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Abstract This paper introduces user-friendly atmospheric data, so-called objective 
analysis data, for ornithological studies. The data have been interpolated onto grid 
points distributed at a regular interval in space and time, and are suitable for analyz-
ing using computer data analysis software. Data assimilation techniques, which are 
basically the application of optimization and control theories, are utilized for produc-
ing objective analysis data in order to reduce errors as much as possible and obtain 
the most reliable dataset. Some examples of objective analysis data are shown and 
their features are described. Some cautionary notes are also given in order to avoid 
misinterpretation of the data.
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This review paper provides a brief introduction to 
the atmospheric data used in modern meteorology 
and which is applicable to ornithology, in particular 
avian movement ecology. Meteorological data are 
commonly used in various aspects of ornithological 
research. Variables such as temperature, precipitation, 
and solar radiation, are frequently used when build-
ing ecological niche models to investigate habitat 
suitability and predict the ranges of bird species (e.g., 
Tingley et al. 2009; Gschweng et al. 2012; Limiñana 
et al. 2015). Moreover, variables related to air move-
ment, i.e. horizontal and vertical wind, are particularly 
essential in research on migratory birds, as they affect 
the duration and energetic cost of migration, general 
routes, and decisions regarding departure points and 
stop-over sites (Liechti 2006; Shamoun-Baranes et al. 
2006; Nourani and Yamaguchi 2017).

Rather than a comprehensive review, this paper 
is a primer for ornithologists who wish to experi-
ment with these data. The main targets of this review 
are researchers interested in the relationship between 
avian movements and atmospheric conditions at the 
regional or global spatial scales (from ca. 10 km to 
global). In meteorological terms, “regional” indicates 

a specific geographical region, in contrast “global” 
indicates the entire globe. Numerous kinds of atmo-
spheric data are now available thanks to a rapid 
increase in the range of observation systems, which 
now include satellite and ground-based remote sens-
ing technologies as well as sophisticated data analysis 
systems for synthesizing such observational data. In 
general, the process of handling observational datas-
ets is difficult, requiring specialist skills. Users may 
also need to undertake quality control and interpola-
tion of data. Users sometimes require a background 
in dynamical meteorology in order to obtain physi-
cally reasonable data, in addition to computing skills 
that are rarely used in ornithology. We have cho-
sen to focus on relatively user-friendly datasets (as 
described later), instead of giving a comprehensive 
description of various kinds of atmospheric data, as 
our aim is to support beginners in atmospheric data 
analysis. The remainder of this paper is organized as 
follows: first we introduce “objective analysis data” 
(the most convenient and user-friendly dataset for 
studying atmospheric fields); then, we provide an 
example of atmospheric data analysis in an ornitho-
logical study, and finally we give some cautionary 
notes concerning the use of objective analysis data, 
since the data are not perfect real-life data.
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Objective analysis data
Modern meteorology strongly relies on so-called 

“objective analysis data,” which is in short produced 
by synthesizing outputs of a numerical simulation 
and various kinds of observational data. Most objec-
tive analysis data are “gridded” (i.e., data have been 
interpolated onto prescribed locations at regular spa-
tial and temporal intervals) in contrast to the majority 
of observational data that are distributed at locations 
and times with irregular intervals. Objective analysis 
data are thus suitable for use with various types of 
data analysis software. Various kinds of objective 
analysis data have become available in recent years. 
This paper introduces some of the most representative 
and popular datasets, for example for near surface 
wind and air temperature using objective analysis 
data (Fig. 1). For more information of the objective 
analysis data, readers are referred to the website at  
https://climatedataguide.ucar.edu/. Here we have used 
the National Centers for Environmental Prediction 
(NCEP) Department of Energy (DOE) Atmospheric 
Model Intercomparison Project (AMIP-II) reanalysis 
(R-2) dataset (Kanamitsu et al. 2002), which is one 
of the most popular objective analysis datasets used 
in meteorology. We henceforth refer to this dataset as 
NCEP–DOE reanalysis 2. The NCEP–DOE reanaly-

sis 2 provides us with various kinds of atmospheric 
variables such as wind velocity, air temperature, rela-
tive humidity, with a resolution of 2.5 degrees lati-
tude and longitude and at 18 vertical levels (surface, 
and 1000, 925, 850, 700, 600, 500, 400, 300, 250, 
200, 150, 100, 70, 50, 30, 20 and 10 hPa pressure), 
at six-hourly intervals.

Meteorologists synthesize data using sophisticated 
“data assimilation” techniques, which are essen-
tially an application of control theory (e.g., Gelb 
et al. 1974). Control theory is used in many sci-
entific and engineering fields in order to improve 
the behavior of dynamic systems using the output 
from those systems. This is not the place to go into 
the details of data assimilation techniques as that 
requires a solid background in both optimization and 
control theories. Interested readers are referred to 
introductory textbooks in meteorology such as those 
by Kalney (2002), and Holton and Hakim (2004). 
Objective analysis data are now indispensable for 
studying the atmosphere, as obtaining a comprehen-
sive picture of the state of the atmosphere is essen-
tially impossible without them. Despite recent sig-
nificant improvements to atmospheric observation 
systems with advanced ground based instruments 
and satellite-mounted remote-sensing devices, many 

Fig. 1. Horizontal distribution of air temperature at 2 m height (shaded) and horizontal wind velocity at 10 m height 
(vector) of NECP–DOE reanalysis 2 at 0000 UTC on 1 January 2015. Reference vector is in m s−1.
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gaps remain in observational data making it difficult 
to fully describe the mechanics of the atmosphere. 
Simply put, the data assimilation system interpolates 
atmospheric fields both in space and time and helps 
reduce the errors of interpolation as much as pos-
sible. The resultant atmospheric fields are considered 
to be statistically the most reliable under certain a 
priori assumptions (e.g., Kalney 2002).

Various other global objective analysis datasets are 
widely used by many meteorologists. These include 
the Japanese 55-year reanalysis (JRA-55) produced 
by the Japan Meteorological Agency (Kobayashi et 
al. 2015) and ERA-Interim produced by the Cen-
tre for Medium-Range Weather Forecasts (ECMWF) 

(Dee et al. 2011). Readers are referred to Dee et al. 
(2011) and Kobayashi et al. (2015) for detailed speci-
fications of these datasets since the specifications are 
rather lengthy.

On 1 January 2015, a cyclone was located at around 
40°N, 145°E and blew strongly in a northerly direc-
tion from the Russian and Chinese coast towards the 
Japanese archipelago. Although the overall features 
of the wind fields are similar in the NCEP–DOE 
reanalysis 2, JRA-55, and ERA-Interim at 0000 UTC 
datasets, comparison reveals that the details are dif-
ferent (see Fig. 2). For example, the wind field shown 
by NCEP–DOE reanalysis 2 is rather smooth, com-
pared with the other datasets. The field shows strong 

(a)

(c)(b)

Fig. 2. Horizontal distributions of air temperature at 2 m height (shaded) and horizontal components of wind velocity at 10 m 
height (vector) at 0000 UTC on 1 January 2015. (a) NECP–DOE reanalysis 2, (b) ERA-Interim, and (c) JRA-55.
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spatial variability near the coast in ERA-Interim and 
JRA-55, mainly due to the difference in grid spac-
ing in these datasets. The horizontal grid spacing of 
NCEP–DOE reanalysis 2, ERA-I, and JRA-55 used 
here are 2.5°, 0.75°, and ~0.55°, respectively. Please 
note that some datasets have been re-gridded onto 
a coarser grid (typically in the order of 100 kilo-
meters) in order to save disk space and some other 
reasons. It is not possible to assess which dataset is 
the best when only referring to Fig. 2. The scale of 
atmospheric data used in any ornithological study 
should be chosen based on the spatial scale of the 
bird behavior/characteristics being studied and also 
on the spatial accuracy of the bird data, such as the 
tracking points being used.

Although NCEP–DOE reanalysis 2, ERA-Interim, 
and JRA-55 cover the entire globe, the horizontal res-
olution of these datasets may be too coarse for those 
who are interested in regional studies. Some datasets 
exist with a finer resolution (on the order of ten kilo-
meters or smaller); for example, the mesoscale analy-
sis produced by the Japan Meteorological Agency 
(Ishikawa & Koizumi 2002; Fig. 3). The term “meso-
scale” is used in meteorology in order to describe 
atmospheric phenomena ranging from an order of 
kilometers to a thousand kilometers (Markowski & 
Richardson 2010). The mesoscale analysis has a hori-
zontal resolution of 5 km near the surface, which 

is much finer than the global datasets, although it 
covers only the East Asian region around Japan (see 
Fig. 3 for a comparison of mesoscale analysis with 
JRA-55). The mesoscale analysis can reproduce 
many small-scale atmospheric phenomena owing to 
its finer model resolution, and both temperature and 
wind fields at the mesoscale exhibit much higher spa-
tial variabilities compared with JRA-55.

Example of data processing
The volume of objective analysis data is consid-

erable, thus file sizes are large. Therefore, in order 
to reduce file sizes and increase the speed of data 
access, meteorologists use special file formats, 
most typically Unidata netCDF format (http://www.
unidata.ucar.edu/software/netcdf/). However, as most 
ornithologists are not familiar with the NetCDF for-
mat, we provide an example of data processing using 
netCDF with R (R Core Team 2015). Additional soft-
ware packages, such as “RNetCDF” (Michna P with 
contributions from Milton Woods 2016) and “ncdf4” 
(Pierce 2015), are required to handle netCDF data in 
R (see Appendix). These packages can be installed 
simply by using the “install.packages” function in R.

It is not always necessary to directly manipulate 
NetCDF files, because some platforms convert this 
format into more user-friendly raster formats. For 
scientists working with surface-level atmospheric 

Fig. 3. Close-up of horizontal distributions of air temperature at 2 m height (shaded) and horizontal components of wind 
velocity at 10 m height (vector) around Kyushu Island, Japan at 0000 UTC on 1 January 2015. (a) JRA-55 and (b) mesoscale 
analysis.

(a) (b)
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data, WorldClim is very popular, whereas migration 
researchers favor Movebank (https://www.movebank.
org/) and Uva-bits (http://www.uva-bits.nl/). Move-
bank and Uva-bits automatically annotate telemetry 
data with climate and weather variables and present 
them in more user-friendly formats than NetCDF. 
For most ornithologists, who are not familiar with 
netCDF format, the RNCEP package (Kemp et al. 
2012) in R is very convenient. This package allows 
for downloading and analyzing NCEP/NCAR data in 
R, with no need to manipulate the original netCDF 
format.

Various other alternative data formats are also used 
in meteorology, such as Gridded Binary (GRIB). The 
R package, “rgdal” is capable of handling GRIB files. 
GRIB files can also be converted to netCDF using 
the climate data operators (cdo) utility developed by 
the Max-Planck Institute for Meteorology (https://
en.wikipedia.org/wiki/GRIB). Handling datasets in 
formats other than those in netCDF is somewhat dif-
ficult and requires additional computational skills, 
which are beyond the scope of this introductory 
review.

Cautionary notes on Objective Analysis Data
It must be noted that objective analysis data are not 

real-life data; they should be considered “best guess” 
data using available observation data and simulation 
models. These data do not contain information on 
atmospheric phenomena smaller than their grid spac-
ing. Moreover, the objective analysis data are not 
error-free since the simulation models used in the data 
assimilation techniques cannot represent all physical 
phenomena perfectly, furthermore observational data 
contain some errors. It is essential therefore that we 
take care when using objective analysis data.

Some precautions should be considered when using 
these data. First of all, it is important to pay attention 
to the grid spacing of the objective analysis data. All 
of the physical quantities in objective analysis data, 
such as temperature, and wind velocity, represent 
special averages. For example, consider an objective 
analysis dataset with a horizontal grid spacing of 5 
km and a vertical grid spacing of 1 km; all of the 
values in this dataset are averages in a cuboid with a 
length and width of 5 km and a height of 1 km. We 
cannot say anything about atmospheric phenomena 
whose scale is smaller than this cuboid. To be more 
precise, a simulation model needs several grids within 
atmospheric phenomena in order to resolve them. For 
example, consider an atmospheric wave whose wave-

length is 10 km. A simulation model needs at least 
two grid points to represent a crest and trough of the 
wave, that is, the horizontal grid spacing must be 5 
km or smaller. Please note that two grid points are the 
minimum requirement for representing the existence 
of a wave, while more grids are required in order to 
represent the features of the wave.

Let us consider two specific examples. If we want 
to resolve a mid-latitude cyclone with a horizontal 
scale on the order of 1,000 km, the grid spacing 
should be on the order of 100 km or smaller. This 
is one of the reasons why typical objective analyses 
have a grid spacing on the order of 100 km. If one 
wants to reproduce the kind of mesoscale convec-
tive systems that are responsible for many extreme 
weather events such as torrential rainfalls (e.g., 
Markowski & Richardson 2010), the grid spacing 
should be on the order of 10 km or smaller in order 
to resolve systems whose horizontal scale is on the 
order of 100 km, which is why mesoscale analysis 
has a horizontal grid spacing of 10 km. We need 
to examine the scale of the atmospheric phenomena 
relevant to our research interests before conducting 
detailed data analysis, in order to avoid misinterpre-
tation of data.

Second, we must be aware of the discrepancies 
among different objective analysis data sets. Although 
all the wind fields are shown at the same time and 
height in the three panels of Fig. 2, they are not iden-
tical because they were produced using different data 
assimilation systems. They use different simulation 
models, observational data, and data assimilation 
techniques. Users should therefore examine the dif-
ferences among the datasets looking for inconsisten-
cies before interpreting the data. If a portion of one 
objective analysis dataset is not consistent with that 
of other datasets, then that portion may be an artifact.

As meteorological observation systems have 
improved, and as the quantity of observational data 
has increased, the accuracy of objective analysis has 
improved, thus in general the quality of recent state-
of-the-art object analysis data is better than that of 
older data sets (Wu et al. 2015). Improvements to 
the data assimilation systems have also helped to 
improve accuracy.

Concluding remarks
Objective analysis data give us a comprehensive 

view of the state of the atmosphere, i.e., the data 
are distributed at a regular interval in both space 
and time without missing values, something that is 
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unavoidable when using only conventional obser-
vational data. Objective analysis data have become 
tractable, even for non-specialists in meteorology, 
thanks to the development of useful computer tools. 
In the hope of expanding the use of these techniques 
in the field of ornithology, we have introduced objec-
tive analysis data as user-friendly atmospheric data 
that can be combined with R packages and a sample 
code that helps to manipulate the netCDF format. 
The use of such data will help researchers achieve 
the essential understanding of the atmospheric envi-
ronment that affects, perhaps even drives, aspects of 
bird movements such as migration.

Although the overall structure of the data format 
and the software described in this paper have not 
changed substantially over the last decade, it should 
be noted that, as in any field, continued refinements 
and improvements are being made, due to rapid prog-
ress in the development of observation and analysis 
systems.
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