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Abstract. Derivation of the integral equation for general 3D crack problems was examined based on 

the theory of body force method. In the present analysis, stress intensity factors (SIFs) along a front 

of arbitrary shaped 3D planar crack are obtained directly only by solving simultaneous equations 

expressing a boundary condition. The crack surface is discretized using number of triangular elements 

and the variation of the force doublet embedded in each triangle is assumed at constant. The derived 

boundary integral equation was transformed into a set of simultaneous equations and was solved 

computationally. In order to improve the accuracy of the numerically examined boundary integral, a 

polar transformation scheme combined with Tayler expansion of the fundamental solutions is 

introduced. Not only a single crack problem but also an interference among coplanar cracks can be 

calculated using the unique program developed in this research. It was verified that as the number of 

triangular elements increases, the evaluated SIF converges to the reference solution.   

 

Introduction 

 

SIF determination plays a central role in linear elastic fracture mechanics. Since SIF was proposed 

by Irwin [1] to express displacements and stresses in the vicinity of crack tip, several analytical 

techniques have been developed for a variety of common crack configurations; however, these 

analytical solutions are limited to simple crack geometries and loading conditions. Advances in 

numerical modeling procedures have opened new doors for fracture mechanics analysis. Advanced 

researches have been carried out based on FEM, BEM and other numerical techniques but may be 

undesirable due to excessive modeling and computational time. Nisitani [2] first applied the body 

force method (BFM) to crack problems. The BFM has been provided highly accurate solutions of 

stress concentration factors and SIFs of practically important problems, but the treated 3D problems 

are considerably limited than 2D problems till now. Isida and Tsuru [3] proposed a new technique for 

3D crack analysis based on BFM. Noda [4] discussed numerical solutions using singular integral 

equation of the BFM for 2D and 3D cracks problems. However, these solutions are limited to crack 

geometries and also need to solve equations for each problem. In the present research, a numerical 

program based on BFM for versatile purpose has been developed. And is used to analyze a various 

3D planar crack problems. 

  Crack to crack interaction can change the stress distribution near the macro crack tip. Thus the 

study of interacting cracks subjected to a given set of external load is extremely important for the 

purpose of design and life prediction of mechanical structures. Till now interaction between cavity 

problems was solved based on BFM [5]. In the present paper, the interference effect between 

different-shaped planner cracks is also presented. 

  



Theoretical analysis 

 

In BFM, the solution of any elastic problem is transformed into a problem of a complete infinite 

domain without any crack nor notch. That is, a boundary of a given problem is replaced by an 

equivalent imaginary boundary along which body forces and body force doublets are embedded [6].  

Consider an arbitrary oriented planar cracks of general shape in an infinite solid. Take the global coordinate 

system O -XYZ and local coordinate system O′-xyz of the crack as shown in Fig. 1a. For the analysis of the 

crack, the global coordinate is transformed to local coordinate system where z-axis is normal to the crack 

surface. On the idea of the body force method, the problem is reduced to sets of integral equations in which 

the density of force doublets are unknowns to be determined.   

Let 𝜎𝑧𝑧, 𝜏𝑧𝑥 and 𝜏𝑦𝑧 be the stress component in local coordinate system due to the fundamental force 

doublets distributed over ther crack surface. The stress component in local coordinate system are as follows. 

𝜎𝑧𝑧(𝑃) = 𝜎𝑧𝑧
∞(𝑃) + ∬[𝜎𝑧𝑧

𝑧𝑧(𝑃, 𝑄)𝛾𝑧𝑧(𝑄) + 𝜎𝑧𝑧
𝑧𝑥(𝑃, 𝑄)𝛾𝑧𝑥(𝑄)+𝜎𝑧𝑧

𝑦𝑧(𝑃, 𝑄)𝛾𝑦𝑧(𝑄)]

𝛺𝑐 

𝑑𝛺𝑐(𝑄)           (1) 

𝜏𝑧𝑥(𝑃) = 𝜏𝑧𝑥
∞ (𝑃) + ∬[𝜏𝑧𝑥

𝑧𝑧(𝑃, 𝑄)𝛾𝑧𝑧(𝑄) + 𝜏𝑧𝑥
𝑧𝑥(𝑃, 𝑄)𝛾𝑧𝑥(𝑄) + 𝜏𝑧𝑥

𝑦𝑧(𝑃, 𝑄)𝛾𝑦𝑧(𝑄)]𝑑𝛺𝑐(𝑄)

𝛺𝑐 

          (2) 

𝜏𝑦𝑧(𝑃) = 𝜏𝑦𝑧
∞ (𝑃) + ∬[𝜏𝑦𝑧

𝑧𝑧(𝑃, 𝑄)𝛾𝑧𝑧(𝑄) + 𝜏𝑦𝑧
𝑧𝑥(𝑃, 𝑄)𝛾𝑧𝑥(𝑄)+𝜏𝑦𝑧

𝑦𝑧(𝑃, 𝑄)𝛾𝑦𝑧(𝑄)]

𝛺𝑐 

 𝑑𝛺𝑐(𝑄)           (3) 

 In these equations, P(x,y,z) is a reference point, Q(𝜉, 𝜂, 𝜁) is a source point, 𝛺𝑐 is an imaginary crack 

surface, 𝛾𝑧𝑧 , 𝛾𝑧𝑥 and 𝛾𝑦𝑧  are the unknown functions called density of standard force doublets. These 

equation includes nine fundamental solutions which can be derived from the Kelvin solution (a stress field due 

to a point force acting in an infinite solid). Among the fundamental solutions of body force doublet, three of 

them are listed bellow as an example and similarly it is possible to derive the others solutions.    

𝜎𝑧𝑧
𝑧𝑧(𝑃, 𝑄) =

1 − 2𝜈

8𝜋(1 − 𝜈)2
[

1

𝑟3
+ 6

(𝑧 − 𝜁)2

𝑟5
− 15

(𝑧 − 𝜁)4

𝑟7
]                                                                  (4) 

𝜏𝑧𝑥
𝑧𝑧(𝑃, 𝑄) =

3(1 − 2𝜈)

8𝜋(1 − 𝜈)2
(𝑥 − 𝜉)(𝑧 − 𝜁) [

1

𝑟5
− 5

(𝑧 − 𝜁)2

𝑟7
]                                                                 (5) 

𝜏𝑦𝑧
𝑧𝑧(𝑃, 𝑄) =

3(1 − 2𝜈)

8𝜋(1 − 𝜈)2
(𝑦 − 𝜂)(𝑧 − 𝜁) [

1

𝑟5
− 5

(𝑧 − 𝜁)2

𝑟7
]                                                                 (6) 

Where  𝑟2 = (𝑥 − 𝜉)2 + (𝑦 − 𝜂)2 + (𝑧 − 𝜁)2  and 𝜈 is the Poisson’s ratio. 

 

 

Fig. 1: a) Global and local coordinates systems; b) Planar triangle surface element 
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In this analysis the surface of the crack is expressed by the aggregation of planar triangles and in 

each triangle the density of the force doublets is assumed at constant. The triangles placed at the crack 

fornt, the basic density function is considerd as shown in Fig. 1b. Density of standard force doublets 

𝛾𝑧𝑧 , 𝛾𝑧𝑥 and 𝛾𝑦𝑧 are expressed by the product of basic density function √ℎ(𝜉, η) and weight functions 

 𝑊𝑧𝑧(𝜉, η), 𝑊𝑧𝑥(𝜉, η)  and 𝑊𝑦𝑧(𝜉, η) respectively.  

ℎ(𝜉, η) =
|𝑥2𝑦1 − 𝑦2𝑥1 + (𝑦2 − 𝑦1)𝜉 + (𝑥1 − 𝑥2)𝜂|

√(𝑦2 − 𝑦1)2 + (𝑥2 − 𝑥1)2
                                                                               (7) 

𝛾𝑧𝑧(𝑄) = √ℎ(𝜉, η)𝑊𝑧𝑧(𝜉, η)                                                                                                                            (8) 

𝛾𝑧𝑥(𝑄) = √ℎ(𝜉, η)𝑊𝑧𝑥(𝜉, η)                                                                                                                           (9) 

𝛾𝑦𝑧(𝑄) = √ℎ(𝜉, η)𝑊𝑦𝑧(𝜉, η)                                                                                                                        (10) 

When the crack surface is free of traction, 𝜎𝑧𝑧, 𝜏𝑧𝑥 and 𝜏𝑦𝑧 are zero at the same time when the 

reference point 𝑃 approaches to a point 𝑃𝛺 which is fixed on the crack surface. After solving the 

simultaneous equations so that the boundary condition is satisfied, the value of weight functions are 

computed. The mode-I SIF KI at crack front is evaluated from the value of 𝑊𝑧𝑧(𝜉, η). While 𝑊𝑧𝑥(𝜉, η) 

and 𝑊𝑦𝑧(𝜉, η)  are responsible for the values of KII and KIII. Taylor’s expansion with polar 

transformation has been applied for the sake of numerical accuracy. 

 

Numerical Example and Discussion  

 

The integral equation derived is applicable to arbitrary oriented planar cracks. In order to verify the 

applicability of the present method, SIF calculation for penny-shaped, elliptical and rectangular 

cracks were examined. In each analysis, the surface of the corresponding crack was divided with 

regularly distributed triangular elements. It was found from numerical analysis that the obtained SIF 

solution tend to converge to an ideal value with mesh refinement and its tendency was almost 

reciprocal to the total number of triangular elements.  

Fig.2a shows distribution of normalized stress 𝜎𝑧𝑧 along x-axis when uniform tensile stress into 

the z direction is applied to an infinite solid with elliptical crack. The result was computed with 400 

triangular elements. As the length ratio between minor and major axis of ellipse increases the stress 

distribution increases gradually.  

 

 
Fig.2:  a) 𝜎𝑧𝑧 distribution along x-axis              b) Maximum SIF of a rectangular crack.                                                        
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   Fig. 3: 𝜎𝑧𝑧 distribution between various shaped planar cracks (d/a=2.5). 

 

Fig. 2b shows dimensionless maximum SIF variation of rectangular crack. The results from the 

present method are in good agreement with the results in the literature [3]. The interference effects between 

penny-shaped, elliptical and rectangular cracks are also analyzed. Fig.3 shows the interference effect 

between different shaped cracks with fixed distance. The number of triangular elements for each crack 

was fixed at 400. Among compared, the rectangle to rectangle crack combination showed the largest 

interference effect.  

 

Conclusion 

 

Versatile numerical program are necessary for the analysis of SIF evaluation of 3D cracks because analytical 

solutions are limited to simple geometry and it is also difficult to develop a special program for each problem. 

In this research the 3D crack problem was formulated in terms of singular integral equation with singularity of 

the form r-3 on the basis of body force method, where force doublets were used to express the presence of crack. 

Any arbitrary shaped planar crack can be solved from the developed mathematical technique. Any kinds of 

3D planar cracks can be solved effectively only by providing an input data. Accurate and fast evaluation of the 

SIF for penny-shaped, rectangular and elliptical cracks shows the proposed procedure is robust for SIF and 

stress calculation. A constant element of triangular shape is simple and easy to handle for planar crack 

problems, however, some difficlty arrises when the distribution of stress intensity factor along crack front is 

computed. Therefore, a higher order element as in quadratic triangular element would be better to indroduce 

for further development. 
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