmb − `cmc) (3.5)

g3 = 0

where g is acceleration due to gravity.

The forces and moments on the right hand side can be found as a function of wing

kinematics and an aerodynamic model, The generalized forces remain intact through the

17

transformation to robot form, i.e., F = τ , and are computed to be

τ =


`a (L cos(q2) + T sin(q2))

M− `b T

`a (T cos(q2)− L sin(q2))

 , (3.6)

where L,T, and M are found later in the aerodynamic model. This formulation can then

be applied to a free-flying MAV. Here, we present a refinement on the aerodynamic model

of [1].

The pendulum rig consists of

1. A bar hinged at its center of gravity such that it can spin about the vertical axis

(angle given by λ, positive counter-clockwise) and rotate upwards and downwards in

the vertical plane (angle denoted by ε, positive downwards).

2. A compound pendulum mounted on one end of the bar consisting of two point masses:

the robotic bat itself modeled as a point mass mb and a mass mc, which functions as

a pitch counterweight and is also modeled as a point mass. The compound pendulum

is free to swing in the plane normal to the bar, with the swing angle given by p.

3. An elevation counter-weight, mw, located at the opposite end of the bar as the bat.

Three frames of reference can be defined for this system, given an inertial frame of reference

I fixed to the Earth:

1. A frame B fixed to the compound pendulum with its origin at the suspension point.

The frame B parallel to the aircraft body axis frame centered at the aircraft CG.

2. A frame P with its origin at the bar’s hinge point such that under nominal conditions,

the axes of P and B are parallel to each other.

3. A frame S constructed locally at every wing station for calculation the local wind

velocity and the aerodynamic forces and moments.

18

The frame I is first rotated about the z-axis by an angle λ, followed by a rotation about

the x-axis by ε to coincide with the P frame. Therefore, the following rotation matrix is

obtained to transform the components of a vector from I to P :

RPI =


1 0 0

0 cos ε − sin ε

0 sin ε cos ε




cosλ − sinλ 0

sinλ cosλ 0

0 0 1



=


cosλ − sinλ 0

cos ε sinλ cos ε cosλ − sin ε

sin ε sinλ sin ε cosλ cos ε

 (3.7)

The frame P is rotated about the y-axis to obtain frame B:

RBP =


cos p 0 − sin p

0 1 0

sin p 0 cos p

 (3.8)

The rotation matrix from B to S is obtained by performing the standard 3 − 2 − 1

rotations through angles ψ, θ and −φ, which correspond to lead-lag, pitching, and flapping

motions respectively:

RSB =


cosφ cosψ sinψ cosφ sinφ

− sinφ sin θ cosψ − sinψ cos θ − sinφ sinψ sin θ + cos θ cosψ sin θ cosφ

− sinφ cos θ cosψ − sinψ sin θ − sinφ sinψ cos θ + sin θ cosψ cos θ cosφ

 (3.9)

The matrix RSP = RSBRBP transforms the coordinates of a vector from the P frame to S

frame, and will be useful while calculating velocities and forces.

Let ωP denote the angular velocity of the horizontal rod in the P frame, i.e., ωP =[
ε̇ 0 − λ̇

]T

. Let ωB = [0 ṗ 0]T denote the angular velocity of the compound pendulum

about OB. Finally, let ω denote the angular velocity of a wing with components in the B

19

frame (a similar expression can be derived for the other wing). It follows that

ω =


−φ̇− ψ̇ sin θ

θ̇ cosφ− ψ̇ cos θ sinφ

θ̇ sinφ+ ψ̇ cos θ cosφ

 (3.10)

Let Ȳ = [0 la 0]T denote the position vector from OP to OB. Let z̄ = [0 0 − lb]T denote

the position vector from OP to the bat CG, and ȳ = [0 y 0]T denote the vector from bat CG

to a wing station with components in the S frame. Then, the local wind velocity at a wing

station is given by

V =


U

V

W

 = RSPS(ωP)Ȳ +RSBS(ωB +RBPωP)z̄︸ ︷︷ ︸
equivalent to flight speed V∞

+S(RSB(ω + ωB) +RSPωP)ȳ (3.11)

The local angle of attack is given by

α = tan−1

(
W

U

)
(3.12)

The local acceleration is assumed to arise entirely from flapping. Since the model devel-

oped in this paper is intended to be as generic as possible, the model proposed by Goman

and Khrabrov [36] is presented as a candidate model for computing the lift and the quarter

chord moment while drag is estimated assuming the classic drag polar. It is estimated that

Goman and Khrabrov’s model offers at least two advantages over the existing models (e.g.,

Theodorsen or Peters [37]). First, the model is cast in the form of a single ordinary differ-

ential equation (ODE) and two algebraic equations, one each for life and the quarter chord

pitching moment. The state variable for the ODE corresponds, physically, to the chordwise

location of flow separation on the airfoil. Therefore, the model is quite easy to implement

20

as part of a numerical routine. Second, the model is inherently nonlinear and applicable to

post-stall conditions.

The following equation describes the movement of the separation point for unsteady flow

conditions

τ1ν̇ + ν = ν0 (α− τ2α̇) (3.13)

where τ1 is the relaxation time constant, τ2 captures the time delay effects due to the

flow, while ν0 is an expression for the nominal position of the separation point. These three

parameters need to be identified experimentally or using CFD for the particular airfoil under

consideration. However, at present time the wings are assumed to be rigid flat plates. The

coefficients of lift and quarter-chord moment are then given by

CL =
π

2
sin
(
α
(
1 + ν + 2

√
ν
))

Cmac =
π

2
sin
(
α
(
1 + ν + 2

√
ν
)) [5 + 5ν − 6

√
ν

16

]
(3.14)

The lift and the quarter chord moment per unit span are then given by

L(y) = 0.5ρV (y)2cC∗l +
π

4
ρc2
(
ξ̈ + V∞α̇− (xa − 0.25)cα̈

)

M(y) = 0.5ρV (y)2c2C∗mac
+
π

4
ρc2

(
V∞ξ̇ +

(xa − 0.25)cξ̈

2
+ V 2

∞α− c2

(
1

32
+ (xa − 0.25)2

)
α̈

)
(3.15)

where θ(y) is the twist angle, ρ denotes the density of air and ξ is the transverse displacement

of the wing due to flapping. Furthermore, V = ‖V‖ is the local wind speed with V defined

in Eq. (3.11), and V∞ is the freestream speed of the aircraft. The last term of each expression

was added to Goman’s original model [36] and corresponds to the apparent mass effect [38].

For the sectional drag coefficient, there is unfortunately no simple expression for such.

Assuming laminar flow on the wing, the sectional drag coefficient can be written as CD =

21

0.89√
RE

+ 1
πeAR

C2
L where AR is the aspect ratio of the wing, Re = ρcVinf

µ
is the chordwise

Reynolds number, and e is Oswald’s efficiency factor. A refined model for calculating drag,

incorporating dynamic stall, may be found in [38].

22

Chapter 4

Description of the Robotic Bat Test
Bed

4.1 Introduction

In this chapter we describe the details of the technical components that the robotic bat test

bed consists of, as well as essential hardware and software that supplements the overall test

bed environment.

4.2 Design of Robotic Bat

4.2.1 Previous Work

The previous iteration of the robotic bed test bed was designed to be mounted on a stationary

stand and mounted on a force-torque sensor. This set-up could be placed in a wind tunnel

where forces and moments generated by the wing motions in an air stream could be measured.

Further details regarding this model can be found in [1]. One major goal for redesigning

the test bed was to allow it to move in a limited 3-degree of freedom fashion. Another goal

was to used the robotic bat’s orientation and position as feedback data for a closed loop

controller.

4.2.2 Current Robobat Design

The robotic bat is a highly controllable platform, modeled after the kinematics of a bat. Eight

degrees of freedom are provided; three in each shoulder joint and two for the amplitude of

23

Figure 4.1: Previous robotic bat design[1]

flapping. The shoulder joints are also analogous to human shoulder joints, able to move

forward, backwards, up, down, and can twist in both directions. Those motions correspond

to lead-lag, flapping, and pitching respectively. These 8 degrees of freedom are combined

with variable speed motors to allow for maximum flapping in control schemes. The flapping

motion of the wings are independently powered by two 10 watt Maxon motors. Electronic

controllers for the two Maxon motors allow for precise control of motor velocity and thus

flapping frequency. All other degrees of freedom are controlled with Futaba servos. In

the previous bat design from [1], the servos actuating the lead-lag and pitch motions were

feather servos. The new structure uses bigger and more powerful servos for increased torque

and speed. Two US Digital absolute encoders are attached to the sides of the two motors

and connected with gears in order to measure the absolute position of the wings. This

position data is used to create a closed loop controller for the wings and allows them to

synchronize to a desired signal from the CPG’s. The membrane of the wings is taken from

a commercially available ornithopter, while the supporting wing structure is custom made

24

(a) Front View

(b) Back View

Figure 4.2: Front and back views of robotic bat, mounted on Quanser 3DOF Helicopter
stand

25

(a) Flapping Motion (b) Pitching Motion

(c) Lead-Lag Motion

Figure 4.3: Positive wing motion directions

using a combination of carbon fiber, plastic, and metal parts.

The flapping amplitude is varied by a mechanism consisting of a moving crank arm and

a rotating slider. A tail pitch plate used on RC helicopter tail rotors is used to control the

flapping amplitude. As servo controls the slider on the tail pitch plate and moves it to vary

the distance from the motor shaft to the crank arm. This changes the flapping amplitude.

Additionally, the servo has to move only a small angular distance to change the flapping

amplitude.

The main frame of the test bed was fabricated with a CNC machine. This method allows

for quick changes in the design to be made. More complex parts can be machined. High

density polyethylene was chosen as the main frame material for its low cost and ease of use

26

Figure 4.4: Wing of robotic bat

Figure 4.5: Drive shaft to actuate flapping, with motor and encoder shown

27

Figure 4.6: Shoulder joint, with pushrods for flapping, pitch, and lead-lag

Figure 4.7: Pitch (top) and lead-lag (bottom) servos

28

Figure 4.8: Close-up of amplitude controlling servo and drive shaft

29

Figure 4.9: dSPACE connector board

with the CNC machine. All drive train materials are constructed of aluminum and steel,

with non standard drive train parts being machined.

Controlling the robotic bat is done with a dSPACE DS1104 Controller board. The

setup consists of a PPC board, which is mounted inside the computer via PCI slot, and a

connector board which connects to the PPC board and provides an I/O interface for wiring

to the robotic bat. The connector board outputs PWM signals and square waves to control

the servos and motors, respectively. An analog/digital converter on the connector board

allows the absolute motor encoders to output a voltage to the dSPACE board and have it

converted to a digital signal, which can be read by the computer.

4.3 Design of 3DOF Test Bed

To hold the robotic bat in place while providing movement in three directions, the Quanser

3DOF Helicopter was used for its stand, encoders and Q4 board. The stand of the Quanser

3DOF Helicopter uses built-in encoders to measure pitch, travel, and elevation, which can be

feed information regarding the robotic bat’s position and orientation back into the controller

of the robotic bat.

A wooden base was constructed to provide higher elevation of the stand and to provide

30

Main
Computer

dSPACE DS1104 Controller Board

PWM
Generators

x4

Square Wave
Generator x2

A/D
Converter

RoboBat
Lead Lag

Servos x2,
Pitch

Servos x2

Maxon
Motor

Controllers
x2

Maxon
Motors

x2

Absolute
Motor

Encoders
x2Quanser 3DOF Helicopter stand

Pitch, Travel,
Elevation
encoders

Power
Supplies

x2

External
Power
Supply

Quanser Q4 H.I.L. Board

Encoder
Inputs

x3

D/A
Converter

Figure 4.10: Schematic of test bed setup

a larger, more stable base for the entire test bed to rest upon. To power the components

of the robotic bat, the RCA connectors which were originally used to power the helicopter

rotors included with the stand are used to provide the voltage necessary for the servos and

motors of the bat.

Electrical connections to the Quanser 3DOF Helicopter are controlled by the Quanser Q4

Hardware in the Loop (HIL) board. The Q4 board provides us with D/A voltage outputs

and encoder inputs [39]. Two D/A voltage outputs on the Q4 board allow the necessary

voltages needed for the servos and motors of the robotic bat. Three encoder inputs are used

to read the encoder counts from the travel, pitch, and elevator encoders.

A constant electrical connection must be maintained between the controlling computer

and the robotic bat so that controlling signals can be sent. dSPACE is used to create and

send the controlling signals to the robotic bat, and since a wireless transfer method between

dSPACE and the robotic bat’s servos and motors was deemed too difficult if not infeasible,

31

an Orbex Group slip ring was used to main a contact electrical connection while still allowing

the stand to rotate freely. The wires from dSPACE were threaded through the ceiling of the

laboratory to prevent physical interference with the rotation of the helicopter stand’s arm.

Care is taken so that the wires do not interfere with the motion of the bat.

The helicopter stand includes an elevation counterweight located at the opposite end of

the helicopter stand’s arm. The position of this weight can be changed to simulate different

effective weights of the robotic bat. This weight brings the elevation axis closer to neutral

stability and would simulate the low weight (on the order of 30 grams) of the average bat [16].

To change the stability point of the robotic bat’s pitch, a pitch counterweight is attached

below the robotic bat. This pitch counterweight is added to the test bed by using perfo-

rated metal straps to attach it to a certain distance below the point of connection between

the robotic bat and the helicopter stand’s main rotating arm. The position of this pitch

counterweight can be varied by moving the weight to different positions on the perforated

metal straps, which would change the inherent longitudinal stability of the robotic bat. This

allows us to test our control schemes on differing levels of natural stability. Counterweights

were calibrated in order to bring the points of stability closer to neutral stability, with a

slight amount of positive stability.

4.4 Controller Design

dSPACE, MATLAB, and Simulink are used to write the controller for the entire test bed. A

Simulink model using dSPACE’s own real time interface and blocksets was used in [1]. This

model has since been improved to allow for better synchronization of motors to CPG signals,

and more control over the phase differences between wing motions as well as other control

parameters. To create a closed loop controller for the robotic bat with respect to its position

and orientation on the Quanser 3DOF Helicopter stand, data must be exchanged between

the dSPACE DS1104 and Quanser Q4 boards. In particular, the controller which is compiled

32

(a) Power Sources included with Quanser testbed (b) Quanser Q4 board

(c) Slip ring, mounted on top of stand and con-
nected to dSPACE/computer and robotic bat

Figure 4.11: Components of test bed

33

(a) Robotic bat mounted on horizontal arm of Quanser 3DOF He-
licopter stand

(b) Closer view of robotic bat, with pitch counterweight

Figure 4.12: View of test bed set up.

34

Figure 4.13: Linear actuator functioning as pitch counterweight

and run on the DS1104 board requires the encoder data from the Quanser Q4 board. Quanser

also includes its own real time interface and blockset for Simulink, however it is currently not

possible to compile a Simulink model containing both dSPACE and Quanser blocks due to

how they are compiled to their respective real time processor boards. Therefore, a different

approach was taken to interface both Quanser and dSPACE so that data could be exchanged

between the two boards.

In order for the robotic bat to receive encoder data from the Quanser 3DOF Helicopter’s

encoders, we designed a software interface using dSPACE’s MLIB and Quanser’s Stream

API. MLIB is a library of MATLAB functions which allowed for communication with the

DS1104 board, and Quanser’s Stream API contains MATLAB functions for data transfer

between the computer and the Q4 board. Raw encoder count data was read into MATLAB,

which then converted this data into radians and degrees, and wrote this data into the robotic

bat’s Simulink experiment file. The DS1104 board ran the Simulink experiment in real time

and thus we could get feedback on the robotic bat’s attitude and orientation in real time via

35

(a) Pitch encoder

(b) Elevation and travel encoders

Figure 4.14: Encoders on Quanser 3DOF helicopter stand

36

the encoders. This encoder data is used to develop a closed loop controller for the elevation,

pitch, and travel angles and velocities for the bat. Ideally, the closed loop controller would

use the encoder data as an input, and would change the phase differences between the pitch,

flapping, and lead-lag motions as an output to control longitudinal modes.

The relatively high weight of the robotic bat, combined with the relatively high weight

of the pitch counterweight on the opposite end of the pitching arm, create a considerable

moment of inertia. Because of this moment of inertia, even a small amount of pitch vari-

ation due to the modulation of phase differences shows a significant effect with regards to

maintaining longitudinal stability.

4.5 VICON Motion Capture System

To analyze the exact motions of the robotic bat’s wings, the Vicon Motion Capture system

was used. This allows us to characterize the profile of the wings and use this data to improve

our controller a priori using kinematic data. It is also possible to characterize the robotic

bat’s flight trajectory using a motion capture system, however for simplicity’s sake we prefer

to use the encoders already built in to the helicopter stand.

Special retro-reflective markers are placed on the bat’s wings and body. Several infrared

cameras are arranged around the robotic bat test bed, and use triangulation to record the

position and orientation of these markers down to sub-millimeter accuracy. The position

of these markers is used to calculate the rotations of the wings and body. From this wing

angle data, the phase differences between the flapping, lead-lag, and pitch motions can be

calculated. Rotations of the body are measured so that the rotation of the wings with respect

to the body can be calculated while accounting for the body’s own slight rotations due to

its placement on the pendulum. The system is capable of recording data from anywhere

between 100 and 200 Hz.

The markers on the robotic bat are seen by the cameras, and the data is read by Vicon

37

Figure 4.15: Robotic bat fitted with markers

Figure 4.16: Vicon cameras

38

Figure 4.17: Vicon cameras setup on tripods

Figure 4.18: Vicon cameras around robotic bat

39

Figure 4.19: Robotic bat, as seen by Vicon Tracker

Tracker: software which allows us to create objects from this marker data. The wings and

body of the robotic bat are seen as three individual objects by Vicon Tracker; 4.19 shows

what Vicon Tracker sees as a result of the marker placement and object creation. The

Vicon Motion Capture System includes a software development kit (SDK) which allows us

to create programs which use data from the Vicon system. We use the included MATLAB

SDK, which allows us to extract position and orientation data of the robotic bat’s wings in

real time. This data is used in post processing for calculating and analyzing the kinematic

data of the robotic bat’s wings.

40

Chapter 5

Experimental Setup and Results with
Robotic Bat

5.1 Introduction

Major experiments conducted using the robotic bat test bed are shown in this chapter, along

with results and interpretations.

5.2 Open Loop Control Experiments

To characterize the robotic bat’s responses to certain inputs and design a controller based on

those responses, open loop experiments were conducted. They have both focused on steady-

state behavior of pitch, elevation, and travel velocity with respect to phase differences.

Experiments are conducted by commanding flapping frequency and phase differences while

observing the bat’s orientation and velocities from the encoder data. Using dSPACE’s

ControlDesk software, a GUI is created for direct interaction with the real time controller of

the bat, which is compiled and run on the dSPACE real time computer. Control variables

can be changed and analyzed in real time, and data is captured and saved to a MATLAB

data file.

As mentioned in chapter 4, there is an offset between the center of the bat and the pitch

rotational point. This creates a coupling between the dynamics of the second pendulum with

the longitudinal dynamics of the bat. While we use this to our advantage to obtain stability

states desired for testing phase difference control, it necessarily creates a large rotational

moment of inertia that is many times that of an actual bat. Therefore, we expect the

41

pitching moments from phase difference control to have less effect in this experimentation

than in free flight of a low moment of inertia bat. Regardless, we can see pitch control via

only flapping/lead-lag phase difference even in this set-up.

140 150 160 170 180 190 200 210 220 230 240
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Flapping/Lead−Lag Phase Difference, ∆31 (deg)

F
or

w
ar

d
V

el
oc

ity
 (

m
/s

)

Average
Minimum
Maximum

140 150 160 170 180 190 200 210 220 230 240
−25

−20

−15

−10

−5

0

5

Flapping/Lead−Lag Phase Difference, ∆31 (deg)

E
le

va
tio

n
A

ng
le

 (
de

g)

Average
Minimum
Maximum

140 150 160 170 180 190 200 210 220 230 240
18

20

22

24

26

28

30

32

34

36

Flapping/Lead−Lag Phase Difference, ∆31 (deg)

P
itc

h
A

ng
le

 (
de

g)

Average
Minimum
Maximum

Figure 5.1: Open-loop pitch control via phase differences (2 Hz).

In the first open loop experiment, the phase difference between flapping and lead-lag,

∆31, was varied between 140 deg and 240 deg twice. The system was allowed to converge

to a non-equilibrium steady state. Encoder data was captured for 20 seconds. Figure 5.1

shows the minimum, maximum, and average value over the 20 second period. As expected,

between 180 and 240 deg, the forward velocity and elevation curves look very flat, but the

pitch angle increased between 6 and 8 degrees. This corresponds with the idea that lift

and thrust generation remained similar while only a control moment was created. It is

42

postulated that a free flight system with a low pitching moment of inertia would see much

stronger pitching effects from such control. This is supported by physical intuition and the

numerical simulations performed previously [1]. The lower range of phase differences, 140-

180 deg, saw a large dropoff of thrust and lift generation. In fact, the bat came to a complete

stop at one point with the phase difference at 140 deg. Therefore, we should not plan to use

this range in control of flapping flight.

180 190 200 210 220 230 240
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Flapping/Lead−Lag Phase Difference, ∆31 (deg)

F
or

w
ar

d
V

el
oc

ity
 (

m
/s

)

Average
Minimum
Maximum

180 190 200 210 220 230 240
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

Flapping/Lead−Lag Phase Difference, ∆31 (deg)

E
le

va
tio

n
A

ng
le

 (
de

g)

Average
Minimum
Maximum

180 190 200 210 220 230 240
26

28

30

32

34

36

38

40

42

44

Flapping/Lead−Lag Phase Difference, ∆31 (deg)

P
itc

h
A

ng
le

 (
de

g)

Average
Minimum
Maximum

Figure 5.2: Open-loop pitch control via phase differences (2.5 Hz).

The second experiment repeated the same process at 2.5 Hz instead of 2 Hz. Only one

sweep through the values was performed. The results are plotted in figure 5.2 and support

the same conclusion as the first experiment. Additionally, they preliminarily confirm the

postulate that flapping frequency can be used as strong control of forward velocity and

43

elevation. Finally, note that the author is not concerned about the fact that all the relevant

body pitch angles are all around 20-40 degrees. Adjustment of the center of gravity location

with the pitch counter weight can set the trim state as desired while control moments are

created from phase differences.

50 100 150 200 250 300
10

15

20

25

30

35

40

45

∆31 (deg)

P
itc

h
A

ng
le

 (
de

g)

Average
Minimum
Maximum

50 100 150 200 250 300
−35

−30

−25

−20

−15

−10

−5

0

∆31 (deg)
E

le
va

tio
n

A
ng

le
 (

de
g)

Average
Minimum
Maximum

50 100 150 200 250 300
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

∆31 (deg)

F
or

w
ar

d
V

el
oc

ity
 (

m
/s

)

Average
Minimum
Maximum

Figure 5.3: Open-loop pitch control via phase differences (3 Hz).

Some time after the open loop experiments at 2 Hz and 2.5 Hz were conducted for [40],

some more open loop experiments were conducted after some mechanical modifications were

made to the testbed. These modifications included higher beating frequency capabilities (as

high as 5 Hz or more), and the addition of a linear actuator which allows us to automatically

vary the fixed point of stability with the assistance of an RC controller. The set of open loop

experiments were run at 3 Hz, and only one set of data was taken since these experiments

44

were meant only as preparation for more in-depth closed loop experiments. The results of

this open loop experiment are plotted in figure 5.3. Again, it is shown that for a certain

limited regime of phase differences there is control of elevation and velocity, while pitch

control authority is maintained over a wider regime of phase differences. It is important to

note that the position of the pitch counterweight is relevant insofar as the center of gravity

position in the pitch direction; a change of the center of gravity position changes the behavior

of the system due to the change in moment about the pitch direction. Also, the use of a linear

actuator increases the rotational moment of inertia of the system due to both the weight

of the linear actuator itself, the structure which holds the linear actuator to the setup, and

the weight that the linear actuator moves. The moment of inertia was already artificially

high to begin with due to the use of counterweights in the pitch and elevation directions.

Regardless, the high moment of inertia should serve to only strengthen the results obtained

from experimentation since we are able to show longitudinal control, and further the idea

that control authority would be far greater in a low inertia system similar to those found in

bats in flight.

5.3 Closed Loop Control Experiments

Previous numerical results have shown that, for longitudinal modes, dimensional reduction

via CPGs can be effective [1]. It was shown that control could be reduced to just two param-

eters: frequency (corresponding with velocity) and the phase difference between flapping and

lead-lag (∆31 corresponding with pitch state). The open loop non-equilibrium steady state

experiments have supported this idea further [40]. These closed loop experiments conducted

intend to show how the CPG structure allows very simple top-level controllers to provide

stability and control in closed loop. These PID controllers

45

Very simple symmetric PID controllers were used for all experiments,

∆31 = ∆75 = −Kp(p− pd)−Kdṗ−Ki

∫ t

0

(p− pd) dt, (5.1)

where ṗ is computed using the second order derivative filter,
ω2
cf s

s2+2ζfωcf s+ω
2
cf

, with ωcf = 40π

and ζf = 0.9. The values of this filter can be changed to reduce the amount of noise and

phase lag that is inherent to taking the derivative of a signal. The PID gains were tuned

manually in order to obtain a satisfiable system response, and to prevent integral windup we

used state saturators on the integrators. Saturation values were set so ∆31 ∈ [180◦, 270◦].

Even though we are able to use simple PID controllers in the top level, the overall controller

is very nonlinear due to the CPGs described in Equation (2.2).

We begin experimentation at an open loop frequency of 2.5 Hz. At this frequency, the

open loop appeared stable. Figure 5.4 shows the response to a change in desired body pitch

from −10◦ to −20◦. Two notes from [40] should be kept in mind. First, the actual value

of body pitch is affected by the precise position of the pitch counterweight. Therefore, it is

not worrisome that the values are not exactly around zero or some other intuitively desired

value; in fact simple open loop experiments show that in order for the robotic bat to maintain

sufficient elevation and velocity a nonzero pitch value tends to be desirable. Second, at 2.5

Hz, the apparent maximum change of body pitch due to open loop control of ∆31 is around

10− 12◦. This experiment demands a change of 10◦ and experiences saturation problems as

it nears the final desired state.

Moving the frequency to 3 Hz caused instability in the open loop. Figure 5.5 shows

that by activating the PID control of ∆31, we can stabilize the unstable system. At this

frequency, we also have appreciably more control authority. Figure 5.6 shows a commanded

pitch change of 15◦, which is easily obtained. We expect that at speeds typical of bat flight

(2-3 m/s with frequencies of 7-10 Hz [16]) and pitch moment of inertias not inflated by

the pendulum setup we will see even more control effectiveness. Numerical results have

46

0 5 10 15 20 25 30 35 40 45 50
−24

−22

−20

−18

−16

−14

−12

−10

−8

Time (s)

P
itc

h
A

ng
le

 (
de

g)

Figure 5.4: Experimental Results of Pitch Control at 2.5 Hz

supported the idea that this control effectiveness will be much higher [1].

In addition to controlling the pitch angle of the robotic bat, we would like to feedback

velocity into flapping frequency. Preliminary results are shown at a nominal frequency of 3

Hz in Figures 5.7 and 5.8. The frequency PID controller,

ω(t) = `a

(
−Kp(λ̇− λ̇d)−Kdλ̈−Ki (λ− λd)

)
, (5.2)

where λ̇ is the travel velocity and with the same derivative filter and saturation values

ω ∈ [1, 5], was activated at approximately 7 seconds. It initially causes a great change in

frequency, which initiates a large oscillation in pitch mode. The ∆31 controller saturates,

but is able to slowly damp out the oscillation. The frequency controller’s integrator also

saturates, preventing the velocity from reaching the desired 0.5 m/s. Also note that the filter

originally used had a cutoff frequency of ωcf = 40π, or 20 Hz which was later determined

to allow too much noise into the derivative calculation. The discrete nature of the encoders

warrants the use of a low pass filter when numerically calculating the derivative of a signal,

and thus setting this cutoff frequency to a much lower value on the order of 1 Hz or less would

allow a more cleaner calculation of the velocity and acceleration of a direction in real time by

47

0 5 10 15 20 25 30 35 40 45 50
−33

−32

−31

−30

−29

−28

−27

−26

Time (s)

P
itc

h
A

ng
le

 (
de

g)

Figure 5.5: Experimental Results of Pitch Stability by Control at 3Hz

0 5 10 15 20 25 30 35 40 45 50
−35

−30

−25

−20

−15

−10

−5

Time (s)

P
itc

h
A

ng
le

 (
de

g)

Figure 5.6: Experimental Results of Pitch Control at 3Hz

reducing the magnitude of noisy data. However, the cutoff frequency and dampening factor

of a filter must be chosen with care because a filter will inevitably induce some phase lag into

the calculations; however subsequent tests revealed this phase lag did not have any major

adverse effects on data capture. When derivative data is not needed online, it is preferable

to use a post processing low pass filter of data instead to calculate derivatives of signals.

More pitch control is shown in figure 5.9, with the desired pitch value superimposed

48

0 5 10 15 20 25 30 35 40 45 50
0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

Time (s)

F
or

w
ar

d
V

el
oc

ity
 (

m
/s

)

Figure 5.7: Velocity Control Tracking

0 5 10 15 20 25 30 35 40 45 50
−50

−40

−30

−20

−10

0

10

20

30

Time (s)

P
itc

h
A

ng
le

 (
de

g)

Figure 5.8: Pitch Stability after Large Perturbation

over the measured pitch value, and the corresponding control input (∆31). The experiment

begins with pitch control switched off, then at approximately t=10 seconds the pitch control

is switched on and the pitch soon increases by 10 degrees to its desired pitch value of 35

degrees.

Figures 5.10 and 5.11 show a change in desired pitch (both positive and negative) and

the robotic bat’s response to such changes. In figure 5.10 the robotic bat is settled near a

49

0 20 40 60 80 100 120
20

25

30

35

40

P
itc

h
A

ng
le

 (
de

g)

Actual Pitch
Desired Pitch

0 20 40 60 80 100 120
150

200

250

300

350

400

Time (sec)

∆
31

 (
de

g)

Figure 5.9: Pitch control with corresponding control input

desired pitch value of 25 degrees with the pitch controller running, and then at t=60 seconds

the desired value is increased all the way up to 40 degrees. In Fig. 5.11 the desired pitch is

changed from 45 degrees to 30 degrees at approximately t=35 seconds. Note that after the

desired pitch is decreased, the ∆31 controller reaches its lower bound saturation value of 90

degrees momentarily before settling close to its desired value.

In figure 5.12, the robotic bat is flying at steady state with a desired pitch of approxi-

mately 15 degrees. To test the response of our controller to large perturbations, the robotic

bat was manually perturbed in the pitch direction by over 60 degrees. This caused the ∆31

value of our controller to reach saturation momentarily, however the large oscillations are

eventually dampened out and the robotic bat returns to its original desired pitch position.

More experiments were conducted to control the travel velocity by modulating the flap-

ping frequency. Figure 5.13 shows the robotic bat initially at 0.4 m/s with the velocity

controller switched on, then at approximately t = 7 seconds the desired velocity is increased

50

0 20 40 60 80 100 120
10

20

30

40

50

P
itc

h
A

ng
le

 (
de

g)

Actual Pitch
Desired Pitch

0 20 40 60 80 100 120
100

200

300

400

Time (sec)

∆
31

 (
de

g)

Figure 5.10: Pitch control tracking with corresponding control input

to 0.5 m/s. The robotic bat’s response and the accompanying control input are shown. Fig-

ure 5.14 shows a velocity control tracking with decreasing desired velocity, with the robotic

bat initially at 0.5 m/s with the velocity controller switched on, then at approximately t = 12

seconds the desired velocity is decreased to 0.4 m/s.

Finally, we could like to implement a combination of pitch and velocity control. This is

accomplished by modulating both the flapping frequency and the lead-lag phase difference

with the PID controllers described in equations (5.1) and (5.2). In figure 5.15 we show

we can change the desired pitch value from 30 degrees to 35 degrees, while simultaneously

reaching a desired velocity of near 0.5 m/s.

However, we can not simply control the velocity and pitch independently by setting

either to an arbitrarily desired value. Intuitively, a change in forward velocity would create

a pitching moment; moreover a change in pitching moment would redirect the aerodynamic

forces generated by the robotic bat’s wings and would potentially affect the forward velocity.

51

0 20 40 60 80 100 120
20

30

40

50

60

P
itc

h
A

ng
le

 (
de

g)

Actual Pitch
Desired Pitch

0 20 40 60 80 100 120
50

100

150

200

Time (sec)

∆
31

 (
de

g)

Figure 5.11: Pitch control tracking with corresponding control input

We demonstrate this relation in figure 5.16. In the beginning of the experiment, note that

both the measured velocity and pitch values are significantly below their desired values. The

control inputs, frequency and phase difference, are high because the actual values had not

yet converged to their desired values. As mentioned in the open loop control experiments in

5.2, there are phase differences which reduce the robotic bat’s performance and may reduce

forward velocity to zero; since the pitching motion is controlled by changing phase differences

by extension there are pitch values which reduce the robotic bat’s performance as well. This

shows that the dynamics of the robotic bat do not allow for the robotic bat to fly at the

desired velocity and pitch value; at t = 4 seconds the desired pitch value was decreased

by 10 degrees, and almost immediately we see the robotic bat’s velocity and pitch values

begin to increase to its desired value. In figure 5.17 we show the reverse of this relation

as well. Initially the pitch value remains seemingly steady with steady state error, and the

velocity is in fact decreasing, which causes the flapping frequency controller to increase the

52

0 20 40 60 80 100 120
−60

−40

−20

0

20

40

P
itc

h
A

ng
le

 (
de

g)

Actual Pitch
Desired Pitch

0 20 40 60 80 100 120
100

200

300

400

500

Time (sec)

∆
31

 (
de

g)

Figure 5.12: Pitch control response to large perturbation

flapping frequency. When the desired velocity value is increased from 0.4 m/s to 0.5 m/s,

the pitching motion responds and converges to its desired value of near 40 degrees while the

velocity increases to its desired value. More work will need to be done to characterize the

performance limits of the robotic bat regarding longitudinal motion and forward velocity.

5.4 Glide Transition

While most work done for this thesis involved flapping flight experimentation, it is also

possible to incorporate gliding flight into our model as well. Gliding is usually more common

with larger flying creatures such as the albatross, however even smaller flying creatures like

bats seem to glide if only for a brief period of time for flying maneuvers such as perching.

Moreover, the Hopf oscillators used to represent CPGs are capable of converging to a fixed

point when the bifurcation parameter σ is switched from +1 to −1, as shown in [1].

53

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

Time (sec)

V
el

oc
ity

 (
m

/s
)

Actual Velocity
Desired Velocity

0 10 20 30 40 50 60
0

1

2

3

Time (sec)F
re

qu
en

cy
 C

on
tr

ol
 In

pu
t (

H
z)

Figure 5.13: Velocity control tracking with corresponding control input

Gliding flight is activated by manually switching the bifurcation parameter σ from +1

to −1. In figure 5.18 the open-loop response to a switch from flapping flight to glide flight

is shown, with gliding flight activated at around t = 8 seconds. When gliding mode is

activated, the travel velocity begins steadily decreasing, the pitch is momentarily excited by

the sudden change and then settles to a constant value, and elevation decreases with some

very slight, very dampened oscillations.

Since the CPGs converge to a globally stable fixed point when σ is negative, we can

adjust the biases of the CPGs to change the location of the fixed point of convergence and

by extension, change the biases of the wing motions. In figure 5.19, after the robotic bat is

flapping, at about t = 22 seconds gliding mode is activated with the flapping CPGs at a bias

of 1; this corresponds to the wings at the peak of upstroke during flapping. To imitate the a

perching maneuver as described in [7], at t = 25 seconds the flapping bias is reduced to zero

and the lead-lag and pitching biases (not pictured) were set to allow maximum angle of attack

54

0 10 20 30 40 50 60
0.4

0.5

0.6

0.7

Time (sec)

V
el

oc
ity

 (
m

/s
)

Actual Velocity
Desired Velocity

0 10 20 30 40 50 60
1.5

2

2.5

3

3.5

4

Time (sec)F
re

qu
en

cy
 C

on
tr

ol
 In

pu
t (

H
z)

Figure 5.14: Velocity control tracking with corresponding control input

with the bat’s wings. Unfortunately, the moment of inertia of the system is far too high

to show any major observable effects, however the attempted perching maneuver appeared

to increase the pitching angle momentarily and the elevation angle appeared to increase

momentarily as well. Figure 5.20 shows the calculated gliding flight path angle using the

travel and elevation velocities. Again, a high moment of inertia made any major observable

changes in flight path angle quite difficult to discern; however the slow oscillations in the

flight path angle appear to increase slightly at the time of the perching maneuver before

dampening and dissipating.

In figure 5.21, we show a flapping to glide transition, and back to flapping. When

the robotic bat is initially in flapping flight, the velocity and pitch controllers are active

with desired values of 0.5 m/s travel velocity and 40 degrees pitch respectively. At t = 15

seconds, gliding motion is activated however the velocity and pitch controllers are kept

active as indicated by their respective plotted control inputs; these control inputs are not

55

0 10 20 30 40 50 60
0.2

0.4

0.6

Time (sec)

V
el

oc
ity

 (
m

/s
)

Actual Velocity
Desired Velocity

0 10 20 30 40 50 60
3

3.5

4

4.5

Time (sec)

F
re

qu
en

cy
 (

H
z)

0 10 20 30 40 50 60
25

30

35

40

Time (sec)

P
itc

h
A

ng
le

 (
de

g)

Actual Pitch
Desired Pitch

0 10 20 30 40 50 60
100

150

200

250

Time (sec)

∆
31

 (
de

g)

Figure 5.15: Pitch tracking with active velocity control

relevant during the gliding portion of flight due to the rapid inhibition of oscillations due

to the Hopf oscillator based CPGs. As the energy from gliding dissipates and velocity and

elevation approach a minimum, around t = 35 seconds the mode of flight is switched back

to flapping. The CPGs soon converge back to their oscillatory limit cycle and flapping flight

soon resumes. After a rise time due to the high moments of inertia in both the pitch and

56

0 10 20 30 40 50 60
0.2

0.4

0.6

Time (sec)

V
el

oc
ity

 (
m

/s
)

Actual Velocity
Desired Velocity

0 10 20 30 40 50 60
2

3

4

5

Time (sec)

F
re

qu
en

cy
 (

H
z)

0 10 20 30 40 50 60
20

30

40

50

Time (sec)

P
itc

h
A

ng
le

 (
de

g)

Actual Pitch
Desired Pitch

0 10 20 30 40 50 60
0

200

400

Time (sec)

∆
31

 (
de

g)

Figure 5.16: Change in desired pitch results in velocity tracking

elevation directions, the robotic bat returns to its previous desired velocity and pitch values.

57

0 10 20 30 40 50 60
0

0.5

1

Time (sec)

V
el

oc
ity

 (
m

/s
)

Actual Velocity
Desired Velocity

0 10 20 30 40 50 60
2

4

6

Time (sec)

F
re

qu
en

cy
 (

H
z)

0 10 20 30 40 50 60
−50

0

50

Time (sec)

P
itc

h
A

ng
le

 (
de

g)

Actual Pitch
Desired Pitch

0 10 20 30 40 50 60
100

200

300

400

Time (sec)

∆
31

 (
de

g)

Figure 5.17: Change in desired velocity results in pitch tracking

5.5 Force and Moment Calculations

Referring back to the equations of motion described in 3.2, we can numerically calculate

the right hand side of the equation (τ) and solve for L,T, and M using the equations of the

generalized forces given in (3.6) since we have three equations and three unknowns. The

values for q̇ and q̈ were found numerically using a first order finite difference scheme and

58

0 10 20 30 40 50 60
−0.5

0

0.5

1

V
el

oc
ity

 (
m

/s
)

0 10 20 30 40 50 60
30

40

50

60

P
itc

h
A

ng
le

 (
de

g)

0 10 20 30 40 50 60
−40

−30

−20

−10

0

E
le

va
tio

n
A

ng
le

 (
de

g)

0 10 20 30 40 50 60
0

0.5

1

1.5

2

Time (sec)

C
P

G
 O

ut
pu

t

Figure 5.18: Flapping-Glide Transition

59

0 10 20 30 40 50 60
0

0.5

1

V
el

oc
ity

 (
m

/s
)

0 10 20 30 40 50 60
20

30

40

50

60

P
itc

h
A

ng
le

 (
de

g)

0 10 20 30 40 50 60
−40

−30

−20

−10

0

E
le

va
tio

n
A

ng
le

 (
de

g)

0 10 20 30 40 50 60
−1

0

1

2

3

Time (sec)

C
P

G
 O

ut
pu

t

Figure 5.19: Flapping-Glide Transition, using flapping angle

60

0 10 20 30 40 50 60
0

0.5

1

Time (sec)

T
ra

ve
l v

el
oc

ity
 (

m
/s

)

0 10 20 30 40 50 60
−0.05

0

0.05

Time (sec)E
le

va
tio

n
ve

lo
ci

ty
 (

m
/s

)

0 10 20 30 40 50 60
−5

0

5

Time (sec)F
lig

ht
 p

at
h

an
gl

e
(d

eg
)

0 10 20 30 40 50 60
−2

0

2

4

Time (sec)

C
P

G
 C

on
tr

ol
 In

pu
t

Figure 5.20: Flight path angle of flapping-glide transition

61

0 10 20 30 40 50 60 70 80 90
0

0.5

1

V
el

oc
ity

 (
m

/s
)

0 10 20 30 40 50 60 70 80 90
2

4

6

F
re

qu
en

cy
 (

H
z)

0 10 20 30 40 50 60 70 80 90
0

20

40

60

P
itc

h
(d

eg
)

0 10 20 30 40 50 60 70 80 90
−40

−20

0

E
le

va
tio

n
(d

eg
)

0 10 20 30 40 50 60 70 80 90
0

100

200

300

∆
31

 (
de

g)

0 10 20 30 40 50 60 70 80 90
−2

0

2

Time (sec)

C
P

G
 O

ut
pu

t

Figure 5.21: Flapping-Glide-Flapping Transition

62

a low pass filter. The M , C, and g matrices are calculated numerically at every time step

since they are dependent on q and q̇. The lengths and masses of the testbed are simply

measured manually. Figure 5.22 shows the calculation of these forces and moments using

the data from the experiment shown in figure 5.21.

Initially when the robotic bat is in flapping mode, the lift, thrust, and moment are

relatively constant since the bat is in steady state. When gliding is activated at t = 15, as

expected thrust drops since the wings are no longer propelling the robotic bat. Also the

moment changes since the wings are not providing motion to change the pitch of the robotic

bat. The lift does not automatically drop when the robotic bat is in glide mode due to the

kinetic energy built up during flapping. When flapping mode is resumed near t = 35, there

are noticeable spikes in lift, thrust, and moment as the robotic bat begins rapidly flapping

its wings to return to its desired states.

There are some things to note with these calculations. First, the Euler-Lagrangian equa-

tions of motion derived in 3.2 assume the robotic bat and counterweights are point masses,

and subsequently the pendulums are assumed massless. Moreover, it also assumes these

point masses, corresponding to the centers of gravity of the robotic bat and counterweights,

are not offset from each other and are placed in straight lines from one another. Of course,

this is not the case since the positions of the elevation counterweight and pitch counterweight

are slightly offset from their respective axes. In future work, this data can be compared with

inertial measurement unit or force torque sensor data so that the analytical modeling can

be refined to match a free flying vehicle. Also, the calculations can be done online by the

controller for use in force control.

5.6 Measurements of Mechanical Coupling

When reproducing a fully rotatable shoulder joint with pitching motion, some amount of

mechanical coupling is unavoidable. Because all of our numerical work assumes perfect

63

0 10 20 30 40 50 60 70 80 90
0.1

0.15

0.2

0.25

0.3

0.35

Li
ft

(N
)

0 10 20 30 40 50 60 70 80 90
0

0.05

0.1

0.15

0.2

0.25

T
hr

us
t (

N
)

0 10 20 30 40 50 60 70 80 90
−0.04

−0.02

0

0.02

0.04

0.06

Time (sec)

M
om

en
t (

N
/m

)

Figure 5.22: Numerically calculated lift, thrust, and moment

64

sinusoidal output with no coupling, we would like to measure the actual coupled output and

potentially alter our control output waveforms to account for coupling. Moreover, with an

idea of the wings motions we can further understand the dynamics of our system.

Special retro-reflective markers are placed on the bat’s wings and body. Eight cameras

are arranged around the robotic bat test bed record the position of these markers down to

sub-millimeter accuracy. The position of these markers is used to calculate the rotations of

the wings and body. From this wing angle data, the phase differences between the flapping,

lead-lag, and pitch motions can be calculated. Rotations of the body are measured so that

the rotation of the wings with respect to the body can be calculated while accounting for

the body’s own slight rotations.

Data was collected by having the robotic bat flap at 1 Hz while Vicon Tracker recorded

rotation matrix for the robotic bat. Using the rotation matrices of the robotic bat’s wings

and the robotic bat’s body, we could obtain the local rotation matrix for each of the wings

with respect to the body. The pitch phase difference (∆21) was held at a constant 90◦.

Between each run, the phase difference between Lead-lag and flapping (∆31) was varied

from -90 degree to 90 degree in 10 degree increments. Some example plots of the wing’s

rotations and the differences once phase differences are applied are shown in figures 5.23,

5.24, 5.25, and 5.26.

The wing motions are clearly not perfect sinusoids. In order to extract meaningful data

from these motions, we treat them as noisy signals, and employ spectral analysis techniques

to figure out the frequencies and phases of the major sinusoidal components. This is done

using the Fast Fourier Transform(FFT) function in MATLAB. Using the FFT, we transform

the wing’s waveform in the time domain to the frequency domain, and we can figure out

which sinusoidal components have the maximum amplitude. Once we know which frequency

component is most significant and has the highest magnitude, we can figure out the phase

angle of that particular frequency component. We do this for all of the flapping, pitching,

and lead-lag motions and use the phase angle found using the FFT to computer the phase

65

0 1 2 3 4 5
−30

−20

−10

0

10

20

30

40

Time (s)

R
ot

at
io

n
(d

eg
re

es
)

Pitch
Flapping
Lead−lag

Figure 5.23: Experimental Left wing rotations with 10 deg input ∆75

0 1 2 3 4 5
−30

−20

−10

0

10

20

30

40

Time (s)

R
ot

at
io

n
(d

eg
re

es
)

Pitch
Flapping
Lead−lag

Figure 5.24: Experimental Right wing rotations with 10 deg input ∆31

66

0 1 2 3 4 5
−30

−20

−10

0

10

20

30

40

Time (s)

R
ot

at
io

n
(d

eg
re

es
)

Pitch
Flapping
Lead−lag

Figure 5.25: Experimental Left wing rotations with 60 deg input ∆75

0 1 2 3 4 5
−20

−15

−10

−5

0

5

10

15

20

25

Time (s)

R
ot

at
io

n
(d

eg
re

es
)

Pitch
Flapping
Lead−lag

Figure 5.26: Experimental Right wing rotations with 60 deg input phase ∆31

67

−100 −50 0 50 100
−100

−50

0

50

100

150

Input ∆
75

 (degrees)

M
ea

su
re

d
∆

75
 (

de
gr

ee
s)

Figure 5.27: Measured vs Commanded phase differences between lead-lag and flapping
motions (∆75) for left wing

difference in between different wing motions.

Each calculated phase difference was stored for every trial run, and after all data was

collected, a relation between input phase difference in the controller vs. actual phase differ-

ence measured and calculated could be formed. The results are shown in figures 5.27, 5.28,

5.29, 5.30, 5.31, and 5.32.

Note that in figures 5.27 and 5.28, the relation between measured and commanded phase

differences between lead-lag and flapping motions is close to the identity function. This shows

that the flapping and lead-lag motions are effectively decoupled. From the mechanical design

of the robotic bat this is expected to be the case since the actuators for lead-lag and flapping

should have virtually no effect on each other. The small vertical shift in figures 5.27 and

5.28 can be attributed to a possibly not perfectly perpendicular stroke plane with respect

to the robotic bat’s body and noise due to data acquisition. A simple linear interpolation

can be used to correct for this shift if desired, however subsequent tests showed this is not

68

−100 −50 0 50 100
−120

−100

−80

−60

−40

−20

0

20

40

60

80

Input ∆
31

 (degrees)

M
ea

su
re

d
∆

31
 (

de
gr

ee
s)

Figure 5.28: Measured vs Commanded phase differences between lead-lag and flapping
motions (∆31) for right wing

entirely necessary to maintain efficiency in experiments.

Since the phase difference between flapping and lead lag was kept constant throughout

all data acquisitions at 90 degrees, the phase difference between pitch and lead-lag is simply

the phase difference between flapping and lead lag minus 90 degrees. Note data in plots

5.29 and 5.30 was unwrapped at the border between 180 degrees and -180 degrees, hence the

y-axis ranges from 0 degrees to 360 degrees while the x-axis ranges from -180 degrees to 180

degrees. Keeping this relation in mind, both plots are fairly accurate for most range of phase

differences of interest with a small amount of vertical shift, likely attributed to the reasons

mentioned with the previous two plots. When the x-axis nears -90 degrees the relation is

not as linear as it is in the rest of the graph, but regardless is not beyond simple numerical

correction.

The relation between the pitch/flapping phase difference and the flapping/lead-lag phase

difference is shown in figures 5.31 and 5.32. In an ideal situation, the measured pitch/flapping

69

−100 −50 0 50 100
50

100

150

200

250

300

350

400

Input ∆
75

 (degrees)

M
ea

su
re

d
∆

76
 (

de
gr

ee
s)

Figure 5.29: Relation between ∆75 and ∆76 for left wing

−100 −50 0 50 100
50

100

150

200

250

300

350

Input ∆
31

 (degrees)

M
ea

su
re

d
∆

32
 (

de
gr

ee
s)

Figure 5.30: Relation between ∆31 and ∆32 for right wing

70

−100 −50 0 50 100
50

100

150

200

Input ∆
75

 (degrees)

M
ea

su
re

d
∆

65
 (

de
gr

ee
s)

Figure 5.31: Relation between ∆75 and ∆65 for left wing

−100 −50 0 50 100
40

60

80

100

120

140

160

180

Input ∆
31

 (degrees)

M
ea

su
re

d
∆

21
 (

de
gr

ee
s)

Figure 5.32: Relation between ∆31 and ∆21 for right wing

71

phase difference would stay constant at 90 degrees. However, this is not currently the case due

to coupling issues. To decouple these motions, we traditionally would use forward kinematics

to derive the measured pitch angle of the wing with respect to rotations of the servos and

motors. This can be done by approximating the servos and motors as rotating crackshafts

similar to a crackshaft-cylinder assembly found in engines. The position of the wing joint

where the lead-lag and flapping pushrods could be found, as could the rotation of the wing

joint which equates to the pitching angle of the wing. Then, we would use inverse kinematic

techniques to find a function of the position of the end effector (in this case the position of

the wing joint and the pitch angle) as a function of the inputs of its actuators (the rotations

of the servos and motors). However, simply doing the forward kinematics results in an

extremely long function involving transcendental functions such as trigonometric functions,

as well as higher order polynomials. Even making some oversimplifications such as assuming

small angle rotations, the end result is an equation that would be easily solved, if at all, in

real time using an online controller. Moreover, such an effort would be limited only to our

test bed and not applicable for other models. Thus, going the software route to decouple

the motions is desired.

Note that figures 5.31 and 5.32 are only for a desired phase difference of 90 degrees. One

method using the Vicon system to decouple the system is to change the desired pitch/flapping

phase difference in set increments while repeating the entire procedure of measuring phase

differences while varying the flapping/lead-lag phase difference, for each individual pitch/flapping

phase difference value. Of course, this would be very ad hoc and require potentially hundreds

of data captures depending on the size of the increments, and again only applicable to this

current model. Simple mechanical adjustments could potentially alter the characteristics of

the wing motions and nullify a priori assumptions. Therefore, finding optimal phase differ-

ence values through experimentation and data driven models such as reinforcement learning

is likely to yield more appreciable results in a more efficient manner.

72

Chapter 6

Supplemental Implementations

6.1 Introduction

Some extra possibilities regarding research with flapping flight MAVs using the test bed, as

well as research with other related technologies described in this thesis are described here.

6.2 Implementation of CPGs on FPGAs

Field programmable gate arrays (FPGA) provide a mechanism to prototype chips and other

logical circuits. They are integrated circuits which can be reprogrammed by the customer

to match the customer’s needs and requirements. These FPGAs can provide a low level

implementation for a computer or controller, using only the bare minimum amount of digital

logic required. Because of this potential minimal implementation, there is some interest of

implementing biological systems onto FPGAs. There is also interest in using FPGAs as the

implementation of a robot controller. Some research can be found in [41], [42], and [43].

So far, only basic work involving FPGAs has been accomplished with our research using

a Xilinx Spartan-6 FPGA. In experiments conducted so far, the ability to use FPGA circuits

to generate control signals for robotic motion is explored. As preliminary project, generating

a simple signal using the Forward Euler Method and the FPGA digital circuits was done

to control a robotic arm. The signal used was a simple sine wave and the output signal

was a PWM signal. Using floating point algorithms and a converter, it is possible to quickly

simulate the governing differential equation through a digital circuit. Using an FPGA allows

73

for rapid prototyping and development of complex digital circuits, and have become quite

popular in the field of digital signals and embedded systems.

The set up was simply connecting a robotic arm to the FPGA and a power source. Then,

connecting the FPGA to a computer via USB port, and then loading the program into the

FPGA from the computer and running the program. The FPGA circuit was designed to

provide the three signals need by the PWM converter box: signal, +5V, and ground. The

PWM signal comes in bursts ranging from 1 to 2 ms at a rate of one new signal every 20 ms

(or 50 Hz, a standard frequency for most servos). This provided the rotation from 0 degrees

to 180 degrees in the wrist of the robotic arm.

Designing the digital circuit is the real challenge. In order to ensure correct functionality

and to generate a basic understanding of the circuit before more challenging signals were

used, a simple sine wave was developed. This is the result of the differential equation in the

time domain equation in Eqn. (6.1).

Ẍ + ω2X = 0

X = A sin(ωt) +B cos(ωt) (6.1)

Where A is the initial velocity, and B is the initial position. Using the Forward Euler

Method, this equation can be reduced into two simple linear relations which recursively

relate the next value for the position and velocity to the previous corresponding values.

X+ = X + ∆tẊ

Ẋ+ = Ẋ + ∆tẌ

Or, using governing differential equation in equation (6.1)

Ẋ+ = Ẋ −∆tω2X (6.2)

74

The key here would be to have a valid time step, ∆t. This varies based on the digital

circuit, and the individual components of the circuit. With the Xilinx Spartan-6 FPGA,

the operating frequency is 27 MHz, with all of the components able to react within one

clock cycle. This means that the time step ∆t, must be equal to the time between clock

cycles. This is simply the inverse of the operating frequency, which in this case is 37.037

nanoseconds (0.000000037037 seconds). This is a very small number, and thus a double

precision floating point number is used to properly represent this number. This uses 64 bits

to store a number.

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

A A

B B

C C

D D

C0000D000001000
CKK K00KCKK

ADD
0d0ddd00ddd0

000

d)63)0)

))63)0)

0d0ddd00dddd0

d0y

d0))0d)63)0)

KTBTTACT
0d0ddd00ddd0

000

d)63)0)

))63)0)

0d0ddd00dddd0

d0y

d0))0d)63)0)

y)0d0d0y
0d0ddd00ddd0

000

d)63)0)

))63)0)

0d0ddd00dddd0

d0y

d0))0d)63)0)

y)0d0d0y
0d0ddd00ddd0

000

d)63)0)

))63)0)

0d0ddd00dddd0

d0y

d0))0d)63)0)

g
g
y
K
0g

eed0)0
e0d0)63)0)

eed0)0
e0d0)63)0)

T0g64
K0d0

CKK

T0)0d

Dddd)63)0)

))63)0)

T0g64
K0d0

CKK

T0)0d

Dddd)63)0)

))63)0)

T0)0d

eCC

e
0g
f
T
0
d

t00dd0dgT0t0t00g00dd
d)63)0)

0d0ddd00ddd0

000

d0))0d)31)0)

d0y

CKK

T0g32

00d032

00032

0ddd32)31)0)

)32)31)0)

ggyK0gdd0
K00KCKK

)dDddd)7)0)

ggy

ggyC0d00dd
Dddd)31)0)))7)0)

Figure 6.1: Schematic for sine wave PWM signal generation

The basic schematic for this is shown in Fig. 6.1. The main idea is that the position and

the velocity are updated every clock cycle. The position is added to the multiplication of the

velocity and the time step and then stored back into position, giving the new position. The

75

velocity is similar except that the new velocity is the old value, minus the multiplication of

the time step and the frequency squared. Then the position data is converted from floating

point to a fixed point notation, which is then stored for 20 ms; the time when the next pulse

comes in. This is done by using the clock divide block, that creates a new clocking signal

at a much lower rate by taking the 27 MHz signal and reducing its frequency by a factor of

1000 to 27 KHz. This will allow the PWM signal to generate different signals for different

lengths of time depending on the data input, a range from 0 to 26. This effectively gives

27 different positions that can be outputted. This number is not significant; it was used

because it was shorter to do and shows a wide range of positions.

While this circuit works, the floating point units, the two multipliers, the adder, the

subtraction, and the converter blocks were implemented using DSP slices. While they worked

in this application, they will not be sufficient for more complicated signals. Also, there are

only six available DSP slices on the FPGA board currently used. In addition, the timing

of these blocks are dependent on how the manufacturer made them. In order to implement

more advanced signals, the code for these blocks must be manually created. Once the basic

floating point operations have been created purely in digital logic, outside of DSP slices,

just about any signal can be created using this set up, especially if the signal is a digital

controller. If the signal needs varying amplitude, a digital to analog converter can be created

as well.

One of the major end goals of reproducing CPG signals on FPGAs would be to implement

our CPG controller on a microchip for use in an embedded system. One of the benefits of

CPGs is the reduced dimensionality for control and thus reducing the top level computation

needed in the main controller, the ”brain”, of the system. Thus, theoretically the added

power of a microcontroller or computer would not be necessary for a controller as simple

as one based on CPGs. This can help reduce the physical weight of avionics on a flapping

flight MAV and also reduce overhead maintenance and computations that would be involved

with something more powerful such as a microcontroller or even a small computer. Another

76

benefit is that while computers are usually serial by nature and thus perform computations

and operations sequentially, an FPGA executes operations in parallel with one another.

A possibility for implementing CPGs would involve using System Generator from Xilinx,

which would allow the integration between the FPGA hardware description language and

Simulink. There is also HDL Coder, a toolbox which allows the generation of HDL code

from Simulink to program FPGAs.

77

Chapter 7

Conclusions and Future Work

7.1 Conclusion

The objectives of this thesis were to show some ongoing research into controlling flapping

flight MAVs, the challenges presented by such a problem, and to provide insight into possible

future developments given current technological availabilities. Flapping flight MAVs inspired

by bats still have a long way to go, however, current progress and accomplishments were

demonstrated here. We first examined the current state of the art of flapping flight by

looking into previous work, models, and hardware developed, and then derived some basic

governing equations to provide a theoretical framework of our model and controller.

The low level implementation of a testbed for flapping flight test bed was described from

a mechanical, electrical, and software perspective. We also described the many other pieces

of hardware and equipment necessary to operate and control such a testbed, as well as other

equipment which can supplement our research.

From an experimental perspective, we demonstrated control algorithms for flapping flight

MAVs and tested them with our own constructed flapping flight testbed. We showed it is

possible to control the longitudinal motion of flapping flight MAVs simply by modulating

the phase difference in between wing motions. Our use of CPGs also showed it is possible to

reduce the dimensionality of a system as complex as flapping flight aerial vehicles to reduce

top level computation required. With CPGs, we can use top level controllers as simple as

PID controllers to control the pitch and velocity of flapping flight MAVs. We also showed

that going from flapping flight to gliding flight is as simple as flipping a switch. We also

78

showed how we can use our current dynamic model to approximate forces and moments

generated during flapping flight. The exact motions of flapping wings can be analyzed using

a motion capture system and we can use this data to tune our hardware and controller.

We also looked into other implementations of a flapping flight MAV controller beyond our

current testbed.

Bat-like flight is a challenging problem that cannot be solved via averaging or with

traditional tail-derived stability. We have demonstrated the ability to stabilize and control

longitudinal motions via CPGs with the RoboBat. As expected, the top-level controllers are

of low dimension and can be made very simple, because most of the hard work is done by

the CPGs. Given the mechanical coupling shown in Section 5.6, it is quite remarkable that

such control was immediately as effective as it was. Further work can still be done to create

a pattern generator layer so to optimize the output waveforms. Additionally, we expect to

better quantify the forces and moments actually produced via the dynamic model, so that

we can make better predictions for a free-flying robotic bat.

7.2 Future Work

While progress is expected towards the development of autonomous flapping flight, current

technological limitations are still far too great to accurately mimic biological flight systems

and thus more research and development is required in several different areas of study in order

for significant progress to be made in this area. Examples include material science, where

lightweight actuators that mimic muscles are currently being developed in hopes of eventually

replacing servos and motors which can be both bulky and heavy. The mechanical structure

would also need to be made of materials that are lightweight yet durable enough to withstand

aerodynamic loading. Another example is smaller, lightweight computing platforms that are

powerful enough to implement our controllers, even though our controllers already attempt

to minimize required computational power. Electronics such as an onboard power source

79

which is constrained by weight and volume would be a necessity for a free flying MAV, as

well as communication devices and cameras for sight. From a mathematical and software

perspective, algorithms for navigation and path planning would be applied for a flapping

flight MAV.

The testbed itself, and any other future implementations, will likely always be in need

of continuous improvements. Particularly, the mechanical structure of the robotic bat will

eventually need to be redesigned to further reduce the high moment of inertia that is currently

present in the testbed to closely mimic what is found in a freely flying situation. This will

allow more experimentation for the transition between flapping and gliding flight, as well

as other maneuvers in gliding flight such as perching. Different actuators may be used to

control the wing motions, and for testing certain models it may be necessary to change

the total number of actuators used. As mechanical design of actuators develops, we expect

robotic fliers in free flight to be able to utilize the key feature of phase synchronization and

control of phase differences in stability and control of body motions. The major problem

of identifying a method of proving such stability analytically is still open. However, this

paper has demonstrated the result experimentally. Since this CPG controller design also

features rapid inhibition of oscillation, it leads to the important problem of gliding flight

and maneuvers while gliding. Two more topics without much current work in our research

include takeoff and landing.

The wings currently used in our model are assumed to be rigid; in reality bat wings have

many joints similar to that of a human hand. Wings with multiple joints would improve our

design, but also increase the complexity of both our dynamic modeling and our controller,

as well as require a more clever electro-mechanical implementation.

In the future, we would like to implement CPGs via field programmable gate arrays to

truly demonstrate decentralized control with CPGs and reduced dimensionality and com-

plexity of CPG based controllers. This will require a deeper understanding in discrete logic

and computer engineering, as well as an understanding of the continuous dynamics which

80

govern our understanding of CPG based flapping flight control. With an FPGA implemen-

tation we could potentially fabricate a microchip of our controller which would tremendously

reduce required power and volume of an onboard controller for a flapping flight MAV.

Our controller implementations are mostly based on dynamical systems and other more

traditional control methods such as PID. We have to truly explore artificial intelligence and

path planning control methods in detail. Reinforcement learning will hopefully provide a

suitable alternative into flapping flight control while providing new research opportunities

to bridge the gap between more computer science oriented topics such as AI and machine

learning with traditionally more mechanical topics such as dynamics and control.

An attempt to describe the mechanics flapping flight in a quantitative manner is consider-

ably difficult, involving a broad range of scientific fields such as aerodynamics, aero-elasticity,

kinematics, dynamics, and control. To describe flapping flight in a manner such that a com-

putational controller could understand the concept of flapping flight is even more difficult.

Thus, there is ongoing research relating UAVs and MAVs and various types of machine

learning, such as reinforced learning.

The fundamental methods of reinforcement learning include dynamic programming, Monte

Carlo methods, and temporal-difference learning. Dynamic programming involves finding

an optimal policy by assuming a perfect model of the environment as a Markov decision pro-

cess and solving the Bellman equation, and example algorithms include policy iteration and

value iteration [44]. Monte Carlo methods refer to methods that involve learning from only

experience based on averaging complete returns and do not assume complete knowledge of

the environment. Temporal-difference learning involves learning from direct experience like

Monte Carlo methods, but also updates estimates based on previous estimates like dynamic

programming methods. An example of a temporal-learning method is Q-Learning, which at-

tempts to calculate the optimal action-value function (the return for taking a certain action

at a certain state), independent of policy [44].

Data-driven models may be more contributing than physics based models due to the

81

computational burden of CFD on low Reynolds number flow. Simply put, birds, bats, and

insects do not perform complex nonlinear calculations while flying and do not solve the

Navier-Stokes equations in real time; they simply flap their wings and adjust as necessary

to get where they need to go[45].

More experimentation regarding reinforcement learning and its application to flapping

flight MAVs can be found in [46]. By modeling the dynamics of a the wings of a particular

kind of fly, and by using what is known as the Q-learning algorithm, the optimal policy for

the motion of a flapping wing is found to maximize lift using rewards and punishments.

Beyond flapping flight, or MAVs or UAVs in general, reinforcement learning is of interest

to those in the robotics community in general for various tasks. In [47], reinforcement

learning is used for a robotic arm to acquire the necessary motor skills to flip a pancake in

a frying pan; something which would be considerably difficult to model analytically.

For the setup described in this thesis, reinforcement learning could be used to attempt

to find the optimal wing trajectory in terms of optimal phase differences to extremize a

given cost function. This could include maximizing propulsive efficiency, maintaining a

desired pitch and/or angle of attack, maximizing forward velocity, or any number of other

parameters. In Chapter 5, we described closed loop experiments which used PID controllers

to find suitable beating frequency and input phase difference values for given desired forward

velocity and pitch values. Reinforcement learning could potentially find a wider range of

suitable values for several more desired input values such as elevation and flight path angle

when gliding. Some challenges for this would include defining a suitable cost function for

the robotic bat to learn from rewards and punishments, and coming up with a policy that

would hopefully converge to some optimal value after a number of trials. However, it may

also be desirable to use a reinforcement learning method which does not rely on a model of

the environment simply due to the complexities and difficulties that currently exist when

modeling flapping flight.

82

References

[1] S.-J. Chung and M. Dorothy, “Neurobiologically inspired control of engineered flapping
flight,” AIAA Journal of Guidance, Control, and Dynamics, vol. 33, no. 2, pp. 440–453,
2010.

[2] T. J. Mueller, Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applica-
tion. Progress in Astronautics and Aeronautics, AIAA, 2001.

[3] S.-J. Chung, M. Dorothy, and J. R. Stoner, “Neurobiologically inspired control of engi-
neered flapping flight,” in AIAA Infotech @ Aerospace and Unmanned Unlimited Con-
ference and Exhibit, Seattle, WA, Apr. 2009, aIAA Paper 2009-1929.

[4] B. Sanders, R. Crowe, and E. Garcia, “Defense advanced research projects agency:
Smart materials and structures demonstration program overview,” Journal of Intelligent
Material Systems and Structures, vol. 15, 2004.

[5] X. Deng, L. Schenato, W. C. Wu, and S. S. Sastry, “Flapping flight for biomimetic
robotic insects: Part i-system modeling,” IEEE Trans. on Robotics, vol. 22, no. 4, pp.
776–788, 2006.

[6] R. J. Wood, “The first takeoff of a biologically-inspired at-scale robotic insect,” IEEE
Transactions on Robotics, vol. 24, no. 2, pp. 341–347, 2008.

[7] A. A. Paranjape, S.-J. Chung, and M. S. Selig, “Flight mechanics of a tailless articulated
wing aircraft,” Bioinspiration and Biomimetics, vol. 6, 2011.

[8] A. J. Bergou, L. Ristroph, J. Guckenheimer, I. Cohen, and Z. J. Wang, “Fruit flies
modulate passive wing pitching to generate in-flight turns,” Physical Review Letters,
vol. 104, 2010.

[9] X. Deng, L. Schenato, W. C. Wu, and S. S. Sastry, “Flapping flight for biomimetic
robotic insects: Part ii-flight control design,” IEEE Transactions on Robotics, vol. 33,
no. 4, pp. 789–803, 2006.

[10] D. B. Doman, M. W. Oppenheimer, and D. O. Sigthorsson, “Wingbeat shape modula-
tion for flapping-wing micro-air-vehicle control during hover,” AIAA Journal of Guid-
ance, Control, and Dynamics, vol. 33, no. 3, pp. 724–739, 2010.

[11] L. Schenato, “Analysis and control of flapping flight: from biological to robotic insects,”
Ph.D. dissertation, University of California at Berkeley, 2003.

83

[12] S. Grillner, A. Koslov, P. Dario, C. Stefanini, A. Menciassi, A. Lansner, and J. Kotaleski,
“Modeling a vertebrate motor system: pattern generation, steering and control of body
orientation,” Progress in Brain Research, vol. 165, pp. 221–234, 2007.

[13] O. Kiehn, “Locomotor circuits in the mammalian spinal cord,” Annual Review of Neu-
roscience, vol. 29, pp. 279–306, 2006.

[14] M. H. Dickinson, F. O. Lehmann, and S. P. Sane, “Wing rotation and the aerodynamic
basis of insect flight,” Science, vol. 284, pp. 1954–1960, 1999, june.

[15] A. Azuma, The Biokinetics of Flying and Swimming, 2nd ed. AIAA, 2006.

[16] X. Tian, J. Iriarte-Diaz, K. Middleton, R. Galvao, E. Israeli, A. Roemer, A. Sulli-
van, A. Song, S. Swartz, and K. Breuer, “Direct measurements of the kinematics and
dynamics of bat flight,” Bioinspiration and Biomimetics, vol. 1, 2006, s10-S19.

[17] S. M. Swartz, K. L. Bishop, and M.-F. Ismael-Aguirrre, “Dynamic complexity of wing
form in bats: Implications for flight performance,” in Functional and Evolutionary
Ecology of Bats. Oxford, UK: Oxford University Press, 2005.

[18] G. K. Taylor and R. Zbikowski, “Nonlinear time-periodic models of the longitudinal
flight dynamics of desert locusts schistocerca gregaria,” J. R. Soc. Interface, vol. 2, pp.
197–221, 2005.

[19] Z. J. Wang, “Aerodynamic efficiency of flapping flight: Analysis of a two-stroke model,”
The Journal of Experimental Biology, vol. 211, pp. 234–238, 2008.

[20] G. Sachs, “Why birds and miniscale airplanes need no vertical tail,” Journal of Aircraft,
vol. 44, no. 4, pp. 1159–1167, 2007.

[21] W. J. Crowther, “Perched landing and takeoff for fixed wing uavs,” in NATO Symposium
on Unmanned Vehicles for Aerial, Ground, and Naval Military Operations, 2000.

[22] A. Wickenheiser and E. Garcia, “Longitudinal dynamics of a perching aircraft,” Journal
of Aircraft, vol. 43, no. 5, pp. 1386–1392, 2006.

[23] A. Wickenheiser and E. Garcia, “Optimization of perching maneuvers through vehicle
morphing,” AIAA Journal of Guidance, Control, and Dynamics, vol. 31, no. 4, pp.
815–823, 2008.

[24] J. W. Roberts, R. Cory, and R. Tedrake, “On the controllability of fixed-wing perching,”
in Proc. American Control Conference, St. Louis, MO, 2009.

[25] R. Cory and R. Tedrake, “Experiments in fixed-wing UAV perching,” in Proc. AIAA
Guidance, Navigation and Control Conference, Honolulu, HI, 2008, AIAA Paper 2008–
7256.

84

[26] M. Dorothy, A. A. Paranjape, P. D. Kuang, and S.-J. Chung, “Towards bio-inspired
robotic aircraft: CPG-based control of autonomous flapping and gliding flight,” in
Intelligent and Autonomous Aerospace Systems. Reston, VA: American Institute of
Aeronautics and Astronautics (AIAA), 2012, J. Valasek (Editor).

[27] S. M. Swartz, M. S. Groves, H. D. Kim, and W. R. Walsh, “Mechanical properties of
bat wing membrane skin,” Journal of Zoology, vol. 239, pp. 357–378, 1996.

[28] F. Herrero-Carrón, F. B. Rodŕıguez, and P. Varona, “Bio-inspired design strategies for
central pattern generator control in modular robotics,” Bioinsp. Biomim., vol. 6, 2011.

[29] S. Ho, H. Nassef, N. Pornsinsirirak, Y.-C. Tai, and C.-M. Ho, “Unsteady aerodynamics
and flow control for flapping wing flyers,” Progress in Aerospace Sciences, vol. 39, 2003.

[30] J. Birch and M. Dickinson, “Spanwise flow and the attachment of the leading-edge
vortex on insect wings,” Nature, vol. 412, pp. 729–733, Aug. 2001.

[31] S. Ho, H. Nassef, N. Pornsinsirirak, Y.-C. Tai, and C.-M. Ho, “Flight dynamics of
small vehicles,” in Proceedings of the International Council of the Aeronautical Sciences
(ICAS), Toronto, Canada, 2002, pp. pp. 551.1 – 551.10.

[32] T. Pornsinsirirak, S.-W. Lee, H. Nassef, J. Gransmeyer, Y.-C. Tai, C.-M. Ho, and
M. Keennon, “Mems wing technology for a battery-powered ornithopter,” in Proceedings
of the International Conferences on MEMS, Miyazaki, Japan, 2000, pp. 709–804.

[33] G. Jadhav, The Development of a Miniature Flexible Flapping Wing Mechanism for Use
in a Robotic Air Vehicle, 2007, m.S. Thesis, Georgia Institute of Technology, Atlanta,
GA.

[34] S. M. Swartz, J. Iriarte-Diaz, D. K. Riskin, A. Song, X. Tian, D. J. Willis, and K. S.
Breuer, “Wing structure and the aerodynamic basis of flight in bats,” in Proc. of the
45th AIAA Aerospace Science Meeting, Reno, NV, 2007.

[35] J.-J. E. Slotine and W. Li, Applied Nonlinear Control. Prentice Hall, 1991.

[36] M. Goman and A. Khrabrov, “State-space representation of aerodynamic characteristics
of an aircraft at high angles of attack,” Journal of Aircraft, vol. 31, no. 5, pp. 1109–1115,
1994.

[37] D. Peters, S. Karunamoorthy, and W. Cao, “Finite state induced flow models part i:
Two-dimensional thin airfoil,” Journal of Aircraft, vol. 32, no. 2, pp. 313–322, 1995.

[38] J. DeLaurier, “An aerodynamic model for flapping-wing flight,” Aeronautical Journal,
vol. 97, no. 964, pp. 125–130, 1993.

[39] “Q4 hardware in the loop (h.i.l) board,” http://www.quanser.com/net/industrial/
Systems and Products/Prod Q4 Hardware.aspx, 2009.

85

[40] P. D. Kuang, M. Dorothy, and S.-J. Chung, “Robobat: Dynamics and control of a
robotic bat flapping flying testbed,” in AIAA Infotech @ Aerospace Conference and
Exhibit, St. Louis, MO, Mar. 2011, aIAA Paper 2011-1435.

[41] W. Zhao, B. H. Kim, A. C. Larson, and R. M. Voyles, “Fpga implementation of closed-
loop control system for small-scale robot,” in Advanced Robotics, 2005. ICAR ’05.
Proceedings., 12th International Conference on, Seattle, WA, Jul. 2005, pp. 70–77.

[42] F. Aubpart and N. Franceschini, “Bio-inspired optic flow sensors based on fpga: Appli-
cation to micro-air-vehicles,” Microprocessors and Microsystems, vol. 31, pp. 408–419,
Sep. 2007.

[43] S. Murthy, W. Alvis, R. Shirodkar, K. Valavanis, and W. Moreno, “Methodology for im-
plementation of unmanned vehicle control on fpga using system generator,” in Devices,
Circuits and Systems, 2008. ICCDCS 2008. 7th International Caribbean Conference on,
Cancun, Mexico, Apr. 2008, pp. 1–6.

[44] R. Sutton and A. Barto, Reinforcement Learning: An Introduction. The MIT Press,
1998.

[45] R. Tedrake, Z. Jackowski, R. Cory, J. W. Roberts, and W. Hoburg, “Learning to fly
like a bird.”

[46] M. Motamed and J. Yan, “A reinforcement learning approach to lift generation in
flapping mavs: Experimental results,” in Robotics and Automation, 2007 IEEE Inter-
national Conference on, Roma, Italy, Apr. 2007.

[47] P. Kormushev, S. Calinon, and D. Caldwell, “Robot motor skill coordination with
EM-based reinforcement learning,” in Intelligent Robots and Systems (IROS), 2010
IEEE/RSJ International Conference on, Taipei, Taiwan, Oct. 2010, pp. 3232–3237.

86

