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Abstract 

Diving behavior and its frequency may differ between species of mosquito larvae owing 

to differences in predation pressure. The present study aimed to investigate the 

relationship between water depth and predation frequency on two mosquito species, 

Culex tritaeniorhynchus (wetland breeder) and Aedes albopictus (container breeder), by 

the diving beetle Eretes griseus. Culex tritaeniorhynchus spends more time at the 

surface than A. albopictus, which spends more time thrashing underwater. When intact 

mosquito larvae of both species were present, the diving beetles consumed almost A. 

albopictus larvae (98.3%). After all the A. albopictus larvae had been consumed, the 

diving beetles began to prey upon C. tritaeniorhynchus. In order to compare the effect 

of position on the predation preference of the diving beetles, equal numbers of both 

species were heat-killed and allowed to settle on the bottom of the container. When all 

the dead mosquito larvae had sunk to the bottom of a plastic container, the diving 

beetles caught both mosquito species at random. These results indicate that mosquito 

larvae near the surface were eaten less frequently by diving beetles than those at the 

bottom. The low diving frequency of C. tritaeniorhynchus is regarded as a form of 

anti-predatory behavior. 

Key words: anti-predatory behavior, Culicidae, Dytiscidae, predator–prey relationship. 

 

In species inhabiting temporary waters, the populations are strongly influenced by 

physicochemical conditions and predators (Williams 2006). Distributions of species 

inhabiting temporary ponds are often constrained because adaptations that enhance the 

developmental rate and competitive ability also tend to increase susceptibility to 

predation (Wellborn et al. 1996; Williams 2006). Generally, predation pressure 
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increases along with the hydroperiod (Williams 2006). Very active and rapidly 

developing prey species occur in predator-free temporary habitats, whereas moderately 

active prey animals occur in more permanent habitats that include invertebrate predators 

(Williams 2006). 

The aquatic stages of mosquitoes are found in a variety of habitats ranging in 

size from small containers (e.g. tree holes, phytotelmata, jars and tyres) and water-filled 

animal footprints to the edges of large water bodies such as rice fields and ponds. The 

pattern and frequency of larval diving behavior differ between mosquito species (Sih 

1986; Yee 2008; Ohba et al. 2012). For example, the wetland breeder Culex 

tritaeniorhynchus spends more time at the surface of the water than the container 

breeder Aedes albopictus, which spends more time thrashing underwater (Ohba et al. 

2012). In a previous study, C. tritaeniorhynchus, which commonly lives in association 

with the diving beetle Eretes griseus, displayed far stronger responses to a diving beetle 

cue, whereas A. albopictus, which shares no evolutionary history with this predator, did 

not respond to such cues (Ohba et al. 2012). In a study of the mosquito Aedes triseriatus 

and its predator, Toxorhynchites rutilus, thrashing was associated with the highest risk 

of predation, while resting was associated with the lowest (Juliano & Reminger 1992). 

Similarly, inhabitation at the bottom of the water body of microbeakers posed a greater 

risk than inhabitation at the surface, which posed the lowest risk (Juliano & Reminger 

1992). 

The present study aimed to investigate the relationship between water depth 

and predation frequency on two mosquito species, C. tritaeniorhynchus and A. 

albopictus, by the diving beetle E. griseus. A previous study (Juliano & Reminger 

1992) showed that activity and position were correlated: larvae at the surface rarely 
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thrashed and frequently filtered. This study focused on the position of the mosquitoes 

within the water column. We hypothesize that motionless behavior resulting in 

increased time spent at the water surface by mosquito larva is a form of anti-predator 

behavior. 

Eggs of the two mosquito species, C. tritaeniorhynchus and A. albopictus, 

which were collected from Nagasaki, Japan, and used in this study were established at 

the Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan. These strains 

are the same as those used in our previous studies (Ohba et al. 2012). About 200 

hatched larvae were reared in plastic trays (30 × 21 cm or 35 × 24.5 cm, 4 cm water 

depth), filled with dechlorinated tap water (ca. 2.5 L), under standard laboratory 

conditions (25ºC, LD 16:8, ca. 70% humidity) and fed an artificial diet ad libitum. The 

artificial diet was composed of crushed mouse pellets (Tagawa Jikken-Dobutsu Co. Ltd., 

Nagasaki, Japan) mixed with an equal amount of dried yeast (Asahi Food and Health 

Care Co. Ltd., Tokyo, Japan). Mature fourth instar larvae were used in this study and 

were fasted for 24 h before the experiment. The predacious diving beetle E. griseus, 

which is a widely distributed species in Japan, were collected from rice fields and 

swimming pools in Nagasaki and rice fields in Hyogo, western Japan. All beetles were 

maintained in individual plastic cups (10 cm diameter, 4.5 cm in height) filled with 100 

mL dechlorinated tap water to a depth of 1.5 cm. All beetles were fed ad libitum with 

boiled dried fish on a daily basis. Each beetle was kept without food for a day before the 

experiment. All subsequent experiments were conducted under the conditions detailed 

above. All statistical tests mentioned below were conducted using the R statistical 

package, v3.1.0 (R Core Team 2014). 

To compare the spatial locations within the plastic cups between two mosquito 
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species, single larva from each mosquito was observed in a plastic cup (12 cm diameter, 

10 cm in height, 8 cm water depth). After 5 min of acclimation time, the water depth of 

each larva was recorded at 1 cm intervals every 30 s for 5 min. We obtained data for 15 

larvae (replication) from both C. tritaeniorhynchus and A. albopictus. To compare the 

spatial distribution between the two species, we performed a generalized linear mixed 

model (GLMM) with a Poisson distribution. “Species”, “time” and their interaction 

term were incorporated into the GLMM. Individual was considered to be a random 

effect in order to avoid pseudoreplication in this model. In a similar way, single E. 

griseus adults were individually observed in the same plastic cup in order to confirm the 

diving beetle’s position in a plastic cup. After 5 min of acclimation time, the water 

depth of each beetle was recorded at 1 cm intervals every 30 s for 5 min (n = 15). 

To observe the preferred order of predation by a diving beetle, five C. 

tritaeniorhynchus and five A. albopictus larvae were placed in a plastic cup, as 

described. After 5 min, one beetle was added to the plastic cup and predation behavior 

of the beetle was observed for 30 min. When the diving beetle caught a mosquito larva, 

the mosquito species and the order of predation were recorded. The experiment was 

repeated 12 times. 

Diving beetles frequently consumed A. albopictus larvae first. This may have 

been caused by differences in spatial distribution between the two mosquito species. To 

examine the prey selectivity of the diving beetle when the mosquito larvae of both 

species had been forced to sink to the bottom of a plastic cup, dead mosquito larvae 

were used. In preliminary tests, we confirmed that all mosquito larvae killed by hot 

water had sunk to the bottom of the plastic cup. Mosquito larvae were placed into hot 

water (approximately 80°C) for 10 s to kill them. Five dead larvae from both species as 
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well as a diving beetle were added to the plastic cup, and the order of predation by the 

beetle was observed for 30 min. When the diving beetle caught a dead mosquito larva, 

the mosquito species was recorded. The experiment was repeated 12 times. 

To test the difference in the order of predation among the experimental 

treatments, we performed a randomized simulation (i.e. Monte Carlo method). In the 

randomized simulation analysis, we assumed that the diving beetle randomly consumed 

the mosquito larvae (the diving beetle showed no preference for the prey species or 

behavior). Briefly, the simulation analysis was performed on ten prey larvae (five C. 

tritaeniorhynchus larvae and five A. albopictus larvae), and the order of the species, 

which was randomly selected in the simulation, was recorded. In the real experiment, 

some of the ten mosquito larvae were not consumed within 30 min, which was also 

taken into account in the simulation analysis (i.e. the number of larvae consumed was 

not always ten). We repeated the simulation analysis 9999 times, and a 95% confidence 

interval was determined. The proportion of each species consumed was considered 

significant when the value was not within the 95% confidence interval. In addition to 

the randomized simulation analysis, data regarding the proportion of each species eaten 

by a diving beetle (predation rate) within 30 min was analyzed using GLMM with a 

binomial distribution for each species. The predation rate was used as the response 

variable; treatment (intact and killed mosquito) and species were used as the 

explanatory variables. Each individual diving beetle was considered to be a random 

effect. Interactions that were not found to be significant in the full GLMM model were 

removed from the final model. The GLMM models were performed separately for each 

treatment. 

The GLMM revealed that the species, time, and species × time interaction were 
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significant (Table S1). Although the species × time interaction was significant, there 

was no opposite trend of spatial distribution along time between the two species (Fig. 1). 

The mean water depth occupied over 5 min was 0.35 cm for C. tritaeniorhynchus and 

3.25 cm for A. albopictus (Fig. 1). The mean water depth E. griseus occupied over 5 

min was 5.76 cm. Therefore, we regarded the spatial distribution (water depth) of 

mosquito larvae as a more important factor that influences the predation event than 

mosquito behavior. 

When five mosquito larvae of each species were present, the diving beetles 

normally consumed A. albopictus larvae until they had consumed the first five larvae 

(Fig. 2). Once the A. albopictus larvae had been consumed, the beetles began to prey 

upon C. tritaeniorhynchus. Thus, the probability of predation on A. albopictus was 

approximately 90–100% until the first five larvae had been eaten, which was 

significantly high compared with a 95% confidence interval of the randomized 

simulation model (i.e. the simulation model assumes that the diving beetle has no 

preference; dashed lines in Fig. 2). When all mosquito larvae had been forced to sink to 

the bottom of the plastic container, all predation events occurred at the bottom of the 

container. The diving beetles randomly caught both mosquito species, being within the 

95% confidence interval of the simulation model indicated by the dashed lines in Figure 

2. This result indicates that the diving beetles evenly attack both species when present at 

the water bottom. Regarding the predation rate during the total 30 min, the species × 

treatment interaction was removed from the final GLMM model because it was not 

significant (z = 0.02, P = 0.98). The final model revealed that the effects of species, and 

treatment were significant (Table S2). The predation rate against A. albopictus of intact 

mosquito larva treatment was significantly higher than that against C. tritaeniorhynchus 
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(98.3% for A. albopictus and 53.3% for C. tritaeniorhynchus; GLMM: z = 3.828, P = 

0.0001). However, the predation rate against killed mosquito larvae by a diving beetle 

was not statistically different between the two species (100% for A. albopictus and 

96.7% for C. tritaeniorhynchus; GLMM: z = 0.002, P = 0.998). 

Culex tritaeniorhynchus spend more time at the surface than A. albopictus. 

When C. tritaeniorhynchus detect predator cues, they reduce their movement and 

foraging activity as a form of anti-predatory behavior (Ohba et al. 2012). This behavior 

is also observed in other aquatic animals (Kolar & Rahel 1993; Skelly & Kiesecker 

2001; Van Buskirk 2002; McIntyre et al. 2004), including mosquitoes (Sih 1986; 

Kesavaraju et al. 2007). Culex pipiens larvae become motionless at the water surface in 

the presence of backswimmers (Sih 1986). Similarly, A. triseriatus larvae that spend 

three generations with predacious mosquitoes tend to remain near the water surface for 

longer periods (Juliano & Gravel 2002). These results indicate that an effective way to 

escape from aquatic predators is by ceasing diving behavior. In contrast, diving 

behavior allows Anopheles gambiae to escape predation by the wolf spider Pardosa 

messingerae, which is often observed on the water surface (Futami et al. 2008). 

Anophelines are surface feeder and are more vulnerable to terrestrial (spider) and aerial 

(shore fly) predators. Therefore, diving behavior may have evolved in response to this 

predation pressure (Minakawa et al. 2007; Futami et al. 2008).  

We conclude that motionless behavior at the water surface by C. 

tritaeniorhynchus is a form of predator-avoidance behavior against diving beetles. 

Consistent with this, we found that larvae near the water surface were eaten less 

frequently by diving beetles than those at the bottom. On the contrary, A. albopictus 

breed in small containers that are likely to dry out, and the larvae usually forage on 
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organic matter found at the bottom. Although the motionless behavior at the water 

surface was revealed to be a more effective way to avoid predators in the small 

containers used in this study, further studies should evaluate the relationship between 

predation frequencies on mosquito larvae by diving beetles and water depth in their 

natural habitats. 
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SUPPORTING INFORMATION 
Additional Supporting Information may be found in the online version of this article at 
the publisher’s web-site: 
Table S1 Generalized linear mixed model results for water depth. 
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Table S2 Generalized linear mixed model results for predation rate. 
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Figure Legends 
Figure 1 Comparison of the water depth occupied by two mosquito species. 
Figure 2 Predation order and proportion of mosquitoes eaten by the diving beetle. Solid 
circle, intact mosquito; open circle, killed mosquito. Dashed line and black solid line 
indicate upper and lower 95% confidence intervals and the average proportion, 
respectively (calculated by 9999 times randomisation). 
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