
c© 2011 MICHAEL KAHN KATELMAN

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4837478?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A META-LANGUAGE FOR FUNCTIONAL VERIFICATION

BY

MICHAEL KAHN KATELMAN

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2011

Urbana, Illinois

Doctoral Committee:

Professor José Meseguer, Chair and Director of Research
Professor Arvind, Massachusetts Institute of Technology
Associate Professor Grigore Ros,u
Professor Josep Torrellas

ABSTRACT

This dissertation perceives a similarity between two activities: that of coordi-

nating the search for simulation traces toward reaching verification closure,

and that of coordinating the search for a proof within a theorem prover. The

programmatic coordination of simulation is difficult with existing tools for dig-

ital circuit verification because stimuli generation, simulation execution, and

analysis of simulation results are all decoupled. A new programming language

to address this problem, analogous to the mechanism for orchestrating proof

search tactics within a theorem prover, is defined wherein device simulation

is made a first-class notion. This meta-language for functional verification

is first formalized in a parametric way over hardware description languages

using rewriting logic, and subsequently a more richly featured software tool

for Verilog designs, implemented as an embedded domain-specific language in

Haskell, is described and used to demonstrate the novelty of the programming

language and to conduct two case studies. Additionally, three hardware

description languages are given formal semantics using rewriting logic and we

demonstrate the use of executable rewriting logic tools to formally analyze

devices implemented in those languages.

ii

This dissertation is dedicated to MIPS Technologies, Inc., in appreciation for

having provided me with the opportunity to closely observe the functional

verification effort of the 74K microprocessor.

iii

ACKNOWLEDGMENT

I entered the doctoral program during August of 2004, and ultimately defended

on July 18, 2011. Summarizing concisely the nearly seven years during which

I have been part of the Department of Computer Science at UIUC is, of

course, impossible. However, I am profoundly grateful to have been able to

participate in some way in the long and important tradition of scholarly work,

and to have been able to experience so many of the special things that come

from being an academic.

Not the least of those things are all of the friendly, smart, and eccentric

people who I met and shared the experiences with, and whose creativity was

always thought provoking and entertaining. I am also incredibly grateful for

the freedom I was afforded to pursue my own research agenda, and feel that it

enriched my experience it immeasurably. In addition, I enjoyed especially the

many seminars and courses I attended, books and research articles I learned

from, research visits at other institutions, and conferences in far-away places

(Svalbard!).

A few people deserve special thanks in making all the incredible experiences

noted above possible. My friend and advisor, José Meseguer, of course being

foremost among them for his technical, emotional, and financial support, and

for being so committed to the ideals of scholarly pursuit. Arvind and his

research group at MIT could not have been more hospitable and welcoming,

or more generous with their time. So much so that I inflicted myself upon

them during three separate extended stays. I am also extremely grateful to

the other members of my dissertation committee, Josep Torrellas and Grigore

Ros,u, who were always kind and helpful in pursuing this work.

I wish that I knew how to properly thank all of the people, places, and

things with which I associate the best aspects of the past seven years:

(apologies for omissions) José Meseguer, Arvind, Josep Torrellas, Grigore

Ros,u, Tanya Crenshaw, Joe Hendrix, Sean Keller, Ralf Sasse, Camilo Rocha,

iv

Musab AlTurki, Kyungmin Bae, Beatriz Alarcón, Raúl Gutiérrez, Felix

Schernhammer, Santiago Escobar, Peter Ölveczky, Francisco Duran, Nar-

ciso Mart́ı-Oliet, Fredrik Kjølstad, Azadeh Farzan, Nana Arizumi, Traian

S, erbănut, ă, Patrick Meredith, Chucky Ellison, Andrei S, tefănescu, Dennis

Griffith, Michael Ilseman, Edgar Pek, Pavithra Prabhakar, David Nelson,

Alexandre Duchâteau, Jonas Eckhardt, Tobias Mühlbauer, Steven Lauter-

burg, Rajesh Kumar Karmani, Vijay Ganesh, Nirav Dave, Myron King,

Kermin Elliot Fleming, Michael Pellauer, Murali Vijayaraghavan, Abhinav

Agarwal, Rays Jiang, Andrew Colombi, Jeff Green, Mark-Oliver Stehr, Susie

Heo, Samuel Kamin, Bariş Aktemur, Howard Katelman, Susan Katelman,

John Katelman, Joseph Katelman, Madeline Katelman, Dav Zimak, Brendan

Kiburg, Nicholas Rizzolo, The Graybeards.

v

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 PRELIMINARIES . 9
2.1 Rewriting Logic . 9
2.2 Haskell . 16

CHAPTER 3 RELATED WORK . 20
3.1 Functional Verification . 20
3.2 Rewriting Logic Semantics . 25

CHAPTER 4 FORMALIZATION . 28
4.1 Overview . 28
4.2 Parameterization . 30
4.3 Analogy . 31
4.4 RHDL . 33
4.5 Problem . 34
4.6 RMETA . 35
4.7 RIR . 36
4.8 RSTRAT . 39
4.9 Example . 39

CHAPTER 5 IMPLEMENTATION ARCHITECTURE 42
5.1 VlogMetaLang . 43
5.2 Skeleton . 45
5.3 VlogMetaLang.Core . 46
5.4 VlogMetaLang.Syntax . 48
5.5 VlogMetaLang.Data . 49
5.6 VlogMetaLang.Util . 51
5.7 VlogMetaLang.Strategy . 52
5.8 VlogMetaLang.SMT . 54
5.9 Example . 54

vi

CHAPTER 6 CAPABILITIES . 59
6.1 Some Utilities . 61
6.2 Coordination of Multiple Simulations 63
6.3 Feedback . 68
6.4 Backtracking . 72
6.5 Breadth-First . 76
6.6 Symbolic Execution . 79
6.7 Combined Concrete and Symbolic Simulation 81

CHAPTER 7 CASE STUDIES . 85
7.1 I2C Bus-Master Controller . 85
7.2 Microprocessor . 91

CHAPTER 8 SEMANTICS: VERILOG 102
8.1 Disclaimer . 102
8.2 Contributions . 102
8.3 Concepts . 103
8.4 Semantics: Configuration . 109
8.5 Semantics: Equations and Rules 112
8.6 Examples . 119

CHAPTER 9 SEMANTICS: PRODUCTION RULE SETS 126
9.1 Introduction . 126
9.2 Mathematical Semantics: MPRS 128
9.3 Rewriting Logic Semantics: RPRS 138
9.4 Relative Correctness of MPRS and RPRS 151
9.5 Automated Hazard and Deadlock Freedom Analysis 162
9.6 Speed-Independent and Quasi-Delay-Insensitive Circuits . . . 168
9.7 Conclusion . 170

CHAPTER 10 SEMANTICS: BTRS 174
10.1 Syntax . 175
10.2 Caveats . 179
10.3 Example: Single-Element Queue 180
10.4 Semantics Overview . 181
10.5 Expression Evaluation . 184
10.6 Action Evaluation . 189
10.7 Semantics . 192
10.8 Discussion . 193
10.9 Example: A Deadlocking Completion Buffer 194

CHAPTER 11 CONCLUSION . 199

vii

APPENDIX A IMPLEMENTATION DETAILS 201
A.1 start . 201
A.2 concretize . 203
A.3 simulate . 205

REFERENCES . 214

viii

CHAPTER 1

INTRODUCTION

The International Technology Roadmap for Semiconductors (ITRS) [41] is a

biennial report on technical challenges confronting the global semiconductor

industry, representing a consensus view of major industry associations from

Asia, Europe, and the United States. Topics ranging from device physics to

embedded software are discussed and analyzed to identify research directions

and potential solutions, speculating over a fifteen-year time span. The topic

of this dissertation is the part of the digital circuit design process called

functional verification, wherein a device is evidenced to coincide with its

high-level design specification, and about which the 2009/2010 ITRS makes

the following statements.

“Implied needs are in: (1) verification, which is a bottleneck that

has now reached crisis proportions . . . ”

“. . . due to the growing complexity of silicon designs, functional

verification is still an unresolved challenge, defeating the enormous

effort put forth by armies of verification engineers and academic

research efforts.”

“Multiple sources report that in current development projects

verification engineers outnumber designers, with this ratio reaching

two to one for the most complex designs.”

[41, Design]

The above quotations demonstrate the practical importance, and indeed

the urgency of, concerted research efforts aimed at improving functional

verification: effecting verification closure faster, at a higher quality, and

with fewer engineering resources. Many aspects of the functional verification

process warrant attention from researchers, however in this dissertation, we

1

Figure 1.1: Coverage Closure Feedback Loop.

address just one, coverage closure. This is the iterative process of generating

stimuli, running simulations, and assessing various coverage metrics (e.g. see

[6]), as depicted in Figure 1.1.

Janick Bergeron, a highly regarded engineer who has written extensively

on functional verification (e.g. [5, 6]), recently said about the coverage closure

process:

Something that is challenging and time-consuming is an ideal

candidate for automation. In [contemporary verification practice],

the Holy Grail is the automation of the feedback loop between

the coverage metrics and the constraint solver.

[7, July 5, 2010]

Fully automating this feedback loop is an unreasonable goal, as doing so

would imply an efficient automated algorithm for reaching coverage closure;

indeed, this is why it is described above as being “the Holy Grail”. However,

2

it is wrong to view automation as something that must be done in full, or not

at all; as this dissertation will demonstrate, many opportunities for partial

automation of the coverage closure feedback loop exist and can be taken

advantage of.

The main contribution of this dissertation is the development of a program-

ming language that allows for the entire coverage closure feedback loop to be

coordinated programmatically and in a uniform way. As a result, verification

engineers can easily construct programs that partially automate this feedback

loop, doing so in a way that is general-purpose, tailored for a particular

device, or even tailored for an individual coverage goal. The ratios of stimulus

generation, simulation, and analysis are made completely flexible, so that a

verification engineer can target different strategies. Strategies with a high

amount of simulation per loop iteration may be useful in early stages of design

when many coverage goals are still outstanding, for example; whereas in later

stages of the verification process, tighter iterations of the loop may be used

to generate highly targeted simulations for coverage goals that have proved

difficult to discharge.

The design of our programming language is based on a similarity perceived

between two activities: that of coordinating the search for simulation traces

toward reaching coverage closure, and that of coordinating the search for

a proof within a theorem prover. Theorem proving systems traditionally

orchestrate the search for a proof through the use of a meta-language, an

idea that originates with the programming language ML, which was originally

developed with the express purpose of facilitating interaction with the LCF

theorem prover [29, 30]. This dissertation extends that idea and applies

it to simulation-based functional verification, yielding a meta-language for

functional verification.

Our meta-language is called fvml and is largely characterized by making

simulation a first-class data type that is manipulated by the programmer.

This expresses the view that a simulator serves a purpose similar to that of the

core theorem prover within the context of the analogy above. As a first-class

concept provided by fvml directly, simulation traces become values of an

appropriate data type and a set of operations are provided to manipulate

values of that data type, such as fine-grained control over advancing simulation.

fvml is developed in this dissertation both formally and at the level of an

implementation, and its utility is justified with pedagogical examples and the

3

presentation of larger case studies.

An example of a specific case where our meta-language may be brought to

bear is as an alternative to highly targeted testing, such as when a directed test

is created to discharge a difficult coverage goal. Targeted stimulus generation

consumes a disproportionate amount of time in contemporary methodology.

According to Tom Borgstrom, Program Director of the Verification Group at

Synopsys:

Today it is not uncommon to go from 0% to 80% coverage in

just a few days after the [constrained-random] testbench is up &

running.

What about the remaining 20%?

Today, one of the long poles in verification is coverage convergence

– the process where verification engineers analyze the coverage

generated by constrained-random tests, identify gaps or “coverage

holes”, and adjust the verification environment to try to fill the

gaps. If you think this sounds laborious, repetitive and time-

consuming you’d be correct. I’ve spoken to chip designers who

say a third of their overall chip development schedule is spent

in this iterative, largely manual, coverage convergence phase of

verification.

[9, July 6, 2010]

Filling coverage holes that are part of the “remaining 20%” typically

means either modifying constraints in a random testbench or simply writing a

directed test. As the above quotation suggests, this is typically tedious work

with substantial manual intervention by the verification engineer: viewing

waveforms, determining possible changes to the test to better target the

unfilled coverage goal, and then making those modifications. The alternative

that fvml provides is the ability to write a program operating in a tight

feedback loop attempting to find an appropriate stimulus and removing the

need, as much as possible, for intervention by the engineer.

An example that we will employ in a subsequent chapter to illustrate this

idea is a program that solves a digital circuit version of a “maze”. Instead of

analyzing the circuit manually, determining the exact way out of the maze, and

4

then writing a directed test navigating that path, our meta-language allows a

verification engineer to write a program that solves mazes in a general way

through a backtracking-based search. This is an efficient, targeted strategy, is

easier to write than a directed test because the internal structure of the maze

does not need to be known, and is also resilient to changes in the configuration

of the path of the maze.

An important side note that must be mentioned has to do with symbolic

simulation. Our meta-language, as described above, is constructed around

the idea that simulation becomes a first-class concept; however, simulation

need not be limited in the usual way to just concrete stimuli. Advances in

SMT solving technology make the use of general capabilities for symbolic sim-

ulation highly desirable, even in the context of a simulation-based verification

methodology and without attempting formal verification. As one concrete

example, expounded upon in a subsequent chapter, incorporating symbolic

simulation provides the essential infrastructure to implement targeted testing

strategies like the one described in [34], which serves as the basic idea under-

lying the popular Magellan tool from Synopsys (e.g. see [93, 92]), and can be

constructed in just a few lines of code in our meta-language.

Regarding the meta-language for functional verification, this dissertation

makes a number of contributions, derived largely from our set of works

[53, 51, 52]. The specific contributions of this dissertation to functional

verification are as follows:

1. It identifies a problem with contemporary functional verification method-

ology that is of substantial practical importance: the inability to effec-

tively orchestrate the coverage closure feedback loop programmatically.

2. It proposes, as a way of remedying this problem, a programming lan-

guage, or meta-language, for functional verification where simulation

becomes a first-class concept.

3. It defines a formal semantics of such a meta-language, called fvml, as an

embedded domain-specific language within rewriting logic, and which

is, in addition, parametric on the hardware description language (HDL)

used to develop the device-under-test.

4. It specifies an implementation of such a meta-language specialized for

testing Verilog devices, called vlogml, as an embedded domain-specific

5

language in Haskell.

5. It provides a set of pedagogical vlogml programs that demonstrate the

novel capabilities made possible through our meta-language.

6. It provides two case studies that demonstrate vlogml programs analyz-

ing more substantial devices, including a bus-master controller and a

simple microprocessor.

Implicit on the approach to functional verification and the meta-language

features of vlogml just summarized, there are two additional ideas that are

developed in this dissertation:

• parameterizability : The meta-language is formalized in such a way that

it is really a parametric language [L]ml, where L is the HDL of the

device-under-test. For L = Verilog, we obtain [Verilog]ml, or vlogml

for short. Similar instantiations can be developed for a variety of HDLs.

This is important because it separates in a modular way the language

used for verification purposes from the language used for design.

• semantics-based : That is, not only is the semantics of the parametric

meta-language [L]ml based on the formal system of rewriting logic, but

the HDL L itself is not provided as a standard compiler or simulator

(which would make it in general impossible to be used as a symbolic

execution engine), but as an executable formal specification in rewriting

logic.

The importance of being semantics-based and of directly using a formal

description of the chosen HDL is that much greater confidence can be imparted

in the tool supporting the instantiation of [L]ml when used for functional

verification purposes. This is because what the tool is executing are the formal

definitions of the semantics of the chosen HDL, which can be directly inspected

and criticised at a high level, as opposed to a low-level implementation of

the HDL which may be difficult to understand and debug and may be even

inaccessible due to proprietary reasons.

For these reasons, our research on functional verification fits within the

broader formal framework of the rewriting logic semantics project [77, 78],

where rewriting logic is used to develop formal executable specifications of

programming languages as rewrite theories, and such specifications are then

6

used to analyze programs in the given programming language in a variety of

ways, such as through simulation, testing, model checking, static analysis, and

theorem proving. Our [L]ml metalanguage approach specializes this general

idea by: (i) restricting the focus to HDLs, and (ii) focusing on simulation-

based functional verification as opposed to, say, model checking or theorem

proving verification.

For all of the above reasons, a second important contribution of this thesis,

largely derived from [55, 47, 49, 73], is the development of formal semantic

definitions in rewriting logic for several important hardware design paradigms.

7. Verilog. This is one of the most widely used languages today to design

digital circuits, and our formalization is, as far as we know, the most

comprehensive of formalization effort to date, though many language

features are omitted. In its capacity as an executable semantics all

possible program behaviors can be explored and we have used this

feature to give evidence as to the existence of bugs in widely-used

simulators, some of which have since been fixed by the tool authors.

8. Production Rule Sets. This is a language used in the design of asyn-

chronous digital circuits. We have given both a mathematical semantics

and rewriting logic semantics and proved their equivalence through a

strong bisimulation result. Both of the semantics also clarify the concept

of hazardous execution, a crucial correctness property, and have used

the executable semantics to automatically prove/disprove the existence

of hazards, as well as deadlocks.

9. BTRS. This is simplified version of the Bluespec hardware description

language that views hardware design from the perspective of a set of

guarded atomic actions. As a rigorous structural semantics for BTRS

already exists [21], the rewriting logic semantics is almost straightfor-

ward. This speaks however to one of the ideas of the rewriting logic

semantics project, which is the suitability of rewriting logic as a semantic

framework. We also demonstrate how to use the executable semantics

to find deadlocks in BTRS programs.

The dissertation is organized into chapters as follows:

• Chapter 1. Identifies the problem motivating this dissertation and

explains at a high-level the means through which we address it.

7

• (Chapter 3). Discusses related work, defines mathematical notation par-

ticular to this dissertation, and enumerates, via appropriate references,

other needed background material such as in rewriting logic and the

Haskell programming language.

• Chapter 4. This chapter presents the formalization of fvml within

rewriting logic.

• Chapter 5. This chapter describes vlogml, an implementation of fvml

in Haskell and specialized for analyzing Verilog devices.

• Chapter 6. This chapter presents several pedagogical examples of

vlogml programs demonstrating the novel capabilities of our meta-

language. The device that is analyzed is a digital circuit implementing

a sort of maze.

• Chapter 7. This chapter presents two larger case studies, also using the

above vlogml. One, an I2C bus-mastering controller, and the second, a

small microprocessor.

• Chapter 8. This chapter presents a rewriting logic semantics for a

substantial portion of Verilog.

• Chapter 9. This chapter presents a rewriting logic semantics for pro-

duction rule sets, a language used in the design of asynchronous digital

circuits.

• Chapter 10. This chapter presents a rewriting logic semantics for BTRS,

a simplified form of Bluespec.

• (Chapter 11. This chapter presents some final thoughts and conclusions.

8

CHAPTER 2

PRELIMINARIES

This chapter presents some basic information that may help orient a reader

unfamiliar with rewriting logic, Maude, or Haskell. It is not meant to be

comprehensive, rather, it simply provides a few of the “basics”.

2.1 Rewriting Logic

This section reviews the basics of rewriting logic, Maude, and the rewriting

logic semantics project.

2.1.1 Syntax, Proof Theory, and Model Theory

To precisely define our meta-language we employ rewriting logic [74]. One

reason is that rewriting logic has been shown to be well-suited to defining the

formal semantics of programming languages, which will be relevant at two

levels: (1) at the level of the functionality provided by our meta-language, and

(2) at the level of the design language. Our meta-language is made generic by

being parameterizable on a formalization of the design language semantics.

Then, using the fact that rewriting logic is reflective [16, 17], we can achieve

the “meta” aspects of the testbench language in an elegant way.

Formally, rewriting logic is defined by its deduction system and model

theory, as with other logics. It is parameterized by a suitable equational logic,

e.g. unsorted, many-sorted, order-sorted, membership, so that a rewriting

logic specification is defined as a triple (Σ, E,R) with (Σ, E) a signature and

set of axioms of the underlying equational logic, and R a set of appropriately

defined rewrite rules.

The structure of the rules can vary slightly with the underlying equational

logic and whether or not one considers conditional rules. The essential idea

9

in all cases is that a rewrite rule specifies an ordered pair of patterns (s, s′)

with the intuition that any instance, say θ(s), of s, where θ instantiates

the parameters of the patterns s and s′ and is called a substitution, can be

dynamically transformed into a corresponding instance θ(s′) of s′. A rewrite

rule (s, s′) is typically written more suggestively as

s −→ s′.

Common presentations either define rewrites directly on terms formed

from the symbols of Σ and a set of variables, or else on E-equivalence classes

of terms formed by deduction in the underlying equational theory. In the case

of the Maude rewriting logic language and tool [15], the underlying equational

logic is membership equational logic [76] and rewrite rules are defined at the

term level with conditions constructed as a conjunction of atomic rewrite,

equation, and membership formulae.

For expository purposes going forward, we will consider only the unsorted,

unconditional case, and define rewriting on equivalence classes of terms. The

presentation we will give largely follows that of [75]. Under these assumptions

we will first define what a rewriting logic specification is and then define the

logic’s deduction system and model theory.

A rewriting logic specification R = (Σ, E,R) is any triple with (Σ, E) an

(unsorted) equational logic specification consisting of an equational signature

Σ and a set of equations, E, of the form t = t′, with t, t′ ∈ TΣ(X), the

set of well-formed terms involving the symbols of Σ and with variables

drawn from some fixed set X; and where the rewrite rules are just any set

R ⊆ TΣ,E(X)2, where TΣ,E(X) denotes the set of E-equivalence classes of

terms defined by equational deduction from E. For a given term t ∈ TΣ(X),

we consider the E-equivalence class of t, [t] ∈ TΣ,E(X), to be defined such

that [t]
def
= {t′ ∈ TΣ(X) | E ` t′ = t}.

Deduction in this variant of rewriting logic establishes sequents of the

form

(Σ, E,R) ` [t] −→ [t′]

from the finite application of the following inference rules:

10

1. reflexivity: for each [t] ∈ TΣ,E(X)

·
[t] −→ [t]

2. congruence: for each n ∈ N and f ∈ Σ of arity n

[t1] −→ [t′1] · · · [tn] −→ [t′n]

[f(t1, . . . , tn)] −→ [f(t′1, . . . , t
′
n)]

3. replacement: for each ([t(x1, . . . , xn)], [t′(x1, . . . , xn)]) ∈ R

[w1] −→ [w′1] · · · [wn] −→ [w′n]

[t(w1, . . . , wn)] −→ [t′(w′1, . . . , w
′
n)]

4. transitivity
[t1] −→ [t2] [t2] −→ [t3]

[t1] −→ [t3]

The model theory of rewriting logic is given by the notion of an R-system

(e.g. see [75]). Again, there is some variation depending on the underlying

equational logic and the form of the rewrite rules. Consider an unsorted,

unconditional rewrite specificationR = (Σ, E,R). AnR-system consists of (1)

a category S, (2) for each n ∈ N and f ∈ Σ of arity n, a functor fS : Sn −→ S,

and (3) for each ([t], [t′]) ∈ R a natural transformation rS : tS ⇒ t′S where

tS , t
′
S are functors defined in the natural, inductive way from the fS functors.

Additionally, the fS functors must satisfy the property that for any equation

t(x1, . . . , xn) = t′(x1, . . . , xn) ∈ E, tS = t′S . The semantics of Maude system

modules are essentially given by the initial R-system corresponding to the

rewrite specification R given by the module.

Detailed accounts of rewriting logic can be found in [74, 75, 11]. For

membership equational logic, see [76]. Reflection in rewriting logic and

a number of equational logics, including membership equational logic, is

addressed in [16, 17]. For details on the Maude rewriting logic language, see

[15] and the explanations below.

11

2.1.2 Maude

Maude [15] is an executable rewriting logic language with an assortment of

built-in automated formal analysis tools, including invariant checking via

breadth-first search [15, Ch. 12] and linear-temporal logic model checking

[15, Ch. 13]. The underlying equational logic used is membership equational

logic [76], and also supported is the use of conditional rewrite rules. The

basic unit of organization within Maude source code is a module, of which

the two main types are functional modules [15, Ch. 4], which correspond to

equational specifications (empty set of rewrite rules), and system modules [15,

Ch. 6], which (typically, though not necessarily) contain a non-empty set of

rules, and therefore correspond to full rewrite theories.

An example functional module that uses quite a few features of Maude

is the following module axiomatizing sets of elements from a space of four

elements.

fmod SET is

sort Elem .

ops a b c d : -> Elem .

sort Set .

subsort Elem < Set .

op empty : -> Set .

op __ : Set Set -> Set [assoc comm id: empty] .

vars X : Elem .

vars XS : Set .

eq X X = X .

endfm

Notice that two sorts have been declared using the keyword sort, Elem,

for elements of the sets that we are defining, and Set, for the sets themselves.

The keyword op or ops introduces new symbols into the signature of the

specification with the number of arguments given and implying appropriately

defined axioms on the domain and co-domain of that symbol to enforce the

12

sort constraints.

Subsorting, which is implied by the use of membership equational logic,

is allowed through the subsort keyword. In this case, we use subsorting

to conflate an element and the singleton set containing that element. The

juxtaposition operator __ is annotated with equational attributes [15, §4.4.1],

which Maude can use to perform rewriting modulo. Our set constructor,

corresponding to set union, is above being declared associative, commutative,

and having as its identity element the empty set, empty. Lastly, we define an

equation corresponding to the idempotency property of sets; equations are

introduced with the keyword eq.

As a result, when the above module is loaded into Maude, it can correctly

deduce that the set {a, d, a, b, a, c} is the same as {a, b, c, d}. To see this, we

can execute the reduce command [15, §4.9] at the interactive prompt:

Maude> reduce a d a b a c .

reduce in SET : a d a b a c .

rewrites: 2 in 0ms cpu (0ms real) (~ rewrites/second)

result Set: a b c d

System modules, unlike functional modules, allow one to use the keyword

rl to introduce rewrite rules. For example, we can extend the above module

in such a way that we allow b to be rewritten to a.

mod GOODBYE-B is

including SET .

rl b => a .

endm

Now, when we reduce the earlier set, we still get the same result, as

reduce does not apply rules.

Maude> reduce a d a b a c .

reduce in GOODBYE-B : a d a b a c .

rewrites: 2 in 0ms cpu (0ms real) (~ rewrites/second)

result Set: a b c d

13

However, using the command rewrite, our newly added rules is applied and

we get the expected result.

rewrite in GOODBYE-B : a d a b a c .

rewrites: 4 in 0ms cpu (0ms real) (~ rewrites/second)

result Set: a c d

Modules, therefore, define rewriting logic specifications, perhaps with an

empty set of rules, which for functional modules, is of course always the case.

These modules are expected to satisfy certain properties in order to guarantee

that they are sufficiently executable within the Maude interpreter and that

soundness is guaranteed from the analyses performed by some of Maude’s

built-in tools. These properties are called admissibility requirements in the

context of Maude. In particular, the equational part of a specification is

typically expected to be confluent and terminating modulo the equational

axioms [15, §4.6], and the rewriting rules should be coherent with respect to

the equations [15, §6.3].

There are a number of built-in and add-on tools to perform formal analysis

of rewriting logic specifications written in Maude. In particular, Maude has

built-in support for breadth-first search [15, Ch. 12] and linear-temporal-logic

model checking [15, Ch. 13]. As a very simple application of Maude’s search

command, we can observe that from the set {b, d} we can reach a set through

rewriting that contains a, but we cannot reach a set that contains c. The first

case comes from executing

Maude> search b d =>* a X:Set .

search in GOODBYE-B : b d =>* a X:Set .

Solution 1 (state 1)

states: 2 rewrites: 1 in 0ms cpu (0ms real)

(~ rewrites/second)

X:Set --> d

No more solutions.

states: 2 rewrites: 1 in 0ms cpu (0ms real)

(~ rewrites/second)

14

And, the second case simply searches for a set with c as an element,

ultimately finding no solution.

Maude> search b d =>* c X:Set .

search in GOODBYE-B : b d =>* c X:Set .

No solution.

states: 2 rewrites: 1 in 0ms cpu (0ms real)

(~ rewrites/second)

2.1.3 Rewriting Logic as an Executable Semantics Definitional
Framework

The idea of the rewriting logic semantics project [77, 19, 78] is to use rewriting

logic as the mathematical foundation for giving formal semantic definitions

to programming languages. This idea has both practical and conceptual

advantages over other frameworks. For example, it unifies denotational and

operational-style semantics in a useful way, and with executable rewriting

logic languages such as Maude [15], it is possible to get an interpreter from

the semantic definition without any additional work, a very practical benefit.

In addition to execution, there are more traditional formal analysis tools that

apply to any language formalized within rewriting logic, and which may be

available to a user once a language is formalized, for example, reachability

analysis to search for failures of invariants is made available, as is LTL model

checking.

Given a programming language L, the semantics of L is given as a rewriting

logic specification RL = (Σ, E,R) where the signature Σ characterizes the

syntax of L, the equations E characterize the deterministic aspects of L, and

the rewrite rules R characterize the concurrent aspects of L. For example, a

simple concurrent language might use rules for every load or store of a variable,

but equations for all other features, such as the processing of if-statements,

sequential composition, and while loops, all of which would not be observable

between threads. In Maude notation, this could be expressed (roughly) as

follows

15

eq eval(if true then S1 else S2, M) = eval(S1, M) .

eq eval(if false then S1 else S2, M) = eval(S2, M) .

eq eval(S1 ; S2, M) = eval(S2, eval(S1, M)) .

rl eval(X := V, M) => M[V / X] .

Conceptually, eval is an evaluation function for a program and a state, where

a state is just a map from variable identifiers to values (M). Note that the first

three lines are equations, i.e. elements of E, whereas the fourth line where we

define what it means to do a variable assignment, is a rule, i.e. an element of

R.

The canonical approach to rewriting logic semantics is given in [77].

Many traditional operational-semantic styles, such as big-step and small-

step structural operational semantics and reduction semantics, can also be

embedded into rewriting logic in an elegant way, as shown in [19]. An extensive

definition of Scheme using the rewriting logic semantics approach can be

found in [20]; many other examples of language definitions are cited in [77].

2.2 Haskell

Haskell is a functional language based on a polymorphic lambda calculus,

noted especially for its non-strict semantics, type classes, purity, and its use

of “monads”. Of course, while it is impossible to provide a comprehensive

overview of the language in this section, we do attempt to impart some of the

syntax as well as a particular aspect of Haskell that vlogml relies on, called

the “state monad”.

In some sense, Haskell is very similar to other contemporary functional

programming languages. A programmer will typically begin by defining some

algebraic data types, for example

data Tree a = LEAF a | BRANCH (Tree a) (Tree a)

defines a polymorphic data type, Tree a, for binary trees. The symbol a is a

type variable, and can be instantiated with any type, for example

BRANCH (LEAF 1) (BRANCH (LEAF 2) (LEAF 3))

represents a value of type Tree Int, since the leaves contain integer values 1

– 3. The tokens LEAF and BRANCH are called constructors.

16

Once a data type is defined, a programmer can write functions that expect

arguments with that type, for example we can write a (polymorphic) function

that determines the height of a tree

height (LEAF _) = 0

height (BRANCH x y) = 1 + max (height x) (height y)

This function uses pattern matching on the constructor symbols to distinguish

the two relevant cases. The “ ” acts as a place holder when we do not need

the argument, such as in this case where we simply need to know that we are

at a leaf node. As usual in functional programming, recursion is used heavily.

Haskell is statically typed and the type of the height function can be

automatically inferred, but one can give a type explicitly if desired, for

example to aid in readability.

height :: Tree a -> Int

height (LEAF _) = 0

height (BRANCH x y) = 1 + max (height x) (height y)

Note that the -> symbol is used to construct function types, in this case

a polymorphic function from the (polymorphic) type representing trees to

the integer type. Haskell uses currying notation, so that a function of two

arguments would be given as

f :: a -> b -> c

The above concepts cover only the very basics, demonstrating the syntax

for introducing new types, defining functions, and the syntax for ascribing a

type to a function. Of course, Haskell has a multitude of other features, as

well as many predefined data types and so forth. The goal is just to provide

some basic familiarity so that when we introduce the concepts crucial in the

implementation or use of vlogml, they are somewhat grounded.

One such concept is Haskell’s “state monad”. It consists of a type and a

set of “monadic” and other operations on that type, and is used to simulate

stateful computations. Let us start with just the type, which is defined as

data State s a = STATE (s -> (a,s))

17

where (,) is the type constructor for pairs. The State type constructor there-

fore takes two arguments, the first one being the type variable s, intuitively

corresponding to state of the computation, and the second one being a, which

will correspond to the result of the computation. The single constructor,

STATE, simply boxes a function of type

s -> (a,s)

That is, a value of type State s a is essentially just a function taking

some initial state to a resulting value and the updated state.

Using Haskell’s “do”-notation, one can write code that appears much like

imperative code. Consider the type State Int Bool, essentially just

Int -> (Bool,Int)

corresponding to a stateful computation whose backing state is a single integer

and which returns a boolean result. To demonstrate the do-notation, let

us write a simple function that first stores a value into the state, say 11,

second, retrieves the value from the state, and third checks whether the value

retrieved is greater than 10, returning true if it is, and false if not. This is

done as

stateGreaterThanTen :: State Int Bool

stateGreaterThanTen = do

put 11

x <- get

return (x > 10)

The do construct effectively says to execute the following statements in

order, one after the other, carrying along the state. The functions put and

get are pre-defined with State, they swap-in a new state and retrieve the

current state, respectively. In addition, the do-notation hides the use of the

“monadic” operations pre-defined with State. These operations ensure that the

sequencing of operations occurs in the expected way. stateGreaterThanTen

is therefore a constant function that returns the value (True,11).

In vlogml, the main data type is a “state monad” of a slightly more

complex variety. The particulars of this data type are described in the

following section, which should also help to further clarify how “stateful”

computations are used in Haskell.

18

Finally, it is important to emphasize that, unlike some other functional

languages, these stateful computations maintain referential transparency.

That is, they obey the expected properties of mathematical functions.

19

CHAPTER 3

RELATED WORK

Broadly speaking, this dissertation makes contributions in two distinct areas,

the first being the functional verification of digital hardware, and second

being the formal specification of the semantics of hardware design languages.

This chapter correspondingly splits related work across a pair of sections, with

Section 3.1 covering related work on functional verification, paying special

attention to the way in which different kinds of languages may be used to

address the verification burden, and with Section 3.2 addressing related work

concerning the semantics of hardware description languages.

3.1 Functional Verification

Perhaps surprisingly, the use of programming language techniques to address

inefficiencies and issues of quality in the functional verification process has

not been extensively investigated within the academic research community.

However, functional verification of hardware as a whole is a well-established

field. Most academic work on functional verification concerns methodology

and algorithmics, for example addressing scalability of formal verification (e.g.

[12]) or automatically generating assertions (e.g. [97]). Industrial players, on

the other hand, have put substantial effort into the design of programming

languages used for functional verification, especially the hardware verification

languages e [39], OpenVera [91], and SystemVerilog [38].

The lack of a “research community” around language-based approaches to

functional verification means that there is no commonly understood narrative

that explains the state of the art. As such, the narrative we present here

represents a rather unique way of characterizing the effect of programming

languages on contemporary functional verification. It centers around a catego-

rization of relevant programming languages into a set of four categories that

20

reflect methodology (simulation versus formal verification), and the extent to

which the language was designed with functional verification as a goal. The

four categories are given according to the primary intended purpose for which

they were designed

1. hardware verification through simulation (e.g. SystemVerilog);

2. hardware verification through formal proof (e.g. reFLect);

3. hardware design (e.g. Verilog);

4. primary usage falls outside the hardware domain (e.g. C++).

Indeed, the lack of a cohesive research community in this area also means

that the language situation is exceptionally complicated with regards to ter-

minology and concepts, and it bears warning that many relevant concepts are

commonly used in an imprecise way; even the notion of language is somewhat

difficult to ascertain exactly. For example, SystemVerilog is discussed below

as a language of class (1) above, while Verilog is discussed as a member of

class (3). At the same time, though, Verilog is a proper sub-language of

SystemVerilog. The distinction we endeavor to make is in the intended use of

the language features that are most closely associated with the language name,

but it should be noted that this intention is based simply on contemporary

usage amongst the loose collection of professional engineers and researchers

who make up the design verification engineering community.

The languages of class (3) predate and led to the development of the

languages of the first two classes, and so we begin with class (3). The two

most most prominent languages that occupy this category are Verilog [36] and

VHDL [37], which are also the two most widely-used design languages. There

are two kinds of effects that design languages have on functional verification:

a direct kind and an indirect kind.

The direct effect is that design languages are often used not only for

design, but also to construct a testbench which will not be synthesized into

hardware. One of the main reasons that design languages are attractive in

this second role is that one avoids any interoperability problems that arise

from having two different languages that need to work together in concert.

A second reason is that designers and verification engineers are often the

same person, and mastering one language is simpler than mastering multiple

21

languages. Both of these are valid and understandable advantages of making

dual use of a design language for verification.

The indirect effect is more subtle but widely understood in the context

of software. Higher-level languages lead to more natural designs and fewer

bugs. As an example, one of the reasons modern programmers often prefer

Java over a language such as C is that the language completely removes

the possibility of certain kinds of memory bugs. In the context of hardware

design, a good, modern example of this is the Bluespec language [8], whose

embrace of high-level programming concepts reduces the verification burden;

for example, through promotion of a richer type system that is statically

checked.

Of course, the main downside of using a design language for verification

purposes is that verification-specific language features are often omitted or

added as an afterthought. In addition, when verification-specific features are

included, an unfortunate side-effect often occurs where an ill-defined subset of

the language becomes synthesizable into hardware, and many legal programs

are rejected by synthesis tools. This can cause confusion and may not even be

consistent across synthesis tools. Indeed, one often hears engineers speak of a

“synthesizable subset” of Verilog, which has exactly those problems mentioned.

Let us now return to class (1) and class (2) languages. The need for

verification-specific language features, separate from those used for design,

led to the development of class (1) languages. This class consists primarily of

the hardware verification languages e [39], OpenVera [91], and SystemVerilog

[38].

SystemVerilog was largely based on OpenVera, and so the two languages

share essential language features related to functional verification. In particu-

lar, the two languages add support for general-purpose programming concepts

which, unlike design-oriented languages, are not meant to be synthesized and

only run during simulation. The most apparent example is object-oriented

programming, which is seen to increase productivity and correctness when de-

veloping verification code. In addition, these languages add several important

features highly tailored for functional verification, including built-in support

for constrained-randoms, functional coverage, and assertions.

The other hardware verification language mentioned, e, has a reputation

as a very thoughtfully developed language for verification purposes, and

is especially noted for its inclusion of aspect-oriented programming [58] to

22

allow for different testing scenarios to be pieced together easily. Indeed,

OpenVera subsequently was extended with aspects, due to their success in e.

e also supports object-oriented programming, constrained-randoms, functional

coverage, and assertions.

Compared to fvml, the language for functional verification developed in

this dissertation, the existing class (1) languages just described are markedly

different. Conceptually, all treat a testbench as an environment in which the

device under test operates, rather than as a programmatic way of orchestrating

multiple simulations; that is, none consider simulation as a first-class concept.

In addition, none allows for the use of symbolic simulation during testing.

As far as we are aware, the only language whose primary intended purpose

falls into class (2) is one used internally by Intel and based around the reFLect

language described in [32]. reFLect augments the λ-calculus with a quote/anti-

quote mechanism to get, as its name suggests, reflection capabilities. The

emphasis on reflection in the language suggests the possibility of simulation

as a first-class notion, and so at first glance may appear to duplicate our

offering.

The two languages are, however, entirely different, with the difference being

in intended use. The intended use of reFLect has always been formal verification

of hardware using theorem proving techniques, and mostly uses reflection to get

a first-class representation of the device for reasoning purposes. Our language,

on the other hand, looks to investigate the usefulness of combining a first-class

notion of simulation (which is not the same as the device being simulated)

with declarative programming and automated constraint solving as a way to

enhance contemporary simulation-based methodology, as opposed to targeting

a formal verification regime. Therefore, we do not claim that our contribution

is the first to think of employing meta-level ideas in the context of hardware

verification. What we do claim is that it is the first to conceptualize and

investigate the utility of the idea of providing simulation as a first-class notion

at the language-level, a meta-level idea, as a way to improve the productivity

and quality of simulation-based functional verification engineering efforts.

That said, it is worth noting that reFLect could have been used as a

framework for testing the ideas we have set forth. We could have embedded

vlogml into reFLect instead of Haskell, for example, or given our formal

definition of fvml within the framework described in [32], instead of as we

did, using rewriting logic. These would have been legitimate choices, and [32]

23

does indeed provide an elegant framework, but would have been subject of

course to some trade-offs. In particular, the semantic framework capabilities

of rewriting logic are crucial to the parametric character of our language

formalization (see Chapter 4).

As a final note regarding class (2) languages, we should mention ACL2

[54], although it does not fit into this class especially well because it was not

designed with the express purpose of being used for hardware verification.

As we noted above, though, the situation with related work in the area does

not lend itself well to rigid interpretation. Be that as it may, ACL2 has been

used extensively to prove parts of microprocessors correct, most notably at

AMD [89]. Again, this is quite different from our offering, which emphasizes

simulation-based verification.

Class (4) languages commonly include C++ [40] and Python [87], among

other general-purpose programming languages. The use of these languages is

sensible for a variety of reasons, especially in the development of checking pro-

grams that are specialized to assess the correctness of a device’s output, which

varies wildly from from device to device and is often most easily expressed

in general-purpose programming languages. Of course, these languages are

less useful for generating stimuli and monitoring coverage than the hardware

verification languages, and compared to fvml they do not provide any specific

help in the orchestration of multiple simulations.

The above languages are the most relevant work related to fvml. Of course,

a vast array of additional work related to many different aspects of functional

verification has also been done, and is relevant insofar as these works endeavor

toward the same high-level goal: to ease the burden of functional verification

and produce devices with fewer bugs. They are different from our work in

that they address some aspect of functional verification other than the general

problem of designing a language for simulation-based testbench development;

although, in some cases there are interesting implications pertaining to our

particular problem. We mention a few in the remainder of this section, just

to give a flavor of some of the areas that have been researched.

Intel has developed their own formal verification environment [44, 32]

that is used as part of the overall functional verification process. AMD does

something similar using ACL2 [89]. Synopsys sells an automatic property

checking (and stimuli generation) tool called Magellan [34, 93, 92], whose

underlying ideas are also used in non-hardware contexts [63]. Private com-

24

panies such as Jasper Design Automation sell formal verification tools, and

formal-methods-based tools, although detailed information about such pro-

prietary tools is obviously quite limited. Substantial work on the generation

of random stimuli (e.g. [61, 1]), equivalence checking (e.g. [86, 13]), coverage

metrics (e.g. [14]), automatic assertion generation (e.g. [97]), and reuse exist.

We also mention the work of [59, 60] which was an early debugging tool that

allowed user control over symbolic simulation, though it was not designed

for use in hardware verification and was interactive, rather than controlled

through the use of a meta-level programming interface.

3.2 Rewriting Logic Semantics

The rewriting logic semantics project, including its goals, ideas, and accom-

plishments, is reviewed in detail in three papers [77, 19, 78]. The essential

idea of the project is to define programming languages, process calculi, and

the like in a mathematically rigorous and unambiguous way, and to develop

language-agnostic analysis tools. These ideas come out in various ways in

this dissertation; for example, to check deadlock of BTRS programs. The re-

mainder of this subsection reviews related work regarding the three hardware

description languages that we have formalized as part of this dissertation.

Regarding Verilog, in [28], Michael Gordon presents a formal semantics

for a simplified version of Verilog called V. V does not deal with many

of the features of Verilog that our definition does (such as value sizing).

Additionally, it uses new terminology rather than that of the standard. While

the syntax described in the paper is formal, the semantics, as presented, is

primarily in English language form. Additionally, the semantics presented is

not executable, making it more difficult to ask questions about what output

a given program should produce.

Gordon Pace and Jifeng He present a brief formal semantics of Verilog

in [84]. While completely formal, the definition they present does not cover

several major features of Verilog, such as non-blocking assignments or handling

the intricacies of bitvectors. Additionally, their semantics is not executable.

In [90], Hisashi Sasaki presents a semantics for Verilog in terms of abstract

state machines. Executability of the definition is not discussed, and it does

not capture the inherent nondeterminism of Verilog, which we feel is one of

25

the most important issues to understanding Verilog.

In [105], Huibiao Zhu, Jifeng He, and Jonathan Bowen present an algebraic

semantics of Verilog, which they use to derive a denotational semantics. Their

semantics cover a smaller subset of the language than He’s earlier work in [84]:

not even net assignments are covered.

Of the definitions that we have found, ours covers the largest number

of constructs in the Verilog language, including importantly its inherent

nondeterminism. Our definition is also far from complete; for example we do

not define the semantics of tasks. However, we believe that our semantics is

the most complete to-date and covers many of the most widely used language

features. Additionally, to the best of our knowledge only our semantics is

executable, allowing for experimentation with Verilog programs.

The work on production rule sets covers two somewhat separate topics

and therefore the related work falls into two distinct categories: the semantics

of production rule sets, as a topic of interest in its own right, and the formal

verification of asynchronous digital circuits, specifically hazard freedom.

The first topic is the semantics of production rule sets. Of course, the

current work improves upon our own earlier efforts in [55, 47]. The current

efforts, including both the mathematical and the rewriting logic styles, provide

a cleaner and simpler presentation of the delay-insensitive case. To the best

of our knowledge, no other works have presented semantic issues as an end

in and of themselves, but rather simply in support of some other goal, such

as Martin’s synthesis method [65, 67]. However, we believe that a clear and

rigorous semantic reference is itself an important goal, and ultimately can

reduce fragmentation and misunderstanding when undertaking problems that

rely on having a semantics.

Martin has also used his semantics in an auxiliary way to prove that the

scope of possible circuits under delay-insensitivity is limited [66] and that

quasi delay-insensitive circuits are Turing-complete [64]. The semantics from

[65, 67] was also examined in [85] in order to clarify the relationship between

production rule sets and corresponding physical circuit implementations. We

have also used an earlier version of the semantics to prove properties about

the relationship of devices under different timing assumptions [55].

The second topic addressed is formal verification of asynchronous circuits,

in particular verifying hazard freedom and deadlock freedom. Our work seems

to be the first that attempts to use the formal executable semantics approach

26

(modulo our work in [47], on which the current work is based). It is also

the only work that we know of that provides an extensive formal verification

platform for asynchronous circuits designed using production rule sets, which

we get via Maude’s built in tools, including a full LTL model checker.

Regarding hazard freedom, it is known that (proprietary) tools based

on Monte Carlo methods exist and are used in practice. In addition, we

know of a few other works that attempt to exhaustively prove the absence of

hazards in asynchronous circuits (though not necessarily designed directly for

production rule sets).

The methods developed in [4] use two versions of the circuit; one high-

level and one low-level. Both designs are given as specialized automata,

and while a full enumeration of the reachable state space in the high-level

design is necessary, a careful analysis shows how to avoid doing the same

for the low-level design. This yields a more efficient analysis of hazard free

operation, since the high-level design has a smaller state space than the more

detailed, low-level design. [96] uses the modern program analysis technique

of abstract interpretation to reason about hazards in asynchronous circuits.

[102] uses a standard symbolic model checker to verify hazard free operation

of speed-independent circuits, and an older tool called prlint [18] purports

to exhaustively check hazard free operation of a production rule set. prlint

is no longer easily available, and we were unable to acquire a version capable

of running on a modern Linux workstation.

A class of Petri nets, called signal transition graphs (STGs), can be used

to model certain aspects of asynchronous circuits [57], and a number of works,

e.g. [80, 12, 88, 103, 104] propose methods of model checking these Petri net

specifications. Certain high-level properties such as liveness and fairness can

be verified in this way, but the STG specification does not expose low-level

circuit properties like the timing of forks.

Regarding the Bluespec semantics, our work is based on a previous,

structural-operational semantics (SOS), given in [21].

27

CHAPTER 4

FORMALIZATION

This chapter presents a formalization of two things: a problem, the high-

level problem addressed in this dissertation, and a proposed solution to that

problem, which constitutes the main contribution of this dissertation. More

specifically, we formalize two notions:

1. verification closure, expressed here in a simplified fashion as the problem

of generating a set of simulation traces satisfying a collection of coverage

goals.

2. meta-language for functional verification, fvml, which we see as an

effective mechanism for attaining verification closure.

Both of the above items will be formalized within the mathematical framework

of rewriting logic [74, 75, 10], which provides two important benefits. First,

it will allow the meta-language to be parameterized over a hardware design

language, and thereby made generic with respect to the language chosen to

implement the device-under-test. Second, it allows us to structure our meta-

language as an embedded domain-specific language, where general purpose

programming features are had through rewriting logic itself.

4.1 Overview

Our formalization effort involves four separate rewriting logic specifications,

(1) RHDL (2) RMETA (3) RIR (4) RSTRAT

organized according to the relationships depicted in Figure 4.1, wherein R̄HDL

denotes a suitable meta-representation of RHDL as an object-level term, as

28

RSTRAT

RIR

RMETA[R̄HDL]

RHDL

Figure 4.1: Structure of RHDL, RMETA, RIR, and RSTRAT .

described in detail below in Section 4.6. The first three specifications

(1) RHDL (2) RMETA (3) RIR

are provided to the user and together comprise the domain-specific part of

fvml. The new language features, which consist of four “inference rules”, are

exported through RIR. RHDL and RMETA are mostly hidden from the user,

but are essential to formalize the semantics of the operations provided by RIR.

RHDL is a rewriting logic semantics for the hardware description language

used to implement the device-under-test, and RMETA is used to represent

rewriting logic proofs, a meta-level concept, at the object level. Together

RHDL and RMETA allow us to consider and manipulate an appropriate notion

of device simulation as a first-class concept in our meta-language.

The fourth specification

(4) RSTRAT

is created by the user and constitutes a program that has been written in our

meta-language, fvml. RSTRAT employs the domain-specific features of RIR,

as well as the general-purpose programming facilities of rewriting logic, to

construct a program, or “strategy”, in the fvml language that exercises the

device-under-test.

29

The essential point to understand is that the general-purpose programming

facilities of rewriting logic are added to the domain-specific operations provided

by RIR, including RHDL and RMETA, to form our embedded domain-specific

language fvml. That is, roughly speaking:

fvml
def
= [[(1) RHDL (2) RMETA (3) RIR] + [rewriting logic]]

And, additionally, it is crucial to note that RSTRAT is just a program written

in fvml. Each of the four specifications, RHDL, RMETA, RIR, and RSTRAT ,

as well as their respective purpose and structure, is detailed in subsequent

sections.

4.2 Parameterization

A crucial assumption we make in our formalization is the existence of a suit-

able RHDL, which is taken to be a rewriting logic semantics of a programming

language used to implement digital hardware, also called a hardware descrip-

tion language. The advantage of structuring our meta-language formalization

this way is that RHDL becomes a parameter of it, and thereby fvml is made

applicable to any digital circuit designed in a programming language that

can be formalized within rewriting logic. If we are interested in using our

meta-language to exercise, for example, an Ethernet MAC designed in Verilog,

then the assumption is that we possess an RHDL formalizing the semantics of

Verilog; fvml itself does not need to be changed to accommodate Verilog.

Substantial evidence exists which validates this RHDL assumption. This

dissertation, in particular, provides rewriting logic semantics for three lan-

guages used to design digital hardware in Chapters 8 – 10. Many other

programming languages, covering a range of paradigms, have been formalized

in this way, including substantial portions of Java [26], Scheme [71], and

C [24], just to name three. [77, 19, 78] provide comprehensive accounts of

work contributing to this project, appropriately called “the rewriting logic

semantics project”.

30

4.3 Analogy

An analogy with theorem proving is helpful to understand the meta-language

and the arrangement of the rewriting logic specifications depicted in Figure

4.1. The source of the analogy is the combination of ML+LCF [29]. ML was

originally conceived as a meta-language for orchestrating proof-construction in

LCF while searching for a particular proof of interest. It acknowledged a very

similar problem to what we view as a serious hindrance to simulation-based

verification: that to effectively investigate the search space, in one case proofs

and in the other simulations, one needs a programmatic way to generate and

interrogate the items in that search space as first-class objects. The various

relationships with our meta-language are summarized in Table 4.2; D denotes

a device, and Q denotes a set of coverage goals. For readers not intimately

familiar with the construction of that theorem proving system, it may be best

to quickly read through the LCF analogy and then return to it for a second

reading after going through the content in the remainder of this chapter.

ML+LCF fvml

LCF ⇐⇒ RIR (and RMETA) (1)
ML ⇐⇒ rewriting logic (2)

Γ ` ϕ ⇐⇒ RHDL and D,Q (3)
Γ ⇐⇒ RHDL (4)
ϕ ⇐⇒ D,Q (5)

Tactic ⇐⇒ RSTRAT (6)
...

...
.

Γ ` ϕ
⇐⇒ {RHDL ` sD,0 −→ s′j}j<m (7)

Figure 4.2: Analogy between ML+LCF and fvml.

The following describes the relationships, as marked in the above table,

in more detail:

1. the core inference rules provided by LCF are analogous to the simulation-

generating rules of RIR;

2. as an embedded language, the general-purpose programming facilities

of ML are analogous to those inherited from rewriting logic in fvml;

3. the target judgment for theorem proving is best considered, for the

purposes of the analogy, in terms of its components;

31

4. RHDL can be seen as a set of axioms from which reasoning takes place;

5. The goal of the reasoning in fvml is to witness to a particular set of

coverage goals, Q, with respect to a device, D;

6. in order to attain this goal, a user writes a program, or tactic;

7. the eventual result of the enterprise, upon success, is a witness of the

goal: a proof in the case of ML+LCF, and a set of simulation traces

covering Q in the case of fvml (sD,0 denotes the initial state of the

device, and s′j some future state).

Consider wanting to prove a theorem about group theory in LCF for

example, that

ΓGROUP ` x · 1 = x

The first thing that we need is ΓGROUP , an axiomatization of group theory.

This set of axioms naturally corresponds to RHDL; it is just that the theorems

that follow from RHDL can be viewed as simulations. LCF must ensure that

any deductions used to arrive at x · 1 = x are sound, which is accomplished

by only allowing proofs to be generated through the core set of inference rules

provided by the LCF prover interface; in fvml the corresponding deduction

rules are given byRIR. Finally, RSTRAT corresponds to the user’s ML program,

which is simply an attempt by the user to program a strategy to find a proof

of ΓGROUP ` x · 1 = x. RMETA does not have a particularly natural analogue

within the theorem proving context, though it roughly corresponds to the

data-types used to represent proofs.

In the remainder of this chapter, we first formalize the verification closure

problem using concepts from rewriting logic. With this formalization in

mind, our meta-language for functional verification is developed in such

a way that it clearly addresses verification problems of that type. The

formalization of the meta-language is split into subsections, one for each of

the four rewriting logic specifications noted above. Finally, we provide a

simple example demonstrating a program in this language and at the rewriting

logic level, using the syntax of Maude.

32

4.4 RHDL

RHDL denotes a rewriting logic specification capturing the semantics of a

programming language suitable for digital hardware design. The main purpose

of it within our meta-language formalization is to provide a straightforward

way to speak about simulation traces. Both of our formalization problems ask

questions about simulation traces: does a particular trace satisfy a coverage

goal? what strategy should be used to generate simulation traces? In the

theorem proving analogy, RHDL is Γ, the set of axioms from which judgments

Γ ` ϕ are established.

The existence of RHDL is a crucial assumption made by our formalization

effort. This assumptions allows the meta-language to be made generic in the

sense that it is applicable to any hardware device, so long as that device is

designed in a language that can be formalized in rewriting logic; and we have

yet to come across one that is not amenable to formalization in rewriting

logic. Some familiar examples of languages that have been given (sometimes

partial) semantics using rewriting logic include Verilog, Production Rule Sets,

and Bluespec. Chapters 8 – 10 develop corresponding RHDL’s for portions of

these three hardware description languages.

A small set of concrete capabilities are assumed to be provided by RHDL.

These capabilities are needed for the formalization of the meta-language as

well as the formalization of the simulation-based verification problem we aim

to help address with it, and are specified in this section.

Definition 4.4.1 (RHDL). In addition to being a rewriting logic semantics

for an appropriate hardware design language, we assume that RHDL comes

endowed with the following:

• Config : a sort used to denote terms capturing an entire program con-

figuration, everything needed to continue with simulation.

• Input : a sort used to denote terms that capture the notion of an input

stimulus.

• inputOf : Config −→ Input : an equationally-defined operator assumed

to yield the remaining pool of input stimuli from a given configuration.

33

We will often speak of a device, which is simply used to mean a program

given in the language formalized by RHDL. Additionally, we will assume

that to each device we can associate an initial configuration. This initial

configuration serves as the term from which RHDL judgments are derived;

and, through these judgments, we obtain a suitable notion of simulation, as

detailed in Section 4.5 below.

Definition 4.4.2 (cD,0). Let D be a device and X a set of variables, denu-

merable for each sort in RHDL. By

cD,0 ∈ TRHDL,Config(X),

we denote a symbolic term with variables in X giving the initial configuration

of D. If we want to distinguish the remaining input pool of cD,0, we write

cD,0[i], where i ∈ TRHDL,Input(X) is the result of applying inputOf to cD,0. If

D is understood, it can be omitted, as in c0 or c0[i].

4.5 Problem

Utilizing a rewriting logic specification RHDL of the kind described above in

Section 4.4, this section defines a precise, albeit oversimplified, notion of the

verification closure problem, the problem that our meta-language, fvml, aims

to address. The purpose is simply to provide a suitable frame of reference

to understand the kind of goal that programs in our meta-language strive to

attain.

To begin with, we require a formal definition of single-step rewriting,

from which we obtain our definition of simulation. This notion is the central

concept our meta-language is concerned with.

Definition 4.5.1 (−→1
R). LetR be a rewriting logic specification. Associated

to R is a binary relation, the single-step rewrite relation

−→1
R⊆ TR(X)2,

defined such that for any t, t′ ∈ TR(X), (t, t′) ∈−→1
R if and only if there

exists a derivation of R ` t −→ t′ with exactly one use of the inference rule

“replacement” [74]. It is well-known that a general derivation of a rewrite

34

proof can always be represented as a sequential composition of single-step

rewrites [74]. To denote that (t, t′) ∈−→1
R, we often write

t −→1
R t
′.

Definition 4.5.2 (Simulation). Let D be a device. A simulation, or simu-

lation trace, of D is a finite sequence of configurations (cD,0[i], . . . , cm−1) ∈
TRHDL,Config(X) such that for all 0 ≤ j < m− 1, cj −→1

RHDL
cj+1.

Our notion of verification closure requires that a set of simulations be

generated covering a set of predicates on simulations. These predicates are

considered only in the abstract and are taken to be “coverage goals”. Standard

notions of functional coverage, such as state and transition coverage, will

usually be easy to formulate. Coverage metrics that are more syntax-oriented,

such as statement coverage, could be more difficult.

Definition 4.5.3. Let D be a device. A coverage goal of D is a predicate on

the set of simulations of D.

Definition 4.5.4. Let D be a device and Q a set of coverage goals of D. A

finite set, S, of simulations, where each simulation s ∈ S is of the form:

cD,0[i], . . . , cm−1

with i an input stimulus and m ≥ 0 the length of the simulation, is a D,Q-

cover if and only if for each goal Q ∈ Q, there exists a s ∈ S such that Q(s)

holds.

4.6 RMETA

RMETA provides the basic capabilities needed to generate, as object-level terms,

simulation traces. As was described above in Section 4.5, simulation of a

hardware device can be viewed as a sequence of single-step rewrites, defined

according to the relation −→1
RHDL

. And this relation is, in turn, defined

in terms of the proofs derivable from RHDL. A potential problem arises in

that a suitable formal framework in which we can manipulate −→1
RHDL

, a

35

meta-logical notion of rewriting logic, is needed at the object level ; RMETA

provides a solution to that problem.

RMETA effectively captures parts of the meta-theory of rewriting logic

through reflection to the object level [16, 17]. It may be suitably defined in a

variety of ways, and we do not fix one here; any reasonable definition should

provide enough functionality to satisfy our needs. As a concrete example, we

consider taking Maude’s META-LEVEL module [15, §14], which contains a rich

collection of meta-level functions for rewriting logic, as our RMETA.

In particular, META-LEVEL provides enough functionality so that −→1
RHDL

can easily be used to generate simulation traces. A sort Module is included

that may be used to meta-represent RHDL as an object-level term denoted

R̄RTL, and similarly a sort Term is available that may be used to meta-

represent, for a device D, cD,0 as object-level term, ¯cD,0. META-LEVEL also

provides an operation

metaRewrite : Module Term Bound ~> ResultPair

such that the term metaRewrite(R̄RTL, ¯cD,0,1), when the partial operation

is successful, is equal to a pair (c̄′, ·) whose first component is the meta-

representation of a term, c′, of sort Config that is reachable in one step of

rewriting from cD,0; that is, which is guaranteed to satisfy

cD,0 −→1
RHDL

c′

4.7 RIR

RIR provides a small set of simple operations from which complex testing

programs in our meta-language, fvml, are created. Our running analogy

equates RIR to LCF, both of which provide a small set of “inference rules”

from which their respective artifacts of interest are generated. In the case of

LCF, these are formal proofs, whereas in RIR the rules are used to manage

the generation of simulations; though, within our formalization, rewriting

logic proofs and simulation are of course one and the same.

RIR is parameterized by a rewriting logic semantics, RHDL, of a program-

ming language used to design hardware and which is of the form specified in

36

Section 4.4. RHDL and RMETA are then included as part of RIR, and R̄RTL is

an object-level term defined equal to a constant. Together, these are used to

define a set of terms corresponding to simulations.

Definition 4.7.1. RIR defines a sort Simulation. A term of sort Simulation

is a non-empty list of terms of sort Config , axiomatized in the usual way with

an associative binary append constructor (e.g. see [15, §9.12.1]). The inference

rules of RIR, defined below, generate terms of sort Simulation, where it is

guaranteed that each adjacent pair of elements is related by −→1
RHDL

; this may

also be enforced at the sort level, through membership axioms, if desired.

A term of sort Simulation is variously denoted in the following ways:

• As an indexed list of configurations, for example,

c0, . . . , cm−1

where for all 0 ≤ j < m, cj ∈ TRHDL,Config(X). Although not explicitly

enforced at the sort level, it will always be the case that cj −→1
RHDL

cj+1

in the simulations we construct.

• A more stylized version with an arrow, , which is indicative of change.

This arrow distinguishes only configurations of interest, as in

c0 cm−1 or c0 c′ cm−1,

so that, unlike the first notation, no ellipsis is used;

• A second stylized version, similar to the above version, but where both

the endpoints and input stimulus are distinguished; as in

c0
i
 cm−1

with i ∈ TRHDL,Input(X) and c0 assumed to be of the form c0[i].

Each of the core operations provided through RIR’s interface yields a

term of sort Simulation. Four operators are provided: identity, substitution,

advance simulation, and transitivity. Below, each operation is given an

associated “inference rule”, which it operates in accordance with. For the

37

most part, premises correspond with inputs, and conclusions correspond with

the operation’s output.

The “substitution” rule requires a sort, which will be denoted Subst , for

terms that will represent substitutions. We assume that this sort characterizes

mappings from (sorted) variables to terms of an appropriate sort; or rather,

an appropriate object-level meta-representation of these concepts. The pa-

rameterized MAP module in Maude [15, §9.13] can be used for this purpose,

for example.

Definition 4.7.2. RIR provides an interface defined by the following opera-

tions:

1. ruleI : Config −→ Simulation: given a configuration, ruleI produces an

identity simulation according to the following rule:

·
c c

2. ruleS : Simulation × Subst −→ Simulation: given a simulation and a

substitution, produces a new substituted simulation, with variables

instantiated according to the substitution:

c
i
 c′ ρ : X −→ TRHDL

(X)

ρ(c)
ρ(i)
 ρ(c′)

3. ruleA : Simulation −→ Simulation: given a simulation, extends it by

one simulation “step” through rewriting (the implementation of ruleA

requires the use of RMETA, the second premise, which, in this case, does

not correspond to an argument of ruleA):

c c′ c′ −→1
RHDL

c′′

c c′′

4. ruleT : Simulation × Simulation ⇀ Simulation: given two compatible

simulations, the two are composed by transitivity:

c c′ c′ c′′

c c′′

38

4.8 RSTRAT

RSTRAT differs from the above rewriting logic specifications in that it is not

really part of the meta-language itself. It is analogous to an ML program that

programmatically works through some portion of the space of proofs searching

for one establishing, for example, the group theory theorem x · 1 = x. In

the case of RSTRAT , instead of using the inference rules of LCF to generate a

proof, the rules of RIR are used to coordinate the generation of simulation

traces toward verification closure; that is, toward covering a set of coverage

goals.

4.9 Example

1 fmod CHECK-GOAL is

2 protecting R-IR .

3 --- auxiliary sorts, ops, meta-variables, etc. omitted

4
5 sort Goal .

6
7 op check-goal : Goal Simulation -> Bool .

8 eq check-goal(GOAL, SIM) = ...

9
10 endfm

Figure 4.3: Some Auxiliary Infrastructure for the Example in Figure 4.4.

The purpose of this section is to demonstrate what is essentially the most

basic program one can construct using fvml, a sort of “Hello World!”. In

the context of functional verification, perhaps the most simple program one

would want to construct is a program that performs directed testing, where

a device, a concrete input stimulus, and testing goal are given and used to

generate a simulation that is then checked against the testing goal.

One implementation of directed testing in fvml is shown in Figure 4.4, with

some auxiliary functionality provided by another module shown in Figure 4.3,

both of which use the syntax of Maude. In order to emphasize the essential

39

1 fmod R-STRAT is

2 protecting R-IR .

3 protecting CHECK-GOAL .

4
5 --- auxiliary sorts, ops, meta-variables, etc. omitted

6
7 op directed-test : Config Input Goal -> Bool .

8 eq directed-test(C0, INPUT, GOAL) =

9 check-goal(GOAL, full-simulation(C0[INPUT])) .

10
11 op full-simulation : Simulation -> Simulation

12 eq full-simulation(SIM :: C) =

13 if inputOf(C) == nil

14 then SIM :: C

15 else full-simulation(ruleA(SIM :: C)) fi .

16
17 endfm

Figure 4.4: A Directed Testing Strategy.

ideas, some sorts, operators, meta-variables and so forth are not spelled out

in detail; however, any construct whose intent is not immediately clear from

context is explained.

Directed testing essentially requires that we have two pieces of functionality:

(1) the ability to generate a simulation from a given device implementation and

input stimulus, and (2) some means through which the simulation is assessed

within the overall verification plan, such as its contribution to functional

coverage goals or success or failure against assertions. fvml does not take a

position regarding (2) and leaves it to the user to construct using the general-

purpose programming facilities provided by our embedded language. However,

as a language whose intent is to orchestrate the generation of simulations, it

makes (1) straightforward.

Figure 4.3 indicates the functionality corresponding to (2) above. We

assume in this example that the user has provided an appropriate set of

terms (the sort Goal) corresponding to criteria against which simulations are

assessed, as well as a function, check-goal, that is able ascertain whether

or not a simulation satisfies some property from this space. Of course, more

40

complex mechanisms of assessing simulations might be more appropriate in

practice, for example, ones that return more elaborate results than simple

booleans.

Figure 4.4 implements the functionality corresponding to (1) above, namely

the part that generates a simulation from a device and an input stimulus.

The exact structure of a configuration and an input stimulus is, as described

above in Section 4.4, defined by RHDL. The equationally-defined function

full-simulation simply takes the initial configuration and input stimulus

and recursively applies the fvml operation ruleA (here denoted ruleA), until

the input stimulus is exhausted. To do this, we assume that the list constructor

for simulations is the Maude operator _::_, that Config is a sub-sort of

Simulation, and that the formalization RHDL of the hardware description

language in which the device was built has an operator, nil, representing

an empty stimulus. nil is used as the terminating case for the recursion

and marks that the simulation should end. Finally, the top-level function

directed-test aggregates the two parts, first generating a simulation and

then using the functionality of the CHECK-GOAL module to summarize the

result.

In addition to demonstrating the construction of the most basic fvml

program possible, the example in this section emphasizes that while fvml

takes a clear position on the conception of simulation-based verification as an

activity that revolves around the orchestrated generation of simulations, it

takes no position on the exact manner in which the generated simulations are

assessed during the verification process. Appropriately, therefore, it provides

for that aspect of the process the general-purpose programming language

facilities of the language into which fvml is embedded.

41

CHAPTER 5

IMPLEMENTATION ARCHITECTURE

This chapter describes the architecture of an embedded domain-specfic lan-

guage in Haskell for a concrete realization of our meta-language, fvml, defined

in the previous chapter. This architecture is, in addition, specialized for the

Verilog hardware description language, though many of the pieces would

apply to other design languages. Our current implementation, vlogml, which

largely follows this architecture, is open source and available at [46].

By using the term “architecture”, our intention is to make a distinction

between what is presented here and the source code that comprises our

current implementation and which can actually be compiled and executed on

a computer [46]; though, we refer to both using the name vlogml. The reason

for this is to be able to focus on the more interesting conceptual aspects of an

implementation without becoming mired in ancillary implementation detail,

and also to take some other liberties where appropriate so that ideas can be

conveyed as clearly as possible. Without this distinction, we find it easy to

miss the forest for the trees, so to speak. Of course, the reader is invited to

consult the source code at any time [46].

vlogml is defined as an embedded domain-specific language in Haskell.

This means that the domain-specific functionality of our meta-language

formalized in Chapter 4 is implemented within Haskell as a set of data types

and functions, and that as a result we also gain seamless use of Haskell’s

general-purpose programming facilities, which together yield the full-fledged

language. As for any programming language, our expectation regarding

vlogml is that it will provide a strong foundation upon which additional, rich

functionality can be built and distributed. For example, one might envision

a library targeting constrained-random simulation, providing functionality

to support that paradigm; for example, providing a language of constraints,

the necessary solver technology to generate random values that respect the

constraint language, and so forth. Note that distributing such functionality

42

as a library, as opposed to becoming directly part of the language syntax and

semantics, is a substantial difference between our language and a language

such as SystemVerilog.

The remainder of this chapter is organized as follows.

• Section 5.1 outlines the main components of the topmost vlogml module,

called VlogMetaLang, which must be imported to create a vlogml

testbench program.

• Section 5.2 defines a “skeleton” testbench program that we will assume

thought the vlogml examples given in this dissertation and which

imports VlogMetaLang.

• Sections 5.3 – 5.6 provide additional details about the vlogml architec-

ture, broken down into a set of Haskell modules that capture different

conceptual pieces of vlogml. The correspondence of these modules with

fvml is emphasized.

• Sections 5.7 and 5.8 describe two modules that are outside of the vlogml

core, yet build on it to provide a richer experience. Section 5.7 adds

monadic “strategy” functionality and Section 5.8 integrates an SMT

solver.

• Section 5.9 provides a concrete example testbench in vlogml which

relies on the functionality made availabel by our architecture.

The complete source code of vlogml is freely available [46] and distributed

under the terms of the GNU General Public License, version 3 (GPLv3). As

we noted above, liberties have been taken in this chapter to aid in conveying

the essential concepts and ideas of an implementation, leading to some

mismatching between what is presented here and that source code.

5.1 VlogMetaLang

VlogMetaLang exports a core set of data types and functions, essentially cor-

responding to the functionality provided by the RIR part of the formalization

(see Section 4.7), and the necessary parts of RHDL and RMETA (sections 4.4

and 4.6), specialized of course for the Verilog case. In particular, a data

43

module VlogMetaLang.Syntax

module VlogMetaLang.Data

module VlogMetaLang.Util

module VlogMetaLang.Core

Figure 5.1: VlogMetaLang Interface.

type representing simulation of Verilog devices is provided, as are functions

to manipulate values of this type by advancing (symbolic) simulation, or

querying the waveform history of the simulation, and so forth. From these

core operations and data types, we expect that users will build-out richer func-

tionality, such as adding the ability to resolve symbolic contexts to concrete

values (see Section 5.8).

The functionality of VlogMetaLang is partitioned across four sub-modules,

as shown in Figure 5.1, the details of which are described in Sections 5.4 – 5.3

next; VlogMetaLang simply does aggregation. Briefly, the purpose of each

module is as follows.

• VlogMetaLang.Syntax: This module contains data types representing

various aspects of Verilog syntax, such as expressions and statements,

and provides helpful functions aiding in the construction of these values.

• VlogMetaLang.Data: This module exports additional data type dec-

larations that are essential for vlogml, in particular its (first-class)

notion of simulation, but also other important data types, such as those

repsenting input stimuli.

• VlogMetaLang.Util: This module exports useful utility functions op-

erating on the data types defined in VlogMetaLang.Data. For example,

one function that is provided yields the waveform history from a simu-

lation.

• VlogMetaLang.Core: This module exports three functions, representing

the core vlogml language features and are used to generate simulations.

These functions correspond to the operations ruleI , ruleS, and ruleA

from RIR.

44

5.2 Skeleton

1 import VlogMetaLang

2
3 main :: IO ()

4 main = reportResult =<< strategy =<< start dutrc

Figure 5.2: Skeleton Testbench.

This section describes a vlogml program “skeleton” that will provide

appropriate scaffolding for future vlogml example programs. It imports the

module VlogMetaLang from the previous section to gain access to the core

vlogml data types and functions. Assuming this skeleton program will be

useful because it captures the portion of a vlogml program that will remain

constant throughout our examples. It is displayed in Figure 5.2.

As shown in the figure, the skeleton program includes VlogMetaLang

and is constructed as the monadic composition of three operations. The

compositionality is made apparent by considering the types of each of these

operations, which are

start :: DeviceRC -> IO Simulation

strategy :: Simulation -> IO a

reportResult :: a -> IO ()

strategy and reportResult contain a type variable a that may be in-

stantiated with any concrete type, but must be instantiated to the same

type for both functions so that the composition produces a result that is

well-typed.

The intended purpose of each of the composed functions is as follows:

• start: takes as an argument a value of type DeviceRC that contains

essential configuration information needed for bootstrapping and essen-

tially returns a value of type Simulation representing the initial state

of the device, which is an “empty” simulation. This operation requires

the use of I/O.

45

• strategy: takes the empty simulation as an argument and uses it as

a starting point for its testing regime, which represents the body of

the program. It contains the logic for orchestrating and driving the

generation of device simulation runs, all of which stem from this initial

simulation.

• reportResult: accepts the result of strategy and generates a report

to the terminal, or saved to disk, or whatever is convenient, explaining

the result of having run the program.

The skeleton program assumes, in addition, that we are in possession

of a data value named dutrc that is of type DeviceRC. This value specifies

necessary configuration information for the device-under-test, as described

above, and again later in Section 5.3.

5.3 VlogMetaLang.Core

start :: DeviceRC -> IO Simulation

concretize :: Substitution -> Simulation -> Simulation

simulate :: (Input a) => a -> Simulation -> Simulation

Figure 5.3: VlogMetaLang.Core Interface.

Let us begin with VlogMetaLang.Core and then return to some of the

other modules in VlogMetaLang upon which it relies. VlogMetaLang.Core

provides the essential operations of our meta-language, those used to construct

simulation values and which are crucial to constructing the strategy function

from our skeleton program. Three operations are provided in total, as shown

in Figure 5.3; they correspond to the operations ruleI ,ruleS, and ruleA from

RIR, respectively.

In the subsequent sections 5.4 – 5.6, we provide some additional details

about the vlogml data types noted in Figure 5.3. At a high-level, however,

the purpose of the data types should be clear: Simulation is the type that

respresents our first-class notion of Verilog simulation, the type Substitution

is used to represent mappings from symbolic variables to values, and the type

46

class (Input a) represents things that can be used as input stimulus. Device

configuration information that is used needed for bootstrapping are provided

by values of type DeviceRC.

start :: DeviceRC -> IO Simulation

The function start corresponds to ruleI from RIR and is the mechanism

through which a value of type Simulation is initially obtained. The argument

to the function must be a value of type DeviceRC, which contains essential

configuration information about the device-under-test. It includes, for exam-

ple, the locations of files containg the Verilog source code for the device, as

well as additional information needed during parsing and elaboration. start

returns an initial, “empty”, simulation of the device. I/O is required to read

the files containing the device source code.

concretize :: Substitution -> Simulation -> Simulation

The function concretize corresponds to ruleS from RIR. Its first argu-

ment is a substitution, a mapping from symbolic variables (see Section 5.4)

to Verilog expressions, and its second argument is a (symbolic, presumably;

though not necessarily) simulation. The result of applying the function is

a new (possibly symbolic) simulation where symbolic variables have been

substituted for according to the mapping given by the first argument.

simulate :: (Input a) => a -> Simulation -> Simulation

The function simulate corresponds to ruleA fromRIR. The type signature

for the function is slightly complicated by the use of a typeclass making it

polymorphic in the first argument, which is used to represent an input stimulus

(see Section 5.4). Essentially, the function takes as arguments a value of some

type that can be converted to an input stimulus and a (possibly symbolic)

simulation, and returns a new (possibly symbolic) simulation that is the result

of advancing the given simulation according to the stimulus.

47

5.4 VlogMetaLang.Syntax

data Literal

data Identifier

data Variable

data Expression

data Statement

data Process

...

...

data Program

Figure 5.4: (Partial) VlogMetaLang.Syntax Interface.

VlogMetaLang.Syntax exports data types for parts of the Verilog syntax,

as well as utilities to aid in the construction of values of these types. For

example, they are used to construct queries about simulations. A partial

listing of the VlogMetaLang.Syntax interface, exporting several data types,

is shown in Figure 5.4.

• Literal, Identifier etc.: The intended purpose of each data type is

for the most part clear from the name of the data type; for example,

Literal is used to represent Verilog-style literals such as 4’b1010.

• Variable: One exception is the Variable data type. It is used to

represent symbolic variables created by the user during testing. Symbolic

variables do not have a direct counterpart in the syntax of Verilog, which

is why it is a special case. The reason vlogml includes symbolic variables

alongside Verilog syntax is that the context in which these variables are

used is essentially the same as that of regular identifiers.

Construction via Quasi-Quoting: As described at the outset of this sec-

tion, VlogMetaLang.Syntax also exports functions to aid in the construction

of values of the above types. For the purposes of this dissertation, we will use

“quasi-quoting” to construct values of the above types. For example, consider

the following expression in the syntax of Verilog

x + 1 >> 2

48

where x is assumed to be an identifier that is declared in the Verilog source code

and is in scope. The corresponding value of type Expression is constructed

in vlogml as

[expr| x + 1 >> 2 |]

In general in vlogml, by surrounding a Verilog expression with [expr|...|],

a corresponding value of type Expression is create. This particular syntax

is in accordance with the current incarnation of Haskell’s quasi-quote library

[62].

Symbolic variables are created by allowing a slightly extended syntax

within [expr|...|]. An identifier that is surrounded with <...> and prefixed

by an explicit bit-width, as in:

[expr| <32’y> + 1 >> 2 |]

which creates a symbolic variable, y, that is 32-bits wide.

Similarly to the construction of expressions, quasi-quoting syntax is used to

construct other elements of Verilog syntax. Statements are constructed with

[stmt|...|], processes with [proc|...|], identifiers with [iden|...|],

and (symbolic) variable construction, outside the context of an expression,

with [var|...|].

5.5 VlogMetaLang.Data

data Simulation

data Waveforms

Figure 5.5: VlogMetaLang.Data Interface (Part 1).

VlogMetaLang.Data is responsible for providing all of the core data types

that are not closely associated with Verilog syntax, as those are provided by

VlogMetaLang.Syntax. The relevant portion of the interface is split across

Figures 5.5 – 5.7 for explanatory purposes.

Figure 5.5 shows the exportation of two especially important data types:

49

• Simulation: This is the data type representing a simulation. It contains

enough information to continue simulation, such as the state of the

stratified event queue described in the Verilog Standard [36], as well

as a waveform history and a few additional pieces of information. To

construct a simulation in vlogml, one must use the functions given in

Section 5.3; the data type constructors are not exported.

• Waveform: This data type represents a full waveform history for a device.

Essentially, it provides a simulation-time-indexed map of the value of

every node in the device. VlogMetaLang.Util provides a utility to

obtain the waveforms associated with a simulation (see Section 5.6).

data DeviceRC = DeviceRC {

sources :: [FilePath]

, top :: Identifier

, ... -- additional fields

}

newtype Substitution

= Substitution (Map Variable Expression)

Figure 5.6: VlogMetaLang.Data Interface (Part 2).

Figure 5.6 shows the exportation of two data types, one that is used for

basic device configuration, and the second a representation of the concept of

substitution, which is used in various contexts in vlogml.

• DeviceRC: This is a record type containing basic device configuration

information. It has fields for the list of Verilog source files and an

identifier noting the top-level module name, among other items.

• Substitution: This is a data type representing substitutions. Specif-

ically, it is used to map variables to values of type Expression. The

declaration uses newtype instead of data, which is usual practice in

Haskell for renamed types [23].

Figure 5.7 shows the exportation of a data type and a type class that are

used in vlogml to construct input stimuli.

50

data Input =

CycleBased [Map Identifier Expression]

| ... -- additional constructors

class Input a where

toInput :: a -> Input

Figure 5.7: VlogMetaLang.Data Interface (Part 3).

• Input: This is the data type that vlogml uses internally to represent

input stimulus and drive simulation. For the purposes of this dissertation,

we show just one kind of input that is supported, cycle-based. A list of

maps from identifiers to expressions are given, one for each clock cycle,

assigning values to the device inputs.

• (Input a): This is a type class allowing users to create specialized

input stimuli tailored for their device and then use it for simulation;

any algebraic data type may be used. See Section 5.9 for an example.

5.6 VlogMetaLang.Util

waves :: Simulation -> Waveforms

clock :: Simulation -> Int

Figure 5.8: (Partial) VlogMetaLang.Util Interface.

Since the user is not provided the constructors for Simulation, some

functions are needed to retrieve needed information from values of this type.

• waves: This function returns an entire waveform history for the current

simulation.

• clock: This function returns the current simulation time, as an integer.

51

type (Strategy a)

startM :: DeviceRC -> Strategy ()

simulateM :: (Input a) => a -> Strategy ()

simulateRandM :: (Input a) => a -> Strategy ()

queryM :: Expression -> Strategy Bool

concretizeM :: Substitution -> Strategy ()

runStrat :: (Strategy a) -> Simulation -> IO (a,Simulation)

evalStrat :: (Strategy a) -> Simulation -> IO a

execStrat :: (Strategy a) -> Simulation -> IO Simulation

Figure 5.9: VlogMetaLang.Strategy Interface.

5.7 VlogMetaLang.Strategy

The VlogMetaLang.Strategy library is used as the basis for almost all of

the vlogml examples presented throughout this dissertation. It exports a

polymorphic type

type Strategy a = StateT Simulation IO a

that is an instance of Haskell’s state-transformer monad, StateT (see [23]).

Intuitively, (Strategy a) is intended to represent stateful computations

where the backing state is a simulation, and which furthermore allows the

use of I/O. For example, I/O can be used for random number generation or

to invoke an SMT solver, as we do in Section 5.8. The main benefit of the

(Strategy a) type is that it removes the need to explicitly pass simulations

between functions. Indeed, this is the usual reason to employ a state monad.

VlogMetaLang.Strategy then provides a set of functions from which

these strategies may be constructed. In particular, monadic versions of the

functions from VlogMetaLang.Core:

startM :: DeviceRC -> Strategy ()

simulateM :: (Input a) => a -> Strategy ()

concretizeM :: Substitution -> Strategy ()

Figure 5.9 notes two additional functions that are exported by the

VlogMetaLang.Strategy library and are used in examples presented later.

The first is a modified version of simulateM that performs random simulation.

52

simulateRandM :: (Input a) => a -> Strategy ()

This function works by substituting random values for any variables that

occur in the input. simulateM, on the other hand, keeps the variables and

performs symbolic simulation.

The second function that will be used accepts as its first argument a

Verilog expression, which must be of scalar (boolean) type, and returns a

Bool.

queryM :: Expression -> Strategy Bool

This function evaluates the argument expression according to the current

state of the simulation, if it evaluates to a single-bit value equal to one, then

the value True is returned; if it evaluates to any other value, concrete or

symbolic, then the value False is returned.

In order to finish a strategy computation, some method is required to get

out of the monad. State monads are usually unravelled as functions of the

form

s -> (a,s)

where s denotes the type of the backing state, and a is the result of the

computation. The function runStrat unravels values of type (Strategy a)

to return a function of this type, but which is also capable of doing I/O, for

the reasons described at the outset of the section:

runStrat :: (Strategy a) -> Simulation -> IO (a,Simulation)

If just the result of the computation is desired, or just the modified Simulation

is desired, the specialized functions

evalStrat :: (Strategy a) -> Simulation -> IO a

execStrat :: (Strategy a) -> Simulation -> IO Simulation

may be used. These correspond to the functions runStateT, evalStateT,

and execStateT which are part of the standard Haskell distribution [23].

53

smt :: (Maybe Int) -> Expression -> IO (Maybe Substitution)

Figure 5.10: VlogMetaLang.SMT Interface.

5.8 VlogMetaLang.SMT

This section describes a library currently provided by vlogml and used in

some later examples that allows a user to interface with an SMT solver. A

user can take advantage of this library to automatically resolve symbolic

simulations to interesting concrete ones. The underlying solving is done by

STP [27], an SMT solver for bit-vectors and arrays which is well suited to

Verilog.

The library currently just exports one function, smt, which essentially

accepts as input a Verilog expression with scalar type and then attempts

to find a satisfying assignment to the symbolic variables contained in that

expression. The exact signature of the function is

smt :: (Maybe Int) -> Expression -> IO (Maybe Substitution)

The first argument specifies an optional timeout value, in seconds, after

which STP aborts. If the expression is satisfiable and the solver is able to

determine a satisfying assignment before the timeout is reached, a substitution

for that satisfying assignment is returned; otherwise, if no such satisfying

assignment exists or the search is aborted due to a timeout, the value Nothing

is returned.

5.9 Example

This section employs the above functionality to construct an example vlogml

program, exemplifying one of the most simple verification paradigms: directed

testing. However simple, directed testing should, if the meta-language is ac-

complishing all of the goals we have set for it, be supported in a straightforward

and simple way; this section demonstrates that this is so for vlogml.

The device-under-test is the Verilog module presented in Figure 5.11,

which is meant to be indicative of a maze: at each clock cycle, the device

54

1 module maze(clk, i);

2
3 input clk;

4 input i;

5 reg [2:0] loc;

6
7 initial loc = 0;

8
9 always @(posedge clk)

10 case (loc)

11 0 : loc <= i ? 1 : 0;

12 1 : loc <= i ? 0 : 2;

13 2 : loc <= i ? 3 : 0;

14 3 : loc <= i ? 0 : 4;

15 4 : loc <= i ? 5 : 0;

16 5 : loc <= i ? 6 : 7;

17 6 : $display("FAILURE");

18 7 : $display("SUCCESS");

19 endcase

20 endmodule

Figure 5.11: Example Verilog Module: “Maze”.

“moves” from the current location to some new location based on the single-bit

input i. The goal is to “walk” from the initial location, represented by the

value 0, to the location represented by the value 7, a successful exit; the

location given by the value 6 represents an inescapable dead-end.

Three separate tasks need to be covered by the program: specification

of the directed stimulus, use of the stimulus to generate a simulation, and

checking that the simulation successfully navigates the maze. Ideally, for a

directed test of the maze device, a stimulus will be given as a list of 1’s and

0’s, as in

[1, 0, 1, 0, 1, 0]

where each element of the list represents the intended value of i during the

clock cycle corresponding to its position in the list.

Specialized stimuli are implemented within vlogml by first creating an

55

1 data MazeInput =

2 Concrete [Int]

3
4 instance Input MazeInput where

5 toInput (Concrete xs) = CycleBased (map mkSubst xs)

6 where mkSubst x = ... -- i maps to x

Figure 5.12: Specialized Input for the Maze.

appropriate data type, and then creating a corresponding instance of the type

class Input, described above in Section 5.5. In the case of the maze and the

kind of directed stimuli described above, the most straightforward implementa-

tion is by creating an algebraic data type, say MazeInput, with a constructor

taking a list of integers as an argument. As a concrete implementation, we

assume the code presented in Figure 5.12:

• (lines 1 – 2): Declare a data type, MazeInput, representing input stimuli

for the maze. The constructor Concrete captures the stimuli as lists of

integers, representing cycle-by-cycle values for the input i.

• (lines 4 – 5): Add an appropriate instance of toInput to convert maze

input into the internal format supported for simulation. The exact

specification of the conversion is omitted for reasons described above in

Section 5.5 (see [46]).

Having the MazeInput data type and assuming the skeleton program from

Section 5.2, the main vlogml program can be implemented straightforwardly,

as shown in Figure 5.13. The first part, stimulus (line 2), specifies the

particular stimulus we will use to generate a simulation:

• (line 2): A concrete stimulus that will successfully navigate the maze.

The second part of the program, the function strategy (lines 5 – 7), simply

runs simulation with the defined stimulus and subsequently calls a function to

assess the result; it is implemented using the Strategy combinators described

above in Section 5.7.

• (line 6): Run simulation using the concrete stimulus defined by stimulus.

• (line 7): Check condition for a successful exit from the maze.

56

1 --- directed stimulus

2 stimulus = Concrete [1, 0, 1, 0, 1, 0]

3
4 --- strategy logic

5 strategy = evalStrat $ do

6 simulateM stimulus

7 checkResult

8
9 --- determine result of strategy

10 checkResult = do

11 out <- queryM [expr| loc == 7 |]

12 sim <- get

13 if out

14 then return (Just sim)

15 else return Nothing

Figure 5.13: Directed Testing in vlogml.

The third part of the program checks the resulting simulation to determine if

a successful exit from the maze has occurred. This is specified by the function

checkResult (lines 10 – 15).

• (line 11): Check condition for a successful exit from the maze;

• (line 12): Bind the resulting simulation to the variable sim;

• (lines 13 – 15): Upon successful exit from the maze, return the simula-

tion trace, otherwise return Nothing, indicating failure.

Note that in the particular case of this example, the concrete type correspond-

ing to the variable a above in Section 5.2 is (Maybe Simulation).

Let us consider now directed stimulus within a broader context via a

pair of examples that are more realistic than the maze. First, consider a

microprocessor, where a directed test would typically take the form of an

assembly program; for example, see Section 7.2. Just as in the above example,

to support assembly programs in vlogml one would first create a data type

for them and then an appropriate instance of the Input type class. This

allows for assembly programs that can be simulated to be built directly via

the data-type’s constructors.

57

However, building an assembly program directly out of the constructors

for an algebraic data type, while relatively natural, can also be improved

upon. For example, one can provide other means of generating values of

this data type that are closer to the usual syntax of assembly programs; for

example, though quasi-quoting, or through parsing assembly files directly and

converting them into the internal representation.

As a second example, the I2C bus-mastering case study (Section 7.1) will

operate at a granularity of “Wishbone transactions”, which are defined ac-

cording to the Wishbone Interface [25]. Again, one starts by constructing and

appropriate data type and an instance of the Input type class for Wishbone

transactions, followed by some convenient way for the user to construct values

of this type.

58

CHAPTER 6

CAPABILITIES

This chapter seeks to demonstrate, with concrete vlogml examples, a variety

of novel capabilities of our meta-language. By novel, we mean verification

strategies that are easy to effect in our meta-language but not with existing

functional verification tools and that, in addition, operate over the coverage

closure feedback loop described at the outset of the dissertation in Chap-

ter 1 and allow for its automation in unique ways. Therefore, the examples

presented are a significant part of justifying the meta-language’s existence.

Each of the examples presented applies a strategy aimed at solving, in the

way described above in Section 5.9, the maze device from that same section,

which is reprinted in this chapter for convenience; see Figure 6.1. The examples

operate over this small device so that they may be presented completely to

emphasize the capabilities of the meta-language, rather than becoming buried

in the complexity of the device being analyzed. Case studies applying vlogml

to more substantial devices, specifically a bus-master controller and a small

microprocessor, are described in Chapter 7.

Aside from Section 6.1, which contains some maze-specific vlogml utility

functions, each of the sections of this chapter describes a specific maze-solving

strategy and an implementation of that strategy in vlogml. In addition,

we attempt to draw broader conclusions from the strategy about the meta-

language’s capabilities. All of the examples are distributed along with vlogml

and may be independently verified [46]; however, for the same reasons of

clarity that we described at the beginning of Chapter 5, some of the details

differ between what is presented here and what is given as executable code in

[46], though all are functionally the same.

59

1 module maze(clk, i);

2
3 input clk;

4 input i;

5 reg [2:0] loc;

6
7 initial loc = 0;

8
9 always @(posedge clk)

10 case (loc)

11 0 : loc <= i ? 1 : 0;

12 1 : loc <= i ? 0 : 2;

13 2 : loc <= i ? 3 : 0;

14 3 : loc <= i ? 0 : 4;

15 4 : loc <= i ? 5 : 0;

16 5 : loc <= i ? 6 : 7;

17 6 : $display("FAILURE");

18 7 : $display("SUCCESS");

19 endcase

20 endmodule

Figure 6.1: Example Verilog Module: “Maze” (Re-Printed).

60

6.1 Some Utilities

This section defines a small set of maze-specific utilities that will be used

throughout the following examples. As just one example, the MazeInput type

from Section 5.9 is here extended to allow for symbolic input stimuli. The

various utilities are set out in Figures 6.2 – 6.5.

1 data MazeInput =

2 Concrete [Int]

3 | Symbolic Int

4
5 instance Input MazeInput where

6 toInput (Concrete xs) = ...

7 toInput (Symbolic j) = ...

Figure 6.2: Specialized Input for the Maze (Symbolic and Concrete).

Figure 6.2: MazeInput. The data type representing maze stimuli is ex-

tended to account for symbolic stimuli as follows:

• (line 3): The constructor Symbolic is used to represent input stimuli

where, for the number of clock cycles given by the argument, a fresh

symbolic variable is generated and assigned to the maze input.

• (line 7): The (Input a) instance is extended to account for the addi-

tional constructor.

1 instance (Input a) => Input [a] where

2 where toInput xs = ...

Figure 6.3:

Figure 6.3: (Input [a]). In one situation, we will want to generate

stimuli that are composed partially from concrete stimuli and partially from

symbolic stimuli. This instance allows us to do so simply by giving a list

61

of values of type MazeInput. For example, with the (Input a) declaration

shown in the figure, the following list may be used as a valid input stimulus

representing two cycles of concrete simulation followed by eight cycles of

symbolic stimulus.

xs :: [MazeInput]

xs = [Concrete [0,1], Symbolic 8]

1 checkOutOfMaze :: Strategy Bool

2 checkOutOfMaze = queryM [expr| loc == 7 |]

Figure 6.4:

Figure 6.4: checkOutOfMaze. This function returns a boolean indicating,

with respect to the current simulation context, whether it has successfully

navigated the maze; a successful exit being characterized by the expression

(loc == 7).

checkOutOfMazeSMT :: Strategy (Maybe Substitution)

checkOutOfMazeSMT = do

exp <- evalM [expr| loc == 7 |]

lift (smt timeout exp)

timeout = Just 10

Figure 6.5:

Figure 6.5: checkOutOfMazeSMT. This function attempts to resolve a

symbolic simulation context to a concrete simulation that successfully exits

the maze. If the solver succeeds, a substitution is returned that maps the

simulation’s symbolic variables accordingly. The function lift is a standard

Haskell function, that is here used to take a value of type (IO a) to a value

of type (Strategy a). A timeout of ten seconds is imposed for the SMT

solver to complete its work, which, in the case of the maze device and our

examples, is more than sufficient.

62

6.2 Coordination of Multiple Simulations

This section demonstrates by example the essential novelty of our meta-

language over a traditional tool set, which is its ability to easily orchestrate

multiple simulations, and the feedback obtained from those simulations, to-

gether as a single testing strategy. The particular strategy under consideration

is as follows: one hundred trials of purely random simulation are executed

serially, with each trial running for ten clock cycles. After each trial, the

resulting simulation is analyzed to determine if the maze was successfully nav-

igated, and if so, the effort is halted and overall success is reported, otherwise

the next trial is then started.

Section 6.2.1 first demonstrates an implementation of this strategy using

existing tools, followed by the vlogml implementation in Section 6.2.2, and,

finally, concluding with a comparative analysis of the two in Section 6.2.3.

6.2.1 Solution 1: SystemVerilog, VCS, and bash

A straightforward way to accomplish the stated strategy with traditional

tools is by constructing two programs and employing the functionality of a

simulator. The role of the first program is to generate stimulus for a single

simulation run; this program is then compiled with a simulator and used by

the second program, whose role is to coordinate the one hundred separate

trials.

The first program is written in SystemVerilog as shown in Figure 6.6, which

has strong support for constrained-random stimulus generation. This program

can be compiled with a simulator such as VCS to produce an executable, say

simv, which is then called by the second program. This second program is

the shell script presented in Figure 6.7.

Program 1: SystemVerilog. The essential code of the program in Figure

6.6 are lines 17 – 22, which have the following meaning:

• (line 17): Execute the following block statement ten times. The block

drives the maze input for a single clock cycle each time it is executed.

• (line 19): Wait for the next clock cycle, given by the positive edge of

the signal clk.

63

1 module testbench;

2
3 reg clk, i;

4 Bit x = new;

5
6 // device-under-test

7 maze m(clk, i);

8
9 // clock generation

10 always #5 clk = ~clk;

11
12 // stimulus generation

13 initial

14 begin

15 clk = 0;

16 i = 0;

17 repeat (10)

18 begin

19 @(posedge clk);

20 x.randomize;

21 i = #1 x.val;

22 end

23 end

24 endmodule

Figure 6.6:

• (line 20): Generate a new, single-bit random value. This depends on

the definition of a data type, Bit, not shown in the figure, that allows

for the randomized generation of a single bit. It can be defined as

class Bit;

rand bit val;

endclass

• (line 21): Drive the maze input, the signal i, with the randomly

generated bit.

64

1 #! /bin/bash

2
3 for j in {1..100} ; do

4 ./simv +ntb_random_seed=$j | grep -q SUCCESS

5 if [$? -eq 0] ; then

6 echo "succeeded at $j."

7 exit

8 fi

9 done ; echo "failed all 100."

Figure 6.7:

Program 2: Bash Script. The coordination of the one hundred separate

trials is left to the second program, the bash script presented in Figure 6.7;

it assumes that the first program has been compiled with VCS and that the

resulting executable is named simv.

• (line 3): Establish a loop that will execute one hundred iterations of the

body, given in lines 4 – 8. The loop counter is assigned to the variable

j.

• (line 4): Run a single trial of random simulation by calling simv with

an new random seed, in this case, j. The output is matched, using the

standard utility grep, for a successful exit.

• (lines 5 – 8): Check the output of analyzing the trial. If the maze was

navigated successfully, report this fact to the terminal and exit.

• (lines 9): Upon failing all one hundred trials, report failure the terminal

and exit.

6.2.2 Solution 2: vlogml

The benefit of our meta-language is that the entire strategy can be effected

as a single program that is much clearer, simpler, and more manageable.

Along with the scaffolding assumed to be provided by the skeleton program

of Section 5.2 and the utilities defined in Section 6.1, the vlogml program

65

effecting our high-level strategy is implemented as shown in Figures 6.8 – 6.10.

As per the skeleton, two functions must be defined to complete a working

vlogml program: strategy and reportResult. A third function, trial,

upon which strategy relies, is described separately for the sake of clarity.

1 trial = do

2 simulateRandM (Symbolic 10)

3 checkOutOfMazeCond

Figure 6.8: Single Random Simulation Trial.

Figure 6.8: trial. The first part of the program defines a function, trial,

that mimics the SystemVerilog part of the traditional testbench above in

Section 6.2.1.

• (line 2): Run random simulation for ten clock cycles. Recall that

simulateRandM converts symbolic values in the input into concrete

random values and then performs simulation.

• (line 3): Check the condition that we have successfully navigated out

of the maze, returning a boolean.

1 strategy sim = aux 0 (evalStrat trial sim)

2
3 aux 100 simv = return Nothing

4 aux j simv = do

5 result <- simv

6 if result

7 then return (Just j)

8 else aux (j+1) simv

Figure 6.9: Management of One Hundred Random Trials.

Figure 6.9: strategy. The meta-level logic that was earlier captured in

the bash script is captured in our vlogml program with the function strategy,

and an auxiliary function, shown in 6.9.

66

• (line 1): Call the auxiliary function, aux, with the first argument, rep-

resenting the trial number, initialized to zero, and the second argument

a function that uses trial and the initial simulation provided by the

skeleton to produce a random simulation of the device each time it is

called.

• (line 3): All one hundred trials have failed, return Nothing, which

indicates failure.

• (line 4): Start trial j, where the current trial index is less than one

hundred.

• (line 5): Run the random trial, binding the result of the call to

checkOutOfMazeCond, which is called as part of executing simv, to

the variable result.

• (lines 6 – 8): If the maze was successfully navigated, return that fact

along with the current trial number; otherwise, increase the trial counter

and perform the next trial.

1 reportResult (Nothing) = putStrLn "failed all 100"

2 reportResult (Just j) = putStrLn ("succeeded at " ++ show j)

Figure 6.10: Print Result of the Test.

Figure 6.10: reportResult. The overall success or failure of the strategy

is reported to the terminal via the function reportResult.

• (line 1): Nothing is returned by strategy when the test failed; report

this fact to the user.

• (line 2): (Just j) is returned by strategy when the test succeeds at

the iteration indicated by j; report this fact to the user.

67

6.2.3 Comparison

Consider again the coverage closure feedback loop depicted in Chapter 1 as

Figure 1.1. There we asserted that existing tools treat each of the three

components, stimuli generation, simulation, and coverage analysis, as dis-

tinct pieces that are largely decoupled. Section 6.2.1 demonstrates this fact

concretely, and is suggestive of the limitations imposed by this decoupling.

Indeed, the mapping between the components of Figure 1.1 and the

pieces described in Section 6.2.1 is straightforward: stimuli generation is

accomplished with the SystemVerilog program from Figure 6.6; simulation is

accomplished through the compilation of SystemVerilog source code, together

with the device-under-test, with VCS; and coverage analysis is accomplished

with the utility grep. These pieces are more aptly described as being “cobbled

together”, than as being strongly coupled and mutually reinforcing.

There are many reasons for this; we provide just two examples. One

important observation is that the result of previous simulation runs cannot

affect the stimulus generation mechanism, as SystemVerilog provides no

straightforward way of receiving or analyzing information about previous

simulation runs. This is crucial. As both the result of analysis and stimulus

construction are available together withing vlogml, incorporating feedback

to drive stimuli generation from previous simulation results is easy. This

capability is used to striking effect in the following section.

A second deficiency made apparent is simply the lack of availability of

good tools that engineers may use to programmatically analyze coverage.

The bash script used to coordinate the strategy relied on grep, a woefully

inadequate tool for the task. In vlogml on the other hand, with a full

waveform history and the general purpose programming facilities of Haskell

at one’s disposal, many possibilities are opened up. However, it should be

noted that some deficiencies still remain in vlogml in this regard; for example,

syntactic coverage metrics are not necessarily apparent from waveforms.

6.3 Feedback

The vlogml program presented in this section demonstrates how feedback

from previous simulations can be used directly to calculate what stimuli should

be generated in future runs. It is a modification of the program presented in

68

the previous section where the trial function takes an additional argument,

namely, feedback from the previous simulation, which it then used as part of

calculating the stimulus to be used during the next simulation. Specifically,

instead of ten clock cycles of random simulation, the first two cycles of

simulation are determined by the following algorithm:

• If the final location in the maze at the end of the previous simulation

was greater than 3, then the first two clock cycles use the stimulus

(Concrete [0,0]).

• If the final location in the maze at the end of the previous simulation

was less than or equal to 3, then the first two clock cycles use the

stimulus (Concrete [1,0]).

Afterward, the trial is completed by executing eight clock cycles of random

simulation.

6.3.1 vlogml

The program is structured similarly to the one above in Section 6.2. The main

difference is that a new function is substituted in the place of the function

checkOutOfMazeCond that instead checks two conditions: successful exit from

the maze, and whether the final location is greater than 3. This function is

called checkConditions.

1 checkConditions = do

2 x <- checkOutOfMazeCond

3 y <- checkGT3Cond

4 return (x,y)

5
6 checkGT3Cond = queryM [expr| loc > 3 |]

Figure 6.11:

Figure 6.11: checkConditions. This function operates on the current

simulation and checks two conditions, returning the result of these checks as

a pair of boolean values.

69

• (line 2): Check the condition for the simulation having successfully

navigated the maze. Bind the result to x, a boolean.

• (line 3): Check the condition for the simulation being such that its

current location is greater than 3. Bind the result to y, a boolean.

• (line 4): Return the result of the checks.

1 trial gt3Cond = do

2 if gt3Cond

3 then simulateM [0,0]

4 else simulateM [1,0]

5 simulateRandM (Symbolic 8)

6 checkConditions

Figure 6.12:

Figure 6.12: trial. This function generates the next simulation trial.

Unlike the corresponding function from Section 6.2 above, this function accepts

a single argument. This argument is calculated by the checkConditions

function with respect to the previously executed simulation.

• (line 2): Consider the final location in the maze obtained during the

previous simulation, which is calculated by checkConditions, and

passed to this function by the aux function (see below).

• (line 3): If the final location of the previous simulation was greater than

3, perform simulation for two clock cycles with the stimulus [0,0].

• (line 4): If the final location of the previous simulation was less than or

equal to 3, perform simulation for two clock cycles with the stimulus

[1,0].

• (line 5): Perform random simulation for the remaining eight clock

cycles.

• (line 4): Call checkConditions, which is used in aux (see below).

70

1 strategy sim = aux 0 (\x -> evalStrat (trial x) sim) False

2
3 aux 100 simv gt3 = return Nothing

4 aux j simv gt3 = do

5 (oom,gt3’) <- simv gt3

6 if oom

7 then return (Just j)

8 else aux (j+1) simv gt3’

Figure 6.13:

Figure 6.13: strategy. This is the function, part of the skeleton program,

that runs one hundred iterations of the trial simulation and handles the

propagation of the feedback condition being used to partially determine the

stimulus used during the immediately subsequent simulation.

• (line 1): Call aux with appropriately initialized values, including wrap-

ping trial in such a way that the feedback condition may be conveyed

as an argument.

• (line 3): All one hundred trials have failed, return Nothing, which

indicates failure.

• (line 4): Start trial j, where the current trial index is less than one

hundred.

• (line 5): Run one trial, providing the “greater-than-3” condition from

the previous trial as an argument. The result, the pair of conditions from

checkConditions, are bound to the variables oom, for “out-of-maze”,

and gt3’, the greater-than-3 condition for the new trial.

• (lines 6 – 8): If the maze was successfully navigated, return that fact

along with the current trial number; otherwise, increase the trial counter

and perform the next trial.

6.3.2 Comparison

The condition that the final state of the previous simulation is greater than

three, and the concrete stimuli choices, are of course contrived, as is the entire

71

maze device. However, the program demonstrates concisely one of the most

important advantages of our meta-language: the ability to programmatically,

in a completely general and user-specified way, use information from previous

simulation runs as feedback that affects the calculation of future stimuli.

Doing something similar with existing tools would be extremely awkward; for

example, in a SystemVerilog-oriented methodology, one would probably have

to write external functions in C that are then called.

6.4 Backtracking

The example presented in this section is interesting because it solves the maze

problem in a very straightforward way, and yet would be extremely awkward

to effect with other existing tools, either alone or in combination. The vlogml

code is presented across Figures 6.14 – 6.16 and efficiently solves the maze

using a simple backtracking strategy that coordinates multiple simulations,

and uses feedback obtained from those simulations, all at once.

The program performs a systematic search of the reachable state space. At

any given location in the maze, the program first checks if the current location

is the target location representing a successful exit from the maze, in which

case the search abruptly ends and success is signaled. Second, the program

determines the current location and triggers a backtracking operation if it has

been visited previously. If the current location has not been visited previously

and is not the exit of the maze, it causes the program to walk systematically

in all possible directions and repeat.

6.4.1 vlogml

Figure 6.14: btSearch. This function performs the basic backtracking

logic described above. Its first argument is a list of previously visited locations

and its second argument an escape continuation (more on this below). In

addition, it is implemented within Haskell’s continuation monad [23] as this

is needed to elegantly handle escaping the search; it also requires lifting

functions such as evalM.

• (line 2): Evaluate the current location in the maze, binding the result,

a value of type Expression, to the variable x.

72

1 btSearch prevs exit = do

2 x <- evalMM [expr| loc |]

3 when (x == [expr| 7 |]) (exit (x:xs))

4 if x ‘elem‘ prevs

5 then return prevs

6 else do

7 prevs’ <- branch (x:prevs) exit 1

8 prevs’’ <- branch (prevs’) exit 0

9 return prevs’’

10
11 evalMM = lift . evalM

Figure 6.14:

• (line 3): Check the current location in the maze against the location indi-

cating a successful exit, [expr| 7 |]. If the maze has been successfully

navigated, use the escape continuation to immediately exit.

• (line 4): If the exit condition is not met, then check if the current

location has been visited previously.

• (line 5): If the current location has been visited, return. As we will see

below with the branch function, this triggers backtracking.

• (lines 6 – 9): If the current location has not been visited previously,

systematically search both possible branches from the current simulation

by calling branch, detailed next.

1 branch prevs exit i = do

2 backtrackSim <- get

3 simulateMM (Concrete [i])

4 btSearch prevs exit

5 put backtrackSim

6
7 simulateMM = lift . simulateM

Figure 6.15:

73

Figure 6.15: branch. This function performs the operation corresponding

to the third case described above, where the current location is both newly

seen and not the exit of the maze. It advances simulation one step, moving

in the “direction” given as the third argument; the first two arguments are

just as for btSearch.

• (line 2): Save the current simulation context for the purposes of back-

tracking.

• (line 3): Advance simulation according to the given input.

• (line 4): Recursively call btSearch on the newly generated branch. If

this branch provides a successful exit from the maze, the control flow

will be modified using the escape continuation.

• (line 5): This statement is executed only when the branch fails to find

a way out of the maze. In such an event, it simply backtracks.

1 testbench = do

2 seen <- runContT (callCC aux) return

3 sim <- get

4 if [expr| 7 |] ‘elem‘ seen

5 then return (Just sim)

6 else return Nothing

7
8 aux exit = btSearch [] exit

Figure 6.16:

Figure 6.16: strategy. This function is part of the skeleton and is con-

structed in two parts. The first binds an escape continuation so that the

search for a simulation out of the maze can be ended as soon as one is found.

The second checks the result of the search.

• (line 2): Call btSearch, with the arguments appropriately initialized.

aux initializes the list of previously seen states to the empty list, and

callCC provides the escape continuation.

74

• (line 3): Bind the simulation resulting from the backtracking search to

the variable sim.

• (lines 4 – 6): Check for success and return an appropriate result.

6.4.2 Comparison

One of the things that our meta-language excels at, and which we mean to

emphasize with the above example, is as an alternative to traditional directed

testing. Directed testing is an extremely labor-intensive process typically

reserved for when more automated means of testing, usually constrained

randoms, fail to attain some needed coverage goal. It is a reality of contem-

porary verification practice and its impact on verification and design cycle is

significant, as the following quote, recalled from the Chapter 1, notes:

Today it is not uncommon to go from 0% to 80% coverage in

just a few days after the [constrained-random] testbench is up &

running.

What about the remaining 20%?

Today, one of the long poles in verification is coverage convergence

– the process where verification engineers analyze the coverage

generated by constrained-random tests, identify gaps or “coverage

holes”, and adjust the verification environment to try to fill the

gaps. If you think this sounds laborious, repetitive and time-

consuming you’d be correct. I’ve spoken to chip designers who

say a third of their overall chip development schedule is spent

in this iterative, largely manual, coverage convergence phase of

verification.

[9, July 6, 2010]

Roughly speaking, traditional directed testing is an iterative process that

repeatedly cycles through the following tasks until, for example, the target

coverage goal has been discharged: create/modify stimulus, run simulation to

generate waveforms, analyze waveforms. The process is inefficient because,

even when the dependence between iterations of this loop can be described

75

in an algorithmic way, the limitations of existing tools force the first and

third steps to be done manually and undertaken directly by an engineer. It

is a result of the current decoupling of stimulus generation, simulation, and

analysis.

Of course, the main purpose of our meta-language and vlogml is to enable

a verification engineer to, in a straightforward way, write a program that

orchestrates the entire feedback loop. Depending on the task at hand, different

strategies will be called for. In the case of directed testing, the strategies will

be highly-targeted and specialized searches for a simulation that satisfies, for

example, a particular coverage goal. This is exactly what the backtracking

strategy demonstrates.

6.5 Breadth-First

This section presents a vlogml program where a set of random simulation

traces are generated and analyzed “breadth-first”. Starting with one hundred

copies of the initial state of the device, as a value of type Simulation, we

iterate over each copy extending simulation one cycle with a random stimulus

and checking to see if we have successfully exited from the maze. If any of

the one hundred simulations has exited, the program returns successfully;

otherwise, the simulations are extended one more cycle of random simulation.

At a depth of ten clock cycles, the program aborts and reports failure.

6.5.1 vlogml

The program is presented piece-wise as three functions, singleStep, depth,

and strategy, which are given as Figures 6.17 – 6.19, respectively. singleStep

extends a given simulation one clock cycle, depth manages the application

of the single step of simulation over the one hundred individual simulation

instances, and strategy simply initializes depth and wraps it appropriately

to account for the assumed skeleton program.

Figure 6.17: singleStep. This function extends a given simulation one

clock cycle, using random simulation.

• (line 2): Perform one cycle of random simulation.

76

1 singleStep = do

2 simulateRandM (Symbolic 1)

3 checkOutOfMaze

Figure 6.17: One Randomized Simulation Step.

• (line 3): Determine if the additional cycle of simulation has resulted in

a successful exit from the maze.

1 depth :: Int -> [Simulation] -> Strategy (Maybe Simulation)

2 depth 10 sims = return Nothing

3 depth j sims = do

4 xs <- mapM (runStrat singleStep) sims

5 case find fst xs of

6 Just (_,sim) -> return (Just sim)

7 Nothing -> do

8 let snds = snd . unzip

9 depth (j+1) (snds xs)

Figure 6.18: Breadth-First Logic

Figure 6.18: depth. The main logic controlling the breadth-first strategy is

implemented according to this function.The function’s first argument denotes

the current depth and the second is the list of one hundred simulations being

operated on. The function returns either a simulation that has successfully

navigated the maze, or Nothing.

• (line 2): A depth of ten has been reached without finding a successful

simulation trace. In this case we return Nothing, signaling that the

strategy has failed.

• (line 3): Start a new iteration where the simulation depth is increased

by one clock cycle.

• (line 4): Extend the one hundred simulations by a single step, recording

for each simulation a pair containing the result of the success check

77

and the resulting simulation. Therefore, the type of the variable xs is

deduced to be

xs :: [(Bool,Simulation)]

• (line 5): Search the resulting list for a simulation that successfully

exited the maze, as indicated by the first component of the elements of

xs.

• (line 6): One of the simulations succeeded, return it and end the search.

• (lines 7 – 9): None of the simulations succeeded, gather all of them

using the function snds and call depth recursively.

Figure 6.19: strategy. This function initializes depth and wraps its

execution so as to fit within the framework provided by the skeleton program

in Section 5.2. Its single argument is the initial simulation provided by the

call to start in the skeleton program.

strategy sim = evalStrat $ depth 0 (replicate 100 sim)

Figure 6.19: Breadth-First Logic

• (line 1): Finally, strategy is defined simply by calling depth with

appropriate Call depth with an initial depth of zero and one hundred

copies of the initial simulation, which are constructed using the standard

Haskell function replicate. 6.19.

6.5.2 Comparison

The breadth-first strategy demonstrates the ability in our meta-language to

generate simulations in a fine-grained and incremental manner. Indeed, the

backtracking strategy does the same, but there our intention was to focus

on backtracking, whereas the breadth-first strategy clearly emphasizes the

coordination of multiple simulations, all of which are being generated incre-

mentally. Traditional simulators make stopping and restarting simulations

78

cumbersome, and in most cases infeasible; one traditional method, using a

scan-chain, has many well-known drawbacks, and would be horribly inefficient

for fine-grained simulation generation.

6.6 Symbolic Execution

Although not a benefit exclusive to vlogml, its ability to uniformly handle

both concrete and symbolic simulation and, via the VlogMetaLang.SMT library

(see Section 5.8), to query an SMT solver, allows for some very interesting

testing programs to be created. This section simply introduces the symbolic

simulation and SMT capabilities with an extremely simple example: ten clock

cycles of symbolic simulation are executed, and then the SMT solver is called

in an attempt to resolve a concrete simulation that successfully exits the

maze. The following section demonstrates a more interesting example that

combines symbolic simulation and concrete simulation and makes crucial use

of the meta-level features of vlogml.

6.6.1 vlogml

The implementation is split across two functions, strategy and checkResult,

which are given as Figures 6.20 and 6.21, respectively. strategy contains the

high-level logic and checkResult handles applying the result from the SMT

solver.

1 strategy = evalStrat $ do

2 simulateM (Symbolic 10)

3 x <- checkOutOfMazeSMT

4 checkResult x

Figure 6.20: Symbolic Simulation and SMT Call.

Figure 6.20: strategy. This function takes as its only argument the initial

simulation provided by the call to start in the skeleton program from Section

5.2.

79

• (line 2): Execute ten cycles of symbolic simulation.

• (line 3): Invoke the SMT solver and bind the result, which is of type

(Maybe Substitution), to the variable x. A substitution being re-

turned successfully then yields a concrete stimulus leading out of the

maze.

• (line 4): Call checkResult to apply the result from the SMT solver

appropriately (see below).

1 checkResult (Nothing) = return Nothing

2 checkResult (Just subst) = do

3 sim <- get

4 let sim’ = concretize subst sim

5 return (Just sim’)

Figure 6.21: Concretization of a Symbolic Simulation.

Figure 6.21: checkResult. The function takes a single argument, which

is the result from the SMT solver and, if the solver was successful, returns a

concrete simulation that successfully exits the maze.

• (line 1): If the SMT solver fails to find a substitution, return Nothing.

• (line 2): The SMT solver succeeded in finding a substitution, which,

through pattern matching, is bound to the variable subst.

• (line 3): Bind the result of symbolic simulation to a variable sim.

• (lines 4 – 5): Apply subst to the symbolic simulation using concretize

and return the result.

6.6.2 Comparison

No widely available Verilog simulator that we are aware of allows for the

user to apply symbolic simulation directly, let alone resolve the resulting

symbolic context to concrete values using technology such as an SMT solver.

For VHDL, there is a symbolic simulator available [83], but is not built to be

controlled in the same fine-grained manner as in vlogml.

80

6.7 Combined Concrete and Symbolic Simulation

This section presents a vlogml program implementing a combined ran-

dom/symbolic strategy. The idea for the strategy comes from [34] and

serves as the foundational idea underlying the popular Magellan tool [93, 92];

it is also known as “hybrid concolic testing” [63]. In addition to combining

random and symbolic simulation, the program also makes crucial use of an

SMT solver and the meta-level features of vlogml.

The core of the strategy operates according to the following four steps:

1. Random simulation is run for some number of cycles, after which the

resulting simulation is checkpointed.

2. Symbolic simulation is run for some number of cycles.

3. An SMT solver is applied to the simulation obtained after the combined

random/symbolic simulation. If the solver succeeds, the algorithm

finishes successfully.

4. If the solver fails, the simulation checkpointed in step (1) is returned to

and, starting from this simulation, the algorithm returns to step (1).

6.7.1 vlogml

The implementation is split across essentially three separate functions named

performHybridSimulation, checkResult, and strategy, which are given

as Figures 6.22 – 6.24, respectively. The first of the three performs steps

(1) and (2) above, returning the checkpointed simulation for backtracking

purposes, if needed. The second, performs steps (3) and (4), except for the

actual call to the SMT solver. The third puts the two pieces together and

performs the SMT call.

Figure 6.22: performHybridSimulation.

• (line 2): Perform random simulation for five clock cycles.

• (line 3): Bind the resulting simulation to the variable failSim, needed

we are required to backtrack.

81

1 performHybridSimulation = do

2 simulateRandM (Symbolic 5)

3 failSim <- get

4 simulateM (Symbolic 5)

5 return failSim

Figure 6.22: Combined Concrete and Symbolic Simulation Trial.

• (line 4): Perform symbolic simulation for five clock cycles.

• (line 5): Return failSim.

1 checkResult (Nothing) failSim = do

2 put failSim

3 aux (j+1)

4 checkResult (Just subst) failSim = do

5 sim <- get

6 let sim’ = concretize subst sim

7 return (Just sim’)

Figure 6.23: End of Trial Logic.

Figure 6.23: checkResult. The second function we define, checkResult,

is assumed to receive the result of the SMT solver as its first argument and

the previous result of random simulation as its second argument.

• (line 1): SMT solving failed.

• (line 2): Restore the previous result of random simulation, before

symbolic simulation was attempted.

• (line 3): Start again. In terms of the algorithm as described above, this

denotes a return to step (1).

• (lines 4 – 7): SMT solving succeeded, get the symbolic simulation and

apply the substitution returned by the SMT solver to it. Return the

result.

82

1 strategy = aux 0

2
3 aux 100 = return Nothing

4 aux j = do

5 failSim <- performHybridSimulation

6 x <- checkOutOfMazeSMT

7 checkResult x failSim

Figure 6.24: Algorithm Similar to [34].

Figure 6.24: strategy.

• (line 1): Call auxiliary function with iteration counter initialized to 0.

• (line 3): After one hundred trials, abort and signal failure.

• (line 4): Perform another trial.

• (line 5): Perform steps (1) and (2) above, binding to failSim the

random simulation needed for backtracking.

• (line 6): Invoke the SMT solver to resolve the variables in the symbolic

simulation to values that successfully exit the maze.

• (line 7): Using the result of the SMT solver and the backtracking

strategy, perform step (4) of the algorithm as described above.

6.7.2 Comparison

One very noteworthy feature of this testbench is that it mimics the essential

strategy of Synopsys’ Magellan tool, which is also based on [34]. This is a

powerful result, because not only is Magellan expensive, in monetary terms,

but by virtue of being a separate executable, to the user it is essentially a

black box that is not very customizable. The fact that the core strategy of

Magellan can be mimicked in just a few lines of code in vlogml, for free and

in a way completely customizable by a user, demonstrates in a powerful way

the new opportunities available to a verification engineer by taking up and

using vlogml. Of course, it bears mentioning that Magellan, in addition to

the core strategy, is also thought (it is proprietary, so one cannot say for sure)

83

to include many complex heuristics that are not mimicked in the testbench

developed in this section.

84

CHAPTER 7

CASE STUDIES

Whereas the goal of the previous chapter was simply to demonstrate the

capacity of our meta-language, through vlogml, for novel testing programs,

the purpose of this chapter is to show vlogml effectively applied to more

substantial devices. To do so, we selected two devices, each between one

thousand and two thousand lines of Verilog, that we develop testing programs

for in vlogml.

1. The first device [33] is an implementation of a serial bus-master con-

troller for the I2C protocol [82]. It supports advanced features such as

multi-mastering and clock stretching, which we exercise with a vlogml

program, uncovering a potential bug.

2. The second device is a small microprocessor that we developed. Two

vlogml programs are then presented demonstrating, first, a targeted

strategy that is resilient to organizational changes to a memory, and,

second, the use of an SMT solver to automatically resolve partial

assembly programs to interesting stimuli.

7.1 I2C Bus-Master Controller

The I2C-bus protocol is defined by [82]. The particular bus-mastering con-

troller that we worked with is given a brief overview of next, we then go into

some detail on the arbitration and clock stretching mechanisms of I2C, as

these are crucial to understanding the coverage goal that we targeted. Finally,

we detail a vlogml strategy that exposes a potential bug in the controller

that we were working with.

85

7.1.1 The Device

Our case study uses an open-source controller with support for multi-mastering

and clock stretching [33]. It is designated as an “OpenCores Certified” project,

meaning that it is relatively mature, having a testbench, documentation, and

in many cases, and indeed in this particular one, proved on FPGA. The

implementation consists of three modules, and is roughly one thousand lines

of Verilog source code.

I2C is a serial bus consisting of two bidirectional open-drain lines, SCL,

used for clocking, and SDA, used for data. The open-drain design means that

any device, master or slave, pulling down a line will override any other device

driving it high. The bus was developed by Philips Electronics and is used to

drive a wide variety of low-speed peripherals, such as cellphone displays.

A mastering device can initiate two types of transactions, read and write.

All transactions begin by sending a “start bit” (negative edge on SDA with

SCL high), then send a sequence of bytes, each separated from the previous

one by an acknowledge bit, and finally a “stop bit” (positive edge on SDA

with SCL high) to end the transaction. The first byte always consists of a

seven bit slave address followed by a read/write bit, indicating the type of

transaction. For example, the timing diagram

SCL

SDA

SCL

SDA

corresponds to a write transaction to slave address 011 0100 = 0x34, sending

a single byte of data, 1010 1010 = 0xAA.

7.1.2 Arbitration and Clock Stretching

As a multi-mastering bus, I2C requires an arbitration process to determine

which master will get control of the bus when two or more want it simultane-

ously. After initiating a transaction, each mastering device monitors the level

of SDA. If while trying to keep SDA high it instead, due to the open-drain design,

finds SDA to be low, then the controller assumes another mastering device is

pulling it down and aborts its transaction, thereby losing the arbitration.

86

The following timing diagram shows an example of the arbitration process,

where one mastering device tries to initiate a transaction to address 011 0100,

and a second device simultaneously initiates a transaction to 010 0100.

SCL

SDA

SDA0

SDA1

The signals SDA0 and SDA1 are what each controller attempts to drive SDA

toward. The device addressing 011 0100 loses arbitration at the third bit,

and stops trying to drive SDA.

Clock stretching works similarly to arbitration, but on the SCL line. Any

slave device taking part in a transaction can essentially force the mastering

device to stop and wait in the middle of a transaction it is directing. It does

this by holding the SCL line low. When the slave releases SCL the master may

resume the transaction.

7.1.3 I2C Stimulus Specification

The case study connects up a simple multi-master system, with two mastering

controllers connected to the bus, denoted m0 and m1. At a high level, the

strategy aims to explore subtle timing variations during arbitration. To

evoke an arbitration, m0 will send data byte 0000 0010 and m1 will send data

bye 0000 0011. Based on the arbitration mechanism described above, one

would expect m0 to win arbitration and the slave to receive the data value

0000 0010.

Before describing the logic of the testbench, we first develop the data types

and associated instance of (Input a) type class that are used to drive the

multi-mastering configuration. The first data type, I2CTransaction yields

transactions on a single master, and the second, I2Cx2, groups two lists of

such transactions together, which are then used to drive the two controllers

concurrently. These are shown as Figures 7.1 – 7.3.

Figure 7.1: I2CTransaction.

87

data I2CTransaction =

Read Int [Int]

| Write Int [Int]

| Delay Int

Figure 7.1:

• (line 2): This constructor is used to initiate a read transaction. The

first argument is the address of the slave device to read from, and the

second argument is a list of addresses within the device to read from.

• (line 3): This constructor is used to initiate a write transaction. The first

argument is the address of the slave device to write to, and the second

argument is a list of values to communicate to the device, typically both

internal addresses and data.

• (line 4): This constructor is used to cause the device to idle. The

argument is the number of clock cycles to idle.

data I2Cx2 = I2Cx2 {

ctrlr0 [I2CTransaction]

, ctrlr1 [I2CTransaction]

}

Figure 7.2:

Figure 7.2: I2Cx2. This is a record data type that contains a list of

transactions for each of the two mastering controllers that are part of our

device setup. We label the two controllers ctrlr0 and ctrlr1.

instance Input I2Cx2 where

toInput x = ...

Figure 7.3:

88

Figure 7.3: (Input a). The implementation of this type class is quite

involved, but is straightforward in the sense that one must simply conform

to the Wishbone interconnection interface [25], which is used by the I2C-bus

mastering controller that we are testing [33]. Therefore, we omit the definition

from this dissertation, though it is available in full at [46].

7.1.4 vlogml Program

The high-level strategy that we implement to test the multi-mastering ca-

pabilities of the I2C-bus controller [33] is to initiate write transactions on

the devices almost concurrently, with some small amount of delay between

the two. A number of simulation trials are run, each time increasing the

delay an additional clock cycle. The testing program assumes the skeleton

from Section 5.2, and is structured as shown in Figure 7.4, where the trial

function is called repeatedly with different small delays, up to a threshold of

three.

1 strategy sim = aux 0 (\j -> evalStrat (trial j) sim)

2
3 aux 5 f = return Nothing

4 aux j f = do

5 success <- f j

6 if success

7 then return (Just j)

8 else aux (j+1) f

Figure 7.4:

1 trial j = do

2 let c0 = [Write 777 [0,2]]

3 c1 = [Delay j, Write 777 [0,3]]

4 simulateM (I2Cx2 c0 c1)

5 queryM [| slave.data == 2 || slave.data == 3 |]

Figure 7.5:

89

Figure 7.5: trial. This function performs a simulation trial. Its single

argument is the amount of delay that should exist between the initiation of

write transactions between the two mastering controllers.

• (line 2): This is the input stimulus for ctrlr0. It is just a write of the

two bytes, 0 and 2, to a device with identifier 777.

• (line 3): This is the input stimulus for ctrlr1. It consists of a delay,

relative to the argument of trial, and a write of the two bytes, 0 and

3, also to the device identified by the value 777.

• (line 4): Perform simulation using the above stimulus.

• (line 5): Check the result of the slave device, slave, which is identified

by value 777, and ensure that one of the writes successfully completed.

7.1.5 Result

To be correct, the slave should receive either a value of 2 or a value of 3,

though because of how the arbitration process works we would expect it to

get 2. However, for trial 3, the slave gets a value of 0, which seems to be

a bug in the device; for trail 2 or trial 4, a value of 2 gets successfully

transmitted.

The problem seems to stem from the logic controlling a signal called clk en,

which, when asserted, causes the internal state machine of the controller to

go to the next state. The inserted delays typically cause a clock stretching

event to occur, but the logic controlling clk en gives preference to stepping

the state machine instead of the stretching event. By changing this priority,

the device operates correctly.

7.1.6 Discussion

What is interesting about the above vlogml program is that it executes a set

of distinct simulations, systematically testing different amounts of delay in

the start of the write transaction on the second controller. To do this with

existing tools would require either a script along the lines of the one from

Section 6.2, or to write one large test with multiple resets of the device. In

90

the first case, we run into the undesirable situation of splitting the test into

two distinct parts, and in the second case it becomes more difficult to debug

errors because one must search through a combined, larger simulation result,

rather than the natural individual simulations that one desires.

7.2 Microprocessor

The second case study that we present operates on a small microprocessor, with

multiple possible configurations of the data memory. Two vlogml programs

are presented, one that aims to demonstrate the writing of a highly-targeted

strategy that is much more resilient to design changes than usual directed

tests, and a second example that demonstrates how an SMT solver can be

used to automatically resolve partially given assembly program stimuli to

concrete assembly programs that effect interesting microprocessor conditions.

7.2.1 Overview

The microprocessor under consideration is a single-cycle design, with eight

architected registers, R0 – R7, and separate instruction and data memories.

It supports eight instructions, including arithmetic, conditional branching,

and load and store from data memory, and each instruction is 32-bits. The

data memory is two-way banked.

To execute a program on the microprocessor, one first asserts reset, followed

by flashing a sequence of instructions, one per clock cycle, on a 32-bit port

connected to the module. As the instructions are being transmitted and

written into the instruction memory, a wire named exec must be held low.

At the point that exec is asserted, it is assumed that program transmission

has ended, and the microprocessor then starts executing the program starting

with the instruction at memory location zero.

7.2.2 Assembly Language

The microprocessor under consideration has a small instruction set consisting

of eight instructions. To construct assembly programs for this microprocessor

within vlogml, we employ the data types shown in Figures 7.6 – 7.9 and

91

must, in addition, construct an appropriate instance of the (Input a) type

class, as shown in Figures 7.10 – 7.11.

data Register

data Instruction

data Assembly

Figure 7.6:

Figures 7.6 – 7.9.

• Register: This data type is an enumeration of the eight architected

registers supported by the microprocessor instruction set. It is defined

as shown in Figure 7.7.

data Register = R0 | R1 | R2 | R3 | R4 | R5 | R6 | R7

Figure 7.7:

• Instruction: This data type defines the eight instructions supported

by the microprocessor instruction set, plus a symbolic “wildcard” in-

struction, given by a constructor ANY, which can represent any of the

eight concrete instructions. It is defined as shown in Figure 7.8. The

instructions, in the order given in the figure, represent: moving an fixed

value (immediate) to a register, addition, bit-wise exclusive-or, right-

ward shift, load word, store word, branch on not-zero, halt execution.

• Assembly: This data type defines assembly programs, which in the

case of our simple microprocessor, are essentially just lists of assembly

instructions. Figure 7.9 presents the concrete definition.

Figures 7.10 – 7.11. To convert assembly programs into a value of type

Input, we define a set of “packing” functions that yield bit-accurate repre-

sentations of instructions and then use these functions to generate bit-vectors

92

1 data Instruction =

2 -- rdest immediate

3 IMM Register Int

4
5 -- rdest rsrc1 rsrc2

6 ADD Register Register Register

7 | XOR Register Register Register

8 | SFR Register Register Register

9
10 -- rdest raddr

11 | LDW Register Register

12 | STW Register Register

13 | BNZ Register Register

14
15 --

16 | HALT

17 | ANY

Figure 7.8:

data Assembly = Assembly [Instruction]

Figure 7.9:

that are flashed on the microprocessor’s input ports during the bootstrap

sequence.

Example Programs. Two very simple example assembly programs are

shown in Figures 7.12 and 7.13. They demonstrate how assembly program

stimuli may be specified in a natural way within a vlogml program, similar

to the kind of syntax accepted by many assemblers.

• (Figure 7.12): This first program consists of four assembly instructions.

The first two instructions put the constant one into registers R0 and

R1, respectively; the third instruction adds these two registers, plac-

ing the result in register R2; finally, the fourth instruction halts the

microprocessor.

93

registerPack R0 = 0

registerPack R1 = 1

registerPack R2 = ...

assemblyPack (IMM rdest x) =

ors [shiftL opcodePack 9, shiftL rdestPack 6, x]

where opcodePack = 6

rdestPack = registerPack rdest

assemblyPack (ADD rdest rsrc1 rsrc2) = ...

Figure 7.10:

instance (Input Assembly) where

toInput (Assembly xs) = CycleBased (foldr f [] ys)

where ys = zip xs [0..]

f (j,inst) = ...

Figure 7.11:

• (Figure 7.13): The second program is the same as the first, except that

the second instruction is modified to be a symbolic value representing any

instruction. As an example, if simulation was run on this program, we

could query the SMT solver for a concrete instruction (more specifically,

its microprocessor-level representation) such that the value in register

R2 at the end of the program was, say, two. In this case, it could return

the same instruction used in the first program.

7.2.3 vlogml Example 1

As the first demonstration of applying vlogml to our microprocessor, we will

consider a coverage goal that has to do with the organization of the data

memory. Recall from above that the data memory is organized into multiple

banks. Our goal will be to write a program such that two consecutive stores

to the data memory write to different words in the same bank. In addition,

we will develop a vlogml program that attains this coverage goal in such a

way that it is robust with respect to changes in the number of banks and how

94

Assembly

[IMM R0 1

, IMM R1 1

, ADD R2 R0 R1

, HALT

]

Figure 7.12:

Assembly

[IMM R0 1

, ANY

, ADD R2 R0 R1

, HALT

]

Figure 7.13:

the banks are organized.

The strategy employed iteratively runs simulation of an assembly program

that performs two stores to the data memory, each time increasing the stride

between the addresses stored up to some threshold. The implementation of

the program assumes the skeleton program from Section 5.2 and is otherwise

constructed from four functions:

• program: This function generates a small assembly program containing

a pair of store instructions at a stride given by the argument.

• checkGoal: This function checks the property corresponding to the

coverage goal. Although its implementation is straightforward, without

a comprehensive vlogml library yet for describing functional coverage

goals, it is somewhat verbose. Therefore, the definition of checkGoal

is omitted here (see [46]).

• trial: This function performs a single simulation trial, using the

function program to generate the stimulus and to maintain a stride

counter, and then checks the coverage goal condition.

95

• iterate: This function iteratively calls trial with different strides and

manages the exit conditions.

1 program j = Assembly

2 [IMM R0 1

3 , IMM R1 (1+j)

4 , IMM R2 63

5 , STW R2 R0

6 , STW R2 R1

7 , HALT

8]

Figure 7.14:

Figure 7.14: program. A call to program j generates an assembly program

whose meaning is determined as follows.

• (line 2): R0 will be used as the first store address.

• (line 3): R1 will be used as the second store address, which is offset from

the first address by the amount given in the argument of the function.

• (line 4): R2 will be used as the source of the value that is stored to data

memory.

• (line 5): Execute the store to the first address.

• (line 6): Execute the store to the second address.

• (line 7): Halt.

1 trial j = do

2 simulateM (program j)

3 checkGoal

Figure 7.15:

96

Figure 7.15: trial.

• (line 2): Run a simulation of the microprocessor using the assembly

program generated through calling program.

• (line 3): Check to see if the simulation successfully effected the coverage

goal, meaning that two consecutive stores to the data memory occurred

at different addresses in the same bank.

1 iterate 10 f = return Nothing

2 iterate j f = do

3 success <- f j

4 if success

5 then return (Just (program j))

6 else iterate (j+1) f

Figure 7.16:

Figure 7.16: iterate. The first argument of iterate is the current stride

value and the second argument is a wrapped version of trial that will be

called (see definition of strategy next).

• (line 2): At a stride of ten, the strategy fails, returning Nothing.

• (line 3): Call trial with the current stride and bind the result of

checkGoal to the variable success.

• (line 5): The current stride was successful, return the associated assem-

bly program.

• (line 6): The current stride failed, increment the stride value and

proceed with the next iteration.

strategy sim = iterate 0 (\j -> evalStrat (trial j) sim)

Figure 7.17:

97

Figure 7.17: strategy. This function simply calls iterate with appro-

priately initialized values. Note that the second argument binds a function

that maps strides to simulation trials that return a result with respect to the

initial simulation provided by start in the skeleton program from Section

5.2.

7.2.4 Discussion

What is interesting about the above vlogml program is that it is both highly

targeted and resilient to changes in the organization of the data memory’s

internal banking scheme. A traditional directed test only accomplishes the

first, and upon regression in a changed organization, would need to be

considered directly by an engineer and rewritten.

7.2.5 vlogml Example 2

The second vlogml program we develop for the microprocessor is one that

uses symbolic simulation and an SMT solver to automatically generate part

of an assembly program. In many instruction sets, multiple instructions are

needed to generate certain bit-patterns within a register, encouraging the

use of complicated bit-manipulations that lead to subtle bugs. The vlogml

program that we describe mitigates this problem simply by stating the bit-

pattern desired and invoking an SMT solver. As a result, it generates part of

an assembly program that yields exactly the constant desired in register R2.

1 strategy sim = evalStrat aux sim

2
3 aux = do

4 simulateM program

5 x <- solveSim

6 checkResult x

Figure 7.18:

98

Figure 7.18: strategy and aux. These functions stage the high-level logic

of the program, which in turn is constructed from three component functions,

program, solveSim, and checkResult, elaborated on below.

• (line 1): Call aux appropriately wrapped and with the initial simulation

obtained from the call to start in the skeleton program.

• (line 4): Perform simulation of the assembly program shown in Figure

7.19. As indicated above, this results in a symbolic simulation as

one of the instructions in the program is left unspecified via the ANY

constructor.

• (line 5): Invoke the SMT solver with an appropriately formed query to

generate the needed instruction.

• (line 6): Consider the result obtained from the SMT solver and provide,

if successful, an appropriate concrete simulation.

1 program = Assembly

2 [IMM R0 2

3 , ANY

4 , ADD R2 R0 R1

5 , HALT

6]

Figure 7.19:

Figure 7.19: program.

• (line 2): Load the value 2 into register R0.

• (line 3): Leave the second instruction symbolic.

• (line 4): Add registers R0 and R1 and place the result in register R2.

• (line 5): Halt.

99

1 solveSim = do

2 x <- evalM [| r2 == 65 |]

3 lift (smt Nothing x)

Figure 7.20:

Figure 7.20: solveSim.

• (line 2): Evaluate the expression that indicates a successful simulation.

The constant that we attempt to put into the register R2 is 65, which

overflows the 6-bit immediate field of IMM and therefore requires multiple

instructions to effect.

• (line 3): Invoke the SMT solver with the above-bound evaluated ex-

pression.

1 checkResult (Nothing) = return Nothing

2 checkResult (Just subst) = do

3 sim <- get

4 let sim’ = concretize subst sim

5 return (Just sim’)

Figure 7.21:

• (line 1): If the SMT solver fails to find a substitution, return Nothing.

• (line 2): The SMT solver succeeded in finding a substitution, which,

through pattern matching, is bound to the variable subst.

• (line 3): Bind the result of symbolic simulation to a variable sim.

• (lines 4 – 5): Apply subst to the symbolic simulation using concretize

and return the result.

7.2.6 Discussion

What this example demonstrates is an advanced use of symbolic simulation

to generate a more complex data type, namely, assembly programs. It is

100

interesting too because it is invokes the solver for a case that one would expect

to succeed, generating a specific constant value in a register, but when done

by hand could be error prone. This kind of situation is what we envision to

be the best use of SMT solving: to discharge tedious constraints, but ones

that are not computationally extremely difficult.

101

CHAPTER 8

SEMANTICS: VERILOG

This chapter addresses the semantics of Verilog [36], perhaps the most widely

used language for digital circuit design since the early 1990s. A formal

executable semantics for a substantial subset of Verilog is developed, and its

utility in exploring the space of executions for small programs is demonstrated.

A rewriting logic semantics not only lends further evidence to the suitability

of rewriting logic as a semantics framework [77], but is also important for

practical reasons: many Verilog-based tools exist, including several formal

verification tools from which users expect strong guarantees about the behavior

of their programs. Having a formal executable semantics provides a standard

by which inconsistencies in specific tools can be uncovered. In fact, this work

has uncovered several such inconsistencies.

8.1 Disclaimer

The purpose of this disclaimer is to state clearly what our semantics is

not, so that the actual contributions made by our effort are not obscured.

First, our semantics is not comprehensive, though we believe it to be more

comprehensive than any other formal semantics of Verilog attempted to

date. Second, our semantics is not definitive, though it is based on careful

readings of the standard [36] – the only definitive characterization of Verilog

–, discussions with long-time developers of Verilog simulators, and experiments

using well-regarded simulators to interpret small Verilog programs.

8.2 Contributions

Verilog is immense; the official standards document [36] is almost 600 pages

long, and our formalization effort presented here is therefore necessarily

102

incomplete and selective in its coverage. Our formalization is, however, the

most extensive of any such effort attempted to date, so far as we are aware;

this is the first contribution of our semantics. Both “synthesizable” and

“behavioral” aspects of the language are handled, in a uniform way, so that

the intent of the standard is followed as closely as possible. Our belief is that,

because of this, support for additional constructs not currently covered can

be incorporated in a straightforward way.

The second contribution of our formal semantics is that it is executable,

which of course is one of the main distinguishing features of rewriting logic

semantics [77]. Executability is had via Maude and yields the usual analysis

possibilities, including simulation and state-space search. As Verilog is highly

concurrent and nondeterministic, this latter ability is possibly the most useful

in that it provides the unique possibility, of all tools that we are aware of, to

attempt to answer the question of whether a particular behavior is legal for a

given program; usual simulators will only give you a single (hopefully) legal

execution.

Lengthy discussions about the possible behaviors of small Verilog abound

online, many of which might have been completely settled with a formal

executable semantics as the one presented here. Given that many of these

discussions are had among tool developers, one potential benefit is the devel-

opment of more correct and consistent tools for Verilog, some of which are

expected to provide very strong, formal guarantees about Verilog programs.

Finally, we describe in detail a set of example programs that demonstrate

some of the most important, and commonly misunderstood features of Verilog.

These include aspects of the language having to do with concurrency, bit-

width calculations, and special handling of different kinds of assignments.

Several of the examples exposed bugs in mature, widely-used simulators, and

were subsequently fixed. This is our third contribution.

8.3 Concepts

This section introduces some of the syntactic and semantic concepts that are

crucial for reasoning about Verilog programs and understanding our formal

semantics, which is detailed in Sections 8.4 and 8.5. Figures 8.1 and 8.2

present two small examples that we will reference throughout this section for

103

1 module flipflop(clk, in, out);

2 input clk;

3 input [15:0] in;

4 output [15:0] out;

5 reg [15:0] r;

6
7 assign out = r;

8 always @(posedge clk)

9 r <= in;

10
11 endmodule

Figure 8.1: D-Type Flip-Flop Example

illustration purposes.

Figure 8.1 shows a Verilog module having the functionality of a D-type flip-

flop. A module is a unit of design that allows for code reuse and abstraction.

It is similar in spirit to modules from several software programming languages.

While the example is simple, it illustrates some important features of Verilog.

Verilog has two main classes of nodes: variables and nets. Variables

represent the notion of state, requiring memory of some kind, while nets

abstract the idea of wires that carry information from one area of a design to

another. The input and output keywords declare which variables are inputs

and outputs to the module. Module inputs and outputs are automatically

assumed to be of net type; registered outputs can be explicitly specified by

adding the keyword reg after output. For nodes that are not ports, the

keyword wire specifies a net type, and the keyword reg specifies a variable

type. The nodes clk, in, and out in the flip-flop module are all nets, whereas

r is a variable.

Both nets and variables most often represent scalars or vectors of four-state

logic values, The input clk is a scalar since, unless explicit indices are given

to index into the vector, scalar is assumed. On the other hand, the node in is

declared with an explicit indexing range, specifying it to be of length sixteen.

According to the Verilog standard, variable data types may only be assigned

within procedural blocks, such as the one on lines 8–9 of Figure 8.1, while

net types can only be assigned in continuous assignments such as the one on

line 7.

104

Lines 8-9 show a procedural block, in this case an always block, introduced

with the keyword always. An always block denotes a constantly running

computation, essentially an infinite loop. Note that Verilog also has a related

concept called an initial block, which is introduced with the keyword initial

and runs once starting at the beginning of simulation.

An initial block can be seen in the example in Figure 8.2. The term

procedural blocks refers collectively to always and initial blocks, tasks, and

functions. Tasks and functions are not covered in our semantics. An always

block is constructed with a single statement; in the examples presented in

Figures 8.1 and 8.2, and commonly in Verilog designs, this statement has the

structured form @(posedge clk) S’, with S’ also a statement. The effect of

this statement is to delay evaluation of S’ until its event control, (posedge

clk), is triggered. In the case of (posedge clk), the triggering event is a

specific kind of change perceived in the value of clk, namely a change from

any non-1 value to 1, representing a positive edge.

The assignment on line 7 is a continuous net assignment. Perhaps some-

what counterintuitively, this assignment will be the last action of the module

on a given positive edge of clk. A continuous assignment is triggered for

evaluation whenever any value in its right-hand side changes, which, in the

case of the current example, is whenever the value of r changes. This can

be thought of in terms of hardware as attaching a wire to the output of the

register r.

As the example in Figure 8.1 illustrates, there are two basic types of

assignments at the top level, continuous assignments, such as the one on line

7, that allow assignment to net types, and procedural assignments, such as the

one on line 9, that allow assignment to variable types. Procedural assignments

can be broken down further into blocking and non-blocking assignments.

The module in Figure 8.2 shows an initial block and two always blocks,

which look very similar, yet compute very different results. In the initial

block, nb1 is initialized to 0. In the block on lines 9–13, blocking assignments

are used (hence the variable names b1,b2), while lines 15–19 use non-blocking

assignments.

To understand what is going on in this example, let us assume a value for

in. Let in be 1, then, considering the first always block on lines 9–13, the

value of b1 will be 1, while that of b2 will be 2. This is because the assignment

of b1 blocks the statements following it until its completion. The non-blocking

105

1 module procedural_assigns(clk, in);

2 input clk;

3 input [15:0] in;

4 reg [15:0] b1, b2;

5 reg [15:0] nb1, nb2;

6
7 initial nb1 = 0;

8
9 always @(posedge clk)

10 begin

11 b1 = in;

12 b2 = b1 + 1;

13 end

14
15 always @(posedge clk)

16 begin

17 nb1 <= in;

18 nb2 <= nb1 + 1;

19 end

20 endmodule

Figure 8.2: Assignment Types Example

assignments in the block on line 15–19 do not block the statements following

them. Following the block, nb1 will contain 1, but nb2 will also contain 1,

because the previous value of nb1, namely 0, is used in the assignment on

line 18.

As a language created to model and design circuits, Verilog is inherently

concurrent. Capturing this concurrency, and the resulting non-determinism

allowed by the standard, is one of the most important tasks of any formal

definition of the language. Many Verilog users, however, learn the language

primarily through simulators, many of which are single-threaded and deter-

ministic; or, even if not single-threaded, certainly not capable of enumerating

all legal behaviors.

To ease understanding and maintain consistency, we adopt several of the

terms used in the Verilog standard. First and foremost is that of the process.

In a Verilog design, a process is anything that can perform computation.

According to the standard [36, §11.2]: “Processes are objects that can be

106

evaluated, that may have state, and that can respond to changes on their

inputs to produce outputs”. Going back to our introductory flipflop example

from Figure 8.1, the always block on lines 8–9 is one process, while the

continuous assignment on line 7 is another. The module itself is also a process.

Our formal representation of processes is given in Section 8.4.

While processes are very specific, the terminology of event encompasses

several different concepts. Except where specifically mentioned, we try to

make the event terminology of the standard explicit in the definition, to ease

understanding for those familiar with the standard. Every update of a net

or variable is an update event. The evaluation of a process is an evaluation

event. This is the only type of event that is not explicitly represented in the

definition, which instead merges the concepts of process and evaluation event,

effectively treating processes as events.

While Verilog is used to synthesize circuit designs, it was originally, and

essentially continues to to be, designed for simulation. Because of this, Verilog

is sensitive to simulator time. In fact, in addition to the ability to delay

statements until a particular condition holds, such as on line 8 of Figure 8.1,

it is also possible to delay statements some number of simulator cycles. The

syntax for this consists of preceding a statement, say S, with, say, #5, which

means that S will be delayed 5 time units.

The most important concept regarding the Verilog semantics is the strati-

fied event queue [36, §11.3]. Events are divided into five prioritized categories

that determine when they are scheduled for execution with respect to simula-

tion time: active events, inactive events, non-blocking assign update events,

monitor events, and future events. We further add the category of listening

events, which does not exist in the standard but help clarify the execution of

Verilog designs.

Active events are all events that are currently running, i.e., they are not

waiting for any specific trigger, and they have not been delayed. Inactive

events are curious, in that as far as we know they only occur when a statement

has been delayed by exactly 0 time units, for example, through a statement

such as (r = #0 1;). Non-blocking assign update events are generated by

executing a non-blocking assignment. Monitor events are related the Verilog

monitor statement, which is essentially a print statement that occurs at the

end of every simulator cycle in which its arguments change. Future events are

processes that have been delayed by some non-zero amount, which must still

107

1 module value_size;

2 reg [3:0] r1, r2;

3 reg [15:0] out;

4
5 initial

6 begin

7 r1 = 15;

8 r2 = 15;

9 out = r1 + r2;

10 end

11 endmodule

Figure 8.3: Value Sizing Example

eventually execute. Listening events are those events that are waiting for a

particular trigger to occur; they will be promoted to active events/processes

as soon as that trigger occurs.

Each type of event, as listed, is promoted to an active event or process

only when there are no events before it in the list, except for listening events,

which may be promoted as soon as the trigger that they are listening for

occurs. For example, inactive events are all, at the same time, promoted

to active events when there are no more active events or processes to be

executed. Similarly, non-blocking assign update events are all simultaneously

promoted to active events when there are no more active or inactive events in

the given simulation cycle. When all events, except for listening events and

future events, have been exhausted, time is advanced to that of the earliest

future event. If there are no pending future events the program completes

execution.

Verilog has interesting rules for the size of operands. Figure 8.3 shows a

simple, but by no means exhaustive, example of this. Despite the fact that

both r1 and r2 are only four bits wide, the variable out is still assigned the

value 30 at line 9. For the purposes of the addition, r1 and r2 are treated as

sixteen bit quantities, because out is a sixteen bit quantity. There are many

different rules for the sizing of values; the above example only covers one

of them (sizing to the left hand side of an expression). All of the rules are

covered in our definition. Due to the fact that the standard specifies these

rules very clearly, we refer the interested reader to the standard or the full

108

specification of our definition available at [72].

8.4 Semantics: Configuration

This section, together with the one following, provide an annotated account

of our formal semantics. We follow a common convention of rewriting logic

semantics: the syntax of terms, called configurations, is first defined by

means of sorts and operator declarations to represent the entire state of the

program, and subsequently semantic equations and rules are added that act

on configurations to advance the state of the computation. This section

defines configurations, using the program in Figure 8.1 as an example, and

Section 8.5 defines the essential equations and rules that act on configurations.

The specification is available in its entirety [72].

Configurations are represented as terms of sort Configuration, defined

as sets of configuration items. The most important aspect of a configuration

is that it represents the state of Verilog’s event queue. Each stratum of the

queue is associated with its own configuration item.

op updateEvents : Set{Event} -> ConfigurationItem .

op incativeEvents : Set{Event} -> ConfigurationItem .

op nonBlockingAssignUpdateEvents

: List{Event} -> ConfigurationItem .

op monitorEvents : Set{Event} -> ConfigurationItem .

op futureEvents : List{Event} -> ConfigurationItem .

In addition to the above strata, which are exactly the ones dictated by

the standard [36, §11.3], we add a new stratum that holds events sensitive to

updates to nodes.

op listeningEvents : Set{Event} -> ConfigurationItem .

There are various kinds of events that are formalized, including update

events, events that are sensitive to update events and execute only once, and

events that are sensitive to update events and execute continuously. Terms of

sort TriggerSet below are just sets of node names.

109

op updateEvent : Exp BitVector -> Event .

op listeningEvent : TriggerSet Computation

-> Event .

op continuousListeningEvent : TriggerSet Name Computation

-> Event .

The second argument to continuousListeningEvent is a net driven by a

continuous assignment. Continuous listening events are, within our semantics,

always associated with continuous assignments, and need to be handled

specially; the standard dictates that they cannot generate exactly the same

kind of update event as procedural blocking assignments.

In addition, the update events that are held using the updateEvents

operator will include just pending updates to variables, as opposed to both

pending updates and active processes. Instead, we introduce one additional

stratum to hold active processes.

op activeProcesses : Set{Process} -> ConfigurationItem .

Processes are terms created from something we call “computations”,

which are used to stage the execution of different classes of constructs, such

as expressions, statements, and top-level process designators such as initial

and always blocks. Procedural and continuous assignments get separate

process constructors.

op k : Computation -> Process .

op continuousk : Name Computation -> Process .

And, the operators holding the different kinds of computations are given as

follows.

op top : Top -> Computation .

op exp : Nat+ Exp -> Computation .

op stmt : Statement -> Computation .

op stmt : Name Statement -> Computation .

As an example of a partial configuration, just giving the state of the event

queue, the following term specifies the initial state of the event queue for the

flipflop module presented in Figure 8.1.

110

activeProcesses(k(top(always @(posedge clk) r <= in;)))

updateEvents(empty)

inactiveEvents(empty)

nonBlockingAssignUpdateEvents(empty)

monitorEvents(empty)

futureEvents(empty)

listeningEvents(

continuousListeningEvent(r, out, exp(16, r)))

The current value of all nodes in the circuit, called the environment in

our semantics, as well as the current simulation time, are the other two

components that are part of a configuration.

op env : Env -> ConfigurationItem .

op time : Nat -> ConfigurationItem .

The operator env is used to hold the environment of the system. It

contains a mapping from variable or net names to bitvectors. In the initial

state of the flipflop module, the environment is given by the following term.

env(clk |-> [0 # 1]

, in |-> [0 # 16]

, out |-> [0 # 16]

, r |-> [0 # 16])

A bitvector is a pair consisting of a value and a bitwidth, separated with a #;

e.g., out is a 16-bit node assigned value 0 above. The operator time is used

to hold the current simulator time. It always starts at 0.

To summarize, the term given below specifies the initial configuration for

the flipflop module presented in Figure 8.1. Note that we have omitted some

additional configuration items that are useful in practice, but not usually

considered part of the Verilog simulation state. For example, we omit a

configuration item to hold the output buffer.

111

activeProcesses(k(top(always @(posedge clk) r <= in;)))

updateEvents(empty)

inactiveEvents(empty)

nonBlockingAssignUpdateEvents(empty)

monitorEvents(empty)

futureEvents(empty)

listeningEvents(

continuousListeningEvent(r, out, exp(16, r)))

time(0)

env(clk |-> [0 # 1]

, in |-> [0 # 16]

, out |-> [0 # 16]

, r |-> [0 # 16]

)

8.5 Semantics: Equations and Rules

The semantics for initial blocks is very simple. The statements of an initial

block must run exactly once. The equation below simply strips off the keyword

initial, forcing the statements represented by the variable S to evaluate.

Note that the operator k is not mentioned in the equation; in fact, no subterms

are mentioned except those we explicitly require. In addition, throughout the

remainder of the chapter, all Maude-level variables will be assumed to have

the sort of argument of the operator in which it appears in a term, unless

explicitly noted otherwise.

top(initial S) = stmt(S)

The semantics of always blocks is very similar, except that the statements

of the body of the block must be repeated indefinitely, thus the equation

forces the statements S to be run, but also schedules another copy of the

always block to run after S completes. In this case the equation must match

the k operator to keep the always block from infinitely unrolling rather than

executing the statements of the body before unrolling another step.

k(top(always S)) = k(stmt(S) -> top(always S))

Procedural assignments generate update events, which go into the strati-

fied event queue. The update events themselves are responsible for actually

112

updating the environment of the system and waking up any listening processes.

The semantics of blocking assignments is such that trailing statements are

barred from being executed until after the generated update event completes.

The first step is to calculate the value of the right-hand side of the assign-

ment. In the equation displayed next, the right-hand side of the assignment,

designated with the variable Ex, is pulled out and placed at the top of the

computation stack; the size of the expression is also calculated.

eq activeProcesses(k(stmt(QEx = Ex ;) -> K) PS) env(Env)

= activeProcesses(k(exp(expSize(QEx, Env, Ex), Ex)

-> blockingAssign(QEx) -> K) PS) env(Env) .

The rules for evaluating expressions is straightforward and are omitted

(see [72] for details). Once the right-hand side is fully evaluated to a value,

that is, to something of sort BitVector, the actual assignment takes place

and sensitive listening events are added to the set of active processes for later

evaluation.

eq activeProcesses(k(BV -> blockingAssign(X) -> K) PS)

updateEvents(ES)

= activeProcesses(PS)

updateEvents(updateEventList(updateEvent(X,BV), K) ES)

In the equation above, the variable PS denotes the other processes, ES

denotes the current set of events, X denotes the node name being assigned to,

and K denotes the rest of the computation. The important thing to note is

that the term represented by K gets placed in the update event list that is

added to updateEvents. It contains all remaining statements in the given

procedural block. As we will see below, this computation will be run as an

active process once the update event gets reflected in the environment; for

the time being, however, it is removed from the active processes. The term

rooted at updateEventList allows us to group any number of update events

that must be executed in order. This is useful both for assignments with

concatenations on the left-hand side (see [72]), and for scheduling non-blocking

assign update events; here, with a blocking assignments, the full power of

having a list is not needed.

While very similar in form, we use a rule to define non-blocking assignments.

The reason for this is that all of the non-blocking assignments added to the set

113

module netassign;

wire w;

reg r;

assign w = r;

initial

begin

r = 0;

r = 1;

end

endmodule

Figure 8.4: Net Assignment Example

contained within the term rooted at the nonBlockingAssignUpdateEvents

symbol are eventually scheduled to execute in one updateEventList. This

is to facilitate the standard’s mandate that non-blocking assignments in one

procedural block complete in order. If an equation were used, non-blocking

assignments in different procedural blocks would only be allowed to interleave

in one order. With a rule, we ensure that non-blocking assignments may

be ordered non-deterministically, while still keeping the ordering within one

block.

rl activeProcesses(k(BV -> nonBlockingAssign(X) -> K) PS)

nonBlockingAssignUpdateEvents(EL)

=> activeProcesses(k(K) PS)

nonBlockingAssignUpdateEvents(EL ; updateEvent(X,BV))

The variable EL above denotes a list of events. A list differs from a set in

that the elements are ordered. Note that the term K is allowed to continue

as k(K) appears in the activeProccesses on the right hand side of the rule.

This is exactly the desired semantics of a non-blocking assignment: the rest of

the block is allowed to complete before the update event from the assignment

is allowed to make any change to the environment.

There are two equations for governing the semantics of continuous assign-

ment. Note that only one outstanding update event exists for a given driver

at any one time. This is the reason for having “continuous” versions of many

114

constructs. We do not address the case of a net having multiple drivers.

eq activeProcesses(continuousk(X, BV1) PS)

updateEvents(continuousUpdateEvent(X, BV2) ES)

= activeProcesses(PS)

updateEvents(continuousUpdateEvent(X, BV1) ES) .

eq activeProcesses(continuousk(X, BV) PS)

updateEvents(ES)

= activeProcesses(PS)

updateEvents(continuousUpdateEvent(X, BV) ES)

[owise] .

The variables BV1 and BV in the first and second equations, respectively,

are the results of assignment computations. By the time a bitvector becomes

the sole remaining argument, the computation has been completely evaluated.

The first equation will replace any pending update event to the same net

with an update containing the current value of the assignment right-hand

side computation. This case is handled with the first equation. Gordon [31]

refers to this idea as cancelling.

The second equation is an “otherwise” equation [15, §4.5.4] that is only

applied if the first equation does not match because there is not already

a pending continuousUpdateEvent to the node represented by X in the

equation.

Net and variable lookup and updating is performed through rules in

rewriting logic. The reason for this is that the Verilog standard states that

it is legal for a simulator to execute any outstanding active update event.

The value of a given net or variable, when referenced, is simply found in

the environment. Note that we must mention the activeProcesses term

because the environment exists at the top level of the configuration. The rules

for other kinds of operands, specifically bit and part selections, are similar

(see [72]). In addition, we have simplified the rule slightly here, removing the

part that handles bit-width calculations. This was done for readability.

rl activeProcesses(k(exp(N, X) -> K) PS) env(X |-> BV, M)

=> activeProcesses(BV -> K) PS) env(X |-> BV, M) .

Net and variable updating occurs when an update event executes. Update

events are generated by the assignments as explained above. Update events

115

must modify the environment, wake up any process that is currently waiting

as a listening event, and alert any monitor event that the value has changed.

rl updateEvents(updateEventList(updateEvent(X, BV1) ; EL, K) ES1)

env(X |-> BV2, ENV)

listeningEvents(ES2)

=> updateEvents(updateEventList(EL, K) ES1)

env(X |-> BV1, ENV)

listeningEvents(sense(X, BV2, BV1, ES2))

Here the various ES’s represent sets of events. The term rooted at

updateEventList groups several update events as a list. This allows us

to ensure that non-blocking assignments occur in program text order within

a procedural block, as well as allowing for an easy and clear representation of

concatenation-form assignments (see [72]). The operator sense is responsible

for waking up the proper listening events and deciding if any monitor event

need execute in the current simulator cycle. It uses the previous and current

value of the variable or net that is updated to make its determinations.

The last equation here schedules the term bound to K from the update

event list to execute when all update events in the update event list have

been exhausted. For non-blocking assignments, the term bound to K will be

empty, meaning that nothing is scheduled.

eq activeProcesses(PS)

updateEvents(updateEventList(empty, K) ES)

= activeProcesses(k(K) PS)

updateEvents(ES) .

The semantics for delays and triggers is fairly straightforward. Delays

simply move the current active process to the future event set with a simulator

time equal to the current time added to the time of the delay, if the delay

is non-zero. If the delay is zero, the rest of the active processes are moved

to the set of inactive events set. Triggers add the rest of the current active

process to the set of listening events. The equations for each of these follow.

116

eq time(N)

futureEvents(EL)

activeProcesses(k(stmt(# NzN S) -> K) PS)

= futureEvents(futureEvent(N + NzN, stmt(S) -> K) ; EL)

time(N)

activeProcesses(PS) .

eq inactiveEvents(ES)

activeProcesses(k(stmt(# 0 S) -> K) PS)

= inactiveEvents(inactiveEvent(stmt(S) -> K) ES)

activeProcesses(PS) .

Here, in the equation for non-zero delays, NzN is a non-zero natural number,

while N is any natural number. N is the current time, while NzN is the delay.

As expected, the rest of the current process, K, is added to the future event set,

as well as the delayed statement S. The first argument to the futureEvent

operator is the simulator cycle in which the event should be scheduled to run

as an active process.

For wait statements, the process associated with the wait is added to the

listening events set. Here, SL is the sensitivity list; it is maintained as the

first argument to listeningEvent so that the equationally defined function

sense can decide which listening events must be scheduled when an update

event executes.

eq listeningEvents(EL)

activeProcesses(k(stmt(@(SL) S) -> K) PS)

= listeningEvents(listeningEvent(SL, stmt(S) -> K) ; EL)

activeProcesses(PS) .

Lastly, we present the rules for scheduling the main simulator loop. The

general idea is to continue with the next set of events in the list when all the

previous sets are empty.

Active processes and update events are allowed to run at any time, and

do so via the equations and rules detailed above. The first set of events

activated when active processes and update events are exhausted is the set of

inactive events. The operator activate schedules each individual inactive

event as an active process by wrapping the associated computation with the k

operator. In the equation, the variable NES denotes specifically a non-empty

set of events.

117

rl activeProcesses(empty)

updateEvents(empty)

inactiveEvents(NES)

=> activeProcesses(activate(NES))

updateEvents(empty)

inactiveEvents(empty) .

When there are no active processes, update events, or inactive events, the

non-blocking assign update events are activated simultaneously by moving

them to the update event set.

rl activeProcesses(empty)

updateEvents(empty)

inactiveEvents(empty)

nonBlockingAssignUpdate(NEL)

=> activeProcesses(empty)

updateEvents(updateEventList(NEL, empty))

inactiveEvents(empty)

nonBlockingAssignUpdate(empty) .

The variable NEL denotes a non-empty list of events. The events in the

non-blocking assign update event set are added to one update event list.

The continuation argument is empty, as there is nothing to continue after

a non-blocking assignment changes the state of the program, as mentioned

above

A similar rule exists for waking up monitor events. Note that the monitor

event is primed for its next execution by being wrapped with a special operator

called futureMonitorEvents.

118

rl activeProcesses(empty)

updateEvents(empty)

inactiveEvents(empty)

nonBlockingAssignUpdateEvents(empty)

monitorEvents(monitorEvent(TrS, B, Format, ExL) ES1)

futureMonitorEvents(ES2)

=> activeProcesses(if B

then k(display(true, Format, ExL, nilEL))

else emptyProcesses fi)

updateEvents(empty)

inactiveEvents(empty)

nonBlockingAssignUpdateEvents(empty)

monitorEvents(ES1)

futureMonitorEvents(ES2

monitorEvent(TrS, false, Format, ExL)) .

Finally, if no monitor events are present, the future events set to execute

earliest are made active. The equationally defined operator awaken queues

up all other events that were delayed until time associated with the variable

N2, and leaves any events scheduled later as future events.

rl activeProcesses(empty)

updateEvents(empty)

inactiveEvents(empty)

nonBlockingAssignUpdateEvents(empty)

monitorEvents(empty)

futureMonitorEvents(ES)

futureEvents(futureEvent(N2, K) ; EL)

time(N1)

=> activeProcesses(k(K))

updateEvents(empty)

inactiveEvents(empty)

nonBlockingAssignUpdateEvents(empty)

monitorEvents(ES)

futureEvents(awaken(N2, EL))

time(N2) .

8.6 Examples

Races. The first example is taken directly from the IEEE Standard [36], and

demonstrates the essential source of non-determinism in Verilog; it is shown

in Figure 8.5. After the assignment of q to 0, a race condition is created

119

module m;

wire p;

reg q;

assign p = q;

initial

begin

q = 1;

#1;

q = 0;

$display(p);

end

endmodule

/* Icarus Verilog 0.9.2

0

*/

/* VCS D-2009.12

0

*/

Figure 8.5: Race Condition Example from the IEEE Standard ([36, §11.5]).

between the continuous assignment, which needs to update the value of p,

and the display of p. It is correct for a simulator to output either 0, if the

display is executed first, or 1, if the continuous assignment is executed first;

both iverilog and vcs happen to output 0.

The second example is shown in Figure 8.6 and, like the first example,

comes from the IEEE Standard. The purpose of the example is to expose

the apparent vagaries of bit-width determinations, and the effect of this

determination on the evaluation of expressions.

In the example, the question that arises is about the correct bit-width

of the expression (a + b). The IEEE Standard dictates that for addition,

the expression is calculated using a bit-width equal to the maximum of the

bit-widths of its operands; the same is true for subtraction, but not for

shift-right, where the operands are self-determined.

Therefore, the first display must print 0 because the addition is calculated

using 4-bits and the overflow is lost. The second display must print 8 because

the bit-width of unsized integer literals while implementation-dependent, is

required to be at least 32 bits [36, §4.8], and therefore the overflow is not lost

because the entire expression (a + b - 0) is calculated using 32 bits.

Indeed, the determination of bit-widths is quite complex, as even the

declared bit-width of an identifier may involve compound expressions whose

bit-widths must be determined. Consider the program shown in Figure 8.7,

which declares identifiers x and y using complex range expressions; that is,

120

module m;

reg [3:0] a,b;

reg [3:0] x;

initial

begin

a = 4’b1111;

b = 4’b0001;

x = (a + b) >> 1;

$display(x);

x = (a + b - 0) >> 1;

$display(x);

end

endmodule

/* Output

0

8

*/

Figure 8.6: Expression Bit-Width Sizing Example ([36, §5.4.2]).

module m;

reg [4’b1111 + 4’b0001 >> 1:0] x;

reg [4’b1111 + 1 >> 1:0] y;

initial

begin

x = -1;

y = -1;

$display("x = %b", x);

$display("y = %b", y);

end

endmodule

/* Icarus Verilog 0.9.2

x = 111111111

y = 111111111

*/

/* VCS D-2009.12

x = 1

y = 111111111

*/

Figure 8.7: Bit-Width Calculation Bug.

121

module m;

reg x;

// spot 1

initial

x = 0;

initial

begin

x = 1;

#1;

$display("x = %d", x);

end

// spot 2

endmodule

/* Icarus Verilog 0.9.2

x = 1

*/

/* VCS D-2009.12

x = 1

*/

Figure 8.8:

where the most and least-significant bits are compound expressions and not

simple unsized literals. The displays will print a sequence of 1s for each

identifier, the length of which indicates the identifier’s bit-width.

As the example from Figure 8.6 demonstrated, the bit-width of the expres-

sions (4’b1111 + 4’b0001) and (4’b1111 + 1) are different, with the ex-

pression (4’b1111 + 4’b0001) discarding the overflow, in particular. There-

fore, the declarations in the program should be interpreted as being equivalent

to

reg [0:0] x;

reg [8:0] y;

meaning that x should be 1-bit and y should be 9-bits. As a result, this

example exposes a bug in iverilog, which mistakenly determines that x

should be 9 bits wide.

One possible way of exposing nondeterminism using a traditional Verilog

simulator is by shuffling processes around to different locations in the source

code; for example, consider the programs presented in Figures 8.8 and 8.9.

According to the semantics of Verilog, the two programs are equivalent, and

may legally display either 0 or 1.

However, simply by moving one initial construct below the other in source

122

module m;

reg [3:0] x;

// spot 1

initial

begin

x = 1;

#1;

$display("x = %d", x);

end

// spot 2

initial

x = 0;

endmodule

/* Icarus Verilog 0.9.2

x = 0

*/

/* VCS D-2009.12

x = 0

*/

Figure 8.9: Nondeterminism in Verilog

order, it is possible to coerce iverilog and vcs to display different results.

However, attempting to glean the entirety of a Verilog program’s meaning this

way, essentially by tricking the compiler, leaves much to be desired. A fast

simulator is an invaluable tool, but this example demonstrates the inadequacy

of such tools when answers to fundamental questions are needed.

Consider what occurs starting at the point during simulation when x

is assigned 4’b1010 and simulation time is 2. If we were to evaluate the

event condition @(x == 4’b1010) at this point, the event would be triggered.

However, that does not necessarily happen, we simply put the process with

the event-control back into the queue of runnable processes. If the simulator

then chooses to execute the assignment of x to 1’b1111 before executing

the process with the event control, then when the process is subsequently

run, it will see that the event it is waiting on has not yet happened and be

de-scheduled, waiting for other changes to x.

The other interesting aspect of the program is the continuous assignment.

When the assignment of x to 4’b1010 occurs, an update is scheduled for y at 1

time unit in the future, however, when the assignment of x to 4’b1111 occurs

subsequently, the earlier scheduled update is cancelled. This is noteworthy

because it represents a special case of the manipulation of the event queue: it

123

module m;

reg [15:0] x;

always @(x[0])

x = x+1;

initial

begin

x = 0;

x = 2;

#1;

$display("x = %d", x);

end

endmodule

/* Icarus Verilog 0.9.2

Does Not Exit

*/

/* VCS D-2009.12

x = 3

*/

Figure 8.10:

is one of very few occasions where a pending event is removed.

Therefore, while at time 2 it is legal for a simulator to trigger the first

always construct, the one displaying ding!, it is not legal for a simulator to

trigger the other always construct displaying ding! ding! at time 3. This

is the behavior seen with iverilog; of course, it is also legal for the always

construct to not be tiggered at time 2, which is the behavior had through

running vcs; therefore, both iverilog and vcs produce correct, although

different, results.

The final example, presented as Figure 8.10, demonstrates a common

misconception about Verilog, namely, that an always construct such as

always @(x[0])

x = x+1;

is continually sensing changes to x. In fact, sensitivity to changes in x only

occurs after the assignment to x on the following line, when control reaches the

@(x[0]) again. Therefore, it is not correct for a simulator to loop infinitely

in the above example.

The exact nature of the error exhibited by iverilog is somewhat subtle.

It effectively makes the following program transformation.

assign x1 = x[0];

always @(x1)

x = x+1;

124

The transformed program can loop infinitely, and so in some sense the problem

exhibited by iverilog is that this transformation is not semantics-preserving.

125

CHAPTER 9

SEMANTICS: PRODUCTION RULE SETS

9.1 Introduction

Asynchronous digital circuits have been employed to design low-power, high-

performance microprocessors, e.g. [69], as well as in emerging applications

such as systems-on-chip (SOCs), e.g. [68], soft-error-tolerant systems, e.g. [42],

and nano-electronics, e.g. [70]. The critical property that makes asynchronous

circuits advantageous in these applications is enormous immunity to both

intrinsic and extrinsic timing variation. At present, the major difficulty in

designing asynchronous circuits is that very few commercially supported

asynchronous electronic design automation (EDA) tools or standard cell

libraries exist, making design and implementation of asynchronous circuits

more challenging than for synchronous ones.

The present work concerns the language of production rule sets, which

was introduced as part of a correct-by-construction synthesis method for

asynchronous digital circuits [65]. According to this methodology, designs

are first given in a high-level hardware description language called Communi-

cating Hardware Processes (CHP). The CHP description is synthesized into

a semantically equivalent hierarchical network of gates and digital switches

called a production rule set. From a given production rule set, one can then

straightforwardly generate an equivalent representation in a variety of circuit

technologies, including CMOS.

This paper addresses two issues concerning production rule sets. The

first is the fundamental question of what does a production rule set mean?

To that end, we treat production rule sets as a formal language and assign

to that language a semantics. There are numerous practical benefits to

having defined a precise formal semantics. In particular, a formal semantics

helps facilitate a common understanding of what circuits designed using

126

production rule sets are, and it affords newcomers to the field of asynchronous

design an unambiguous framework in which to understand existing work.

Additionally, it provides a set of mathematical tools for proving properties

about asynchronous circuits.

The second issue that this paper addresses is the problem of automatically

proving properties about production rule sets, much like one might prove

properties about a software program. Specifically, we consider a notion of

deadlock freedom that is appropriate for production rule sets, as well as a

property called hazard freedom. Both of these properties are necessary condi-

tions for a circuit to be considered correct. As we will demonstrate, another

benefit of having a precise formal semantics is that, when that semantics is

given in an executable way, some analyses, including checks for deadlock and

hazard freedom, can be made completely automatic. Executability is had in

this paper through a semantic formalization in rewriting logic [74, 77] which,

through the rewriting logic engine Maude [15], offers various automated and

semi-automated analysis possibilities.

The remainder of the paper is organized as follows. Section 9.2 defines

MPRS , the “mathematical” formal semantics of production rule sets, which

improves upon an earlier effort [56] through the use of a more familiar opera-

tional style. Section 9.3 defines RPRS , an executable semantics of production

rule sets in rewriting logic, improving upon [48] through its extremely close,

almost identical, matching with the mathematical semantics. Section 9.4

establishes the relative correctness of MPRS and RPRS . Specifically, a strong

bisimulation between transition systems induced by the semantics is proved.

As corollaries to strong bisimulation, we get relative correctness with respect

to deadlocks and hazards as well. Section 9.5 demonstrates how to use the

Maude tool to check deadlock and hazard freedom automatically, and applies

this analysis to several small circuits. A pair of optimizations are devel-

oped, and their efficacy examined. Section 9.6 looks briefly at two timing

assumptions other than delay-insensitivity, namely speed-independence and

quasi-delay-insensitivity.

127

9.2 Mathematical Semantics: MPRS

This section revisits our work in [56], providing a revised “mathematical”

semantics for production rule sets for the delay-insensitive case. We refer

generally to the formalization given in this section as MPRS . Compared

to [56], MPRS applies only to the delay-insensitive case, but gains a more

familiar operational formalization and, as a result of the more limited scope,

a treatment which is substantially clearer and more concise. The term

“mathematical” is used to distinguish the semantics presented in this section,

which uses just standard notions from mathematics, such as sets, functions,

and relations, from the executable semantics which follows in Section 9.3.

The mathematical semantics is useful in various ways. It is suitable as

a basis for formal proofs about production rule sets, an extensive example

of which is developed in [55]. A clear formal semantics is also crucial to

facilitating communication between, and a common understanding amongst,

practitioners, as well as for helping newcomers to the field understand essential

concepts.

Section 9.2.1 deals with the syntax of production rule sets. Section 9.2.2

introduces the semantics informally and works through a small example. For

simplicity, hazards are omitted from the discussion in that section. Section

9.2.3 formalizes the semantics in detail, including hazards, and Section 9.2.4

returns to the example circuit and works through an execution that generates

a hazard. Section 9.2.5 contains a discussion about production rule sets in

the context of two somewhat similar formalisms for concurrency, guarded

commands and communicating sequential processes.

9.2.1 Syntax

The “syntax” of production rule sets consists of a mathematical construct

defining a single production rule, and then a mechanism for gathering together

finite sets of these constructions; hence the name production rule sets. There

is also a stylized way of writing production rule sets that we review below.

The choice of which notation to use is just a matter of convenience.

Definition 9.2.1 (Syntax of Production Rule Sets). Let Y denote a denumer-

able set of variables used to specify node names. A production rule is a triple

128

x2

x1,2

x1,1
x1 x3

x1

x1,2

x1,1

x2 x3

Figure 9.1: Gate-level and CMOS-level Specification of a 3-Inverter Ring
Oscillator.

(g, x, d), with g, the guard, being a boolean expression involving variables

from Y , x ∈ Y is the transition variable, and d ∈ {↑, ↓} is the transition

direction. A production rule set is a finite set of production rules.

A production rule (g, x, d) is often written in the following, stylized manner

g 7→ x d

and a set of production rules {(g1, x1, d1), . . . , (gm, xm, dm)} is often written

as a newline-separated list of the individual rules

g1 7→ x1d1

...

gm 7→ xmdm

9.2.2 Example

The purpose of this section is to give, by way of an example, an informal

introduction to the dynamic behavior of production rule sets; that is, their

semantics. The example circuit we consider is shown in Figure 9.1. It is

known as a 3-inverter ring oscillator.

Digital ring oscillators are typically amongst the first circuits designed and

tested in new process technologies, and they can be used as timing elements

129

and clock generators. The simplest ring-oscillator consists of an odd number

of inverters connected sequentially to form a loop. Since the number of

inverters is odd, the output of each inverter will change value in sequence

perpetually; as such, the ring of inverters is said to oscillate. For electrical

reasons, a single inverter ring does not oscillate, so the simplest ring oscillator

contains three inverters.

Figure 9.1 depicts a 3-inverter ring oscillator consisting of two simple

inverters and one modified inverter. In order to simplify the presentation of

certain undesired circuit behaviors, we have made it so that the transistors

governing the inverter with output x2 may switch independently. It should

be noted that in modern CMOS technologies (65nm and smaller), transistor

parameters vary significantly from their nominal values due to process-induced

variation and random dopant fluctuation. Considering a large circuit with

say billions of transistors, there will exist a few gates, e.g. inverters, with

extreme parameter variation where, for example, the PFET is several orders

of magnitude slower than the NFET. It then becomes reasonable to model

such a gate with independently-controlled transistors. The production rule

set corresponding to the 3-inverter ring oscillator depicted in Figure 9.1 is

¬x3 7→ x1 ↑ x1 7→ x1,1 ↑ x1 7→ x1,2 ↑ ¬x1,1 7→ x2 ↑ ¬x2 7→ x3 ↑

x3 7→ x1 ↓ ¬x1 7→ x1,1 ↓ ¬x1 7→ x1,2 ↓ x1,2 7→ x2 ↓ x2 7→ x3 ↓

Let us assume that the oscillator begins in a state where the nodes take

values according to a function σ : {x1, x1,1, x1,2, x2, x3} −→ {0, 1} defined by

x1, x1,1, x1,2, x3 7→ 0

x2 7→ 1

For the moment we will think of the semantics of production rule sets as

essentially specifying all possible σ′s reachable from σ in a single computation

step.

Informally, the σ′s reachable from σ are had by considering all rules with

a true guard, choosing any subset of them, and then executing the right-hand

sides of the rules in this set. In our example, all of the following rules have

130

guards that are true

¬x3 7→ x1 ↑ ¬x1,1 7→ x2 ↑

¬x1 7→ x1,1 ↓ ¬x1 7→ x1,2 ↓ x2 7→ x3 ↓

However, note that while all of these production rules have guards that

evaluate to true in the current state, only the rule ¬x3 7→ x1 ↑ can effect an

observable change in the state of the circuit nodes (x1 rises from 0 to 1); this

is a notion we call enablement ; the rule ¬x3 7→ x1 ↑ is said to be enabled,

whereas, for example, the rule x2 7→ x3 ↓ is not enabled.

As there is only a single enabled rule, and because the semantics allows

for selecting no rules during a step, there are only two possible σ′s reachable

from σ; namely σ′ = σ and the σ′ defined by

x1, x2 7→ 1

x1,1, x1,2, x3 7→ 0

From the above σ′, where x1 has switched, there are four σ′′s subsequently

reachable, one for each subset of {x1,1, x1,2}. Both of these nodes are enabled

to switch to 1, and in a single step either node may, independently, “choose”

to switch or not switch.

The semantics as just described omits one major issue that will be handled

in the formal semantics: hazards. The concept of a hazard corresponds to a

circuit failure and will manifest itself by a node in the circuit taking a value

X which is distinct from the usual 0 or 1. We will return to the 3-inverter

ring oscillator in Section 9.2.4 to expand the example execution steps so that

hazards are accounted for according to the semantics.

9.2.3 Mathematical Semantics

At a high level, our goal is to define a binary relation between program states,

denoted −→P , that corresponds to one step of concurrent execution, relative

to a production rule set P . s −→P s
′ means that it is possible to reach state

s′ from state s in one computation step. The space of executions is then given

131

by the infinite −→P -chains

s1 −→P s2 −→P s3 −→P · · ·

subject to a form of fairness, described later.

Fix a production rule set P . VariableP ⊆ Y denotes the set of all variables

occurring in P . A state (with respect to P) is a pair

(σ : VariableP −→ Level , H ⊆ VariableP)

where Level
def
= {0, X, 1}. The set of all states (with respect to P) is denoted

StateP .

The σ component of a state (σ,H) serves the familiar purpose of specifying

values for all nodes in the circuit, with the X value meaning that a hazard

has been expressed at that node. This direct expression of hazards was first

introduced in [56]. Hazards come in two basic varieties, interference and

instability. The purpose of the set H is to record the origination of potential

hazards, which is only expressed when a node ultimately takes on the value

X; this expression can happen an arbitrary number of computation steps in

the future.

An interference hazard occurs when a node is simultaneously being pulled

both up and down in the current state, roughly corresponding to a short

circuit. For a given valuation σ : VariableP −→ Level , we define a set

InterferenceP,σ ⊆ VariableP

such that y ∈ InterferenceP,σ iff there exists g1 7→ y ↑, g2 7→ y ↓∈ P such that

σ(g1) = σ(g2) = 1.

The evaluation of a boolean expression in the three-valued mapping, such

as σ(g1) above, extends the usual meaning of ¬,∧,∨ on {0, 1} according to

the following equivalences:

¬X = X X ∧ 0 = 0 X ∧ 1 = X X ∨ 1 = 1 X ∨ 0 = X X ∧ X = X X ∨ X = X.

Instability hazards occur when a gate starts pulling toward a new output

level, but before reaching a stable voltage level, the gate stops pulling. This

is a property of a computation step, (σ,H) −→P (σ′, H ′), and is captured by

132

a set

InstabilityP,σ,σ′ ⊆ VariableP .

To define this set, we first need an auxiliary notion, called enablement. Given

a valuation σ, EnabledP,σ ⊆ VariableP is defined so that y ∈ EnabledP,σ if

and only if

• σ(y) 6= 0 and there exists a g 7→ y ↓ ∈ P such that σ(g) = 1, or

• σ(y) 6= 1 and there exists a g 7→ y ↑ ∈ P such that σ(g) = 1.

Given enablement, y ∈ InstabilityP,σ,σ′ iff y ∈ EnabledP,σ, y /∈ EnabledP,σ′ ,

and σ(y) = σ′(y).

For convenience, we define a third predicate which captures both of the

above hazards, as well as the propagation of hazards that have been expressed

previously.

HazardP,σ,σ′ ⊆ VariableP

is defined such that y ∈ HazardP,σ,σ′ iff any of the following conditions are

met:

• y ∈ InterferenceP,σ′ ;

• y ∈ InstabilityP,σ,σ′ ;

• there exists a g 7→ yd ∈ P such that σ′(g) = X.

A set of actions, namely variable assignments and skip (with respect to

P), is defined as

ActionP
def
= {skip} ∪ {x := v | x ∈ VariableP , v ∈ Level}

Given a set of actions A ⊆ ActionP and a variable x ∈ VariableP , we denote

the subset of x-actions of A as

A|x
def
= {y := v ∈ A | y = x}

Definition 9.2.2 (Mathematical Semantics of Production Rule Sets). Let

P = {r1, . . . , rm}

133

be a production rule set. The evaluation relation

−→⊆ (P × StateP)× ActionP

is defined inductively according to the following five inference rules, the first

four governing the evaluation of the action of individual rules:

· σ(g) = 1
〈g 7→ x ↑, (σ,H)〉 −→ x := 1

· σ(g) = 1
〈g 7→ x ↓, (σ,H)〉 −→ x := 0

·
x ∈ H〈g 7→ xd, (σ,H)〉 −→ x := X

·
〈g 7→ xd, (σ,H)〉 −→ skip

Then, the relation −→P is defined by the following fifth rule, which

combines the evaluation results of all of the rules r1, . . . , rm, and, additionally,

specifies the updated H set.

〈r1, (σ,H)〉 −→ a1 . . . 〈rm, (σ,H)〉 −→ am
(σ,H) −→P (σ[a1, . . . , am], H[σ, a1, . . . , am])

where, letting A = {a1, . . . , am}, the node valuation function σ is updated to

σ[a1, . . . , am](x) =

1 if A|x = {x := 1}

0 if A|x = {x := 0}

X if A|x = {x := X} or |A|x| > 1

σ(x) if A|x = ∅

and the set H of possible hazards is updated to the set H[σ, a1, . . . , am] such

that for all y ∈ VariableP , y ∈ H[σ, a1, . . . , am] iff

• y ∈ HazardP,σ,σ[a1,...,am], or

• y ∈ H and σ(y) = σ[a1, . . . , am](y).

Note the fact that a pair 〈g 7→ xd, (σ,H)〉 can evaluate to skip. skip

has no effect on the state, which means that the semantics supports true

concurrency, wherein a subset of the set P of production rules actually

contributes to a state transition (σ,H) −→P (σ′, H ′).

134

An execution is a mapping ξ : N −→ StateP such that for all j ∈ N,

ξ(j) −→P ξ(j + 1) and such that for all y ∈ VariableP , it is not the case that

there exists a j ∈ N where for all i > j, y ∈ EnabledP,σi or y ∈ Hi, but y

never switches; that is, σi(y) = σj(y). This condition is the aforementioned

fairness constraint.

9.2.4 Example, with Hazards

Let us return to the example of Section 9.2.2 and work through a simple set

of execution steps that result in a hazard. The hazard that will be manifested

is an interference hazard at the inverter whose output is x2. We will make

crucial use of the independent control of that gate’s component transistors.

We begin again at the same place we did in Section 9.2.2, with the obvious

exception that we now account for hazards. So, our initial state s0 = (σ0, H0)

has σ0 defined by

x1, x1,1, x1,2, x3 7→ 0

x2 7→ 1

and H0 = ∅.
Going to s1 = (σ1, H1), we let x1 switch. Therefore, σ1 is given by

x1, x2 7→ 1

x1,1, x1,2, x3 7→ 0

and H1 = ∅.
The inference rules governing the action of individual rules always allow

for a skip action to be generated and thus s −→P s is always a legal

computation step, for any production rule set P and any state s. Informally,

this corresponds to choosing the empty set of rules with true guards. Along

such lines, let us say that s2 = s1.

In going from s2 = s1 to s3 = (σ3, H3), we will create the basic condition

for the hazard to become expressed. Let σ3 be such that x1,2 switches, but

135

x1,1 does not; these are the only two currently enabled rules. That is, σ3 is

x1, x1,2, x2 7→ 1

x1,1, x3 7→ 0

The interesting aspect of this state change is that H3 becomes non-empty.

It is straightforward to check that x2 ∈ HazardP,σ2,σ3 , and therefore that

x2 ∈ H3. Since there are production rules ¬x1,1 7→ x2 ↑, x1,2 7→ x2 ↓ ∈ P ,

both with guards that are true in σ3, then x2 is witnessing an interference

hazard in s2; and one can show that H3 = {x2}.
Finally, an X can become expressed in going to s4 = (σ4, H4) with

x1, x1,2 7→ 1

x1,1, x3 7→ 0

x2 7→ X

and H4 = {x3}.

9.2.5 Concurrency in Production Rule Sets

Although the language of production rule sets shares certain features with

both guarded commands [22] and communicating sequential processes (CSP)

[35], it is nevertheless quite different from both of the above formalisms. In

particular, it is tempting to view production rule sets via similar constructs

from guarded commands or CSP, but this is incorrect. As a simple, somewhat

contrived example, consider the following production rule set, which describes

how, depending on the current value of nodes x and y in the circuit, nodes z

and w could be concurrently pulled up toward logical 1 (↑) or pulled down

toward logical 0 (↓)

x 7→ z ↓

y 7→ w ↓

¬y 7→ w ↑,

136

A reasonable candidate translation into the language of guarded commands

would be the statement

do x→ z := 0

[] y → w := 0

[] ¬y → w := 1,

od

Similarly, one might reasonably attempt to view the above production rule

set as the following CSP parallel command

∗[x→ z := 0] ||

∗[y → w := 0] ||

∗[¬y → w := 1]

All three formalizations are, in fact, semantically different; most importantly,

the production rule set exhibits both the possibility of only some of the

production rules being fired, as well as a form of “true concurrency” which is

different from the standard one-at-a-time semantics of the guarded command

statement, or the interleaving semantics of CSP’s parallel command operator.

If x = y = z = w = 1, then, for the above production rule set, the

following are all possible next states of z, w according to the production rule

set semantics:

z = 1, w = 1;

z = 1, w = 0;

z = 0, w = 1;

z = 0, w = 0.

In a single step of computation, neither the guarded command statement nor

the parallel command can change both z and w to 0. The guarded command

statement and the CSP parallel command are even different from each other,

since performing an action requires peeling off different sets of syntactic

constructs by the operational rules.

137

9.3 Rewriting Logic Semantics: RPRS

The purpose of this section is to translate the mathematical semantics of

Section 9.2 into an executable one using rewriting logic [74], a formalism which

has been shown [77] to be well suited for exactly this task. The particular

notation used is that of the rewriting logic tool Maude [15]. As we will see,

the rewriting logic semantics mimics closely the mathematical semantics. The

rewriting logic theory described in this section will be referred to as RPRS .

Using the concrete notation of the Maude tool gives us executability

directly. It allows us to simulate circuits as well as exhaustively check that a

circuit satisfies desirable correctness properties, such as hazard freedom and

deadlock freedom, for example. Exploiting the execution and formal analysis

capabilities gained from the Maude specification is the subject of Section 9.5

(the entire Maude specification is available at [50]).

The syntax of production rule sets is defined first. Recall that a pro-

duction rule is a triple g 7→ xd with g a Boolean expression, x a variable,

and d the transition direction. What is needed in rewriting logic are new

sorts corresponding to these concepts and populated with appropriate terms.

Maude’s QID module [15, §9.2] provides our variables: strings of characters

preceded by a single quote.

fmod AUX-SYNTAX is pr QID * (sort Qid to Variable) .

sorts Guard Direction ProductionRule .

subsort Variable < Guard .

op not_ : Guard -> Guard .

op _and_ : Guard Guard -> Guard .

op _or_ : Guard Guard -> Guard .

ops + - : -> Direction .

op [_->__] : Guard Variable Direction -> ProductionRule .

endfm

Compared to the syntax from Section 9.2, the corresponding terms using

Maude notation are very similar. The production rule ¬y 7→ w ↑ becomes the

term [not ’y -> ’w +] of sort ProductionRule in Maude, for example.

Obtaining an appropriate rewriting logic definition of sets of production

rules is most easily accomplished by instantiating Maude’s parameterized

138

SET module ([15, §9.12.2]) with a view expressing the fact that elements of

the set will be terms of sort ProductionRule. The module given next does

exactly that; additionally, it renames the default sort and union operator

to a more convenient syntax. The details of parameterized programming in

Maude (theories, views, etc.) can be found in [15, §8.3].

view ProductionRule from TRIV to AUX-SYNTAX is

sort Elt to ProductionRule .

endv

fmod SYNTAX is pr SET{ProductionRule} *

(sort Set{ProductionRule} to ProductionRuleSet

, op _,_ to __

) .

endfm

Therefore, in the notation of the SYNTAX module, the production rule set

x 7→ z ↓

y 7→ w ↓

¬y 7→ w ↑,

becomes a term of sort ProductionRuleSet, written in the notation of Maude

as

[’x -> ’z -]

[’y -> ’w -]

[not ’y -> ’w +]

Continuing from the start of Section 9.2.3, we define an operator which

takes a production rule set P as an argument and returns the set of Variable

terms corresponding to the set VariableP defined in Section 9.2.3. Recall that

VariableP was defined to be the set containing all of the variables occurring

in P . Variables can be embedded into the guard g of a rule g 7→ xd, and also

include all transition variables (x in g 7→ xd).

139

view Variable from TRIV to SYNTAX is

sort Elt to Variable .

endv

fmod AUX-SEMANTICS-1 is

pr SET{Variable} * (sort Set{Variable} to 2^Variable) .

--- meta-variable declarations omitted

op Variable-{_} : ProductionRuleSet -> 2^Variable .

eq Variable-{ empty} = empty .

eq Variable-{[G -> Y D] P} =

varsOf(G), Y, Variable-{P} .

op varsOf : Guard -> 2^Variable .

eq varsOf(Y) = Y .

eq varsOf(not G) = varsOf(G) .

eq varsOf(G1 and G2) = varsOf(G1) , varsOf(G2) .

eq varsOf(G1 or G2) = varsOf(G1) , varsOf(G2) .

endfm

Notice that we have omitted the meta-variable declarations used in the

equations of the above module, something we will continue to do in subsequent

modules. Each used variable is given a sort equal to the one declared for the

operator argument in which it is positioned (see [50] for details).

Unlike the set VariableP , which was specified according to an equationally

defined function, the sets Level and StateP will be given entirely new sorts.

Recall that Level = {0, X, 1} and that for a production rule set P a state

is a pair (σ,H) with σ : VariableP −→ Level and H ⊆ VariableP . The σ

component is defined using Maude’s MAP module [15, §9.13.1].

140

fmod AUX-SEMANTICS-2 is pr AUX-SEMANTICS-1 .

sorts Level .

ops 0 1 X : -> Level .

endfm

view Level from TRIV to AUX-SEMANTICS-2 is

sort Elt to Level .

endv

fmod AUX-SEMANTICS-3 is

pr MAP{Variable,Level} * (op _[_] to _(_)) .

sort State .

op (_,_) : Map{Variable,Level} 2^Variable -> State .

endfm

Note that the parameter P of StateP is effectively ignored in our rewriting

logic specification. The implication of this is that, in principle, one could

introduce a state which has or lacks a valuation for any variable, regardless of

whether or not that variable is in a production rule set P under consideration.

This could be be fixed through the use of memberships [15, §4], but the

specification would continue to be unsatisfactory for efficiency and other

reasons. Furthermore, if we begin with a correct state, the rules in the

rewriting semantics will never lead to an inconsistent state; therefore, ignoring

the parameter P in StateP is harmless.

As an example of what AUX-SEMANTICS-3 provides, suppose that we have

a state (σ,H) for the above production rule set where

σ(x) = 0

σ(y) = 0

σ(z) = 1

σ(w) = X

and H = {y, z}; the representation of (σ,H) as a term of sort State is written

in the Maude notation as

((’x |-> 0, ’y |-> 0, ’z |-> 1, ’w |-> X), (’y , ’z))

141

Moving on to the definition of the various hazard-related concepts, we will

require the ability to evaluate guards according to a three-valued valuation.

fmod AUX-SEMANTICS-4 is pr AUX-SEMANTICS-3 .

... --- meta-variable declarations omitted

op _(_) : Map{Variable,Level} Guard -> Level .

eq Sigma(not G1) = not3 Sigma(G1) .

eq Sigma(G1 and G2) = Sigma(G1) and3 Sigma(G2) .

eq Sigma(G1 or G2) = Sigma(G1) or3 Sigma(G2) .

op not3_ : Level -> Level [prec 24] .

eq not3 0 = 1 .

eq not3 1 = 0 .

eq not3 X = X .

op _and3_ : Level Level -> Level [assoc comm id: 1] .

eq X and3 0 = 0 .

eq 0 and3 0 = 0 .

eq X and3 X = X .

op _or3_ : Level Level -> Level [assoc comm id: 0] .

eq X or3 1 = 1 .

eq 1 or3 1 = 1 .

eq X or3 X = X .

endfm

We are now in a position to handle the primary definitions having to

do with hazards: InterferenceP,σ, InstabilityP,σ,σ′ , and HazardP,σ,σ′ ; all of

which are predicates on VariableP . Consider InterferenceP,σ. We declare

an equationally defined function that takes two arguments, one a term of

sort ProductionRuleSet corresponding to P , and the second a term of

sort Map{Variable,Level} corresponding to σ, and returns a term of sort

2^Variable corresponding to InterferenceP,σ.

Recall how InterferenceP,σ ⊆ VariableP was defined: for all y ∈ VariableP ,

y ∈ InterferenceP,σ if and only if there exists g1 7→ y ↑, g2 7→ y ↓∈ P such that

σ(g1) = σ(g2) = 1. We accomplish this in Maude with two auxiliary functions.

142

InterfPred determines if a variable satisfies the interference property and

InterfFilter filters the set VariableP by applying InterfPred to every

variable in P one-by-one.

fmod AUX-SEMANTICS-5 is pr AUX-SEMANTICS-4 .

... --- meta-variable declarations omitted

op InterfPred :

Variable ProductionRuleSet Map{Variable,Level} -> Bool .

ceq InterfPred(Y, P, Sigma) = true

if [G+ -> Y +] [G- -> Y -] P’ := P

/\ Sigma(G+) == 1 and Sigma(G-) == 1 .

eq InterfPred(Y, P, Sigma) = false [owise] .

op Interference-{_,_} :

ProductionRuleSet Map{Variable,Level} -> 2^Variable .

eq Interference-{P,Sigma} =

InterfFilter(Variable-{P}, P, Sigma) .

op InterfFilter :

2^Variable ProductionRuleSet

Map{Variable,Level} -> 2^Variable .

eq InterfFilter(empty , P, Sigma) = empty .

eq InterfFilter((Y,YS), P, Sigma) =

if InterfPred(Y, P, Sigma) then Y else empty fi ,

InterfFilter(YS, P, Sigma) .

endfm

InstabilityP,σ,σ′ ⊆ VariableP was defined in Section 9.2 so that for all y ∈
VariableP , y ∈ InstabilityP,σ,σ′ if and only if y ∈ EnabledP,σ, y /∈ EnabledP,σ′ ,

and σ(y) = σ(y′). Recall that EnabledP,σ ⊆ VariableP was defined so that

for all y ∈ VariableP , y ∈ EnabledP,σ if and only if:

• σ(y) 6= 0 and there exists a g 7→ y ↓ ∈ P such that σ(g) = 1, or

• σ(y) 6= 1 and there exists a g 7→ y ↑ ∈ P such that σ(g) = 1.

The corresponding definitions in Maude are very similar, and use again the

Pred and Filter pair idea from the definition of Interference. InstFilter

is omitted because it is not substantively different from InterfPred (see [50]).

143

fmod AUX-SEMANTICS-6 is pr AUX-SEMANTICS-5 .

... --- meta-variable declarations omitted

op EnabledPred :

Variable ProductionRuleSet Map{Variable,Level} -> Bool .

ceq EnabledPred(Y, P, Sigma) = true

if Sigma(Y) =/= 1

/\ [G+ -> Y +] P’ := P

/\ Sigma(G+) == 1 .

ceq EnabledPred(Y, P, Sigma) = true

if Sigma(Y) =/= 0

/\ [G- -> Y -] P’ := P

/\ Sigma(G-) == 1 .

eq EnabledPred(Y, P, Sigma) = false [owise] .

op InstPred :

Variable ProductionRuleSet Map{Variable,Level}

Map{Variable,Level} -> Bool .

ceq InstPred(Y, P, Sigma, Sigma’) = true

if EnabledPred(Y, P, Sigma)

/\ not EnabledPred(Y, P, Sigma’)

/\ Sigma(Y) == Sigma’(Y) .

eq InstPred(Y, P, Sigma, Sigma’) = false [owise] .

op Instability-{_,_,_} :

ProductionRuleSet Map{Variable,Level}

Map{Variable,Level} -> 2^Variable .

eq Instability {P, Sigma, Sigma’} =

InstFilter(Variable-{P}, P, Sigma, Sigma’) .

... InstFilter omitted

endfm

HazardP,σ,σ′ is transcribed directly. Recall that HazardP,σ,σ′ is just the

union of InterferenceP,σ′ and InstabilityP,σ,σ′ , plus the propagation of any X

values.

144

fmod AUX-SEMANTICS-7 is pr AUX-SEMANTICS-6 .

... --- meta-variable declarations omitted

op HazardPred :

Variable ProductionRuleSet Map{Variable,Level}

Map{Variable,Level} -> Bool .

ceq HazardPred(Y, P, Sigma, Sigma’) = true

if InterfPred(Y, P, Sigma’) .

ceq HazardPred(Y, P, Sigma, Sigma’) = true

if InstPred(Y, P, Sigma, Sigma’) .

ceq HazardPred(Y, P, Sigma, Sigma’) = true

if [G -> Y D] P’ := P

/\ Sigma(G) == X .

eq HazardPred(Y, P, Sigma, Sigma’) = false [owise] .

op Hazard-{_,_,_} :

ProductionRuleSet Map{Variable,Level}

Map{Variable,Level} -> 2^Variable .

eq Hazard-{P, Sigma, Sigma’} =

HazardFilter(Variable-{P}, P, Sigma, Sigma’) .

... HazardFilter omitted

endfm

Subsequent to HazardP,σ,σ′ we defined ActionP and A|y, where A ⊆
ActionP and y ∈ VariableP . Recall that actions are either pairs contain-

ing a variable and a level, or the special action skip. The restriction operator

on a set of actions picks those non-skip actions with a particular variable

given as the first component.

145

fmod AUX-SEMANTICS-8 is pr AUX-SEMANTICS-7 .

sort Action .

op _:=_ : Variable Level -> Action .

op skip : -> Action .

endfm

view Action from TRIV to AUX-SEMANTICS-8 is

sort Elt to Action .

endv

fmod AUX-SEMANTICS-9 is pr AUX-SEMANTICS-8 .

pr SET{Action} * (sort Set{Action} to 2^Action) .

... --- meta-variable declarations omitted

op _|_ : 2^Action Variable -> 2^Action .

eq (Y := V , A) | Y = Y := V , (A | Y) .

eq A | Y = empty [owise] .

endfm

Rewrite rules are used to mimic the effect of the four inference rules

· σ(g) = 1
〈g 7→ x ↑, (σ,H)〉 −→ x := 1

· σ(g) = 1
〈g 7→ x ↓, (σ,H)〉 −→ x := 0

·
x ∈ H〈g 7→ xd, (σ,H)〉 −→ x := X

·
〈g 7→ xd, (σ,H)〉 −→ skip

146

mod AUX-SEMANTICS-10 is pr AUX-SEMANTICS-9 .

... --- meta-variable declarations omitted

op <_,_> : ProductionRule State -> [Action] .

crl < [G -> Y +], (Sigma,H) > => (Y := 1)

if Sigma(G) == 1 .

crl < [G -> Y -], (Sigma,H) > => (Y := 0)

if Sigma(G) == 1 .

crl < [G -> Y D], (Sigma,H) > => (Y := X)

if Y in H .

rl < [G -> Y D], (Sigma,H) > => skip .

endm

Notice that the <_,_> constructor yields a term of kind [Action] (see

[15, §3.5]), but without a proper sort. This will be crucial when we define the

rewrite rule corresponding to −→P to ensure that all of the 〈rj, (σ,H)〉 get

rewritten according to the above rules into actions aj; that is, terms of sort

Action.

The top-level rewrite rule that ultimately gives us −→P relies on rewrit-

ing logic equivalents for σ[a1, . . . , am] and H[σ, a1, . . . , am]. We start with

σ[a1, . . . , am], which was defined in Section 9.2 according to

σ[a1, . . . , am](x) =

1 if A|x = {x := 1}

0 if A|x = {x := 0}

X if A|x = {x := X} or |A|x| > 1

σ(x) if A|x = ∅

147

fmod AUX-SEMANTICS-11 is pr AUX-SEMANTICS-9 .

... --- meta-variable declarations omitted

op _[_] :

Map{Variable,Level} 2^Action -> Map{Variable,Level} .

eq empty [A] = empty .

eq (Y |-> V , Sigma) [A] = sigma’(Y, V, A) , (Sigma[A]) .

op sigma’ : Variable Level 2^Action -> Entry{Variable,Level} .

ceq sigma’(Y, V, A) = Y |-> 1

if (Y := 1) == A | Y .

ceq sigma’(Y, V, A) = Y |-> 0

if (Y := 0) == A | Y .

ceq sigma’(Y, V, A) = Y |-> X

if (Y := X) == (A | Y) or | (A | Y) | > 1 .

eq sigma’(Y, V, A) = Y |-> V [owise] .

endfm

H[σ, a1, . . . , am] is similarly straightforward. Following the definition from

Section 9.2, H[σ, a1, . . . , am] ⊆ VariableP such that for all y ∈ VariableP ,

y ∈ H[σ, a1, . . . , am] iff

• y ∈ HazardP,σ,σ[a1,...,am], or

• y ∈ H and σ(y) = σ[a1, . . . , am](y).

148

fmod AUX-SEMANTICS-12 is pr AUX-SEMANTICS-11 .

... --- meta-variable declarations omitted

op HPred : Variable ProductionRuleSet State 2^Action -> Bool .

ceq HPred(Y, P, (Sigma,H), A) = true

if HazardPred(Y, P, Sigma, Sigma[A]) .

ceq HPred(Y, P, (Sigma,H), A) = true

if Y in H

/\ Sigma(Y) == (Sigma[A])(Y) .

eq HPred(Y, P, (Sigma,H), A) = false [owise] .

op _[_,_]‘{_} :

2^Variable Map{Variable,Level} 2^Action

ProductionRuleSet -> 2^Variable .

eq H [Sigma, A] {P} = HFilter(Variable-{P}, P, (Sigma,H), A) .

op HFilter :

2^Variable ProductionRuleSet State

2^Action -> 2^Variable .

eq HFilter(empty , P, (Sigma,H), A) = empty .

eq HFilter((Y,YS), P, (Sigma,H), A) =

if HPred(Y, P, (Sigma,H), A) then Y else empty fi ,

HFilter(YS, P, (Sigma,H), A) .

endfm

Finally, we give a conditional rewrite rule that captures the earlier top-level

inference rule

〈r1, (σ,H)〉 −→ a1 . . . 〈rm, (σ,H)〉 −→ am
(σ,H) −→P (σ[a1, . . . , am], H[σ, a1, . . . , am])

149

mod SEMANTICS is pr AUX-SEMANTICS-12 .

pr AUX-SEMANTICS-10 .

... --- meta-variable declarations omitted

vars A : 2^Action .

sort Configuration .

op _{_} : State ProductionRuleSet -> Configuration .

op mkActs : ProductionRuleSet State -> [2^Action] .

eq mkActs(empty, (Sigma,H)) = empty .

eq mkActs(R P , (Sigma,H)) =

< R, (Sigma,H) > , mkActs(P, (Sigma,H)) .

crl (Sigma,H) {P} => (Sigma[A],H[Sigma,A] {P}) {P}

if mkActs(P, (Sigma,H)) => A .

endm

There are a couple of ways in which the rewriting logic definition appears

different from the corresponding inference rule. First, note that since we are

using the logical symbol −→ (from rewriting logic) to define −→P (from our

static semantics), the production rule set parameter must be encoded in the

terms being rewritten. This is the purpose of the _{_} constructor.

The second difference is that the single condition of the rewrite rule above

mkActs(P, (Sigma,H)) => A

serves the purpose of the multiple premises of the inference rule

〈r1, (σ,H)〉 −→ a1 . . . 〈rm, (σ,H)〉 −→ am
(σ,H) −→P (σ[a1, . . . , am], H[σ, a1, . . . , am])

The reason for this difference is that the number of premises, m, is not fixed,

but rather scales dynamically with the size of the production rule set; in

rewriting logic, however, the number of conditions in a rewrite rule is fixed.

Finally, it is important to note that while mkActs is only kinded, the vari-

able A has sort 2^Action. This ensures that all of the individual production

rules are rewritten to actions in the condition, before a computation step is

150

taken.

9.4 Relative Correctness ofMPRS and RPRS

This section establishes a strong bisimulation between two transition systems:

one induced by the mathematical semantics of production rule sets, MPRS ,

and the other induced by the executable semantics given in rewriting logic,

RPRS . In so doing, confidence is raised in the correctness of the two semantic

formalizations as well is in the use of the executable semantics as an analysis

tool; in particular, in the model checking results presented later in Section

9.5.

The strong bisimulation result is obtained as follows. First, we define a

function, castP , that maps states in the mathematical semantics to corre-

sponding states in the rewriting logic semantics. Subsequent to this, we make

explicit the transition systems associated to both the semantics; and finally

we show that the two are strongly bisimilar via castP . This result yields as

corollaries that hazard freedom and deadlock freedom, which are also defined

formally later in this section, are preserved by the mapping between two

semantics.

We introduce a number of mathematical conventions that are used through-

out this section. First, we assume that RPRS is specified as

RPRS = (ΣPRS, EPRS, RPRS) .

Use of the sort name Configuration is overloaded to stand also for the set

TΣPRS/EPRS ,Configuration

of elements of TΣPRS/EPRS
of sort Configuration; the distinction will be clear

from context.

9.4.1 castP

Fix a production rule set P . Our bisimulation relation is defined by a function

castP taking each state (σ,H) ∈ StateP to a corresponding term in the

rewriting logic specification RPRS ; specifically, castP ((σ,H)) will be a term

151

of sort Configuration. That is, applying the overloading of Configuration

specified above, castP is a function

castP : StateP −→ Configuration.

castP is defined at the top by calling two functions, one that recurses

over the structure of an element of StateP , yielding a term of sort State, and

a second recursing over the structure of a production rule set and yielding a

term of sort ProductionRuleSet; specifically,

castP (s) = (cast(s)){cast(P)}.

To simplify the presentation note that we have used “cast” in an ad-hoc

polymorphic way to denote both the function that converts the state part, as

well as the function that converts the production rule set. cast will also name

all similar functions converting other types of objects in the mathematical

semantics into terms in the rewriting logic semantics.

The definition of cast functions is largely routine. For most constructs

in the mathematical formalization, there is a corresponding operator in the

rewriting logic semantics with the same arguments and we simply generate

that operator and then recurse. For example, individual production rules are

cast as

cast(g 7→ xd) = [cast(g) -> cast(x) cast(d)]

At the bottom are the atomic elements of the syntax, such as variables and

the transition directions, which are cast as

cast(↑) = + cast(↓) = -

Casting sets of things highlights an interesting point. The following

definition is unambiguous and correct in rewriting logic, as well as in Maude,

by asserting that the operator __, juxtaposition, is associative, commutative,

and idempotent. Specifically in Maude, its predefined SET module [15, §9.12.2]

employs equational attributes [15, §4.4.1] and associate-commutative rewriting

for associativity and commutativity, and for idempotency an explicit equation

is used.

cast({r1, . . . , rm}) = cast(r1) · · · cast(rm)

152

Similarly, valuation functions of the form σ : VariableP −→ Level can be

viewed as sets of pairs, and are cast accordingly into

cast({(y1, v1), . . . , (ym, vm)}) =

cast(y1) |-> cast(v1) , . . . , cast(ym) |-> cast(vm)

By way of summarizing, consider the production rule set corresponding

to a single nand-gate

P = {x1 ∧ x2 7→ y ↓,¬x1 ∨ ¬x2 7→ y ↑}

and a state s = (σ, ∅) where σ(x1) = σ(x2) = σ(y) = 1. Then castP (s) yields

the following term

(’x1 |-> 1 , ’x2 |-> 1, ’y |-> 1, empty)

{ [’x1 and ’x2 -> ’y -]

[(not ’x1) or (not ’x2) -> ’y +] }

The following lemma will be useful to simplify some of the proofs given

later.

Lemma 9.4.1. Let P be a production rule set.

castP : StateP −→ Configuration

is injective.

Proof. Exercise.

9.4.2 Strong Bisimulation

Having defined castP we are now in a position to state our main result

establishing the relative correctness of MPRS and RPRS . For notational

convenience and symmetry, for a given production rule set P , clear from

context, we use −→M to denote the relation −→P defined according to the

mathematical semantics MPRS . Similarly, we use −→R to denote the one

step rewriting relation induced by RPRS on terms of sort Configuration.

153

Theorem 9.4.1. Let P be a production rule set. Consider the transition

systems

TM
def
= (StateP ,−→M)

TR
def
= (Configuration,−→R)

castP , when seen as a relation, is a strong bisimulation between TM and TR.

The following lemma will be useful in the proof of the above theorem,

which is given afterward.

Lemma 9.4.2. Let P be a production rule set. For all g 7→ xd ∈ P , (σ,H) ∈
StateP , and a ∈ ActionP , we have

〈g 7→ xd, (σ,H)〉 −→ a

according to MPRS , if and only if

RPRS ` cast(〈g 7→ xd, (σ,H)〉) −→ cast(a)

Proof. By cases on a:

• (skip): It is enough to show that both 〈g 7→ xd, (σ,H)〉 −→ skip, with

respect to MPRS , and cast(〈g 7→ xd, (σ,H)〉) −→ cast(skip), with

respect to RPRS , hold unconditionally.

That 〈g 7→ xd, (σ,H)〉 −→ skip holds unconditionally with respect to

MPRS is established according to the rule (where the variables used in

the rule are not the same as those above; they are implicitly quantified)

·
〈g 7→ xd, (σ,H)〉 −→ skip

Similarly, with respect to RPRS ,

RPRS ` cast(〈g 7→ xd, (σ,H)〉) =

<[cast(g)->cast(x)cast(d)],(cast(σ),cast(H))>

−→ skip = cast(skip)

due to the rewriting rule

154

rl < [G -> Y D], (Sigma,H) > => skip .

• (y := 1): (⇒) Suppose 〈g 7→ xd, (σ,H)〉 −→ y := 1 holds with respect

to MPRS ; we show that also cast(〈g 7→ xd, (σ,H)〉) −→ cast(y := 1)

with respect to RPRS .

Clearly, 〈g 7→ xd, (σ,H)〉 −→ y := 1 may only hold with respect to

MPRS according to the rule

· σ(g) = 1
〈g 7→ x ↑, (σ,H)〉 −→ x := 1

which implies that σ(g) = 1, and also that d =↑ and y = x. Therefore,

cast(〈g 7→ xd, (σ,H)〉)

= <[cast(g)->cast(x)+],(cast(σ),cast(H))>

and matches the left-hand side of the rewrite rule

crl < [G -> Y +], (Sigma,H) > => (Y := 1)

if Sigma(G) == 1 .

As an exercise, we leave that σ(g) = 1 implies also the condition of the

rewriting rule: cast(σ)(cast(g)) == 1. This yields that cast(〈g 7→
xd, (σ,H)〉) −→ cast(x) := 1 = cast(y := 1), as needed.

(⇐) Suppose RPRS ` cast(〈g 7→ xd, (σ,H)〉) −→ cast(y := 1).

cast(y := 1) = cast(y) := 1, and it is clear that the only way this

rewriting can occur is by application of the rule

crl < [G -> Y +], (Sigma,H) > => (Y := 1)

if Sigma(G) == 1 .

Through pattern matching, we get again that cast(y) = cast(x) and

therefore that y = x; cast(d) = +, which implies that d =↑; and that

155

cast(σ)(cast(g)) == 1. Then, assuming that cast(σ)(cast(g)) == 1

implies that σ(g) = 1, which is left as an exercise, the rule

· σ(g) = 1
〈g 7→ x ↑, (σ,H)〉 −→ x := 1

applies to 〈g 7→ xd, (σ,H)〉 = 〈g 7→ x ↑, (σ,H)〉 which ultimately yields

the desired result that 〈g 7→ xd, (σ,H)〉 −→ (x := 1) = (y := 1).

• The remaining cases are similar.

We are now in a position to give a proof of Theorem 9.4.1.

Proof of Theorem 9.4.1. (TR simulates TM): Let (σ,H), (σ′, H ′) ∈ StateP be

such that

(σ,H) −→M (σ′, H ′)

According to Definition 9.2.2, there exist actions a1, . . . , am such that: (a) for

each aj, 1 ≤ j ≤ m, 〈rj, (σ,H)〉 −→ aj, and (b)

(σ′, H ′) = (σ[a1, . . . , am], H[σ, a1, . . . , am])

Therefore, it is sufficient to prove that

castP ((σ,H)) −→R castP ((σ[a1, . . . , am], H[σ, a1, . . . , am]))

In order to show that the above relation holds, we will apply the top-level

rewrite rule defined in RPRS , namely

crl (Sigma,H) {P} => (Sigma[A],H[Sigma,A] {P}) {P}

if mkActs(P, (Sigma,H)) => A .

and Lemma 9.4.2. Expanding castP ((σ,H)) shows that it matches the

left-hand side of this rule:

castP ((σ,H)) = (cast(σ),cast(H)){cast(P)}

156

For the condition, we first expand mkActs according to its definition, yielding

mkActs(cast(r1) . . . cast(rm),(cast(σ),cast(H))) =

<cast(r1),(cast(σ),cast(H))>, . . . ,<cast(rm),(cast(σ),cast(H))>

and which, according to Lemma 9.4.2, rewrites to

cast(a1), . . . ,cast(am)

Therefore, by the above rewrite rule, which is part of RPRS , we obtain that

castP ((σ,H)) rewrites to a term (Sigma’,H’){P} with

Sigma’ = cast(σ)[cast(a1), . . . ,cast(am)]

and

H’ = cast(H)[cast(σ),cast(a1), . . . ,cast(am)]{cast(P)}

Expanding castP ((σ[a1, . . . , am], H[σ, a1, . . . , am])), one obtains a term

(cast(σ[a1, . . . , am]),cast(H[σ, a1, . . . , am])){cast(P)}

and so it remains to be proved that H’ = cast(H[σ, a1, . . . , am]), which is left

as an exercise.

(TM simulates TR): Let (σ,H) ∈ StateP and let c′ be a term of sort

Configuration such that

castP ((σ,H)) −→R c′

As there is only a single rewrite rule in RPRS that operates on terms of the

same kind as the sort Configuration, namely

crl (Sigma,H) {P} => (Sigma[A],H[Sigma,A] {P}) {P}

if mkActs(P, (Sigma,H)) => A .

c′ must be of the form

(cast(σ)[A],cast(H)[cast(σ),A]{cast(P)}){cast(P)}

157

for some term A of sort 2^Action reachable via rewriting from the term

mkActs(cast(P),(cast(σ),cast(H)))

Appealing to Lemma 9.4.2, and to Lemma 9.4.1 about the injectivity of cast,

it is enough to show that, letting P = {r1, . . . , rm}, A is of the form

cast(a1), . . . ,cast(am)

with a1, . . . , am ∈ ActionP , such that for each aj , 1 ≤ j ≤ m, cast(aj) is had

through rewriting a term of the form <cast(rj),(cast(σ),cast(H))>. This

establishes, for each 1 ≤ j ≤ m, that

RPRS ` <cast(rj),(cast(σ),cast(H))> −→ cast(aj),

and therefore by Lemma 9.4.2 also that 〈rj, (σ,H)〉 −→ aj. Then applying

the rule
〈r1, (σ,H)〉 −→ a1 . . . 〈rm, (σ,H)〉 −→ am

(σ,H) −→P (σ[a1, . . . , am], H[σ, a1, . . . , am])

we get that (σ,H) −→M (σ[a1, . . . , am], H[σ, a1, . . . , am]). Again, it remains

to be shown that the _[_] operators, for each component of the state, corre-

spond, which follows according to a straightforward induction.

The two correctness properties that we are concerned with, hazard freedom

and deadlock freedom, can both be phrased in terms of simple reachability

queries. For a transition system A = (A,−→⊆ A×A) and an element a ∈ A,

we let ReachA(a) ⊆ A denote the set of reachable states from a; i.e.

{a′ ∈ A | a −→∗ a′}.

The relative correctness ofMPRS and RPRS with respect to these correctness

properties will fall out through instances of the following corollary to Theorem

9.4.1.

Corollary 9.4.1. Let P be a production rule set and s0 ∈ StateP . For any

pair of predicates

QM ⊆ StateP and QR ⊆ Configuration

158

such that s ∈ QM if and only if castP (s) ∈ QR, then

ReachTM(s0) ⊆ QM if and only if ReachTR(castP (s0)) ⊆ QR

Proof of Corollary 9.4.1. (⇒): Suppose that ReachTM(s0) ⊆ QM; we demon-

strate by induction on TR reachability derivations (these transition systems

have finite carriers) that also

ReachTR(castP (s0)) ⊆ QR.

The induction hypothesis asserts that, for a reachable configuration

c ∈ ReachTR(castP (s0))

both of the following conditions hold: (1) c ∈ castP (StateP), and for the

unique s ∈ StateP , guaranteed by Lemma 9.4.1, such that castP (s) = c, (2)

s ∈ ReachTM(s0). This implies that s ∈ QM and therefore that c ∈ QR.

The induction hypothesis clearly holds for c0 = castP (s0). Now, let

castP (s) = c ∈ Configuration

be such that it has both properties of the induction hypothesis and suppose

that c −→R c′ with c′ ∈ Configuration. It follows from Theorem 9.4.1

and the induction hypothesis that there exists a s′ ∈ StateP such that

s −→M s′ and castP (s′) = c′. This implies that c ∈ castP (StateP) and that

s′ ∈ ReachTM(s0).

(⇐): This direction follows similarly, but without the need of Lemma

9.4.1.

9.4.3 Hazard Freedom

Hazard freedom essentially asserts the impossibility of reaching a state where

any node takes the value X. Let P be a production rule set. We define a

predicate Hazard !P ⊆ StateP such that for all (σ,H) ∈ StateP , (σ,H) ∈
Hazard !P if and only if there exists a y ∈ VariableP with σ(y) = X.

Definition 9.4.1. Let P be a production rule set and σ : VariableP −→ Level .

159

We say that MPRS exhibits hazard freedom with respect to P and σ if and

only if for all

(σ′, H ′) ∈ ReachTM((σ, ∅))

(σ′, H ′) /∈ Hazard !P .

In rewriting logic, we can give an equationally-defined function, Hazard!,

which is essentially the characteristic function of Hazard !P .

op Hazard! : Configuration -> Bool [frozen] .

eq Hazard!(((Y |-> X, SIGMA), H){P}) = true .

eq Hazard!((SIGMA, H){P}) = false [owise] .

Definition 9.4.2. Let P be a production rule set and σ : VariableP −→ Level .

We say that RPRS exhibits hazard freedom with respect to P and σ if and only

if for all

c′ ∈ ReachTR(castP ((σ, ∅)))

such that we have Hazard!(c′) = false.

Proposition 9.4.1. Let P be a production rule set and σ : VariableP −→
Level . RPRS exhibits hazard freedom with respect to P and σ if and only if

MPRS exhibits hazard freedom with respect to P and σ.

Proof. According to Corollary 9.4.1, it is sufficient to show that for all

s /∈ StateP , s ∈ Hazard !P if and only if Hazard!(castP (s)) = false. This

is straightforward by induction on states.

9.4.4 Deadlock Freedom

As with hazard freedom, deadlock freedom will be characterized with respect

to a production rule set and an initial valuation. It is essentially an assertion

of the impossibility of reaching a state where no rules are enabled. One small

difference from the definition of enablement is needed to account for X values,

however. Equivalently, it asserts the impossibility of reaching a state where

the only transitions that are possible are idle transitions.

Let P be a production rule set and σ : VariableP −→ Level and recall from

Section 9.2.3 the definition of EnabledP,σ ⊆ VariableP . For all y ∈ VariableP ,

y ∈ EnabledP,σ if and only if either

160

• σ(y) 6= 0 and there exists a g 7→ y ↓ ∈ P such that σ(g) = 1, or

• σ(y) 6= 1 and there exists a g 7→ y ↑ ∈ P such that σ(g) = 1.

We define a new predicate, SwitchableP,σ,H ⊆ VariableP , similar to EnabledP,σ,

but also with a parameter H ⊆ VariableP . For a variable y ∈ VariableP and a

state (σ,H) ∈ StateP , y ∈ SwitchableP,σ,H if and only if either y ∈ EnabledP,σ

or y 6= X and y ∈ H.

The definition of deadlock freedom is then analogous to the definition

of hazard freedom, with SwitchableP,σ,H 6= ∅ serving the purpose of σ /∈
Hazard !P .

Definition 9.4.3. Let P be a production rule set and σ : VariableP −→ Level .

We say that MPRS exhibits deadlock freedom with respect to P and σ if and

only if for all

(σ′, H ′) ∈ ReachTM((σ, ∅))

SwitchableP,σ′,H′ 6= ∅.

Above in Section 9.3 we defined the rewriting logic equivalent to the

conditions that define whether a particular variable is in the set of things

that are enabled. This was denoted EnabledPred. We define a similar notion

for SwitchableP,σ,H , called SwitchPred.

op SwitchPred : Variable ProductionRuleSet

Map{Variable,Level} 2^Variable -> Bool .

ceq SwitchPred(Y, P, Sigma, H) = true

if Sigma(Y) =/= 1

/\ [G+ -> Y +] P’ := P

/\ Sigma(G+) == 1 .

ceq SwitchPred(Y, P, Sigma, H) = true

if Sigma(Y) =/= 0

/\ [G- -> Y -] P’ := P

/\ Sigma(G-) == 1 .

ceq SwitchPred(Y, P, Sigma, H) = true

if Sigma(Y) =/= X

/\ Y in H .

eq SwitchPred(Y, P, Sigma, H) = false [owise] .

161

To get Switchable from SwitchPred, we simply need a function that gets

all of the variables from a production rule set and then filters the result by

SwitchPred. This is entirely routine, and can be had in exactly the same

way as we defined for, for example, InterfFilter.

Definition 9.4.4. Let P be a production rule set and σ : VariableP −→ Level .

We say that P exhibits deadlock freedom with respect to P and σ if and only

if for all

(SIGMA’,H’){P} ∈ ReachTR(castP ((σ, ∅)))

Switchable-{P,SIGMA’,H’} 6= empty.

Proposition 9.4.2. Let P be a production rule set and σ : VariableP −→
Level . RPRS exhibits deadlock freedom with respect to P and σ if and only if

MPRS exhibits deadlock freedom with respect to P and σ.

Proof. Similar to that for preservation of hazard freedom.

9.5 Automated Hazard and Deadlock Freedom

Analysis

This section investigates the feasibility of using our executable semantics and

the formal tools provided by Maude to prove hazard freedom and deadlock

freedom, two properties that every asynchronous circuit must typically satisfy

in order to be considered correct. All of the Maude source code and example

circuits used for experimentation are open source and available at [50].

Section 9.5.1 briefly describes each of the asynchronous circuits we are

subjecting to analysis. Section 9.5.2 describes the commands necessary to

check hazard and deadlock freedom using Maude and the semantics RPRS

presented in Section 9.3. These results demonstrate the need for some

optimizations, which are described in Section 9.5.3, followed in Section 9.5.4

by modified analysis results with the optimizations enabled. Due to the highly

asynchronous nature of production rule sets, there is an enormous state space

explosion even for simple circuits; therefore, the optimizations we present are

essential to model check circuits in practice.

162

9.5.1 Circuits Analyzed

Our experiments cover six circuits of size varying from 12 production rules

up to 130 production rules. The complete production rule set for each circuit

can be found in [50].

• 3InverterRing (12 production rules): A ring oscillator is typically

the first circuit used to demonstrate the viability of a new process

technology.

• ClosedBuffer (26 production rules): Simple logical buffer stages are

generally used to balance parallel paths in an asynchronous pipeline.

Closing the buffer requires a source to produce tokens to send into the

buffer and a sink to empty the buffer.

• Toggle (28 production rules): A circuit that alternates between sourcing

a one or a zero token are essential components of most test harnesses.

• PCHBAndFixed (66 production rules): The PCHB (pre-charged half

buffer) is a customized quasi delay-insensitive gate that is electrically

similar to a stage of domino logic. A PCHB can be used in a data-path

to perform computation, it can be used for control, or it can act as a

combination thereof. In this instance the input to the PCHB is a fixed

value.

• 1BitFullAdderFixed (118 production rules): The bit-slice ripple-carry

adder is ubiquitous in digital VLSI design. This variant is implemented

as a quasi delay-insensitive PCHB with the input of the adder tied to a

fixed value source.

• PCHBAndToggle (130 production rules): This instance of a PCHB AND-

gate makes use of the toggle element to alternate the input pattern thus

generating each possible input permutation.

9.5.2 Experiments, without Optimizations

The hazard and deadlock freedom analyses are performed using Maude’s

search command [15, §12]. search does a breadth-first search enumerating

all terms reachable from a given initial term through rewriting. If this set

163

of reachable terms is finite and one is interested in checking computable

invariants, as is the case for both hazard and deadlock freedom, then search

acts as a decision procedure for that invariant.

As described above in Section 9.4.3, the invariant we want to check for

hazard freedom is the negation of Hazard!, or alternatively, that no reachable

state satisfies Hazard!. We use this second formulation, which is accomplished

in Maude with the following command,

search [1] initialC =>* C:Configuration such that Hazard!(C) .

The term initialC equals castP ((σ, ∅)) where σ denotes the valuation

of nodes of the device at reset. If no solution is returned, then the device

is considered hazard-free with respect to that reset state. If not, then the

device has a potential hazard.

The situation for deadlock freedom is analogous, except that the invariant

for deadlock freedom is that Switchable-{_,_,_} should never be empty;

again, we use the dual formalization, however. The appropriate command is

(The reason why the search command cannot use the =>! modality is because

empty sets of actions can always produce idle transitions.)

search [1] initialC =>* (SIGMA’,H’){P} such that

Switchable-{P,SIGMA’,H’} == empty .

Applying these checks to each of the circuits described above in Section

9.5.1 we find that none of the checks are able to finish due to exhausting the

system’s available memory resources, which are substantial for a contemporary

system (24GiB). For consistency with the presentation of subsequent results,

this initial experiment is reported in Figure 9.2. Clearly, some form of

simplification/optimization is needed to reduce memory consumption and

gain tractability even for the very small circuits we are considering.

9.5.3 Performance Optimizations

Two optimizations to the rewriting logic semantics, RPRS , are now developed.

These are specifically aimed at addressing excessive memory consumption

and result in tractable analysis of all but our largest circuit, PCHBAndToggle.

In the case of the largest circuit, the analysis is still improved in the sense

that it goes from being memory bound to being computation bound.

164

Circuit Name Size Hazard Freedom Deadlock Freedom
3InverterRing 12rl MEM MEM
ClosedBuffer 26rl MEM MEM

Toggle 28rl MEM MEM
PCHBAndFixed 66rl MEM MEM

1BitFullAdderFixed 118rl MEM MEM
PCHBAndToggle 130rl MEM MEM

Figure 9.2: Hazard and Deadlock Freedom Analysis Results, without Opti-
mizations Maude 2.5, Intel Xeon X5570 (2.93GHz, 8MiB L3), 24GiB RAM,
64-bit Linux, kernel version 2.6.18. “TIME” means the experiment timed out
(30 minutes), and “MEM” means it reached a set memory limit (4GiB).

Out-of-control memory usage is primarily due to the condition of the

top-level rewrite rule in RPRS , which, recalling from Section 9.3, is

mkActs(P, (Sigma,I)) => A.

Suppose that we have the production rule set

[’x -> ’z -]

[’y -> ’w -]

[not ’y -> ’w +]

Applying mkActs to this set yields the following term of kind [2^Action]

< [’x -> ’z -], (Sigma,I) > ,

< [’y -> ’w -], (Sigma,I) > ,

< [not ’y -> ’w +], (Sigma,I) >

and each of the elements of this set are rewritten one-by-one until a term of

sort 2^Action is obtained, e.g. say

’z := 0 ,

skip ,

’w := X

In deriving this term, Maude is necessarily inefficient, because it cannot

know that the rewriting of each element of the set is independent from the

others; that is, outside of the rule chosen to rewrite each element, the order

in which these rewrites are applied is inconsequential, so rewriting

< [’x -> ’z -], (Sigma,I) > ,

skip ,

< [not ’y -> ’w +], (Sigma,I) >

165

and then

’z := 0 ,

skip ,

< [not ’y -> ’w +], (Sigma,I) >

does not need to be considered separately from first rewriting

’z := 0 ,

< [’y -> ’w -], (Sigma,I) > ,

< [not ’y -> ’w +], (Sigma,I) >

followed by

’z := 0 ,

skip ,

< [not ’y -> ’w +], (Sigma,I) >

Maude must, however, attempt all 2k possible orderings, where k is the

number of production rules, for what is really just a single possible next state.

The independent nature of the rewriting steps can be communicated to

Maude by, instead of producing a set of terms to rewrite, having mkActs

produce a list with some arbitrary order and then using matching to force

the rewriting to iterate over this list.

The second optimization reduces the possible sets of actions that, at the

condition of the top-most rewrite rule in RPRS , become bound to the variable

A. Accomplishing this reduction is done through a small modification to the

inference rules for −→ in Definition 9.2.2, so that, for example,

· σ(g) = 1
〈g 7→ x ↑, (σ,H)〉 −→ x := 1

is modified so that the side condition includes also that σ(x) 6= 1; that is

σ(g) = 1 becomes σ(g) = 1 and σ(x) 6= 1. Of course, this change must

get reflected at the rewriting logic level as well. The correctness of this

optimization, while not proved in detail, follows from the invariance of the

updates to σ and H during a transition when, for example, σ(x) = 1 and one

of the updating actions is x := 1.

9.5.4 Experiments, with Optimizations

The result of applying each optimization in isolation, as well as the aggregate

effect of applying both in tandem, is conveyed in the second table listed in of

166

Circuit Name Size list opt switch opt all opts

3InverterRing 12rl
no

– states – 682ms

– 1, 561, 117

rewrites

no
– states –
296, 363ms

– 174, 533, 736

rewrites

no
N/A states –

5ms

– 13, 709

rewrites

ClosedBuffer 26rl MEM MEM

no
N/A states –
1, 648ms

– 4, 343, 371

rewrites

Toggle 28rl

no
– states –
356, 559ms

– 802, 141, 445

rewrites

MEM

no
N/A states –

454ms

– 1, 224, 675

rewrites

PCHBAndFixed 66rl TIME MEM

no
N/A states –
638, 570ms

–

1, 552, 737, 662

rewrites

1BitFullAdderFixed 118rl TIME MEM TIME
PCHBAndToggle 130rl TIME MEM TIME

Figure 9.3: Hazard Freedom Analysis Results, with Optimizations. Maude
2.5, Intel Xeon X5570 (2.93GHz, 8MiB L3), 24GiB RAM, 64-bit Linux, kernel
version 2.6.18. “TIME” means the experiment timed out (30 minutes), and
“MEM” means it reached a set memory limit (4GiB).

Figure 9.3 for hazard freedom, and conveyed through Figure 9.4 for deadlock

freedom. With these optimizations, some of our example circuits can be

checked quite quickly. Scalability clearly remains an issue, however, even

after applying the above optimizations, though they accomplish much over

the original semantics; though of course RPRS was designed for conceptual

clarity, above all.

Therefore, more optimizations along the lines of those above, as well as

clever new ideas will be needed in the future to make automatic checks for

hazards and deadlock reliably tractable for modern circuits. Some additional

tractability can be gained by looking at more practical timing assumptions,

described in the next section, which further reduce the amount of concurrency.

167

Circuit Name Size list opt switch opt all opts

3InverterRing 12rl TIME MEM

no
N/A states –
1, 315, 793ms

–

2, 517, 712, 268

rewrites

ClosedBuffer 26rl MEM MEM TIME

Toggle 28rl TIME MEM

no
N/A states –
73, 891ms

– 177, 563, 797

rewrites

PCHBAndFixed 66rl TIME MEM

no
N/A states –
794, 175ms

–

1, 886, 088, 552

rewrites

1BitFullAdderFixed 118rl TIME MEM TIME
PCHBAndToggle 130rl TIME MEM TIME

Figure 9.4: Deadlock Freedom Analysis Results, with Optimizations. Maude
2.5, Intel Xeon X5570 (2.93GHz, 8MiB L3), 24GiB RAM, 64-bit Linux, kernel
version 2.6.18. “TIME” means the experiment timed out (30 minutes), and
“MEM” means it reached a set memory limit (4GiB).

9.6 Speed-Independent and Quasi-Delay-Insensitive

Circuits

The primary objective of this paper is to improve upon our semantics work

in [55, 47] for the unrestricted, or delay-insensitive case. With that said,

it is also worthwhile to look briefly at analysis statistics for asynchronous

circuits under two other timing assumptions, speed-independence [81, 79] and

quasi-delay-insensitivity [65, 68], which are considered practical for developing

large-scale devices. This section presents those results, which are based on an

implementation of these timing assumptions in Maude that was developed in

accordance with [55].

Of course, a very desirable avenue for future work is to give a similar

treatment to these cases that is given in this paper for the delay-insensitive case.

And, as speed-independence and quasi-delay-insensitivity simply constrain

the set of possible behaviors exhibited in the delay-insensitive case, the

infrastructure developed in this paper could be used directly in such an

endeavor. However, this is a very substantial undertaking and outside the

scope of the current work.

168

At a high level, both speed-independence and quasi-delay-insensitivity

represent restrictions on relative delay of signals on forks, which occur when

the output of a gate fans out to the input of two or more subsequent gates.

Speed-independence imposes the restriction that if one branch of a fork

switches to a new level, then all branches must switch simultaneously. On the

other hand, quasi-delay-insensitivity allows for some branches of a fork to have

stabilized before others do, but only until a sequence of “acknowledgments”

from the stabilized branch courses through the circuit to the input of the gate

connected to the non-stabilized branch of the original fork (see [55, 70] for

more details).

The behaviors admitted by delay-insensitivity, quasi-delay-insensitivity,

and speed-independence are related as follows: delay-insensitivity admits

strictly more behaviors than quasi-delay-insensitivity, which in turn admits

strictly more behaviors than speed-independence. Both of the more restrictive

timing assumptions reduce the set of possible device behaviors, thereby making

formal analysis easier. The trade-off is that one must analyze the circuit

separately to ensure that the assumptions made about timing are actually

valid given the physics of the device.

In addition, the more restrictive timing assumptions have the added,

although somewhat counter intuitive, advantage of being theoretically more

capable, in the sense that the delay-insensitive timing assumption is so

permissive that the set of useful production rule sets becomes limited because

more of them imply hazardous circuit behaviors. A proof of this fact is

developed in [64]. It is also worth noting that, for hazard freedom, we have

shown previously that speed-independence and quasi-delay-insensitivity are

equivalent, yielding a simpler check for the property relative to the quasi-

delay-insensitivity assumption. The proof of this fact is developed in [55].

Figures 9.5 and 9.6 present the results of analyzing the circuits from

Section 9.5.1 under the more restrictive timing assumptions. Despite the

fact that the number of behaviors is reduced, we found ourselves still unable

to exhaustively prove hazard-freedom and deadlock-freedom for our largest

circuit, PCHBAndToggle.

Finally, we experimented with an optimization specifically tailored for

the speed-independence case, where we simply removed production rules

corresponding to wires. With this optimization we were able to check hazard-

freedom for all of the example circuits listed above, as shown in Figure 9.7.

169

Due to the result from [55] cited above, this implies hazard-freedom in the

quasi-delay-insensitive case as well.

9.7 Conclusion

This paper improves upon our earlier work in [55, 47], providing a cleaner for-

mal semantics of production rule sets for the delay-insensitive case, including

both a mathematical semantics and an executable semantics in rewriting logic;

which is, to the best of our knowledge, the first of its kind. The utility of our

work here is, first and foremost, toward promoting a common understanding

of what production rule sets mean, especially to those entering the field of

asynchronous circuit design; and, secondly for the purpose of formal analysis

of such circuits.

Regarding formal analysis, the mathematical semantics is perhaps best

suited as the foundation for proving meta-theorems about production rule

sets, such as we did in [55]. The executable rewriting logic semantics is instead

better suited to establishing the functional correctness of individual circuits,

as certain obligations may be discharged automatically, as we showed above

and in [47].

A number of challenges remain, some rather daunting. Firstly, the speed-

independence and quasi delay-insensitivity cases from [55] should be further

developed along the lines of what we did here for the delay-insensitive case.

Second, there is the issue of scalability; we have been able to automatically

check hazard freedom and deadlock freedom for circuits up to about one

hundred production rules, but modern circuits can easily be four orders of

magnitude larger.

One possibility is to investigate probabilistic methods in more detail,

which are highly parallelizable and scale extremely well. Existing work on

probabilistic rewrite systems and statistical model checking [2, 3] allows for

a rewriting-based approach to continue to be used, and perhaps even build

directly on our work here.

170

Circuit Name Size delay-insensitive speed-independence

3InverterRing 12rl
no

– states – 2ms

– 10, 944

rewrites

yes
12 states – 9ms

– 55, 254

rewrites

ClosedBuffer 26rl
no

– states – 372ms

– 2, 054, 504

rewrites

yes
20 states –

93ms

– 513, 522

rewrites

Toggle 28rl
no

– states – 118ms

– 766, 143

rewrites

yes
28 states –

63ms

– 392, 887

rewrites

PCHBAndFixed 66rl

no
– states –
74, 692ms

– 415, 399, 458

rewrites

yes
681 states –
9, 647ms

– 55, 564, 688

rewrites

1BitFullAdderFixed 118rl – –
PCHBAndToggle 130rl – –

Circuit Name Size quasi delay-insensitive

3InverterRing 12rl

yes
17 states –

18ms

– 100, 313

rewrites

ClosedBuffer 26rl

yes
59 states –

551ms

– 2, 561, 312

rewrites

Toggle 28rl

yes
139 states –

502ms

– 2, 648, 172

rewrites

PCHBAndFixed 66rl

yes
2, 679 states –

83, 471ms

– 409, 224, 700

rewrites

1BitFullAdderFixed 118rl –
PCHBAndToggle 130rl –

Figure 9.5: Hazard-freedom model checking results. Maude 2.5, Intel Xeon
X5570 (2.93GHz, 8MB L3), 24GB RAM, 64-bit Linux, kernel version 2.6.18.
“–” means timed out or exhausted memory resources.

171

Circuit Name Size delay-insensitive speed-independence

3InverterRing 12rl

no
– states –
1, 497ms

– 9, 051, 904

rewrites

yes
12 states – 9ms

– 55, 242

rewrites

ClosedBuffer 26rl –

yes
20 states –

97ms

– 513, 502

rewrites

Toggle 28rl –

yes
28 states –

63ms

– 392, 859

rewrites

PCHBAndFixed 66rl –

no
– states –
10, 395ms

– 55, 523, 752

rewrites

1BitFullAdderFixed 118rl – –
PCHBAndToggle 130rl – –

Circuit Name Size quasi delay-insensitive

3InverterRing 12rl

yes
17 states –

17ms

– 100, 296

rewrites

ClosedBuffer 26rl

yes
59 states –

555ms

– 2, 561, 253

rewrites

Toggle 28rl

yes
139 states –

501ms

– 2, 648, 033

rewrites

PCHBAndFixed 66rl

no
– states –
87, 629ms

– 408, 664, 483

rewrites

1BitFullAdderFixed 118rl –
PCHBAndToggle 130rl –

Figure 9.6: Deadlock-freedom model checking results. Maude 2.5, Intel Xeon
X5570 (2.93GHz, 8MB L3), 24GB RAM, 64-bit Linux, kernel version 2.6.18.
“–” means timed out or exhausted memory resources.

172

Circuit Name Size speed-independence

3InverterRing 12rl
yes

6 states – 1ms

– 9, 514 rewrites

ClosedBuffer 26rl
yes

10 states – 5ms

– 37, 596

rewrites

Toggle 28rl
yes

12 states – 5ms

– 42, 546

rewrites

PCHBAndFixed 66rl

yes
114 states –

668ms

– 4, 270, 606

rewrites

1BitFullAdderFixed 118rl

yes
1, 800 states –
117, 925ms

– 453, 471, 253

rewrites

PCHBAndToggle 130rl

yes
2, 844 states –

76, 436ms

– 298, 696, 957

rewrites

Figure 9.7: Hazard-freedom model checking results, “no wires” optimization
for speed-independence. Maude 2.5, Intel Xeon X5570 (2.93GHz, 8MB L3),
24GB RAM, 64-bit Linux, kernel version 2.6.18.

173

CHAPTER 10

SEMANTICS: BTRS

This chapter develops an executable semantics in rewriting logic for a language

called BTRS [21], which is a simplified form of a more feature-rich hardware

description language called Bluespec [8]. Bluespec is based on guarded atomic

actions, or rules, and aims to realize the productivity and correctness benefits

of a modern high-level language; what sets it apart is that it attempts to do

this in the context of digital design, where the evolution of languages has

languished. The Bluespec compiler can be used as part of a synthesis chain

generating efficient hardware from Bluespec source.

The syntax of BTRS and a big-step operational semantics [43] are devel-

oped in [21], and it is upon that formalization that our executable one in

rewriting logic is based. Our aim in developing our formalization in rewrit-

ing logic is that it mimics the one from [21] extremely closely, so that the

correctness of the rewriting logic specification is straightforward.

In addition to the formalization of BTRS in rewriting logic, this chapter

makes a few additional contributions. First, a couple of quite small bugs in

the operational rules from [21] are discovered and fixed. Second, an explicit

rule, both in the style of [21] as well is in rewriting logic, is developed for

driving the execution of a BTRS program. Third, we present a small case

study involving a version of a completion buffer that, in some situations but

not all situations, may deadlock; we demonstrate how to use the execution

and formal analysis tools provided by our rewriting logic specification and

the rewriting logic tool Maude to expose this deadlock, something testing

could miss.

174

m ::= Module name
[Register r v] // Regs w/ initial values
[Rule R a] // Rules
[ActMeth g λx.a] //Action method
[ValMeth f λx.e] //Value method

a ::= r := e // Register update
‖ if e then a // Conditional action
‖ a | a // Parallel composition
‖ a ; a // Sequential composition
‖ a when e // Guarded action
‖ (t = e in a) // Let action
‖ m.g(e) // Action methcall g of m

e ::= r // Register Read
‖ c // Constant Value
‖ t // Variable Reference
‖ e op e // Primitive Operation
‖ e ? e : e // Conditional Expression
‖ e when e // Guarded Expression
‖ (t = e in e) // Let Expression
‖ m.f(e) // Value Methcall f of m

op ::= && | || | ... // Primitive operations

Figure 10.1: BTRS Grammar (verbatim copy of [21, Figure 1]).

10.1 Syntax

The grammar defining BTRS syntax is shown in Figure 10.1; it is a verbatim

reprint of [21, Figure 1]. Each of the relevant syntactic categories, expressions,

actions, and so forth, is mapped to an associated sort in our rewriting logic

semantics; for example, expressions will become terms of sort Expression.

All of the sorts used in the rewriting logic specification of BTRS syntax,

save for one, are declared in the module SYNTAX-SKELETON, displayed next.

Program is commented out by necessity since, as we will see, it has a depen-

dency that cannot yet be resolved. In addition, a few sorts are included in the

rewriting logic semantics that have no analogous production in the grammar

from Figure 10.1, but are nevertheless convenient and natural; for example,

Rule.

175

fmod SYNTAX-SKELETON is

sort Identifier .

sort Literal .

sort PrefixOp .

sort InfixOp .

sort Expression .

sort Action .

sort Rule .

sort Register .

sort Method .

sort Component .

sort Module .

--- sort Program (TBD)

endfm

Terms of each of these sorts are added through the notion of an extending

module importation in Maude [15, §8.1.2]. This is a common technique in

rewriting logic semantics [77, 19, 78], as it enhances modularity; for example,

we avoid having to fix a set of identifiers, values, or operators. See Section

10.3 for an example.

One of the main goals stated at the outset of this chapter was to develop

a rewriting logic semantics for BTRS that is “evidently correct”; that is,

representationally so near to the original semantics in [21] that its correctness

is essentially evident. In what follows, each segment of the rewriting logic

specification is accompanied by the associated portion of [21, Figure 1] from

which it was derived, so that the two specifications may be easily compared.

The syntax of expressions deviates only slightly from the original BTRS

grammar in Figure 10.1. A constructor is added for prefix expressions.

176

e ::= r // Register Read

‖ c // Constant Value

‖ t // Variable Reference

‖ e op e // Primitive Operation

‖ e ? e : e // Conditional Expression

‖ e when e // Guarded Expression

‖ (t = e in e) // Let Expression

‖ m.f(e) // Value Methcall f of m

fmod EXPRESSION is extending SYNTAX-SKELETON .

subsort Identifier Literal < Expression .

op __ : PrefixOp Expression -> Expression .

op ___ : Expression InfixOp Expression -> Expression .

op _?_:_ : Expression Expression Expression -> Expression .

op _when_ : Expression Expression -> Expression .

op _=_in_ : Identifier Expression Expression -> Expression .

op _._(_) : Identifier Identifier Expression -> Expression .

endfm

Actions effect state changes, similar to how statements do in procedural

languages, though as we will see below, with substantial differences. The

only deviation in the rewriting logic specification is the addition of a second

dot for action-method invocation. This is simply to disambiguate it from

value-method invocation and to suppress a warning from Maude.

177

a ::= r := e // Register update

‖ if e then a // Conditional action

‖ a | a // Parallel composition

‖ a ; a // Sequential composition

‖ a when e // Guarded action

‖ (t = e in a) // Let action

‖ m.g(e) // Action methcall g of m

fmod ACTION is extending SYNTAX-SKELETON .

op _:=_ : Identifier Expression -> Action .

op if_then_ : Expression Action -> Action .

op _|_ : Action Action -> Action .

op _;_ : Action Action -> Action .

op _when_ : Action Expression -> Action .

op _=_in_ : Identifier Expression Action -> Action .

op _.._(_) : Identifier Identifier Expression -> Action .

endfm

Modules are essentially named packages of different “components”: register

declarations, method definitions, and rules. Although the original BTRS

grammar does not associate individual productions to these components,

we find it convenient in the rewriting logic semantics to give each type of

component its own sort. We start with the individual components and then

move on to full modules.

m ::= Module name

[Register r v] // Regs w/ initial values

[Rule R a] // Rules

[ActMeth g λx.a] //Action method

[ValMeth f λx.e] //Value method

fmod COMPONENT is extending SYNTAX-SKELETON .

op Register__ : Identifier Literal -> Register .

op Rule__ : Identifier Action -> Rule .

op ActMeth__._ : Identifier Identifier Action -> Method .

op ValMeth__._ : Identifier Identifier Expression -> Method .

subsort Register Rule Method < Component .

endfm

178

With these module components defined, we simply instantiate the parame-

terized SET module from the Maude prelude [15, §9.12.2] with an appropriate

view and add a constructor symbol to get modules.

view Component from TRIV to SYNTAX-SKELETON is

sort Elt to Component .

endv

view Module from TRIV to SYNTAX-SKELETON is

sort Elt to Module .

endv

fmod PROGRAM is extending SYNTAX-SKELETON .

protecting SET{Component}

* (op _‘,_ to __) .

protecting SET{Module}

* (sort Set{Module} to Program

, op _‘,_ to __) .

op Module__ : Identifier Set{Component} -> Module .

endfm

The syntax of BTRS, according to our rewriting logic semantics, is then

just the collection of all of the above modules. Specific identifiers, literal

values, and the basic operators are defined on a by-need basis. An example is

presented in the following section, to demonstrate how this idea works.

fmod SYNTAX is

including EXPRESSION .

including ACTION .

including COMPONENT .

including PROGRAM .

endfm

10.2 Caveats

The grammar of BTRS allows for some programs that we will assume to be

outside the scope of what our semantics considers. These limitations mostly

have to do with how identifiers are used. For example, modules are assumed

to be uniquely named and, therefore, assuming m1, f0, and f1 are terms of

179

sort Identifier, the following BTRS program falls outside the scope of what

is considered.

Module m1

(Register f0 0)

Module m1

(Register f1 0)

Similarly, all register names should be unique, even across separate mod-

ules. Therefore, the following modification to the above BTRS program

addresses the module naming problem, but since the register names now

collide it still falls outside the scope of what is considered.

Module m1

(Register f0 0)

Module m2

(Register f0 0)

10.3 Example: Single-Element Queue

Module fifo

Register vf0 false

Register f0

ActMeth enq(x) = (vf0 := true | f0 := x) when !vf0

ActMeth deq() = (vf0 := false) when vf0

ValMeth first() = f0 when vf0

Figure 10.2: BTRS Single-Element Queue (verbatim from [21, Figure 3])
.

Consider the BTRS module shown in Figure 10.2, which implements a

single-element queue. Some syntactic liberties have been taken in the FIFO

module. Register f0 is not provided with an initial value, and both deq and

first omit their argument binding. In addition, a non-binary operator, !, is

used.

The single-element queue is specified in Maude by first extending the

SYNTAX module with all necessary literals, identifiers, and operator symbols.

180

fmod SYNTAX-EXT is extending SYNTAX .

including NAT .

sort Boolean .

subsort Nat Boolean < Literal .

ops fifo vf0 f0 x : -> Identifier .

ops enq deq first : -> Identifier .

op ! : -> PrefixOp .

ops True False : -> Boolean .

endfm

With the additional syntax, the specification of the queue is straightfor-

ward.

fmod EXAMPLE is including SYNTAX-EXT .

op FIFO : -> Module .

eq FIFO =

Module fifo

(Register vf0 False)

(Register f0 0)

(ActMeth enq \ x . (vf0 := True | f0 := x) when ! vf0)

(ActMeth deq \ x . ((vf0 := False) when vf0))

(ValMeth first \ x . (f0 when vf0)) .

endfm

10.4 Semantics Overview

The semantics of BTRS expression and action evaluation are defined in [21,

Figure 4] through a set of operational-style inference rules. As a convenience

for the reader, the content of that figure is reprinted in a set of figures

apportioned across Sections 10.5 and 10.6, according to subject. Section 10.5

details expression evaluation and Section 10.6 details action evaluation. Our

aim is to mimic these rules as closely as possible in rewriting logic.

In addition to expression and action evaluation, the semantics of BTRS

must specify how changes to program state are driven by repeatedly selecting

any ready BTRS-level rule and executing its body; this is detailed in Section

10.7.

Some essential infrastructure is required throughout the semantics speci-

fication. One of the essential concepts that is needed is that of a mapping

181

from identifiers to values, something we call a store. Stores are implemented

via Maude’s parameterized MAP module [15, Ch. 9.13.1].

fmod SEMANTICS-SKELETON-1 is including SYNTAX .

protecting MAP{Identifier,Literal}

* (sort Map{Identifier,Literal} to Store

, op _[_] to _(_)) .

endfm

The general forms given in [21] for expression evaluation and action

evaluation are 〈S, U,B〉 ` e� v and 〈S, U,B〉 ` a� U ′, respectively; where

the S, U, U ′, B are all stores, e is an expression, v is either a program value

or a special term, NR, denoting a “not-ready” condition, and a is an action.

Corresponding operators are introduced according to the following module.

fmod SEMANTICS-SKELETON-2 is including SEMANTICS-SKELETON-1 .

sort EvaluationState .

op <_,_,_> : Store Store Store -> EvaluationState .

op _|-(_)_->> : EvaluationState Program Expression ~> Literal .

op _|-(_)_->> : EvaluationState Program Action ~> Store .

op NR : -> [Literal] .

endfm

Unlike the ` symbol used in [21], our |- operator makes explicit the BTRS

program in which the evaluation is taking place. The |- operator differs in

another way with `: it is a term that stands for any result that, with `,

goes syntactically after the � in the relation. If this result, when it exists, is

unique, then we can employ Maude-level equations to define |-; if it is not,

we must use Maude-level rules to define the |- operators. It so happens that

equations suffice. The operators are partial (as indicated by the ~> arrow),

and therefore defined at the kind level, both to support the NR “result”, and

because not all actions can be meaningfully evaluated with respect to a given

evaluation state and program; for example, because of the failure of a _when_

guard.

In addition, note that literals are employed as the result of successfully

evaluating an expression. For this to be valid it is assumed that data values

and the space of program literals are isomorphic. NR is an error value and is

182

treated in the usual fashion of Maude error terms, meaning that it is a term

in the same kind of sort Literal, but does not have a sort.

Operator evaluation is handled via Maude’s meta-level [15, §14]. Each

operator will be mapped to a meta-level representation of another operator

with the intended semantics. There is one such lookup table for PrefixOps

and a separate lookup table for InfixOps. As with the operator symbols

themselves, the intention of these tables is that they are populated on an

as-needed basis through module extensions.

fmod SEMANTICS-SKELETON-3 is including SYNTAX .

including META-LEVEL ...necessary renamings omitted

including QID .

op prefixOpLookup : PrefixOp -> Qid .

op infixOpLookup : InfixOp -> Qid .

endfm

Booleans are required so that conditional and guarding expressions and

actions can be evaluated.

fmod SEMANTICS-SKELETON-4 is including SYNTAX .

sort Boolean .

ops True False : -> Boolean .

subsort Boolean < Literal .

endfm

Two forms of substitution are defined on stores: one which does a single

substitution for a given identifier and value, and a second one that updates a

store from a set of mappings provided by a second store. In either case,

identifiers previously mapped have their values updated, and identifiers

without previous mappings are in some sense newly inserted.

fmod SEMANTICS-SKELETON-5 is including SEMANTICS-SKELETON-1 .

... variable declarations omitted

op _[_/_] : Store Literal Identifier -> Store .

eq S[V / I] = insert(I, V, S) .

op _[_] : Store Store -> Store .

eq S[empty] = S .

eq S[(I |-> V) , S’] = (S[V / I])[S’] .

endfm

183

The topmost level of our semantics will rewrite pairs containing a BTRS

program and a store mapping each device register to its current value; such

pairs are called configurations.

fmod SEMANTICS-SKELETON-6 is including SEMANTICS-SKELETON-1 .

sort Configuration .

op <_,_> : Program Store -> Configuration .

endfm

The basic infrastructure for defining the BTRS semantics is then just the

aggregation of the above modules.

fmod SEMANTICS-SKELETON is

including SEMANTICS-SKELETON-1 .

including SEMANTICS-SKELETON-2 .

including SEMANTICS-SKELETON-3 .

including SEMANTICS-SKELETON-4 .

including SEMANTICS-SKELETON-5 .

including SEMANTICS-SKELETON-6 .

endfm

10.5 Expression Evaluation

Expression evaluation is defined in [21, Figure 4] through a set of operational-

style rules. Our rewriting logic semantics simply attempts to follow these

rules in a very close way. For convenience, these operational-style rules are

reprinted in Figure 10.3.

For each of the operational-style rules shown in Figure 10.3 we will have

a corresponding equation in rewriting logic. The remainder of this section

presents those equations, one-by-one and side-by-side with the appropriate

operational-style rule from Figure 10.3. The multiple printings are simply

intended to serve as a convenience to the reader; the aggregated rules allow-

ing for easy reference of the entire space of rules, and the embedded rules

serving to justify the equational definition as well as demonstrate the small

representational distance between the two semantic formalizations.

We begin with the “reg-read” rule and its corresponding equation in

rewriting logic

184

Expression Rules:

reg-read 〈S,U,B〉 ` r � (U++S)(r)

const 〈S,U,B〉 ` c� c

variable 〈S,U,B〉 ` t� B(t)

op

〈S,U,B〉 ` e1 � v1, v1 6= NR
〈S,U,B〉 ` e2 � v2, v2 6= NR

〈S,U,B〉 ` e1 op e2 � v1 op v2

tri-true
〈S,U,B〉 ` e1 � true, 〈S,U,B〉 ` e2 � v

〈S,U,B〉 ` e1 ? e2 : e3 � v

tri-false
〈S,U,B〉 ` e1 � false, 〈S,U,B〉 ` e3 � v

〈S,U,B〉 ` e1 ? e2 : e3 � v

e-when-true
〈S,U,B〉 ` e2 � true, 〈S,U,B〉 ` e1 � v

〈S,U,B〉 ` e1 when e2 � v

e-when-false
〈S,U,B〉 ` e2 � false

〈S,U,B〉 ` e1 when e2 � NR

e-let-sub
〈S,U,B〉 ` e1 � v1, 〈S,U,B[v/t]〉 ` e2 � v2

〈S,U,B〉 ` t = e1 in e2 � v2

e-meth-call

〈S,U,B〉 ` e� v, v 6= NR,
m.f = 〈λt.eb〉, 〈S,U,B[v/t]〉 ` eb � v′

〈S,U,B〉 ` m.f(e)� v′

Figure 10.3: Expression Evaluation Rules (verbatim from [21, Figure 4]).

〈S, U,B〉 ` r � (U++S)(r)

becomes

ceq < S, U, B > |-(P) R ->> = (S[U])(R)

if $hasMapping(S[U], R) .

The condition in the above equation is needed to distinguish terms of sort

Identifier that are being used as registers, as opposed to local bindings.

The distinction that is made is whether the variable has a mapping in the

S component of an evaluation state, meaning it is a register, or if it has a

mapping in the B component of the evaluation state, meaning it is a local

binding. The caveats explained in Section 10.2 allow us to use this mechanism

soundly. Aside from the condition that ensures the identifier is, indeed, a

register, and using [] for ++, the two definitions are almost identical.

Constants, defined in via rule “const”, are handled next. Recall that we

185

identify program values with program literals.

〈S, U,B〉 ` c� c

becomes

eq < S, U, B > |-(P) C ->> = C .

For the “variable” rule, a condition is added having the same purpose as

the one introduced for the “reg-read” rule.

〈S, U,B〉 ` t� B(t)

becomes

ceq < S, U, B > |-(P) T ->> = B(T)

if $hasMapping(B, T) .

Compared to the earlier semantics equations, and the ones that follow,

handling operators requires the most sophisticated use of Maude’s built-in

features, specifically the meta-level [15, §14]. Maude’s meta-level is used to

reify the meaning of each operator; that is, going from op to op in the “op”

rule.

〈S, U,B〉 ` e1 � v1, v1 6= NR,

〈S, U,B〉 ` e2 � v2, v2 6= NR

〈S, U,B〉 ` e1 op e2 � v1 op v2

becomes

ceq < S, U, B > |-(P) E1 OP E2 ->> = evalInfixOp(V1, OP, V2)

if V1 := < S, U, B > |-(P) E1 ->>

/\ V1 =/= NR

/\ V2 := < S, U, B > |-(P) E2 ->>

/\ V2 =/= NR .

op evalInfixOp : Literal InfixOp Literal ~> Literal .

eq evalInfixOp(L1, OP, L2) = downTerm(

infixOpLookup(OP) [upTerm(L1), upTerm(L2)]

, NR) .

evalInfixOp first constructs the meta-level representation of a term that

captures the intended semantics of OP/op. The crucial part of the meta-level

186

term construction is done through the table infixOpLookup, which takes

OP/op as an argument and returns the meta-level representation of op as its

result. Finally, downTerm brings the meta-level representation of v1 op v2 to

the object-level.

Although [21] does not explicitly handle unary prefix operators, their

semantics is evident from the above rule.

ceq < S, U, B > |-(P) OP1 E1 ->> = evalPrefixOp(OP1, V1)

if V1 := < S, U, B > |-(P) E1 ->>

/\ V1 =/= NR .

op evalPrefixOp : PrefixOp Literal ~> Literal .

eq evalPrefixOp(OP1, L1) =

downTerm(prefixOpLookup(OP1) [upTerm(L1)], NR) .

The conditional operator is defined with a pair of equations, just as it

is defined via a pair of rules, “tri-true” and “tri-false”, in [21]. Note that

it is this rule that necessitates the inclusion of Booleans in our semantic

infrastructure.

〈S, U,B〉 ` e1 � true, 〈S, U,B〉 ` e2 � v

〈S, U,B〉 ` e1 ? e2 : e3 � v

〈S, U,B〉 ` e1 � false, 〈S, U,B〉 ` e3 � v

〈S, U,B〉 ` e1 ? e2 : e3 � v

becomes

ceq < S, U, B > |-(P) E1 ? E2 : E3 ->> = V

if True := < S, U, B > |-(P) E1 ->>

/\ V := < S, U, B > |-(P) E2 ->> .

ceq < S, U, B > |-(P) E1 ? E2 : E3 ->> = V

if False := < S, U, B > |-(P) E1 ->>

/\ V := < S, U, B > |-(P) E3 ->> .

As with conditional expressions, guarded expression evaluation in the two

systems is nearly identical.

187

〈S, U,B〉 ` e2 � true, 〈S, U,B〉 ` e1 � v

〈S, U,B〉 ` e1 when e2 � v

〈S, U,B〉 ` e2 � false

〈S, U,B〉 ` e1 when e2 � NR

becomes

ceq < S, U, B > |-(P) E1 when E2 ->> = V

if True := < S, U, B > |-(P) E2 ->>

/\ V := < S, U, B > |-(P) E1 ->> .

ceq < S, U, B > |-(P) E1 when E2 ->> = NR

if False := < S, U, B > |-(P) E2 ->> .

Local bindings are held separately in the third component of what we

have termed the evaluation state; that is, the component that is denoted B

to suggest bindings. As expounded upon in Section 10.8, this rule must be

slightly modified in translation so that variable names match appropriately.

〈S, U,B〉 ` e1 � v1, 〈S, U,B[v/t]〉 ` e2 � v2

〈S, U,B〉 ` t = e1 in e2 � v2

becomes

ceq < S, U, B > |-(P) (T = E1 in E2) ->> = V2

if V1 := < S, U, B > |-(P) E1 ->>

/\ V2 := < S, U, B[V1 / T] > |-(P) E2 ->> .

The equation for method invocation demonstrates why we have included

the BTRS program as an argument of the |- operators. We use AC-matching

[15, §4.8] to pick the appropriate method from the appropriate module.

〈S, U,B〉 ` e� v, v 6= NR,

m.f = 〈λt.eb〉, 〈S, U,B[v/t]〉 ` eb � v′

〈S, U,B〉 ` m.f(e)� v′

becomes

ceq < S, U, B > |-(P) M . F(E) ->> = V’

if (Module M ((ValMeth F \ T . EB) CS)) P’ := P

/\ V := < S, U, B > |-(P) E ->>

/\ V =/= NR

/\ V’ := < S, U, B[V / T] > |-(P) EB ->> .

188

Action Rules:

reg-update
〈S,U,B〉 ` e� v, v 6= NR

〈S,U,B〉 ` r := e� U [v/r]

if-true
〈S,U,B〉 ` e� true, 〈S,U,B〉 ` a� U ′

〈S,U,B〉 ` if e then a� U ′

if-false
〈S,U,B〉 ` e� false

〈S,U,B〉 ` if e then a� U

a-when-true
〈S,U,B〉 ` e� true, 〈S,U,B〉 ` a� U ′

〈S,U,B〉 ` a when e� U ′

par
〈S,U,B〉 ` a1 � U1, 〈S,U,B〉 ` a2 � U2

〈S,U,B〉 ` a1 | a2 � U1] U2

seq
〈S,U,B〉 ` a1 � U1; 〈S,U1, B〉 ` a2 � U2

〈S,U,B〉 ` a1 ; a2 � U2

a-let-sub
〈S,U,B〉 ` e� v, 〈S,U,B[v/t]〉 ` a� U ′

〈S,U,B〉 ` t = e in a� U ′

a-meth-call

〈S,U,B〉 ` e� v, , v 6= NR,
m.g = 〈λt.a〉, 〈S,U,B[v/t]〉 ` a� U ′

〈S,U,B〉 ` m.g(e)� U ′

Figure 10.4: Action Evaluation Rules (verbatim from [21, Figure 4]).

10.6 Action Evaluation

Equations for action evaluation continue along in a similar vein. First is

“reg-update”.

〈S, U,B〉 ` e� v, v 6= NR

〈S, U,B〉 ` r := e� U [v/r]

becomes

ceq < S, U, B > |-(P) R := E ->> = U[V / R]

if V := < S, U, B > |-(P) E ->>

/\ V =/= NR .

Conditional actions are defined in both systems very similarly, just as

were conditional expressions.

189

Merge Functions:
U1] U2 = error if ∃r.{r 7→ v1} ∈ U1 ∧ {r 7→ v2} ∈ U2

otherwise U1 ∪ U2

{}(x) = ⊥
S[v/t](x) = v if t = x

otherwise S(x)

Each action rule gives a list of register updates given an environment 〈S,U,B〉 where
S represents the register state, U is the observable updates, and B represents the local
bindings. NR represents the “not-ready” value and can be stored in a binding, but
not assigned to a register. The strictness of method calls is enforced by checking that
parameter values are not NR. Initially U and B are empty and S contains the value of
all registers. One can think of ++ as list concatenation. If the system gets stuck because
no rule is applicable, it is assumed than an empty U is returned.

Figure 10.5: Auxiliary Definitions (verbatim from [21, Figure 4]).

〈S, U,B〉 ` e� true, 〈S, U,B〉 ` a� U ′

〈S, U,B〉 ` if e then a� U ′

〈S, U,B〉 ` e� false

〈S, U,B〉 ` if e then a� U

becomes

ceq < S, U, B > |-(P) if E then A ->> = U’

if True := < S, U, B > |-(P) E ->>

/\ U’ := < S, U, B > |-(P) A ->> .

ceq < S, U, B > |-(P) if E then A ->> = U

if False := < S, U, B > |-(P) E ->> .

Instead of propagating a special value when a guarded action’s condition

is false, we simply omit an equation for this case. This meets the intention

of the operational-style system, as described in Figure 10.5, which is taken

directly from [21].

〈S, U,B〉 ` e� true, 〈S, U,B〉 ` a� U ′

〈S, U,B〉 ` a when e� U ′

becomes

ceq < S, U, B > |-(P) A when E ->> = U’

if True := < S, U, B > |-(P) E ->>

/\ U’ := < S, U, B > |-(P) A ->> .

190

The equations defining the semantics of parallel composition require an

additional function corresponding to the] operation [21, Figure 4] (see Fig-

ure 10.5). Note that rewriting logic equations differ rather substantially from

the original operational-style rules (see errata, Section 10.8)

〈S,U,B〉 ` a1 � U1, 〈S,U,B〉 ` a2 � U2

〈S,U,B〉 ` a1 | a2 � (U1] U2)

becomes (see errata)

ceq < S, U, B > |-(P) A1 | A2 ->> = U[U’]

if U1 := < S[U], empty, B > |-(P) A1 ->>

/\ U2 := < S[U], empty, B > |-(P) A2 ->>

/\ U’ := U1 uplus U2 .

op _uplus_ : Store Store ~> Store .

ceq U1 uplus U2 = U1 , U2

if not overlap(U1, U2) .

op overlap : Store Store -> Bool .

eq overlap(((R |-> V1) , U1), ((R |-> V2) , U2)) = true .

eq overlap(U1, U2) = false [owise] .

In contrast to the definition of parallel composition, the definition of

sequential composition is straightforward and follows [21] directly.

〈S, U,B〉 ` a1 � U1; 〈S, U1, B〉 ` a2 � U2

〈S, U,B〉 ` a1 ; a2 � U2

becomes

ceq < S, U, B > |-(P) A1 ; A2 ->> = U2

if U1 := < S, U , B > |-(P) A1 ->>

/\ U2 := < S, U1, B > |-(P) A2 ->> .

Local bindings are handled exactly as for the expression case.

〈S, U,B〉 ` e� v, 〈S, U,B[v/t]〉 ` a� U ′

〈S, U,B〉 ` t = e in a� U ′

becomes

ceq < S, U, B > |-(P) (T = E in A) ->> = U’

if V := < S, U, B > |-(P) E ->>

/\ U’ := < S, U, B[V / T] > |-(P) A ->> .

191

The same is true for method invocation.

〈S, U,B〉 ` e� v, , v 6= NR,

m.g = 〈λt.a〉, 〈S, U,B[v/t]〉 ` a� U ′

〈S, U,B〉 ` m.g(e)� U ′

becomes

ceq < S, U, B > |-(P) M .. G(E) ->> = U’

if (Module M ((ActMeth G \ T . A) CS)) P’ := P

/\ V := < S, U, B > |-(P) E ->>

/\ V =/= NR

/\ U’ := < S, U, B[V / T] > |-(P) A ->> .

10.7 Semantics

In addition to the equations defining expression and action evaluation, all that

is needed for a complete semantics is a rewriting-logic-level rule driving the

execution of a BTRS program. This is accomplished by using AC-matching

to select any rule from the program, executing its body, and modifying the

register state with any updates that result from executing it.

mod RULE-EXECUTION is extending SEMANTICS-SKELETON .

... variable declarations omitted

var U’ : Store .

crl < P, S > => < P, S[U’] >

if (Module M ((Rule R A) CS)) P’ := P

/\ U’ := < S, empty, empty > |-(P) A ->> .

endm

One subtle aspect of the above rule is the handling of rules that are not

enabled; for example, because the condition of a when embedded into the

body of the rule evaluates to false. By declaring U’ to be of sort Store, as

opposed to its associated kind, we ensure that only rules that are enabled

to execute actually do. Recall that the |- operator is declared only to have

kind Store, and so only takes sort Store as a “special” case.

Finally, the semantics of BTRS is just the aggregation of the above

modules.

192

mod SEMANTICS is

including SEMANTICS-SKELETON .

including EVAL-EXPRESSION .

including EVAL-ACTION .

including RULE-EXECUTION .

endm

10.8 Discussion

We briefly explain the two very minor errata in the SOS rules from [21], were

were noted above. The local binding rule for expressions exhibits a small typo

where it is written B[v/t]; v is unbound. Therefore, the original rule

〈S, U,B〉 ` e1 � v1, 〈S, U,B[v/t]〉 ` e2 � v2

〈S, U,B〉 ` t = e1 in e2 � v2

should instead be

〈S, U,B〉 ` e1 � v1, 〈S, U,B[v1/t]〉 ` e2 � v2

〈S, U,B〉 ` t = e1 in e2 � v2

The second erratum is slightly more significant. The rule for parallel

composition (verbatim from [21])

〈S, U,B〉 ` a1 � U1, 〈S, U,B〉 ` a2 � U2

〈S, U,B〉 ` a1 | a2 � (U1] U2)

U1] U2 =

error if ∃r.{r 7→ v1} ∈ U1 ∧ {r 7→ v2} ∈ U2

U1 ∪ U2 otherwise

should only take into account collisions from register assignments that occur

during the evaluation of a1 and a2, and not those that were already part of U .

One way of fixing this is to recast the rule in a way similar to our specification

in rewriting logic.

〈S[U], ∅, B〉 ` a1 � U1, 〈S[U], ∅, B〉 ` a2 � U2 , Dom(U1) ∩Dom(U2) = ∅
〈S, U,B〉 ` a1 | a2 � (U [U1])[U2]

193

10.9 Example: A Deadlocking Completion Buffer

When used in conjunction with a rewriting logic engine such as Maude [15],

the executable semantics serves not only as a correct-by-construction BTRS

simulator (relative to the correctness of the given semantics in rewriting logic),

but also as a multipurpose formal tool for analyzing BTRS programs. Indeed,

Maude provides the ability to simulate BTRS programs, to prove and disprove

invariants, to prove and disprove the existence of deadlock, and to perform

full linear temporal logic (LTL) model checking, among other abilities (see

Chapter 2). As an example utilizing these abilities in the context of BTRS,

this section demonstrates a deadlock in a completion buffer.

A completion buffer is a structure that maintains ordering among opera-

tions whose results may be generated out of order. Our BTRS implementation

is based on a completion buffer that was part of a Bluespec circuit for process-

ing a stream of IP lookup requests; the latency of each request can vary based

on how deep into a hierarchical set of tables one needs to look to process it.

This deadlock that gets exposed was injected into the example knowingly

and does not occur in the original device. Nevertheless, it is an instructive

example.

Each operation begins by calling an action-method getTokenAct to reserve

an entry in the buffer; when the operation completes its calculation, it puts

the result into the buffer and signals its completion with a call to an action-

method done. Results are taken from the buffer and space is ultimately freed

by a call to an action-method finishedAct. The entire BTRS source is

available at [45].

Corresponding value-methods getTokenVal and finishedVal return an

id for the reserved buffer entry and the next operation’s result, respectively.

These are essentially the same set of functions from the original Bluespec

source, aside from the splitting of getToken and finished into action and

value parts.

First, we extend the syntax of BTRS with necessary identifiers, operator

symbols, etc. In the module given below we omit all but the operator symbols

and literals, as everything else will be clear from context.

194

mod CBUFFER-EXT is extending SEMANTICS .

including NAT .

... identifiers omitted

sort EntryStatus .

ops Free Out Done : -> EntryState .

subsort Nat EntryStatus < Literal .

ops +mod8 == /= && : -> InfixOp .

ops isOut isDone : -> PrefixOp .

... operator table definitions omitted

endm

Each entry in the completion buffer has, in addition to a data field, a

current status which is characterized by the sort EntryStatus. The operator

+mod8 does 3-bit addition, == and /= are equality and inequality predicates

for 3-bit values, and && is logical-and on the sort Boolean. isOut and isDone

are predicates on sort EntryStatus.

We will start with the register declarations and then move on to describe

each action method individually. This is an 8-entry buffer having a data field

and a status field for each entry, as well as head and tail pointers, i and o. i

points to the next available entry and o points to the last entry freed.

195

mod CBUFFER is

including CBUFFER-EXT .

op CBUFFER : -> Module .

eq CBUFFER =

Module CBuffer

(Register buff0 0)

(Register buff1 0)

(Register buff2 0)

... repeated to buff7

(Register valid0 Free)

(Register valid1 Free)

(Register valid2 Free)

... repeated to valid7

(Register i 1)

(Register o 0)

... continues

A place in the completion buffer is reserved through a call to getTokenAct.

The code for getTokenVal that returns the entry id is omitted.

(ActMeth getTokenAct \ dummy .

(idx = (i +mod8 1)

in (((i := idx)

| (if (i == 0) then (valid0 := Out))

| (if (i == 1) then (valid1 := Out))

| (if (i == 2) then (valid2 := Out))

...repeated to t == 7

)

when (idx /= o))

))

When a computation is finished, it places its result into the buffer entry

it reserved, using the token as an argument. Note that for analysis purposes,

since we are concerned with deadlock, we have used a data abstraction that

places a fixed value into the buffer entry.

196

(ActMeth done \ t .

(if (t == 0) then

(((valid0 := Done) | (buff0 := 777)) when (isOut valid0)))

| (if (t == 1) then

(((valid1 := Done) | (buff1 := 777)) when (isOut valid1)))

| (if (t == 2) then

(((valid2 := Done) | (buff2 := 777)) when (isOut valid2)))

...repeated to t == 7

Results are pulled from the completion buffer by calling finishedAct and

finishedVal (omitted).

(ActMeth finishedAct \ dummy .

(idx = (o +mod8 1)

in (((o := idx)

| (if (idx == 0) then ((valid0 := Free)

when (isDone valid0)))

| (if (idx == 1) then ((valid1 := Free)

when (isDone valid1)))

| (if (idx == 2) then ((valid2 := Free)

when (isDone valid2)))

...repeated to idx == 7

) when (i /= o))))

To test for deadlock in this system, we construct a set of rules, one for

each combination of method and possible method argument, and then ask

Maude if a deadlocked term is reachable from the initial state.

mod TESTBENCH is including CBUFFER .

op TESTBENCH : -> Module .

eq TESTBENCH =

Module Testbench

(Rule r0 (CBuffer .. getTokenAct(0)))

(Rule r1 (CBuffer .. finishedAct(0)))

(Rule r2 (CBuffer .. done(0)))

(Rule r3 (CBuffer .. done(1)))

(Rule r4 (CBuffer .. done(2)))

...repeated to done(7)

... continues

The initial state is given by a term initialC defined as

197

... continued from above

op SIGMA : -> Store .

eq SIGMA =

(buff0 |-> 0)

, (valid0 |-> Free)

, (buff1 |-> 0)

, (valid1 |-> Free)

, (buff2 |-> 0)

, (valid2 |-> Free)

...repeated to buff7, valid7

, (i |-> 1)

, (o |-> 0) .

op initialC : -> Configuration .

eq initialC = < CBUFFER TESTBENCH, SIGMA > .

endm

We can run the following command in Maude [15, §6.4.3] to search for a

terminated (deadlocked) state.

search [1] initialC =>! C:Configuration .

Subsequently, Maude notifies us of a deadlock in the buffer. The deadlock

comes from an incorrect guard in the definition of the function finishedAct,

(i /= o), which fails when the buffer is full. Depending on the particular

usage pattern, this bug may or may not become manifest during use. That is,

it may or may not be found during testing.

The buffer can be made correct, in the sense that the above deadlock is

removed, by changing the guard to (idx /= i). If the above command is

run with this guard, Maude instead reports the following

Maude> search [1] initialC =>! C:Configuration .

No solution.

states: 3833 rewrites: 10058295 in 7481ms cpu ...

indicating that no deadlock state can be reached, which is exactly what is

desired.

198

CHAPTER 11

CONCLUSION

This dissertation addresses a specific problem in contemporary functional

verification practice, namely the difficulty of automating the coverage closure

feedback loop, and also contributes substantially to the rewriting logic seman-

tics project [77, 19, 78]. The way in which we address the automation problem

is through the design of a programming language where simulation becomes

a first-class concept. As a result, verification engineers are able to write

both general-purpose and specialized programs to discharge coverage goals,

which is perhaps the most time-consuming and difficult part of functional

verification.

In addition to identifying the problem and proposing a high-level solution

in the form of a meta-language about simulation, we have advanced the idea

with a set of additional contributions. Specifically, we formalized the language

precisely within rewriting logic, implemented a tool that allows programs in the

meta-language to be constructed and executed on a computer, demonstrated

a broad set of novel capabilities made possible through the language, and

we demonstrated applications of the language to more substantial devices,

including a bus-master controller and a simple microprocessor. As a result, we

were able to uncover a subtle timing bug in the multi-mastering capabilities

of the bus-master controller, which had been tested previously with some

rigor.

Regarding the rewriting logic semantics project, besides the above-mentioned

formalization in it of our meta-language for functional verification, we have

also formalized a substantial portion of Verilog, as well as formalized com-

pletely two much smaller languages, namely, production rule sets, which are

used to design asynchronous circuits, and BTRS, which is a simplified version

of the Bluespec hardware description language. In doing so, we were able

to find bugs in a widely-used open-source Verilog simulator, clarify greatly

the semantics of production rule sets, and, in the case of BTRS, demonstrate

199

once again the suitability of rewriting logic as semantic framework, as well as

uncover a couple of small oversights in the original SOS specification.

Digital hardware design is an extremely complex and multi-faceted en-

gineering process, and many challenges must still be addressed so that the

current pace of innovation in digital electronics can continue into the future.

This dissertation considers just one aspect of the process, carefully chosen

however to address a problem that is especially serious with regards to posing

an impediment to future progress. Our belief is that the best solutions must

attempt to balance the abilities of the engineers involved with algorithms

and other tools available to an engineer. That is why we have looked into

the problem of how to design a more suitable programming language for

orchestrating simulation-based functional verification. A related belief is that

formal semantics matters, and can be key not only for traditional formal

methods such as model checking or theorem proving, but also for testing-based

functional verification of hardware, as our rewriting logic based approach to

the metalanguage [L]ml, and the semantics of specific HDL’s has shown in

practice.

Although this dissertation makes substantial progress, much work still

must be done to provide more feature rich and efficient tool support and to

integrate other aspects of the verification process when there is a thoughtful

way of doing so. For example, a more sophisticated formal definition of

what verification closure means and the kind of coverage that is relevant to

hardware design is an open problem that is crucially important to simulation-

based functional verification. A related issue is how to incorporate formal

verification where appropriate, integrating the two approaches both in terms

of tools and definition of verification closure.

Regarding the formal semantics work. The experimental results for pro-

duction rule sets indicate that additional optimizations, based on abstractions

perhaps, or other means must be developed to rein-in the state-space explosion

problem. A formal-statistical approach may ultimately be the most appropri-

ate, since such techniques are much more scalable. For the Verilog, BTRS,

and even production rule sets, an important avenue of future work is also

coming up with a general methodology through which symbolic simulation

can be achieved in such a way that the resulting simulations are amenable to

solving with modern SMT solver technologies.

200

APPENDIX A

IMPLEMENTATION DETAILS

The following subsections provide details on how the three functions start,

concretize, and simulate from Chapter 5 are implemented. They reflect

the vast majority of the implementation work in vlogml. In total, the three

functions represent approximately ten thousand lines of Haskell and C++

code, whereas the other operations that we will present are implemented in

just a few lines of code.

A.1 start

Internally, the structure of the implementation of start is reminiscent of a

compiler. Verilog is first parsed and then goes through a series of canonical-

ization and optimization passes until it is converted into a representation that

can be easily simulated, specifically, a value of type Simulation.

The sequence of steps that are exected when start is called can be

broken-down as follows.

• parse: This function reads Verilog source code from files on disk,

parses the source code, and generates values of a first intermediate

representation. In the actual implementation [46], the most difficult

part is parsing, which is handled with source code from the Icarus

Verilog simulator [101]. One small difficulty is that the parser populates

C++ object instances, which must first be converted to C structs and

subsequently marshalled over Haskell’s foreign function interface to

generate values of Haskell data types.

• pretty: The first intermediate representation is rather inconvenient

for processing purposes in Haskell, due to the different paradigms

emphasized by C++ and Haskell. Therefore, this function converts

201

the first intermediate representation into one more suitable for use in

Haskell. This second intermediate representation simply consists of the

data types exported by VlogMetaLang.Syntax.

• canonicalize: This phase in the processing pipeline consists of a num-

ber of passes that operate over the second intermediate representation,

transforming it in various ways that make later operations easier. As just

one example, case statements are turned into a cascade of conditional

statements. Some operations not exported by VlogMetaLang.Syntax

and not part of Verilog are used during this phase, such as labels and

gotos. Additional examples of transformations are elaborated on below.

• codegen: The data value resulting from the previous phase has essen-

tially removed all uses of structured syntax from the Verilog program

and has been partitioned into basic blocks. The final phase of the

pipeline converts each block into the internal “instruction set” used

during simulation, which is stack-based, and initializes a value of type

Simulation, which is the final result of start.

Transformation Examples: Two examples of transformations performed

during the canonicalize phase are presented. The first transformation

converts port connections to continuous assignments. Consider a module m

with interface

module m(i1, i2, o);

input i1;

input i2;

output o;

and an instance of m in another module declared as follows:

m inst(x, y, z);

The canonicalization pass adds to the module containing this instance decla-

ration the following three continuous assignments:

assign inst.i1 = x;

assign inst.i2 = y;

assign z = inst.o;

202

The second example simplifies structured delay statements, which are

of the form <delay> <statement>, by pulling the statement body out and

sequentially composing it with a simple delay having an empty statement

body. The canonicalization phase contains a number of passes that effectively

eliminate the structured nature of delay controls so that. Consider

#5 x = 0;

which, as indicated above, is syntactically of the form <delay> <statement>.

The transformation under consideration converts the above statement into

the following sequential block containing two statements:

begin

#5;

x = 0;

end

A.2 concretize

The concretize function corresponds to ruleS from RIR. Therefore, its main

purpose is to perform a substitution on the symbolic state of a simulation.

In addition, however, concretize also performs constant folding and propa-

gation, as opportunities for these simplifications are typically made possible

after the substitution is made. An example is given next to clarify the process.

Consider, for example, simulating a Verilog device containing the following

process:

always @(posedge clk)

count <= count + 1;

which contains uses of two identifiers, clock and count. Values of type

Simulation contain a set of mappings that determine the current value of

each identifier and variable that is relevant to the simulation. Let us assume

in this case that we are in possession of a simulation of this device where

the current values of these identifiers are given by the following mappings to

203

expressions:

clk 7→ 1

count 7→ x+ 1

where x is a symbolic variable. The simulation contains a separate mapping

yielding the current value of each symbolic variable; in this case we assume

that it has not yet been instantiated, meaning that it maps to itself.

x 7→ x

If one uses concretize to apply a substitution σ to the above simulation,

with σ(x) = 0, the first operation that is performed is to modify the mapping

for symbolic variables referenced by σ. Therefore, the combined mappings

get updated to

clk 7→ 1

count 7→ x+ 1

x 7→ 0

Constant propagation and folding are then applied structurally. In the case

of the example, constant propagation first yields a combined set of mappings

clk 7→ 1

count 7→ 0 + 1

x 7→ 0

and constant folding then simplifies the value of count to

clk 7→ 1

count 7→ 1

x 7→ 0

204

A.3 simulate

simulate functions as a special kind of simulator for Verilog devices. Its type

signature is,

simulate :: (Input a) => a -> Simulation -> Simulation

where a denotes any time which can be transformed into a proper input

stimulus. The usual way in which a user interfaces with a simulator is quite

different, roughly speaking the interface is

f :: Input -> Device -> Waveforms

Our notion of “simulation”, while containing waveform information, also

contains enough information to continue simulation from where the waveforms

leave off, and is therefore something altogether different.

Therefore, one of the main distinguishing features of simulate is that

simulations are treated as first class data values. This allows a complete

simulation run to be constructed piecewise, with different parts of the in-

put decided at different times. The second main distinguishing feature of

simulate, which is not evident from its type signature, is that it fully supports

symbolic simulation, that is, input stimulus is allowed to contain symbolic

variables.

To understand the implementation of simulate within vlogml, we walk

through the main components of simulate’s implementation, which in many

ways matches quite closely the conceptual description given in the Verilog

Standard [36].

1 type Simulate a = State Simulation a

2 simulate_ :: Input -> Simulate ()

3 delta :: Simulate Bool

4 epsilon :: Simulate Bool

5 eval :: Event -> Simulate ()

Figure A.1:

Overview. The implementation of simulate within vlogml will be de-

scribed at the level of the functions named in Figure A.1.

205

1 simulate i sim = evalState (simulate_ i’) sim

2 where i’ = toInput i

Figure A.2:

• (Simulate a): This type synonym is an instance of Haskell’s (rather,

GHC [95], the most widely used Haskell compiler) State monad [94]

(see [98, 99, 100] for underlying concepts), where the backing state is

a simulation. One of the advantages of using a state monad is that it

provides for a clean implementation of computations that are intuitively

“stateful”. In the case of simulate, a monadic implementation allows us

to pass the simulation being modified without explicitly binding it as

an argument for every function involved in simulation, of which there

are many.

• simulate_: This is the main entry point for simulation internally.

As shown in Figure A.4, simulate essentially just calls this function,

with some additional code to resolve its type with the monadic type

of simulate_. evalState is a standard function that unwraps state

monads [94].

• delta: This function is called to perform a “delta cycle”, which is defined

in vlogml as progressing simulation until, and including, the next point

that internal simulation time is increased, causing the earliest scheduled

events from the future stratum of the event queue to be promoted to

zero-time events. In the terminology of the Verilog Standard [36], it

corresponds to the combination of a “simulator cycle” (processing all

zero-time events) and a clock update.

• epsilon: This function is called to perform an “epsilon cycle”, which

does one of two things: evaluate all pending active events, or move

pending zero-time events to active status in the event queue.

• eval: This function takes an event as an argument and evaluates the

body of that event, which is a list of simple instructions, such as reading

a current value of a source identifier, or performing an addition.

206

Queue Management. As described in the Verilog Standard [36], simula-

tion proceeds by repeatedly processing events from a stratified event queue

comprised of five strata named as follows: (1) active, (2) inactive, (3) non-

blocking, (4) monitor, and (5) future. We now describe how this stratified

queue is represented in vlogml within a simulation and how the functions

simulate_, delta, and epsilon are used to manage the queue in Standard-

conforming manner. To do this, Figures A.3 – A.7 are presented in detail.

1 data ZeroTimeQueues = ZeroTimeQueues {

2 activeNotOrdered :: [Event]

3 , activeOrdered :: [Event]

4 , inactive :: [Event]

5 , nonblocking :: [Event]

6 }

7
8 data Queues = Queues {

9 zeroTime :: ZeroTimeQueues

10 , future :: (Map Int ZeroTimeQueues)

11 }

Figure A.3:

Figure A.3: Queues. These are the data types used to represent the

stratified event queue defined in the Verilog Standard [36].

• (lines 1 –6): These are the strata containing events that will execute

before the next update of the clock; hence, the “zero-time” designa-

tion. Active events are the highest priority, followed by inactive events,

followed by non-blocking assignment update events. vlogml does not

currently support monitors, which is why the record does not contain a

field for that stratum. In addition, vlogml partitions the active queue

into ordered and unordered lists of events to help avoid subtle event

ordering issues that arise when non-blocking events are made active.

• (lines 8 – 11): The entire event queue is then represented as a record

containing the current value of the zero-time strata, and a mapping

from integers, representing time in the future, to an updated zero-time

queue in which events that occur in the future are placed.

207

1 simulate_ i = do

2 insertInput i

3 whileM delta

Figure A.4:

Figure A.4: simulate

• (line 2): Inject the input stimulus, given as an argument, into the

simulation instance. The injection process uses some of the same

machinery as the start function to generate new code blocks from the

input and then propagate events that reference these newly generated

blocks into the event queues.

• (line 3): Continually execute delta cycles until the input stimulus is

consumed. delta returns a boolean, and whileM is function we have

defined that executes the given function until it returns false.

1 delta = do

2 whileM epsilon

3 x <- clockTick

4 case x of

5 (Just t) -> return True

6 Nothing -> return False

Figure A.5:

Figure A.5: delta

• (line 2): Continually execute epsilon cycles until there are no remaining

zero-time events.

• (line 3): If there are future events, update the simulation clock to the

time of the earliest future event and substitute its zero-time events for

the current, empty, zero-time events; decrement the time values stored

in the future stratum. In this case, the amount of time added to the

208

simulation clock is returned. If the stimulus has been used up, the

value Nothing is returned; this is generated from a special flag used

internally.

• (line 4 – 6): If there continue to be events that may be executed and

the stimulus has not been used up, which would set the internal flag

mentioned above, return True, otherwise return False, indicating that

the stimulus has been used up entirely.

1 epsilon = do

2 xs <- getActiveEvents

3 case xs of

4 x:xs -> eval x >> return True

5 ([]) -> updateZeroTimeQueues

Figure A.6:

Figure A.6: epsilon

• (line 2): Retrieve a list of all active events. This is the concatenation

of the ordered and unordered lists.

• (line 4): If there is at least one pending active event, evaluate it. The

eval function is explained below.

• (line 5): If there are no pending active events, management of the

zero-time queues is invoked. The management process is dictated by

the Verilog Standard [36] and is described next.

Figure A.7: updateZeroTimeQueues

• (line 2): Get the list of inactive events and generate a boolean indicating

if the list is non-empty. The result of this check is bound to the variable

s0.

• (line 3): Get the list of non-blocking events and generate a boolean

indicating if the list is non-empty. The result of this check is bound to

the variable s1.

209

1 updateZeroTimeQueues = do

2 s0 <- notNull <$> getInactiveEvents

3 s1 <- notNull <$> getNonblockingEvents

4 cast (s0,s1) of

5 (True , _) -> do

6 activateInactiveEvents

7 return True

8 (False,True) -> do

9 activateNonblockingEvents

10 return True

11 (False,False) -> return False

Figure A.7:

• (lines 5 – 7): There are pending inactive events, promote all of them to

active status and return True, indicating that there are still zero-time

events to be processed.

• (lines 8 – 10): There are no pending inactive events, but there are

pending non-blocking assignment update events; promote all of them

to active status and return True.

• (line 11): There are no pending inactive events and no pending non-

blocking events. Therefore, there are no pending zero-time events at all

and we return False to indicate this fact, which is used above in delta

to initiate the clock tick procedure.

Event Evaluation. The purpose of what is described above is as a structure

to hold pending events and to maintain the appropriate ordering constraints

among them. Evaluation of an event is handled through the eval function.

To describe how this function is implemented, a few additional data types

are needed; a few of these are simplified for the following discussion to just

the most essential information.

Figure A.8

• Instruction: This data type represents the internal instruction set of

simulation used within vlogml and is what is primarily emitted during

210

1 data Instruction

2 data Target

3 data TargetId

4 data Event

Figure A.8:

the code generation phase of start. It is a stack-based instruction set,

and includes various operations, a few of which are shown in Figure A.9

and elaborated on below.

1 data Instruction =

2 InstValue Expression

3 | InstAdd

4 | InstGoto TargetId

5 | ... -- additional instructions

Figure A.9:

• Target and TargetId: For our purposes here, a target can be considered

just a labelled list of instructions; that is, it contains a value of type

[Instruction]. Each value of type Simulation contains a mapping

from “target identifiers”, given by the type TargetId, to targets.

• Event: For our purposes here, an event can be considered as just a

target identifier which provides a location from which to start executing

instructions.

1 eval :: Event -> Simulate ()

2 execute :: [Instruction] -> Simulate ()

Figure A.10:

Figure A.10: eval and execute

211

• eval: This function does some internal setup for symbolic simulation

and other things that are not described here; however, its main purpose

is to use the target identifier of the given event to look up the associated

target and call execute to process the associated instructions.

• execute: This function interprets the internal simulation instruction

set. A few examples of how instructions are processed are given next.

Execution Examples. The terminal case of execute is given by the empty

list of instructions, from which we simply return unit.

execute [] = return ()

In addition, there is a separate case for each instruction type. We next

explain the implementation of the instructions shown above in Figure A.9.

The implementation assumes monadic stack operations push and pop, a

function that performs Verilog-compliant addition, as well as a function to

look up targets, lookupTarget.

Immediate values are processed according to the following definition

execute ((InstValue x):xs) = do

push x

execute xs

Addition pops two values from the top of the stack, yielding expressions

x1 and x2, performs addition, and then pushes the result onto the stack.

execute ((InstAdd):xs) = do

x1 <- pop

x2 <- pop

push (vlogAdd x1 x2)

execute xs

The implementation of vlogAdd is slightly involved. As x1 and x2 are

possibly symbolic expressions, a new expression is first created representing

the addition; this expression is then subjected to constant folding to simplify

the result.

For an unconditional branch, or “goto”, the target associated is looked up

and the instruction stream is redirected immediately.

212

execute ((InstGoto j):xs) = do

ys <- lookupTarget j

execute ys

213

REFERENCES

[1] Allon Adir, Eli Almog, Laurent Fournier, Eitan Marcus, Michal Rimon,
Michael Vinov, and Avi Ziv. Genesys-Pro: Innovations in Test Program
Generation for Functional Processor Verification. IEEE Design & Test
of Computers, 21(2):84–93, 2004.

[2] Gul A. Agha, José Meseguer, and Koushik Sen. PMaude: Rewrite-based
Specification Language for Probabilistic Object Systems. Electronic
Notes in Theoretical Computer Science, 153(2):213–239, 2006.

[3] Musab AlTurki and José Meseguer. PVeStA: A Parallel Statistical
Model Checking and Quantitative Analysis Tool. In 4th International
Conference on Algebra and Coalgebra in Computer Science (CALCO
2011), to appear, 2011.

[4] Peter A. Beerel, Jerry R. Burch, and Teresa H.-Y. Meng. Sufficient
Conditions for Correct Gate-Level Speed-Independent Circuits. In
Proceedings of the International Symposium on Advanced Research in
Asynchronous Circuits and Systems, pages 33–43, 1994.

[5] Janick Bergeron. Writing Testbenches: Functional Verification of HDL
Models. Springer, second edition, 2003.

[6] Janick Bergeron. Writing Testbenches Using SystemVerilog. Springer,
2006.

[7] Janick Bergeron. Automating Coverage Closure. Verification Martial
Arts: A Verification Methodology Blog, 2010. http://www.vmmcentral.
org/vmartialarts/2010/07/automating-coverage-closure.

[8] Bluespec, Inc., Waltham, Massachusetts. Bluespec SystemVerilog Ver-
sion Reference Guide, October 2009.

[9] Tom Borgstrom. Getting the last 20%. On Verification: A Soft-
ware to Silicon Verification Blog, 2010. http://synopsysoc.org/

softwaretosiliconverification/2010/07/getting-the-last-20.

214

[10] Roberto Bruni and José Meseguer. Generalized Rewrite Theories. In
30th International Colloquium on Automata, Languages and Program-
ming (ICALP 2003), volume 2719 of Lecture Notes in Computer Science,
pages 252–266. Springer, 2003.

[11] Roberto Bruni and José Meseguer. Semantic foundations for generalized
rewrite theories. Theoretical Computer Science, 360(1-3):386–414, 2006.

[12] J.R. Burch, E.M. Clarke, D.E. Long, K.L. McMillan, and D.L. Dill.
Symbolic model checking for sequential circuit verification. Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, 13(4):401 –424, April 1994.

[13] Pankaj Chauhan, Deepak Goyal, Gagan Hasteer, Anmol Mathur, and
Nikhil Sharma. Non-cycle-accurate sequential equivalence checking. In
Proceedings of the 46th Design Automation Conference (DAC 2009),
pages 460–465. ACM, 2009.

[14] Hana Chockler, Orna Kupferman, and Moshe Y. Vardi. Coverage
metrics for formal verification. STTT, 8(4-5):373–386, 2006.

[15] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso
Mart́ı-Oliet, José Meseguer, and Carolyn L. Talcott. All About Maude -
A High-Performance Logical Framework, volume 4350 of Lecture Notes
in Computer Science. Springer, 2007.

[16] Manuel Clavel and José Meseguer. Reflection in conditional rewriting
logic. Theoretical Computer Science, 285(2):245–288, 2002.

[17] Manuel Clavel, José Meseguer, and Miguel Palomino. Reflection in
membership equational logic, many-sorted equational logic, Horn logic
with equality, and rewriting logic. Theoretical Computer Science, 373(1-
2):70 – 91, 2007.

[18] James N. Cook. Production Rule Verification for Quasi-Delay-Insensitive
Circuits. Master’s thesis, California Institute of Technology, 1993.

[19] Traian Florin Şerbănuţă, Grigore Roşu, and José Meseguer. A rewriting
logic approach to operational semantics. Information and Computation,
207(2):305–340, 2009.

[20] Marcelo d’Amorim and Grigore Ros,u. An Equational Specification
for the Scheme Language. Journal of Universal Computer Science,
11(7):1327–1348, 2005.

[21] Nirav Dave, Arvind, and Michael Pellauer. Scheduling as Rule Compo-
sition. In 5th ACM/IEEE International Conference on Formal Methods
and Models for Codesign (MEMOCODE 2007), pages 51–60. IEEE
Computer Society, June 2007.

215

[22] Edsger W. Dijkstra. Guarded commands, non-determinancy and a
calculus for the derivation of programs. In Friedrich L. Bauer and Klaus
Samelson, editors, Language Hierarchies and Interfaces, volume 46 of
Lecture Notes in Computer Science, pages 111–124. Springer, 1976.

[23] Simon Peyton Jones (Editor). Haskell 98 Language and Libraries: The
Revised Report, 2002.

[24] Chucky Ellison and Grigore Roşu. A Formal Semantics of C with
Applications. Technical Report http://hdl.handle.net/2142/17414,
University of Illinois at Urbana-Champaign, November 2010.

[25] Richard Herveille et. al. Wishbone B4: WISHBONE System-on-Chip
(SoC) Interconnection Architecture for Portable IP Cores, (Revision
B.4). OpenCores Organization, 2010.

[26] Azadeh Farzan, Feng Chen, José Meseguer, and Grigore Roşu. Formal
Analysis of Java Programs in JavaFAN. In Rajeev Alur and Doron Peled,
editors, 16th International Conference on Computer Aided Verification
(CAV 2004), volume 3114 of Lecture Notes in Computer Science, pages
501–505. Springer, 2004.

[27] Vijay Ganesh and David L. Dill. A Decision Procedure for Bit-Vectors
and Arrays. In Werner Damm and Holger Hermanns, editors, 19th
International Conference on Computer Aided Verification (CAV 2007),
volume 4590 of Lecture Notes in Computer Science, pages 519–531.
Springer-Verlag Berlin Heidelberg, 2007.

[28] Michael J. C. Gordon. The Semantic Challenge of Verilog HDL. In
Proceedings of the Tenth Annual IEEE Symposium on Logic in Computer
Science (LICS-95), pages 136–145. IEEE Computer Society, 1995.

[29] Michael J. C. Gordon, Robin Milner, Lockwood Morris, Malcolm C.
Newey, and Christopher P. Wadsworth. A Metalanguage for Interactive
Proof in LCF. In Fifth Annual ACM Symposium on Principles of
Programming Languages (POPL 1978), pages 119–130, January 1978.

[30] Michael J. C. Gordon, Robin Milner, and Christopher P. Wadsworth.
Edinburgh LCF, volume 78 of Lecture Notes in Computer Science.
Springer, 1979.

[31] Mike Gordon. The Semantic Challenge of Verilog HDL. In Tenth Annual
IEEE Symposium on Logic in Computer Science (LICS 1995), pages
136–145. IEEE Computer Society, 1995.

[32] Jim Grundy, Thomas F. Melham, and John W. O’Leary. A reflective
functional language for hardware design and theorem proving. Journal
of Functional Programmming, 16(2):157–196, 2006.

216

[33] Richard Herveille. I2C Controller Core. http://opencores.org/

project,i2c.

[34] Pei-Hsin Ho, Thomas R. Shiple, Kevin Harer, James H. Kukula,
Robert F. Damiano, Valeria Bertacco, Jerry Taylor, and Jiang Long.
Smart Simulation Using Collaborative Formal and Simulation Engines.
In Ellen Sentovich, editor, Proceedings of the 2000 IEEE/ACM Inter-
national Conference on Computer-Aided Design (ICCAD 2000), pages
120–126. IEEE, 2000.

[35] C. A. R. Hoare. Communicating sequential processes. Communications
of the ACM, 21(8):666–677, 1978.

[36] Institute for Electrical and Electronics Engineers (IEEE). 1364-2005
IEEE Standard for Verilog Hardware Description Language, 2006.

[37] Institute for Electrical and Electronics Engineers (IEEE). 1076-2008
IEEE Standard VHDL Language Reference Manual, January 2009.

[38] Institute for Electrical and Electronics Engineers (IEEE). 1800-2009
IEEE Standard for SystemVerilog – Unified Hardware Design, Specifi-
cation, and Verification Language, 2009.

[39] Institute for Electrical and Electronics Engineers (IEEE). 1647-2011
IEEE Standard for the Functional Verification Language e, August
2011.

[40] International Organization for Standardization, Geneva, Switzerland.
ISO/IEC 14882:2011 Information Technology – Programming Languages
– C++, September 2011.

[41] International Technology Roadmap for Semiconductors. http://www.
itrs.net/, 2009.

[42] Wonjin Jang and Alain J. Martin. A Soft-error-tolerant Asynchronous
Microcontroller. In 13th NASA Symposium on VLSI Design, 2007.

[43] Gilles Kahn. Natural Semantics. In Franz-Josef Brandenburg, Guy
Vidal-Naquet, and Martin Wirsing, editors, 4th Annual Symposium on
Theoretical Aspects of Computer Science (STACS 1987), volume 247 of
Lecture Notes in Computer Science, pages 22–39. Springer, 1987.

[44] Roope Kaivola, Rajnish Ghughal, Naren Narasimhan, Amber Telfer,
Jesse Whittemore, Sudhindra Pandav, Anna Slobodová, Christopher
Taylor, Vladimir Frolov, Erik Reeber, and Armaghan Naik. Replacing
Testing with Formal Verification in Intel Core i7 Processor Execution
Engine Validation. In 21st International Conference on Computer Aided
Verification (CAV 2009), volume 5643 of Lecture Notes in Computer
Science, pages 414–429. Springer, 2009.

217

[45] Michael Katelman. An executable formal semantics of BTRS. https:
//www.ideals.illinois.edu/handle/2142/28349, 2011.

[46] Michael Katelman. Source Code for vlogml (July 2011). www.illinois.
edu, July 2011.

[47] Michael Katelman, Sean Keller, and José Meseguer. Concurrent Rewrit-
ing Semantics and Analysis of Asynchronous Digital Circuits. In Pe-
ter Csaba Ölveczky, editor, 8th International Workshop on Rewriting
Logic and Its Applications (WRLA 2010), volume 6381 of Lecture Notes
in Computer Science, pages 140–156. Springer-Verlag Berlin Heidelberg,
2010.

[48] Michael Katelman, Sean Keller, and José Meseguer. Concurrent Rewrit-
ing Semantics and Analysis of Asynchronous Digital Circuits. In 8th
International Workshop on Rewriting Logic and its Applications (WRLA
’10); to appear, 2010.

[49] Michael Katelman, Sean Keller, and José Meseguer. Rewriting Seman-
tics of Production Rule Sets. Journal of Logic and Algebraic Program-
ming (To Appear), 2011.

[50] Michael Katelman, Sean Keller, and José Meseguer. Source Code for
an Executable Formal Semantics of Production Rule Sets in Maude,
with Examples (JLAP version, November 2011). https://www.ideals.
illinois.edu/handle/2142/28350, 2011.

[51] Michael Katelman and José Meseguer. A Strategy Language for Testing
Register Transfer Level Logic. Technical Report 12003, Department Of
Computer Science, University of Illinois at Urbana-Champaign, 2009.
http://hdl.handle.net/2142/12003.

[52] Michael Katelman and José Meseguer. vlogsl: A Strategy Language
for Simulation-Based Verification of Hardware. In Sharon Barner,
Ian Harris, Daniel Kroening, and Orna Raz, editors, Hardware and
Software: Verification and Testing - 6th International Haifa Verification
Conference (HVC 2010), volume 6504 of Lecture Notes in Computer
Science, pages 129 – 145. Springer Berlin / Heidelberg, 2011.

[53] Michael Katelman, José Meseguer, and Santiago Escobar. Directed-
Logical Testing for Functional Verification of Microprocessors. In 6th
ACM & IEEE International Conference on Formal Methods and Models
for Codesign (MEMOCODE 2008), pages 89–100. IEEE Computer
Society, 2008.

[54] Matt Kaufmann, Panagiotis Manolios, and J. Strother Moore.
Computer-Aided Reasoning: An Approach. Kluwer Academic Pub-
lishers, 2000.

218

[55] Sean Keller, Michael Katelman, and Alain J. Martin. A Necessary
and Sufficient Timing Assumption for Speed-Independent Circuits. In
15th IEEE Symposium on Asynchronous Circuits and Systems (ASYNC
2009), pages 65–76. IEEE, May 2009.

[56] Sean Keller, Michael Katelman, and Alain J. Martin. A Necessary and
Sufficient Timing Assumption for Speed-Independent Circuits. In 15th
IEEE Symposium on Asynchronous Circuits and Systems (ASYNC ’09),
pages 65–76, May 2009.

[57] V. Khomenko, M. Koutny, and A. Yakovlev. Logic synthesis for asyn-
chronous circuits based on petri net unfoldings and incremental sat.
In Application of Concurrency to System Design, 2004. ACSD 2004.
Proceedings. Fourth International Conference on, pages 16 – 25, June
2004.

[58] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-
Oriented Programming. In Mehmet Aksit and Satoshi Matsuoka, editors,
Proceedings of the 11th European Conference on Object-Oriented Pro-
gramming (ECOOP 1997), volume 1241 of Lecture Notes in Computer
Science, pages 220–242. Springer Berlin / Heidelberg, 1997.

[59] James C. King. A New Approach to Program Testing. In Programming
Methodology, 4th Informatik Symposium, volume 23 of Lecture Notes in
Computer Science, pages 278–290. Springer, 1975.

[60] James C. King. Symbolic Execution and Program Testing. Communi-
cations of the ACM, 19(7):385–394, 1976.

[61] Nathan Kitchen and Andreas Kuehlmann. Stimulus Generation for
Constrained Random Simulation. In Georges G. E. Gielen, editor, 2007
International Conference on Computer-Aided Design (ICCAD’2007),
pages 258–265. IEEE, 2007.

[62] Geoffrey Mainland. Why It’s Nice to be Quoted: Quasiquoting for
Haskell. In Gabriele Keller, editor, Proceedings of the ACM SIGPLAN
Workshop on Haskell, (Haskell 2007), pages 73–82, 2007.

[63] Rupak Majumdar and Koushik Sen. Hybrid Concolic Testing. In ICSE,
pages 416–426. IEEE Computer Society, 2007.

[64] Rajit Manohar and Alain J. Martin. Quasi-delay-insensitive circuits are
Turing-complete. Technical Report CS-TR-95-11, Computer Science
Department, California Institute of Technology, 1995.

[65] Alain J. Martin. Compiling Communicating Processes Into Delay-
Insensitive VLSI Circuits. Distributed Computing, 1(4):226–234, 1986.

219

[66] Alain J. Martin. The limitations to delay-insensitivity in asynchronous
circuits. In Proceedings of the sixth MIT conference on Advanced research
in VLSI, pages 263–278, Cambridge, MA, USA, 1990. MIT Press.

[67] Alain J. Martin. Synthesis of Asynchronous VLSI Circuits. Techni-
cal Report CS-TR-93-28, Computer Science Department, California
Institute of Technology, 1991.

[68] Alain J. Martin and Mika Nyström. Asynchronous Techniques for
System-on-Chip Design. Proceedings of the IEEE, 94(6):1089–1120,
2006.

[69] Alain J. Martin, Mika Nyström, and Catherine G. Wong. Three Gen-
erations of Asynchronous Microprocessors. IEEE Design & Test of
Computers, 20(6):9–17, 2003.

[70] Alain J. Martin and Piyush Prakash. Asynchronous Nano-Electronics:
Preliminary Investigation. In Proceedings of the 2008 14th IEEE In-
ternational Symposium on Asynchronous Circuits and Systems, pages
58–68. IEEE Computer Society, 2008.

[71] Patrick Meredith, Mark Hills, and Grigore Roşu. An Executable Rewrit-
ing Logic Semantics of K-Scheme. In Danny Dube, editor, Workshop
on Scheme and Functional Programming (SCHEME 2007), Technical
Report DIUL-RT-0701, pages 91–103. Laval University, 2007.

[72] Patrick Meredith, Michael Katelman, José Meeguer, and Grigore Ros,u.
Formal executable semantics of verilog webpage, 2010. http://fsl.cs.
uiuc.edu/index.php/Verilog_Semantics.

[73] Patrick O’Neil Meredith, Michael Katelman, José Meseguer, and Grigore
Ros,u. A Formal Executable Semantics of Verilog. In 8th ACM/IEEE
International Conference on Formal Methods and Models for Codesign
(MEMOCODE 2010), pages 179–188. IEEE Computer Society, 2010.

[74] José Meseguer. Conditional rewriting logic as a unified model of con-
currency. Theoretical Computer Science, 96(1):73–155, 1992.

[75] José Meseguer. Rewriting Logic as a Semantic Framework for Concur-
rency: a Progress Report. In Ugo Montanari and Vladimiro Sassone,
editors, 7th International Conference on Concurrency Theory (CON-
CUR 1996), volume 1119 of Lecture Notes in Computer Science, pages
331–372. Springer, 1996.

[76] José Meseguer. Membership Algebra as a Logical Framework for Equa-
tional Specification. In 12th International Workshop on Recent Trends
in Algebraic Development Techniques (WADT’97), volume 1376 of
Lecture Notes in Computer Science, pages 18–61. Springer, 1997.

220

[77] José Meseguer and Grigore Roşu. The rewriting logic semantics project.
Theoretical Computer Science, 373(3):213–237, 2007.

[78] José Meseguer and Grigore Ros,u. The Rewriting Logic Semantics
Project: A Progress Report. In Olaf Owe, Martin Steffen, and Jan Arne
Telle, editors, Proceedings of the 18th International Symposium on
Fundamentals of Computation Theory (FCT 2011), volume 6914 of
Lecture Notes in Computer Science, pages 1–37. Springer, August 2011.

[79] R E Miller. Switching Theory, Volume II: Sequential Circuits and
Machines. John Wiley & Sons, Inc., 1965.

[80] B. Mishra and E. Clarke. Hierarchical verification of asynchronous
circuits using temporal logic. Theoretical Computer Science, 38:269 –
291, 1985.

[81] David E. Muller and W. S. Bartky. A theory of asynchronous circuits. In
Proceedings of an International Symposium on the Theory of Switching,
pages 204–243. Harvard University Press, 1959.

[82] NXP Semiconductors. I2C-bus specification and user manual, revision
03 edition, June 2007.

[83] Florent Ouchet, Dominique Borrione, Katell Morin-Allory, and Laurence
Pierre. High-level symbolic simulation for automatic model extraction.
In Proceedings of the 2009 IEEE Symposium on Design and Diagnostics
of Electronic Circuits and Systems (DDECS 2009), pages 218–221. IEEE
Computer Society, 2009.

[84] Gordon J. Pace and Jifeng He. Formal reasoning with Verilog HDL.
In Workshop on Formal Techniques for Hardware and Hardware-like
Systems, 1998.

[85] Karl Papadantonakis. Design Rules for Non-Atomic Implementation of
PRS. Technical Report CaltechCSTR:2005.001, California Institute of
Technology, 2005.

[86] Jaehong Park, Carl Pixley, Michael Burns, and Hyunwoo Cho. An
Efficient Logic Equivalence Checker for Industrial Circuits. Journal of
Electronic Testing, 16(1-2):91–106, 2000.

[87] Python Software Foundation. Python Programming Language – Offical
Website. www.python.org.

[88] Oriol Roig, Jordi Cortadella, and Enric Pastor. Verification of Asyn-
chronous Circuits by BDD-based Model Checking of Petri Nets. In
In 16th International Conference on Application and Theory of Petri
Nets, volume 935 of Lecture Notes in Computer Science, pages 374–391.
Springer-Verlag, 1996.

221

[89] David M. Russinoff. A Case Study in Fomal Verification of Register-
Transfer Logic with ACL2: The Floating Point Adder of the AMD

AthlonTM Processor. In Warren A. Hunt Jr. and Steven D. John-
son, editors, Third International Conference on Formal Methods in
Computer-Aided Design (FMCAD 2000), volume 1954 of Lecture Notes
in Computer Science, pages 3–36. Springer, 2000.

[90] Hisashi Sasaki. A formal semantics for verilog-vhdl simulation interop-
erability by abstract state machine. In Design, automation and test in
Europe (DATE’99), pages 73–78. ACM, 1999.

[91] Synopsys, Inc. OpenVera Language Reference Manual: Testbench,
Version 1.4.3, September 2005.

[92] Synopsys, Inc. Magellan Reference Guide, Version C-2009.09, September
2009. (Proprietary Documentation).

[93] Synopsys, Inc. Magellan User Guide, Version C-2009.09, September
2009. (Proprietary Documentation).

[94] The GHC Team. The Glorious Glasgow Haskell Compilation System
Standard Libraries, Version 7.2.1, August 2011. http://www.haskell.
org/ghc/docs/7.2.1/html/libraries/index.html.

[95] The GHC Team. The Glorious Glasgow Haskell Compilation System
User’s Guide, Version 7.2.1, August 2011. http://www.haskell.org/
ghc.

[96] Sarah Thompson and Alan Mycroft. Abstract interpretation of com-
binational asynchronous circuits. Science of Computer Programming,
64(1):166 – 183, 2007. Special issue on the 11th Static Analysis Sympo-
sium - SAS 2004.

[97] Shobha Vasudevan, David Sheridan, Sanjay J. Patel, David Tcheng,
William Tuohy, and Daniel R. Johnson. GoldMine: Automatic Asser-
tion Generation Using Data Mining and Static Analysis. In Design,
Automation and Test in Europe, pages 626–629, 2010.

[98] Philip Wadler. Comprehending Monads. In LISP and Functional
Programming, pages 61–78, 1990.

[99] Philip Wadler. The Essence of Functional Programming. In Principles
of Programming Languages (POPL 1992), pages 1–14, 1992.

[100] Philip Wadler. Monads for Functional Programming. In Johan Jeuring
and Erik Meijer, editors, First International Spring School on Advanced
Functional Programming Techniques, volume 925 of Lecture Notes in
Computer Science, pages 24–52. Springer, 1995.

222

[101] Stephen Williams. Icarus Verilog User Guide. http://iverilog.wikia.
com/wiki/User_Guide.

[102] Hüsnü Yenigün, Vladimir Levin, Doron Peled, and Peter A. Beerel.
Hazard-Freedom Checking in Speed-Independent Systems. In CHARME,
pages 317–320, 1999.

[103] Hao Zheng, E. Mercer, and C. Myers. Modular verification of timed
circuits using automatic abstraction. Computer-Aided Design of Inte-
grated Circuits and Systems, IEEE Transactions on, 22(9):1138 – 1153,
sept. 2003.

[104] Hao Zheng, Haiqiong Yao, and T. Yoneda. Modular model checking
of large asynchronous designs with efficient abstraction refinement.
Computers, IEEE Transactions on, 59(4):561 –573, April 2010.

[105] Huibiao Zhu, Jifeng He, and Jonathan P. Bowen. From algebraic seman-
tics to denotational semantics for verilog. In International Conference on
Engineering Complex Computer Systems (ICECCS’06), pages 139–151,
2006.

223

