Retrospective Analysis of Definitive Radiotherapy for Neck Node
Metastasis from Unknown Primary Tumor: Japanese Radiation Oncology
Study Group Study
Running Title
Radiotherapy for Primary Unknown Neck Tumor
Takuya Yamazaki ¹ , Takeshi Kodaira ² , Yosuke Ota ³ , Tetsuo Akimoto ⁴ , Hitoshi
Wada ⁵ , Junichi Hiratsuka ⁶ , Yasumasa Nishimura ⁷ , Shunichi Ishihara ⁸ , Takeshi
Nonoshita ⁹ , Kazushige Hayakawa ¹⁰ , Shuhei Sekii ¹¹ , Nobue Uchida ¹²
¹ Department of Radiology, Nagasaki University Hospital, Nagasaki, Japan,
² Department of Radiation Oncology, Aichi Cancer Center, Aichi, Japan,
³ Department of Radiation Oncology, Hyogo Cancer Center, Hyogo, Japan,
⁴ Radiation Oncology Division, National Cancer Center Hospital East, Chiba, Japan,
⁵ Department of Radiation Oncology, Miyagi Cancer Center, Miyagi, Japan,
⁶ Department of Radiation Oncology, Kawasaki Medical School, Okayama, Japan,
⁷ Department of Radiation Oncology, Kindai University Faculty of Medicine, Osaka, Japan,

21	⁸ Department of Radiology, Toyohashi Municipal Hospital, Aichi, Japan,
22 23	⁹ Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan,
24 25	¹⁰ Department of Radiology and Radiation Oncology, Kitasato University School of Medicine, Kanagawa, Japan,
26 27	¹¹ Department of Radiation Oncology, National Cancer Center Hospital, Tokyo, Japan,
28	¹² Department of Radiation Oncology, Shimane University, Shimane, Japan
29	
30	Abstract
30 31	Abstract Objective
31	Objective
31 32	Objective To investigate the optimal treatment method and risk factor of neck node
31 32 33	Objective To investigate the optimal treatment method and risk factor of neck node metastasis from unknown primary tumors (NUP) treated by radiotherapy.

diagnosed as having NUP from 1998 to 2007 were identified. Univariate and 37

multivariate analyses of overall survival (OS), progression free survival (PFS), 38

- neck progression free survival (NPFS) and mucosal progression free survival 39
- (MPFS) were evaluated. 40

41 **Results**

In total, 130 patients with median age of 65 years were included. Nodal stages 42 N1, N2a, N2b and N2c were observed for 10, 26, 43, 12 and 39 patients, 43 respectively. All the patients received radiotherapy (RT) with neck dissection in 44 60 and with chemotherapy in 67 cases. The median doses to the metastatic 45 nodes, prophylactic neck and prophylactic mucosal sites were 60.0Gy, 50.4 Gy 46 and 50.4 Gy, respectively. The median follow-up period for surviving patients 47 was 42 months. Among 12 patients, occult primary tumors in the neck region 48 developed after radiotherapy. The 5-year OS, PFS, NPFS and MPFS were 49 58.1%, 42.4%, 47.3% and 54.9%, respectively. Univariate analysis showed that 50 51 lower N stage (N1-2b), non-bulky node (< 6 cm) and negative extracapsular extension (ECE) status were the factors associated with favorable OS, PFS, 52 NPFS and MPFS. Radical surgery proved to be a favorable factor of OS, NPFS 53 54 and MPFS. On multivariate analysis, lower N stage and negative ECE status were correlated with improved survival. 55

56 Conclusions

57 Lower nodal stage and negative ECE status showed a favorable impact on 58 survival and disease control in patients with NUP treated by radiotherapy.

60	Mini Abstract
61	We conducted a retrospective case study based on multi-institutional survey by
62	Japanese Radiation Oncology Study Group to assess the efficacy of
63	radiotherapy for neck node metastasis from unknown primary tumors.
64	
65	Keywords
66	Unknown Primary Tumors, Head and Neck Cancer, Radiotherapy
67	
68	Introduction
69	Neck node metastasis from clinically unknown primary tumors (NUP) accounts
70	for 2 to 7% of head and neck malignancies ¹⁻³ . Radiotherapy for NUP is used to
71	control both macroscopic and microscopic cervical lesions without subsequent
72	development mucosal lesion. However, the optimal treatment method for NUP
73	still remains unclear in some respects. The extent of radiotherapy (inclusion of
74	contralateral cervical lymph node regions and/or mucosal region) and irradiated
75	dosage is still controversial ³⁻¹⁰ . Combination of chemotherapy has been

restablished as the standard therapy of patients with locally advanced head and

59

77	neck cancer, but the role of chemoradiotherapy for NUP has not yet been
78	established ^{4,11-17} . However, it is difficult to conduct randomized or prospective
79	studies of this disease. The European Organization for Research and Treatment
80	of Cancer / Radiation Therapy Oncology Group conducted a randomized phase
81	III trial to compare different radiation therapy regimens in treating NUP patients;
82	they tried to compare the disease-free survival of NUP patients treated with
83	selective (i.e. ipsilateral neck) irradiation vs extensive (i.e. bilateral neck, and
84	pharyngeal and laryngeal mucosa) irradiation ³⁰ . However, this trial was
85	prematurely closed because of insufficient patient accrual.
86	The purpose of this study was to investigate the optimal treatment method and
87	risk factor of radiotherapy for NUP by analyzing the results of a retrospective
88	national survey of radiotherapy for NUP patients treated from 1998 to 2007,
89	which was conducted by the Japanese Radiation Oncology Study Group
90	(JROSG).
91	

92 Materials and Methods

93 The Head and Neck committee of JROSG conducted the multi-institutional 94 survey by sending questionnaires to 18 institutes in Japan for this retrospective

study. This study was performed according to the guidelines approved by the 95 institutional review board of each institute. Patients pathologically diagnosed as 96 having NUP (squamous cell carcinoma or undifferentiated carcinoma), who were 97 treated by radiotherapy from 1998 to 2007, were identified. The lymph node 98 stage was based on the UICC-TNM 7th edition. Those who had distant 99 metastasis were excluded. The questionnaires included : age, sex, and 100 101 performance status (PS) of the patients; start and end date of radiotherapy; clinical and pathological N stage; number and maximum size of metastatic lymph 102 103 nodes; involved lymph node levels; pathological status (i.e. extracapsular extension); tumor markers; diagnostic methods (CT, MR, US, PET/CT, 104 105 fiberscope); combined therapies (surgery and/or chemotherapy); surgical procedures and purposes (radical, semiradical, palliative, diagnostic, planned 106 (concurrent, neoadjuvant, 107 surgery); chemotherapy contents adjuvant, preoperative, postoperative and alternative); purpose of radiotherapy (radical 108 and palliative); radiation method, including range and dose of clinical target 109 volume (local, ipsilateral or bilateral neck and mucosal region); adverse effects; 110 111 treatment outcome; salvage therapy; and double cancer. As for target volume, local irradiation means the irradiation only to the level of the involved nodes 112

and ipsilateral irradiation means the irradiation to the prophylactic levels in addition to the level of involved nodes. No central histological review was performed for this study. Toxicities were evaluated using National Cancer Institute Common Toxicity Criteria version 4.0. Severe complications were defined as those necessitating hospitalization or surgical intervention, and/or resulting in death.

119 Based on the survival data from the questionnaires, 5-year overall survival (OS), progression free survival (PFS), neck progression free survival (NPFS) 120 121 and mucosal progression free survival (MPFS) were estimated by using the Kaplan-Meier method. OS was defined as the time from treatment initiation to 122 123 death from any cause. PFS was defined as the time from treatment initiation to disease progression or death from any cause. NPFS was defined as the time 124 from treatment initiation to neck recurrence or death from any cause. MPFS 125 was defined as the time from treatment initiation to emergence of mucosal 126 127 lesion or death from any cause. Univariate and multivariate analysis were performed to evaluate the factors associated with those survival times; the 128 129 factors included PS, extent of clinical target volume, treatment intent, N Stage (N1-2b vs N2c-N3), lymph node (LN) size, involved LN level (I-III vs IV-VI), 130

irradiated dose to the involved nodes and prophylactic/mucosal regions,
surgical procedure, ECE status and chemotherapy.

133 Statistical analysis was performed using *JMP Proversion 11 (SAS* 134 *Institute Inc., Cary, NC, USA).* The log-rank test was used to compare 135 differences between subgroups. The Chi-square test was used to investigate 136 the relationship between variables. A p-value of 0.05 indicated significance.

137

138 **Results**

139 Patient characteristics and treatment details are summarized in Table 1 and 2.

140 CT-based three dimensional RT was applied in 70.8% of all the patients. IMRT

141	was not ad	ministered	in this	series.
-----	------------	------------	---------	---------

142 The 5-year OS, PFS, NPFS and MPFS were 58.1%, 42.4%, 47.3% and 54.9%,

respectively (Table 3, Figure 1,2). Recurrence after initial treatment occurred at

144 1-122 months (median 8 months) in 12 mucosal regions (9 in-field, 3 out-of-field),

145 29 nodal regions (22 in-field, 4 out-of-field and 3 both in- and out-of-field) and 31

146 distant metastases. Mucosal recurrences occurred most commonly in the

- 147 oropharynx in 6 (4 in-field, 2 out-of-field); other mucosal regions included the
- 148 hypopharynx in 2 (all in-field), hypopharynx / cervical esophagus in 1 (in-field),

oral floor in 1 (in-field), buccal mucosa in 1 (out-of-field) and larynx in 1 (in-field).
Nodal recurrences occurred at 2-67 months (median 9 months) after initial
treatment. The sites of distant metastases were as follows; lung (15), bone (13),
liver (6), pleura (1) and skin (1).

Univariate analysis showed that lower N stage (N1-2b), non-bulky node (< 6 153 cm) and ECE negative were factors associated with favorable OS, PFS, NPFS 154 and MPFS (p<0.05, Table 3). Radical surgery (modified radical neck dissection 155 or selective neck dissection) also proved to be a factor for favorable OS, NPFS 156 157 and MPFS. The median dose for palliative RT was significantly lower than for radical RT (median 34.0Gy, range 30.0-75.9Gy vs median 60.0Gy, range 158 159 12.6-86.8Gy) and the treatment outcome of palliative RT was significantly poor in OS, PFS and NPFS (Table 2,3). There was no statistical difference in other 160 factors (extent of clinical target volume, involved LN level, irradiated dose to the 161 162 involved nodes and prophylactic/mucosal regions and chemotherapy). Multivariate analysis, which was conducted for variables that proved to be 163 prognostic factors by univariate analysis, showed that lower N stage and 164 165 negative ECE status was the factor correlated with favorable OS, PFS, NPFS

166	and MPFS (p<0.05, Table 4). Radical treatment correlated with favorable OS
167	and radical surgery was correlated with favorable MPFS.
168	As for acute adverse events, grade 3 mucositis was observed in 18 patients
169	(combined with chemotherapy in 12) and grade 3 dermatitis in 8 (combined with
170	chemotherapy in 7). As for severe late adverse events, grade 3 laryngeal edema
171	was observed in 2 patients. Only one patient developed grade 4 brain infarction,
172	possibly caused by the treatment.
173	
174	Discussion
175	Radiotherapy, as well as surgery, is considered to be an important option to
176	control NUP. The optimal method of radiotherapy for NUP had been
177	controversial for a long time, as it is difficult to conduct randomized or
178	prospective studies of this rare disease ³⁰ . Some case studies have revealed
179	therapeutic outcomes of NUP treated by radiotherapy combined with surgery
180	and/or chemotherapy, which are summarized in Table 5 ^{3,6,9,11,16-20} . Prognostic
181	factors for survival are reported to be nodal stages, number of positive nodes,
182	neck dissection, histopathological grading and ECE ^{3-5,7,9,18,19,21,22} . In this series,
183	the 5-year OS rate was 58.1%, similar to the data in the previous studies. On

184	univariate analysis, favorable OS, PFS, NPFS and MPFS were associated with
185	lower N stage (N1-2b), non-bulky node (< 6 cm) and negative ECE status. On
186	multivariate analysis, lower N stage and ECE status was correlated with
187	improved survival. The results are also consistent with those of previous
188	reports ^{3-5,12,19,21} . The current National Comprehensive Cancer Network (NCCN)
189	guidelines for NUP (Version 1. 2017) provide recommendation for treatment with
190	neck dissection especially in N1 disease (category 2A). After neck dissection,
191	treatment strategies are determined by lymph node status. Definitive RT or
192	observation is recommended in N1 without ECE (category 2A). In the case of N2
193	or N3 without ECE, definitive RT or chemoradiation therapy is recommended
194	(category 2B). In the case of ECE, chemoradiation is recommended (category 1).
195	Definitive radiotherapy without surgery is recommended for N1 (category 2B)
196	and chemoradiation is recommended for N2 or N3 (category 2B). Induction
197	chemotherapy followed by systemic chemoradiation therapy is regarded as
198	category 3.
199	Unfortunately, there are some limitations in this series. The availability of
200	FDG-PET was low (31%) and the examination by NBI was not introduced. These
201	diagnostic procedures have been developed and enabled the detection of early

202	head and neck cancers. FDG-PET/CT has demonstrated relatively high
203	detection rates about 40% of NUP ²³ . The usefulness of NBI with magnifying
204	endoscopy for detecting the primary site of NUP also has been reported.
205	Hayashi et al. investigated 46 patients of NUP and 26 lesions were suspected to
206	be cancerous lesions ²⁴ . Of 26 patients, 16 lesions in 16 patients (35%, 16/46)
207	were identified to be squamous cell carcinoma. Another paradigm for the
208	diagnosis and management of NUP was reported using transitional robotic
209	surgery. Mehta et al. reported ten patients underwent transoral robotic base of
210	tongue resection ²⁵ . All patients underwent a cervical biopsy, PET/CT, formal
211	endoscopy and bilateral tonsillectomy before this procedure but not identified
212	primary lesion. In nine of ten patients, pathologic examination revealed invasive
213	squamous cell carcinoma with a mean diameter of 0.9 cm.
214	Recently, TNM classification of Malignant Tumours 8th edition was published.
215	In this new classification, NUP was classified in three categories; EBV or
216	HPV/p16 negative or unknown, HPV/p16 positive and EBV positive. If EBV was
217	positive, it was staged as nasopharyngeal carcinomas and if p16 was positive, it
218	was staged as p16 positive oropharynx carcinomas. Treatment strategy for NUP
219	is considered to be subdivided by EBV or HPV/p16 status. Unfortunately, we

would not apply this new TNM classification in present analysis because EBV
and HPV/p16 status was not available in many cases. When we conducted this
study, EBV or HPV/p16 status was not routinely examined. In addition, TNM
classification is a bland-new classification, thus, we could not fully validate the
outcome to reported series.

One of the concerns of NUP treatment is the extent of the irradiation field. It has 225 226 been disputed as to whether contralateral neck and/or potential primary site 227 should be included or not. In our series, there were no significant differences in 228 OS, PFS, NPFS and MPFS in different irradiation fields. Reddy et al. reported that subclinical metastases in the contralateral cervical lymph nodes were better 229 230 controlled by irradiation, including bilateral neck and pharyngeal mucosa than ipsilateral neck irradiation (86% vs 56%, p=0.03)¹⁰. The occult primary emerged 231 in 8% after bilateral irradiation and in 44% after ipsilateral irradiation (p=0.0005). 232 This difference was anticipated to the fact that the mucosal region was contained 233 in irradiated fields in the bilateral group. Strojan et al. reported the comparison 234 between involved-field and extended-field in postoperative setting²⁶. In 235 236 multivariate analysis, the only factor that influenced locoregional control was the patients' age with older patients and the extent of RT field did not influence on 237

238	any outcome. In addition, acute and late toxicity was more common in patients
239	with extended-field RT. They concluded Involved-field RT, although not superior
240	over extended-field RT, seems to be a preferred treatment option due to
241	significantly reduced toxicity and better prospects for successful salvage in case
242	of contralateral neck recurrence or emergence of mucosal primary in the
243	pharyngolaryngeal axis.
244	The rate of metachronous emergence of the primary site was 9.2% (12/130) in
245	our series; the results were consistent with those of the previous
246	reports ^{3,6,9,16,18,19} . Erkal et al. reported that 12 of 126 patients (10%) developed
247	squamous cell carcinoma in the head and neck mucosa after initial treatment ⁹ . In
248	the review of Nieder et al., the median rate of emergence of the primary site after
249	extensive radiotherapy was 9.5% (range 2-13%), whereas it was 8.0% (range
250	5-44%) after ipsilateral radiotherapy ⁸ . As will be discussed later, IMRT with
251	appropriate mucosal irradiation field settings is considered to lead to better
252	treatment outcome by controlling the occult mucosal lesions.
253	In our series, the group that received (modified) radical neck dissection had
254	better outcomes than the group without neck dissection in terms of OS, NPFS
255	and MPFS on univariate analysis (p<0.05). Neck dissection followed by

256	postoperative radiotherapy is generally recognized as a standard approach, and
257	also has a clear advantage in evaluation for accurate disease extension and
258	histopathological features, such as ECE, thus providing additional information to
259	decide appropriate adjuvant therapeutic strategies such as combination with
260	chemotherapy. In our series, negative ECE status proved to be a favorable
261	prognostic factor in OS, PFS, NPFS and MPFS. Coster et al. reported clinical
262	results of 24 patients with NUP treated with curative resection by neck dissection
263	or excisional biopsy alone; ECE proved to be an unfavorable prognostic factor of
264	neck recurrence, cause-specific survival and overall survival ¹⁸ . They concluded
265	that patients with N1 disease without ECE could be managed by surgery alone,
266	while patients with N2 or higher nodal stage disease, and/or ECE would be
267	candidates for postoperative adjuvant radiation therapy.
268	Although IMRT was not administered in this series, it is considered to be a
269	promising procedure in treatment for NUP by offering appropriate target volume
270	coverage while sparing organs-at-risk compared with conventional
271	radiotherapy ^{11-13,15,20,27,28} . Villeneuve et al. reported promising results of NUP
272	using the IMRT technique ¹¹ . They treated 25 patients with IMRT by a median
273	dose of 70 Gy with a radiation field including the bilateral neck and ipsilateral

274	pharyngeal mucosa; 17 underwent IMRT for definitive intent, 8 received it for
275	postoperative setting, and 18 patients received platinum-based concurrent
276	chemotherapy. With a median follow-up of 38 months, OS, disease-free survival
277	and locoregional control rates were all 100% at 3 years with no emergence of
278	primary cancer. Nine patients (36%) developed Grade 2 or greater xerostomia at
279	6 months, but only 2 (8%) of them developed the same grade of salivary toxicity
280	after 24 months of follow-up. They concluded concurrent chemoradiotherapy
281	with IMRT, including bilateral neck and ipsilateral putative pharyngeal mucosa,
282	as the optimal therapeutic strategy. Janssen et al. reported individualized IMRT
283	treatment approach to avoid extensive volumes while treating patients without
284	oncological compromise ²⁹ . Ipsilateral irradiation was preferred and treatment
285	fields to the putative mucosal site or the contralateral neck were enlarged based
286	on individual risk factors including clinical, surgical, histopathological and
287	imaging information. The 3-year mucosal control rate, nodal control rate, and
288	distant metastasis free survival were 100, 93, and 88%, respectively and there
289	were no grade 2 or more late complications.
290	The role of adding systemic chemotherapy for improving local and distant
291	control is another important issue. In our present series, the combination of

292	chemotherapy did not show advantages for improving OS, PFS, NPFS or MPFS.
293	Argiris et al. reported a series of 25 patients who received concurrent
294	chemoradiotherapy for N2 or N3 stage NUP ¹⁷ . Although this study was a
295	retrospective analysis with a small sample size, they concluded that the addition
296	of systemic chemotherapy may lead to improved locoregional and distant control,
297	and long-term survival for good performance status patients with stage IV (N2 or
298	N3) NUP. On the other hand, Chen et al. found no advantage of concurrent
299	chemotherapy with regard to OS, PFS or locoregional control in a retrospective
300	analysis of 60 patients treated by radiotherapy, of whom the majority (70%)
301	underwent neck dissection ¹⁴ .
302	The all concerns about NUP treatment strategy would be examined along with
303	the new UICC/AJCC 8th TNM classification, EBV and HPV/p16 status should be
304	required for accurate staging. Indeed, we do appreciate further investigation
305	based on the 8th TNM classification should be desirable.
306	
307	Conclusion

308 Our results suggest lower nodal stage, negative ECE status and combination of 309 radical surgery showed a favorable impact on survival and disease control in

patients with NUP treated by radiotherapy. There were no significant differences
in OS, PFS, NPFS and MPFS in different irradiation fields.

312 Acknowledgements

The part of this article was presented at the annual meeting of American Society 313 for Therapeutic Radiation Oncology at 54th (Boston). I would like to thank 314 Atsuro Terahara MD (Department of Radiology, Toho University Omori Medical 315 316 Center, Tokyo, Japan), Masahiro Kenjo MD (Department 317 of Radiation Oncology, Hiroshima University, Hiroshima, Japan), Takafumi 318 Toshiyasu MD (Department of Radiation Oncology, Cancer Institute Hospital, Japan), Okubo (Department 319 Tokyo, Yu MD 320 of Radiation Oncology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan), Sunao Tokumaru MD (Department of Heavy Particle 321 Therapy and Radiation Oncology, Saga University, Japan) and Midori Kita MD 322 (Department of Radiology, Tokyo Metropolitan Tama Medical Center, Tokyo, 323 Japan), for taking care of by the registration of cases. I would also like to show 324 my greatest appreciation to Prof. Masataka Uetani who provided helpful 325 326 comments and suggestions.

327

328 Conflict of interest statement

- 329 None declared.
- 330

331 References

- Waltonen JD, Ozer E, Hall NC, et al Metastatic carcinoma of the neck of unknown primary
 origin: evolution and efficacy of the modern workup. Arch Otolaryngol Head Neck Surg 2009;
 135:1024-9,
- 335 2. Miller FR, Karnad AB, Eng T, et al: Management of the unknown primary carcinoma: long-term
- follow-up on a negative PET scan and negative panendoscopy. Head Neck 2008;30:28-34
- 337 3. Grau C, Johansen LV, Jakobsen J, et al: Cervical lymph node metastases from unknown
- primary tumours. Results from a national survey by the Danish Society for Head and Neck
 Oncology. Radiother Oncol 2000;55:121-9
- 340 4. Eldeeb H, Hamed RH: Squamous cell carcinoma metastatic to cervical lymph nodes from
- 341 unknown primary origin: the impact of chemoradiotherapy. Chin J Cancer 2012;31:484-90
- 5. Wallace A, Richards GM, Harari PM, et al: Head and neck squamous cell carcinoma from an
- 343 unknown primary site. Am J Otolaryngol 2011;32:286-90
- 6. Ligey A, Gentil J, Crehange G, et al: Impact of target volumes and radiation technique on
- 345 loco-regional control and survival for patients with unilateral cervical lymph node metastases
- 346 from an unknown primary. Radiother Oncol 2009;93:483-7
- 347 7. Beldi D, Jereczek-Fossa BA, D'Onofrio A, et al: Role of radiotherapy in the treatment of
- 348 cervical lymph node metastases from an unknown primary site: retrospective analysis of 113
- 349 patients. Int J Radiat Oncol Biol Phys 2007;69:1051-8
- 8. Nieder C, Ang KK: Cervical lymph node metastases from occult squamous cell carcinoma.
- 351 Curr Treat Options Oncol 2002;3:33-40
- 352 9. Erkal HS, Mendenhall WM, Amdur RJ, et al: Squamous cell carcinomas metastatic to cervical
- 353 lymph nodes from an unknown head-and-neck mucosal site treated with radiation therapy alone
- or in combination with neck dissection. Int J Radiat Oncol Biol Phys 2001;50:55-63
- 355 10. Reddy SP, Marks JE: Metastatic carcinoma in the cervical lymph nodes from an unknown
- 356 primary site: results of bilateral neck plus mucosal irradiation vs. ipsilateral neck irradiation. Int J
- 357 Radiat Oncol Biol Phys 1997;37:797-802

- 358 11. Villeneuve H, Despres P, Fortin B, et al: Cervical lymph node metastases from unknown
- primary cancer: a single-institution experience with intensity-modulated radiotherapy. Int J Radiat
 Oncol Biol Phys 2012;82:1866-71

361 12. Shoushtari A, Saylor D, Kerr KL, et al: Outcomes of patients with head-and-neck cancer of

- unknown primary origin treated with intensity-modulated radiotherapy. Int J Radiat Oncol BiolPhys 2011;81:e83-91
- 364 13. Sher DJ, Balboni TA, Haddad RI, et al: Efficacy and toxicity of chemoradiotherapy using
- intensity-modulated radiotherapy for unknown primary of head and neck. Int J Radiat Oncol BiolPhys 2011;80:1405-11
- 367 14. Chen AM, Farwell DG, Lau DH, et al: Radiation therapy in the management of
- 368 head-and-neck cancer of unknown primary origin: how does the addition of concurrent
- 369 chemotherapy affect the therapeutic ratio? Int J Radiat Oncol Biol Phys 2011;81:346-52
- 370 15. Frank SJ, Rosenthal DI, Petsuksiri J, et al: Intensity-modulated radiotherapy for cervical node
- 371 squamous cell carcinoma metastases from unknown head-and-neck primary site: M. D.
- Anderson Cancer Center outcomes and patterns of failure. Int J Radiat Oncol Biol Phys 2010;78:1005-10
- 16. Shehadeh NJ, Ensley JF, Kucuk O, et al: Benefit of postoperative chemoradiotherapy for
- patients with unknown primary squamous cell carcinoma of the head and neck. Head Neck2006;28:1090-8
- 17. Argiris A, Smith SM, Stenson K, et al: Concurrent chemoradiotherapy for N2 or N3 squamous
- 378 cell carcinoma of the head and neck from an occult primary. Ann Oncol 2003;14:1306-11
- 379 18. Coster JR, Foote RL, Olsen KD, et al: Cervical nodal metastasis of squamous cell carcinoma
- of unknown origin: indications for withholding radiation therapy. Int J Radiat Oncol Biol Phys
 1992;23:743-9
- 382 19. Aslani M, Sultanem K, Voung T, et al: Metastatic carcinoma to the cervical nodes from an
- 383 unknown head and neck primary site: Is there a need for neck dissection? Head Neck
- 384 2007;29:585-90
- 385 20. Klem ML, Mechalakos JG, Wolden SL, et al: Intensity-modulated radiotherapy for head and
- neck cancer of unknown primary: toxicity and preliminary efficacy. Int J Radiat Oncol Biol Phys
 2008;70:1100-7
- 388 21. Colletier PJ, Garden AS, Morrison WH, et al: Postoperative radiation for squamous cell
- 389 carcinoma metastatic to cervical lymph nodes from an unknown primary site: outcomes and
- 390 patterns of failure. Head Neck 1998;20:674-81
- 391 22. Patel RS, Clark J, Wyten R, et al: Squamous cell carcinoma from an unknown head and neck
- 392 primary site: a "selective treatment" approach. Arch Otolaryngol Head Neck Surg 2007;
- 393 133:1282-7

- 394 23. Kwee TC, Kwee RM: Combined FDG-PET/CT for the detection of unknown primary tumors:
 395 systematic review and meta-analysis. Eur Radiol 2009;19:731-44
- 396 24. Hayashi T, Muto M, Hayashi R, et al: Usefulness of narrow-band imaging for detecting the
- primary tumor site in patients with primary unknown cervical lymph node metastasis. Jpn J Clin
 Oncol 2010;40:537-41
- 399 25. Mehta V, Johnson P, Tassler A, et al: A new paradigm for the diagnosis and management of
- 400 unknown primary tumors of the head and neck: a role for transoral robotic surgery. Laryngoscope401 2013;123:146-51
- 402 26. Strojan P, Kokalj M, Zadnik V, et al: Squamous cell carcinoma of unknown primary tumor
- 403 metastatic to neck nodes: role of elective irradiation. Eur Arch Otorhinolaryngol 2016;
- 404 273:4561-4569
- 405 27. Madani I, Vakaet L, Bonte K, et al: Intensity-modulated radiotherapy for cervical lymph node
- 406 metastases from unknown primary cancer. Int J Radiat Oncol Biol Phys 2008;71:1158-66,
- 407 28. Lu H, Yao M, Tan H: Unknown primary head and neck cancer treated with
- intensity-modulated radiation therapy: to what extent the volume should be irradiated. Oral Oncol2009;45:474-9,
- 410 29. Janssen S, Glanzmann C, Huber G, et al: Individualized IMRT treatment approach for
- 411 cervical lymph node metastases of unknown primary. Strahlenther Onkol 2014;190:386-93,
- 412 30. Radiation Therapy in Treating Patients With Metastases to the Lymph Nodes in the Neck
- 413 From an Unknown Primary Tumor. URL: https://clinicaltrials.gov/ct2/show/study/NCT 00047125

Characteristic	Value						
Age at diagnosis (median)	65	(39-87)					
Gender							
Male	119	(92%)					
Female	11	(8%)					
Histology							
Squamous cell carcinoma	122	(94%)					
Undifferentiated carcinoma	8	(6%)					
Nodal Stage							
N1	10	(8%)					
N2a	26	(20%)					
N2b	43	(33%)					
N2c	12	(9%)					
N3	39	(30%)					
Diagnostic Evaluation							
СТ	128	(98%)					
MR	82	(63%)					
FDG-PET	40	(31%)					
Laryngoscopy	96	(74%)					
Tonsillectomy	1	(1%)					
Involved N level							
I	14	(11%)					
II	98	(75%)					
III	39	(30%)					
IV	43	(33%)					
V	14	(11%)					
VI	3	(2%)					

Table 1. Patient Characteristics

Abbreviations: CT, Computed Tomography MR, Magnetic Resonance; FDG-PET, 18-Fluorodeoxyglucose Positron Emission Tomography

Treatment Intent		
Radical	17	(13%)
Palliative	113	(87%)
Surgical Treatment		
FNA Only	49	(38%)
Excisional Biopsy	17	(13%)
Selective Neck Dissection	11	(8%)
Modified Radical Neck Dissection	53	(41%)
Chemotherapy		
Yes	66	(51%)
No	64	(49%)
Neck Dissection + Chemotherapy	27	(21%)
Involved Nodal Dose		
Median	60.0) Gy (12.6 – 86.8 Gy)
Prophylactic Nodal Dose		
Median	50.4	l Gy (12.6 - 72.0 Gy)
Mucosal Dose		
Median	50.4	l Gy (12.6 – 71.0 Gy)
RT Volume		
Local Only	11	(8%)
Local + Mucosa	2	(2%)
Ipsilateral Neck	31	(24%)
Ipsilateral Neck + Mucosa	7	(5%)
Bilateral Neck	3	(2%)
Bilateral Neck + Mucosa	76	(58%)
Mucosal Volume / Irradiated Dose (r	nedia	an dose)
Nasopharynx	70	(54%) / 12.6-70.0Gy (50.0Gy)
Oropharynx / Oral Cavity	76	(58%) / 12.6-71.0Gy (50.0Gy)
Hypopharynx / Larynx	81	(62%) / 12.6-70.0Gy (50.0Gy)
Cervical Esophagus	51	(39%) / 12.6-70.0Gy (46.0Gy)

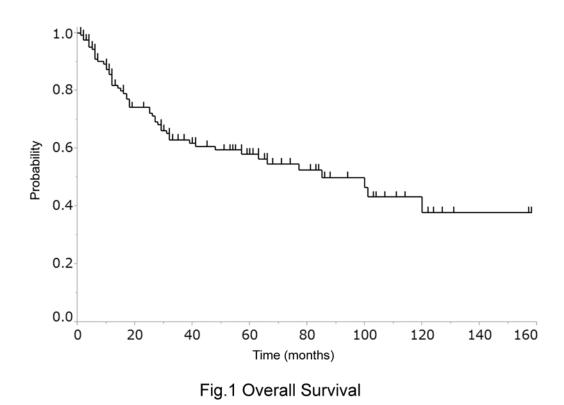
Abbreviations: FNA, Fine Needle Aspiration; RT, Radiotherapy

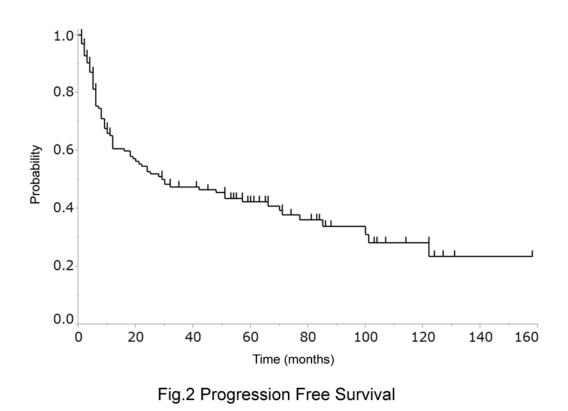
Factor	No. of patient	OS		PFS	PFS		NPFS		MPFS	
		%	P-Value	%	P-Value	%	P-Value	%	P-Value	
Overall	130	58.1		42.4		47.3		54.9		
Treatment Intent										
Radical	113	60.3		44.2		49.1		56.3		
Palliative	17	30.7	<0.05	29.6	<0.05	34.8	<0.05	41.2	0.17	
PS										
0-1	107	61.8		46.7		52.7		60.0		
2-3	13	40.0	0.13	40.0	0.91	40.0	0.57	44.4	0.48	
N-Stage										
1-2b	79	69.2		51.1		57.3		70.7		
2c-3	51	37.1	<0.01	27.5	<0.01	31.8	<0.01	33.1	<0.01	
N-Size										
< 6 cm	91	66.6		49.7		56.6		61.6		
≥ 6 cm	39	34.9	<0.01	26.6	<0.05	31.2	<0.01	36.9	<0.01	
ECE										
Positive	34	75.5		37.0		41.1		45.5		
Negative	44	53.4	<0.01	56.4	<0.01	62.9	<0.01	71.1	<0.01	
0	odes (Radical Intent)									
< 50 Gy	` 8	72.9		60.0		60.0		72.9		
≥ 50 Gy	105	59.3	0.78	43.1	0.93	48.4	0.80	55.0	0.56	
	ic Nodes (Radical Int	tent)								
< 50 Gy	4 6	, 55.7		34.2		41.8		55.8		
≥ 50 Gy	67	63.3	0.59	50.9	0.08	54.1	0.14	56.7	0.84	
Radical Surgery										
Yes	64	67.2		49.0		43.2		63.9		
No	66	48.5	<0.05	35.6	0.07	38.4	<0.05	45.3	<0.05	
Chemotherapy										
Yes	67	54.7		41.1		46.8		53.9		
No	63	61.4	0.44	43.6	0.63	47.0	0.78	55.4	0.57	
RT Field										
Neck only	46	44.7		31.1		33.8		45.5		
Neck + mucosa	84	65.5	0.24	48.5	0.24	54.8	0.08	59.7	0.46	
Involved Level		-				_				
-	46	57.6		42.0		47.4		52.3		
IV-VI	84	60.1	0.91	44.1	0.76	49.4	0.90	60.1	0.56	

Table 3. Univariate analysis for overall survival, progression free survival, neck progression free survival and mucosal progression free survival

Abbreviations: OS, Overall Survival; PFS, Progression Free Survival; NPFS, Neck Progression Free Survival; MPFS, Mucosal Progression Free Survival PS, Performance Status; RT, Radiotherapy; ECE, Extracapsular Extension

Factor	Valuable type	OS			PFS			NPFS	6		MPFS	5	
		HR	95% CI	P-value	HR	95% CI	P-value	HR	95% CI	P-value	HR	95% CI	P-value
Treatment Intent	Radical vs Palliative	0.34	0.13-1.00	<0.05	0.44	0.19-1.08	0.07	0.44	0/19-1.08	0.07	0.45	0.17-1.43	0.16
N stage	N1-2b vs N2c-3	0.37	0.20-0.69	<0.01	0.48	0.29-0.80	<0.01	0.48	0.29-0.80	<0.01	0.40	0.22-0.72	<0.01
Radical surgery	Yes vs No	0.44	0.19-1.12	0.08	0.71	0.36-1.50	0.35	0.71	0.36-1.520	0.36	0.39	0.18-0.89	<0.05
Extracapsular Extension	Negative vs Positive	0.30	0.12-0.66	<0.01	0.46	0.25-0.87	0.02	0.46	0.25-0.87	0.02	0.32	0.15-0.67	<0.01


Table 4. Multivariate analysis for overall survival, progression free survival, neck progression free survival and mucosal progression free survival


Abbreviations: OS, Overall Survival; PFS, Progression Free Survival; NPFS, Neck Progression Free Survival; MPFS, Mucosal Progression Free Survival; HR; Hazard Ratio

Author	Year	No. of patients	Treatment Method (N)	5Y OS (%)	Metachronous primaries (%)
Coster	1992	24	S (24)	66	4
Grau	2000	273	S (23), R (224), S+R (26)	36	12
Erkal	2001	126	S+R (70), R (56)	47	10
Arigiris	2003	25	S+R+C (22), R+C (3)	75	0
Shehadeh	2006	37	S+R+C (37)	NC	3
Aslani	2007	61	R (41), S+R (20)	79	7
Klem	2008	21	R (IMRT) (+S), (+C)	85 (2Y)	0
Ligey	2009	95	R (+S 79), (+C 43)	24	9
Villeneuve	2012	25	R (IMRT) (+S 8), (+C 18)	100 (3Y)	0
Janssen	2014	28	R (IMRT) (+S 20), (+C 20)	76 (3Y)	0
Strojan	2016	126	R (+S 126), (+C 19)	57	9
Present	2017	130	R (26), (+S 38), (+C 40), (+S+C 26)	58	9

Table 5. Selected series of cervical patients with squamous cell carcinoma of unknown primary

Abbreviations: OS, Overall Survival; S, Surgery; R, Radiotherapy; C, Chemotherapy; IMRT, Intensity Modulated Radiotherapy; NC, Not Calculated

