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Abstract: The tide-induced resuspension of sediments plays important roles in the efflux of particulate
organic carbon (POC) from rivers to the coastal sea. Although dissolved organic carbon (DOC)
comprises more than half of the riverine flux of organic carbon to the ocean, the influence of
sediment resuspension induced by the tidal cycle on DOC dynamics is largely unknown. This study
examined the dynamics of POC, particulate organic nitrogen (PON), DOC, humic-like and protein-like
fluorescent dissolved organic matter (DOM) in relation to the tidal cycle in the Chikugo and Hayatsue
River Estuaries, Kyushu, Japan. This study is the first to show both the particulate organic matter
(POM) and DOM dynamics in relation to the tidal cycle in the macrotidal estuaries. We found that
the turbidity changed with the tidal cycle and that there were significant positive correlations of
turbidity with POC and PON in the Chikugo River mouth, suggesting that tide-induced sediment
resuspension supplied POM to the water column. The DOC concentration, humic-like and protein-like
fluorescent DOM were not correlated with turbidity but were negatively correlated with salinity.
These results suggest that POM efflux, but not DOM efflux, can be accelerated by tide-induced
sediment resuspension in the macrotidal estuaries.

Keywords: riverine organic matter; dissolved organic matter; tidal cycle; sediment resuspension;
Ariake Sea; Chikugo River

1. Introduction

Estuaries, as transition zones between terrestrial and marine environments, are the most dynamic
regions in the biosphere [1]. The tidal cycle may strongly affect organic matter dynamics, especially in
macrotidal estuaries (tidal range > 4 m). A strong tidal current suspends sediments, which provide
high concentrations of particulate organic carbon (POC) [2,3]. A previous study reported that a part
of POC in the tidal-influenced turbidity water mass was bioavailable [4]. Thus, the tide-induced
resuspension of sediments may play important roles in the efflux of labile POC from rivers to the
coastal sea. Allochthonously input organic carbon fuels both pelagic and benthic food webs [5,6],
whereas an excessive input of labile organic carbon often causes environmental problems, such as
hypoxia, in coastal ecosystems [7]. Coastal hypoxia has been a global phenomenon since the late 1950s,
as it causes the deterioration of marine ecosystems [8]. Thus, understanding the mechanisms controlling
riverine organic matter delivery to the ocean is essential to maintain healthy coastal ecosystems.

Although dissolved organic carbon (DOC) comprises more than half of the riverine flux of organic
carbon to the ocean [9] and a part of riverine DOC is highly bioavailable [10,11], the influence of sediment
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resuspension induced by the tidal cycle on DOC dynamics is largely unknown. One study reported
the infusion of DOC in the water column via active sediment resuspension [12]. In addition, high DOC
concentrations in pore water were found in estuarine sediments [13]. The rapid production of DOC
from particle decomposition in near-surface bottom sediments was also reported [14]. These processes
may affect DOC dynamics via the active resuspension induced by tidal currents in macrotidal estuaries.

The Chikugo River, in Kyushu, southwestern Japan, is the largest river discharging into the
Ariake Sea. Most riverine materials move from the Chikugo River to the northern part of the Ariake
Sea, a semienclosed embayment with the largest tidal range in Japan. The Chikugo River Estuary is
classified as a macrotidal estuary with tidal amplitudes of up to 5 m at its mouth. The Ariake Sea
receives large amounts of organic carbon from the Chikugo River [15]. Recently, severe bottom-water
hypoxia has occurred every summer in the northern part of the Ariake Sea, resulting in a marked
ecosystem deterioration [16]. Thus, an understanding of the mechanisms supplying organic matter
from the Chikugo River estuary is essential to prevent hypoxia in the northern part of the Ariake Sea.
Suzuki et al. [17] reported that a strong tidal current in a macrotidal estuary can result in a high POC
concentration due to active sediment resuspension. Thus, the tidal current can accelerate a high POC
outflow from the river into the northern part of the Ariake Sea. Although the importance of DOC as a
potential driver of hypoxia in the northern part of the Ariake Sea is recognized [18], the influence of
tide-induced sediment resuspension on DOC efflux from the Chikugo River is not known. Therefore,
we examined the temporal variations in both POC and DOC concentrations in relation to the tidal
cycle in the Chikugo River Estuary to understand the influence of tide-induced sediment resuspension
on POC and DOC efflux from the estuary to the northern part of the Ariake Sea. Stable carbon isotope
ratios of POC were measured to understand the source of particulate organic matter (POM). Humic
substances make up one of the most refractory organic groups in seawater, whereas protein (amino
acids) is one of the most labile organic groups in seawater [19]. Thus, humic-like and protein-like
fluorescent dissolved organic matter (DOM), based on the fluorescence excitation-emission matrix
(EEM), was also measured to understand the influence of tide-induced sediment resuspension on labile
DOM efflux.

2. Materials and Methods

We conducted investigations in late June (early summer) because severe hypoxia occurs in the
summer in the northern part of the Ariake Sea. In order to avoid extreme cases, samplings were
performed midway through the lunar tidal cycle before the rainy season (July). One can expect that,
in the river mouth, the near-bottom current, which is strong enough to facilitate resuspension of
sediments, will be observable during a tidal cycle. Thus, water samples were collected at fixed stations
in the Chikugo and Hayatsue (a branch of the Chikugo River) River mouths (Figure 1) from 6:00 (low
tide) to 18:00 (low tide) on 22 and 23 June 2019 (middle tide). The sediment characteristics of the two
river mouths were similar (e.g., mud content, >74%; total organic carbon content, approx. 18 mg g~!
dw) [20]. The current velocity and direction were measured continuously using an electromagnetic
current meter (INFINITY-EM, JFE Alec, Kobe, Japan; sampling interval 0.1 s) at a 1 m depth. The salinity
and turbidity were measured at the surface and 1 m above the bottom using a multiparameter water
quality meter (WQC-24; DKK-TOA, Tokyo, Japan) at 90-minute intervals. Seawater samples were
collected using a 3 L Van Dorn water sampler (RIGO, Tokyo, Japan) from the surface and 1 m above
the bottom at each station at 90-minute intervals.

Samples for chlorophyll a (Chl. a) and POC analyses were filtered on board using precombusted
0.7-um GFJF filters (General Electric Company, Coventry, UK), and the filters were stored at —20 °C
until further analysis. Samples for the DOM analysis were filtered on board using precombusted
0.7-um GFJ/F filters (General Electric Company) and were stored in acid-washed 125-mL high-density
polyethylene bottles at —20 °C until further analysis. Plastic gloves were worn during the sample
collection and processing to avoid contamination.
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Figure 1. The study area and sampling locations.

To determine the Chl. a concentration, the samples collected on GF/F filters were extracted with
N,N-dimethylformamide and analyzed by fluorometry (FP-8100; JASCO, Tokyo, Japan), according to
the method of Welschmeyer [21]. To determine the POC and particulate organic nitrogen (PON)
concentrations, and the stable carbon isotope ratios of POC, the samples collected on GF/F filters
were fumed with HCI to remove carbonate salts, neutralized and dried in a desiccator, and were
then analyzed using an elemental analyzer equipped with a stable isotope ratio mass spectrometer
(Flash 2000/Conflo IV/DELTA V Advantage, ThermoFisher Scientific, Bremen, Gremany). Samples and
standards were individually wrapped in tin foil (Tin foil Squares, Santis Analytical AG, Teufen,
Switzerland) before analysis. Stable isotope ratios are described as a per mil (%o) deviation from the
international standard, using the following equation: 8X = [(Rsample/Rstandard) — 1] X 1000, where X
and R represent the 13C and 13C/!2C ratio, respectively. Peedee Belemnite and DL-alanine were used
as the reference materials. The DOC concentrations were determined using a total carbon analyzer
(TOC-V; Shimadzu, Kyoto, Japan). A calibration curve was obtained by analyzing four distinct
concentrations of a standard solution prepared from potassium hydrogen phthalate. As a procedural
blank, ultrapure water (Milli-Q, Direct-Q UV3; Merck Millipore, MA, USA) was analyzed every
10 samples, and the average pooled peak area of the Milli-Q water analysis over the entire day was
subtracted from the seawater sample peak areas.

Excitation (Ex)/emission (Em) matrices of fluorescence were measured for DOC samples using a
fluorometer (FP-8100; JASCO, Tokyo, Japan). Bandwidths were set to 5 nm for excitation and 5 nm for
emission. A series of emission scans (200—500 nm) were collected over excitation wavelengths ranging
from 200—500 nm by 5 nm increments. To remove the Rayleigh scatter and the Raman signal, a Rayleigh-
and Raman-normalized Milli-Q Ex-Em matrix was subtracted from the sample data. The fluorescent
intensities were normalized with the quinine sulfate units (QSU), where 1 QSU is equivalent to the
fluorescence emission at an Ex/Em = 350/450 nm wavelength of 1 pg L~! quinine sulfate in a 0.1 M
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H,SOy4 solution. According to [22], the peaks from Ex/Em = 220/290 nm and Ex/Em = 240/420 nm were
determined as protein-like and humic-like components, respectively.

Pearson’s correlation analysis was used to analyze the data. A p-value of less than 0.05 was
considered statistically significant. All statistical analyses were performed using R ver. 3.3.3 [23].

3. Results and Discussion

The water level reached a maximum at high tide (Figure 2a). The current velocity showed negative
values from 7:30 to 11:30, indicating that seawater intrusion started and continued until high tide
(Figure 2b). Then, the current velocity turned into positive values at 11:30, and this continued until
17:00. This means that river water kept outflowing until low tide. The salinity increased with time,
reached a maximum at high tide, and then decreased until low tide (Figure 3a). The turbidity was
higher at the bottom than at the surface in both rivers (Figure 3b). In both rivers, the turbidity tended to
decrease from low to high tide and then increased until the next low tide. Although both ebb and flood
tides induced sediment resuspension, it was greater during the ebb tide. A previous study reported
that the transport of salinity and the river discharge in the Hayatsue River are weaker than those in
the Chikugo River due to the thalweg topography of the Hayatsue River [24]. Consistent with the
previous report, we found that the Chikugo River mouth was strongly influenced by the tidal current
when compared to the Hayatsue River mouth (Figure 2b). A relatively high turbidity in the Chikugo
River mouth (Figure 3b) can be caused by a high tidal current.
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Figure 2. Variations in the (a) water level and (b) current velocity during the sampling period. A positive
value of the current velocity means a southward velocity (outflow from rivers).

The Chl. a concentration, a proxy for the phytoplankton biomass, changed in a similar manner
as the salinity (Figure 3c). The Chl. a concentration increased with time, reached a maximum
at high tide, and then decreased until low tide. This indicates that the flood tide transports
marine-phytoplankton-derived POM from the Ariake Sea into the Chikugo and Hayatsue River
Estuaries. However, the POC and PON concentrations changed in a direction opposite to that of the
Chl. a concentration (Figures 3c and 4a,b). The POC and PON concentrations tended to decrease
toward high tide and then to increase toward low tide. In macrotidal estuaries, a water mass with a
high POC concentration results from the active resuspension of sediments by the strong tidal current,
and the ebb tide accelerates the suspended POC discharge from the river to the coastal sea [25]. In this
study, we found turbidity changes in relation to the tidal cycle (Figure 3a,b) and significant positive
correlations of the turbidity with POC and PON in the Chikugo River mouth (Table 1), suggesting that
the tidal current induced the resuspension of sediments, supplying POC to the water column. However,
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such a relationship was not found in the Hayatsue River mouth (Table 2). A relatively weak tidal
current in the Hayatsue River might not be enough to supply POC to the water column from sediments.
The C/N ratios of POM changed in the opposite manner to the salinity (Figures 3a and 4c) and exhibited
high values throughout the study (Figure 4c). Conversely, the §!3C values of POM changed in a similar
manner to the salinity (Figures 3a and 4d) and exhibited low values. The 513C values of POM are
presented in relation to the C:N ratios in Figure 5. Previous studies have reported that each of the
major sources of estuarine POM possesses distinctive 'C values and C:N ratios: —30 to —24%o and
5-10 for river-estuarine phytoplankton, —24 to —18%o and 5-10 for marine phytoplankton, and —32 to
—23%o and higher than 20 for terrestrial C3 plants, respectively [26-31]. POM in both river mouths
exhibited depleted 5'C values and high C:N ratios, and most of the plots were scattered within the
range of terrestrial plants (Figure 5). Thus, resuspended POM is probably poorly bioavailable, since it
is mainly composed of refractory terrestrial material [32]. Alternatively, depleted 5'*C values and
high C:N ratios might be a reflection of the presence of phytoplankton-derived detritus in POM [25].
A previous study reported a depletion of 5§!3C values and elevation of C:N ratios associated with
the bacterial decomposition of phytoplankton [33]. This notion is partly supported by the results of
Saliot et al. [34], who found that the concentrations of bacterial biomarkers in POM were generally
high in the maximum turbidity zone in a macrotidal estuary.
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Figure 3. Variations in the (a) salinity, (b) turbidity, and (c) chlorophyll a concentration during the
sampling period.

The DOC concentration changed in the opposite manner to the salinity (Figures 3a and 6a) and
was less variable than the POC concentration (Figure 4a,d) in both river mouths. Both protein-like and
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humic-like components changed in a similar manner as DOC (Figure 6). A previous study suggested
that DOC is supplied from the active resuspension of sediments induced by tidal currents through the
infusion of DOC in pore waters and DOC release from suspended POM [35]. Nevertheless, in this
study, the DOC concentration, protein-like and humic-like components were not correlated with
turbidity but were negatively correlated with salinity (Tables 1 and 2). This conservative behavior
of DOM suggests that sediment resuspension is not always a major determinant of DOM dynamics,
including both labile and refractory fractions in macrotidal estuaries. Despite large differences in
turbidity and DOM between the Chikugo and Hayatsue Rivers, consistent results were obtained.
In addition, we did not find a significant positive correlation between turbidity and DOM around the
Chikugo River mouth throughout seasonal monitoring (authors unpublished data). Those facts give us
some added confidence about the robustness of our conclusion. Our conclusion may also be supported
by the results of Kang et al. [36], who found that DOC fluxes were, in general, controlled by the water
discharge in estuary systems.
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Figure 4. Variations in the (a) particulate organic carbon (POC) concentration, (b) particulate organic
nitrogen (PON) concentration, (¢) POC/PON, and (d) $'3C values of POC during the sampling period.
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Table 1. Pearson’s correlation coefficients among salinity (Sal), chlorophyll a (Chl.a), turbidity (Turb),
particulate organic carbon (POC), particulate organic nitrogen (PON), 513C values of POC,
dissolved organic carbon (DOC), protein-like component (Protein), and humic-like component (Humic)
in the Chikugo River. *, p < 0.05; **, p < 0.01; ***, p < 0.001.

Variables Sal Chl.a Turb POC PON s13¢ DOC Protein Humic
Sal
Chl.a 0.67 ***
Turb -0.25 -0.25
POC 0.01 -0.08 0.58 *
PON 0.13 0.02 0.47 * 0.98 *¥**
313 0.76%*  076%*  _0.26 0.11 -0.18
DOC —0.55* -0.46 0.31 0.17 0.05 —(.77 ¥
Protein -0.39 -0.21 0.19 0.24 0.20 -0.38 —0.61 **
Humic —0.84 F*  _02** 0.41 0.24 0.14 —0.87 %k _pgo*k*x  _(54%

Table 2. Pearson’s correlation coefficients among salinity (Sal), chlorophyll a (Chl.a), turbidity (Turb),
particulate organic carbon (POC), particulate organic nitrogen (PON), 513C values of POC, dissolved
organic carbon (DOC), protein-like component (Protein), and humic-like component (Humic) in the
Hayatsue River. ¥, p < 0.05; **, p < 0.01; ***, p < 0.001.

Variables Sal Chl.a Turb POC PON s13C DOC Protein Humic
Sal
Chla 0.67 ¥¥*
Turb 0.01 0.09
POC —0.56* -0.42 0.02
PON -0.21 -0.02 024  0.82%%*
s13¢C (.74 Fxk 091%*  _012 —054%* —0.34
DOC —0.81 % _0e2%  _007  048%* 0.14  —0.71 **
Protein -0.41 —0.34 -0.01 0.26 0.23 —0.47 * 0.38

Humic  -0.95%  —071%*  _0.14 0.54 * 0.16 —0.80 *** 0.97 *** 0.40

4. Conclusions

In conclusion, this study is the first to show both POM and DOM dynamics in relation to the
tidal cycle in macrotidal estuaries. In these estuaries, the POM dynamics are strongly affected by
the resuspension of sediment organic matter induced by the tidal cycle, whereas the resuspension
of sediment has a minor effect on both the refractory and labile DOM dynamics. The POM efflux
can be accelerated by tide-induced sediment resuspension in the Chikugo River mouth. However,
sediment resuspension is not always a major determinant of DOM dynamics in macrotidal estuaries.
Future studies should assess the effects of variable tides on POM and DOM dynamics in macrotidal
estuaries to improve our understanding of the controlling mechanisms of organic matter discharge
from rivers.
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