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We will confirm that all the reported work in the manuscript is original and has not been published 

elsewhere. Neither is it being considered for publication elsewhere. All authors have seen the final 

version of the manuscript and accepted it to be submitted for publication in Environmental 

Microbiology.  

This study increases the fundamental knowledge on fungal biomass production potential and fungal 

community composition of both symbiotic ectomycorrhizae and saprotrophs in boreal peatland forests 

with varying fertility from nutrient-rich to nutrient-poor types. The obtained results give indications 

that specific ectomycorrhizal fungi would be key factors affecting the fungal biomass production and 

persistence which is affected by both site fertility and water-table level of the studied peatland forest 

sites. The manuscript is rather long, but we feel that it is justified because the backbone is built from 

the large and diverse data set.  We did not want to discard any data or results, since we feel that they 

complement each other and together make more consistent story. We would place the work within the 

top 10% of current research in environmental microbiology. 

 

On behalf of all authors, 

Dr. Krista Peltoniemi (Corresponding author)  
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Summary 

A substantial amount of below-ground carbon (C) is suggested to be associated with fungi, which may 

significantly affect the soil C balance in forested ecosystems. Ergosterol from in-growth mesh bags and 

litterbags was used to estimate fungal biomass production and community composition in drained 

peatland forests with differing fertility. Extramatrical mycelia (EMM) biomass production was 

generally higher in the nutrient-poor site, increased with deeper water table level and decreased along 

the length of the recovery time. EMM biomass production was of the same magnitude as in mineral-

soil forests. Saprotrophic fungal biomass production was higher in the nutrient-rich site. Both 

ectomycorrhizal (ECM) and saprotrophic fungal community composition changed according to site 

fertility and water table level. ECM fungal community composition with different exploration types 

may explain the differences in fungal biomass production between peatland forests. Melanin-rich 

Hyaloscypha may indicate decreased turnover of biomass in nutrient-rich young peatland forest. 

Genera Lactarius and Laccaria may be important in nutrient rich and Piloderma in the nutrient-poor 

conditions, respectively. Furthermore, Paxillus involutus and Cortinarius sp. may be important 

generalists in all sites and responsible for EMM biomass production during the first summer months. 

Saprotrophs showed a functionally more diverse fungal community in the nutrient-rich site. 
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Introduction 

 

Peatlands are one of the major reserves of soil carbon (C) globally, with total peat C stocks in northern 

peatlands alone estimated to range from 545 Gt to 1,055 Gt (Nichols and Peteet, 2019). Widespread 

drying of peatlands has been observed as a response to climate change and human activities (Swindles 

et al., 2019), which will shape the peatland C sink (Gallego-Sala et al., 2018). Drying, both climate-

driven (Berg et al., 2009) and anthropogenic (Laiho et al., 2003), lead to an increased area of peatland 

forests. In drained peatland forests especially, water-table level is relatively low and leaves a larger 

proportion of the peat deposit oxic. This increases microbial decomposition and respiration, with the 

end product, carbon dioxide (CO2), being released into the atmosphere and the accumulated soil C 

reservoir of the peatland decreasing in many, but not all cases (Ojanen et al., 2013; Minkkinen et al., 

2018). The soil C stock generally decreases in nutrient-rich but not nutrient-poor peatland forests, even 

though litter input to the soil may be higher from faster-growing and thus generally larger tree stands in 

the rich sites (Ojanen et al., 2013). The constraints for this difference are not well known (e.g., 

Linkosalmi et al., 2015), though further research may explain the resilience of the soil C stocks in these 

areas. 

Fungi are generally key organisms in regulating forest soil C dynamics, and a major part of soil C in 

boreal mineral-soil forests is derived from roots and root-associated fungi (Clemmensen et al., 2013). 

While saprotrophic fungi take up nutrients in the decomposition process, root-associated mycorrhizal 

fungi recycle them back into their host plants. In exchange, trees serve to their symbiotic fungal partner 

fresh C. In general, plants are estimated to allocate 10–20% of net photosynthate to mycorrhizal fungi, 

although the range can be from 5 to 85% depending on the system (reviewed by Allen, 1991). Thus far, 

there is little information available on fungal communities and processes in peatland forests, despite 

their importance as soil C hotspots. 

To be able to estimate the role of fungi in soil C sequestration in peatland forests, we must know the 

potential of fungi to produce biomass in these habitats, and what are key environmental factors 
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affecting the production. The soils in peatland forests differ fundamentally from those of forests on 

mineral soils. Peat soil is an organic soil consisting of various plant materials in varying degrees of 

decomposition, depending on the recent and past plant communities and the moisture regime, which is 

an integral regulator of both the plant community and rate of decomposition (e.g. Belyea 1996, 

Bragazza 2006; Hájek et al., 2013). All peat soils contain a high amount of nitrogen, varying between 

0.5 and 4% of dry mass (Laine et al. 2004), compared to mineral soils, but little phosphorus and 

potassium (e.g., Westman and Laiho 2003). This may affect the balance between saprotrophic and 

mycorrhizal fungi (e.g., Lindahl et al., 2007), but there is currently no information available for 

peatland forests. Most of the studies estimating extramatrical mycelia (EMM) biomass produced by 

ectomycorrhizal (ECM) fungi have been conducted in mineral-soil forests. For example, Ekblad et al. 

(2016) showed that nitrogen (N) fertilization reduced the standing EMM biomass. In boreal peatland 

forests, increased EMM biomass was observed in response to both P and K deficiency (Potila et al., 

2009) and due to fertilization with a mixture of apatite and iron phosphate (Nieminen et al., 2011) in 

which P is not easily available but in a slow-releasing form. Thus, we expect that site fertility of 

drained peatland forests would be one of the major factors impacting fungal biomass production. 

Different fungal species, however, may have different capacity to produce biomass. Therefore, along 

with the biomass, it is important to study the fungal community composition. In boreal mineral-soil 

forests, soil fungal community composition has been found to be significantly related to site fertility 

(Toljander et al., 2006; Sterkenburg et al., 2015). Also, in boreal peatlands site fertility has been shown 

to be one of the key determinants of the soil fungal community (Jaatinen et al., 2007; Peltoniemi et al., 

2009). Fungal specific phospholipid fatty acids (PLFAs) in peat decreased with the fertility in pristine 

sites, but after drainage differences between sites were not so evident anymore (Jaatinen et al., 2007), 

whereas soil fungal community composition became more similar (Peltoniemi et al., 2009). 

Analyses conducted directly from soil, however, cannot separate the biomass or communities 

between mycorrhizal and saprotrophic fungi. Therefore, we used two separate methods to determine 

fungal biomass production and community composition for these functionally different groups: 
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“Traditional” sand-filled in-growth mesh bags for EMM, and litter-filled bags for saprotrophic fungi. 

The in-growth mesh bag method has been designed for forest soils to estimate the biomass of EMM 

from ECM fungi (Wallander et al., 2001). EMM estimations are most often based on fungal specific 

membrane lipid ergosterol, which is extracted from fungal hyphae grown into mesh bags (Wallander et 

al., 2013). Ergosterol content is suggested to correlate with the amount of metabolically active fungal 

biomass (Nylund and Wallander, 1992) and is used as an estimate for total fungal biomass. The ratio of 

chitin to ergosterol has been used as an estimate for the living fraction of fungal biomass (Ekblad et al., 

1998). In this study ergosterol was used with chitin to determine the living fungal fraction left in the 

sandbags after 12 months. 

Fungal biomass production and degradation in soil is a dynamic process. Therefore, it is difficult to 

estimate the absolute turnover of fungal biomass. The mesh-bag method has of course limitations and 

deficiencies as every method. It has been shown that fungal communities in the bags may change and 

shifts in mycelial exploration types may occur depending on the stand age or if bag incubation time 

exceeds 75 days (Hagenbo et al., 2018). The mesh bag method, however, enables relative comparisons 

of biomasses and estimations of EMM production over time (Hagenbo et al., 2017). Here, we compare 

fungal biomass production and community composition in boreal drained peatland forests and 

reference mineral-soil forests differing in site fertility (nutrient-rich versus nutrient-poor). For 

estimations of biomass production of ECM fungi, we used ergosterol extracted from fungal mycelia 

obtained from sand-filled mesh bags recovered at different time points; after 2, 5 and 12 months. We 

determined biomass production of saprotrophic fungi from ergosterol extracted from litterbags 

containing two different plant materials, corn and wheat, that were placed in trenched locations to 

exclude non-saprotrophic fungi, and non-trenched locations for comparison. We determined fungal 

community composition from extracted DNA obtained from hyphae grown inside the sand- and 

litterbags. We assessed the following hypotheses: 1) nutrient-rich peatland forests have lower EMM 

biomass production compared to nutrient poor sites, 2) ECM fungal community composition changes 

along with site fertility, 3) recovery time of the sandbags has impact on both EMM biomass production 
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and ECM fungal community composition results, and 4) saprotrophic fungal biomass production and 

community composition differs between nutrient-rich and poor sites. 

 

Results 

 

Fungal biomass production and the amount of living fungal biomass 

 

The overall average EMM biomass production in sandbags for peatland forests was 34.1 (SE± 3.7) kg 

ha
-1

 month
-1

, and for mineral-soil forests 32.7 (± 4.8) kg ha
-1

 month
-1

 (Fig. 1a); there was thus no 

overall difference between soil types. The production in peatlands depended on site type, average WT 

during the recovery time, length of the recovery time, and soil N:P ratio, which altogether explained 

41.6% of the total variation (Table 2). Production was higher in the nutrient-poor sites, increased with 

deeper WT, decreased with a higher N:P ratio, and decreased with the length of the recovery time in a 

somewhat non-linear manner (Table 2). Recovery time alone explained 22.9% of the variation, while 

site type and WT together explained 30.4%; alone these two variables were not significant. Burying 

depth alone explained only 1.3%, and N:P ratio effect alone was only barely significant. The impact of 

N:P ratio was caused by changes in P concentration, with which EMM had a positive relation almost as 

strong as the negative one with N:P, while switching to N concentration in the model yielded a non-

significant parameter. The amount of living fungal biomass in the sandbags after 12 months was 

biggest in Rich1 site and differed significantly from that of Rich2 and Poor2 sites (Supporting 

Information Fig. S1). Site-specific glucosamine and ergosterol amounts and glucosamine:ergosterol-

ratios can be found in Supporting Information Table S2. 

The average fungal biomass production in the litterbags was 11.8 (SE±11.5) mg g
-1

 litter dry mass 

month
-1

 (Fig. 1b). The production varied by litter type, which alone explained 26% of the variation, 

while depth explained 21% and site 10%. Production was higher in the nutrient-rich site, upper soil 

layer, and corn litter (Fig. 1b). Trenching was not significant as a main effect. However, when 
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interactive effects were evaluated, trenching was found to have a significant interaction with site, 

indicating that trenching effects differed between sites. A closer look revealed that in the deeper layer 

of the nutrient-poor site trenching reduced fungal biomass production in both litter types, while in the 

nutrient-rich site, trenching had no impact in the deeper layer (Fig. 1b). Variation in the litterbag data 

was best explained by a model combining site x trenching interaction, litter type, burying depth of the 

bags, which altogether explained 65% of the variation (Table 3). 

 

General information of the obtained fungal sequences 

 

Altogether, 12 371 497 raw reads from 108 sandbag sample libraries and 6 289 946 from 48 litterbag 

sample libraries were obtained. Average read length was 326 bp. A total of 5 306 393 reads from the 

sandbag libraries and 1 927 262 from the litterbag libraries were retained after screening. Library sizes 

in sandbags varied from 4 586 to 103 258 reads with an average of 49 133 (± 20 157). Library sizes in 

litterbags varied from 8627 to 75 993 reads with an average of 40 151 (± 14 118). Sequence data was 

classified into 2 938 and 940 different fungal OTUs from sand- and litterbags, respectively. Combined 

OTU data with unique fungal representatives contained 1 142 and 436 OTUs from sand- and litterbags, 

respectively. 

Of the sandbag derived fungal OTUs, 51% represented Ascomycota, 40% Basidiomycota, 7% seven 

other phyla (Chytridiomycota, Entomophthoromycota, Glomeromycota, Mortierellomycota, 

Mucoromycota, Olpidiomycota, Rozellomycota) and 2% remained unidentified. Of the litterbag 

derived fungal OTUs, 57% represented Ascomycota, 33% Basidiomycota, 8% five other phyla 

(Chytridiomycota, Mortierellomycota, Mucoromycota, Olpidiomycota, Rozellomycota) and 2% 

remained unidentified. 

 

Fungal community composition of the sandbags 
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Fungal community composition in the sandbags differed clearly between sites and formed a clear 

gradient from the Rich1 peatland forest to PoorM mineral-soil forest (Fig. 2). The significant 

environmental variables, soil pH, C N, P and Fe concentrations, C/N-ratio and WT, indicated that both 

nutrient and moisture regimes had an impact on the variation in fungal community composition in peat. 

Overall, site had the strongest effect on fungal community composition of the sandbags, explaining 16 

% of the variation (Supporting Information Table S3). Recovery time of the bags and sampling depth 

both explained 3%. Interactive variables site x recovery time and site x depth explained 10 % and 5 % 

of the variation, respectively, indicating that the time and depth effects were partly site dependent. 

Fungal richness (assessed by OTU numbers) was higher in Rich2 and RichM compared to the Poor1 

and PoorM sites, 15-30 cm depth compared to 0-15 cm depth, and after 2 months compared to 5 and 12 

months (Supplementary figure S2). There were 20, 16 and 17% shared fungal representatives (total of 

1142 OTUs) between sites after 2, 5 and 12 months (Supporting Information Fig. S3). Of the shared 

fungal representatives, 49, 55 and 57% after 2, 5 and 12 months, respectively, belonged to the 

dominant fungal genera. The proportion of unique representatives specific for each of the six sites 

varied from 1 to 7 %. Generally, there were more unique fungal representatives in the lower 15-30 cm 

soil horizon. Fungal representatives from sandbags were grouped into 94 different functional guilds. 

ECM fungi were the most abundant group in peatland forests, with their proportion ranging from 56 to 

84% depending on site and recovery time (Supporting Information Fig. S4). In mineral-soil forests, the 

proportion of ECM fungi was higher in RichM (56 – 67%) compared to PoorM (27 – 45%) 

Dominant fungal representatives (OTUs) grouped into 37 different taxa including common ECM 

fungal genera, e.g., Tylospora, Paxillus, Suillus, Russula, Tomentella, Tomentellopsis, Laccaria, 

Lactarius and Piloderma (Fig. 3). Differential abundance analyses showed that there were various 

ECM fungal representatives that had significant changes in their OTU abundances between compared 

sites (Supporting Information Table S4). For example, sequence reads affiliated to Hyaloscypha 

bicolor, Laccaria sp., Lactarius sp., Lactarius rufus and Russula nitida were more common in the 

Rich1 compared to the other peatland sites. Sequence reads affiliated to Cortinarius lux-nymphae, 
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Amanita fulva and Tomentella stuposa were more common in the Rich1 site compared to the two Poor 

peatland sites. In contrast, sequence reads affiliated to Suillus variegatus, Tylospora sp. and Piloderma 

sphaerosporum were more common in both Poor sites compared to the Rich peatland sites. In addition, 

some ECM fungal representatives were common in some but not all recovery times of the bags. For 

example, sequence reads affiliated to M. bicolor were more common in the bags after 2 and 12 months 

than after 5 months; by 21 and 15 times more, respectively. Representative reads affiliated to 

Tomentellopsis sp. were more common after 5 months than after 2 or 12 months; by 5 and 4 times 

more, respectively. Representatives of Cortinarius lux-nymhae and Tylospora sp. were more common 

after 12 months than after 2 months, and those of Cenococcum geophilum were more common after 2 

and 5 months compared to bags after 12 months; by 2 and 4 times more, respectively. 

Considering the individual soil characteristics, pH and C/N-ratio correlated most strongly with the 

abundance of specific sequence reads. For instance, the abundance of sequence reads affiliating to 

species Tomentellopsis submollis, Suillus bovinus, and L. rufus increased with increasing pH, while the 

abundance of reads affiliating to Suillus variegatus, three Russula species, Paxillus involutus, 

Piloderma sphaerosporum and Tylospora decreased with increasing pH (Supporting Information Table 

S6). The abundance of sequence reads affiliating to, e.g., Piloderma sphaerosporum, Russula paludosa 

and Suillus variegatus increased with increasing C/N-ratio, while the abundance of reads to Russula 

nitida, Paxillus involutus, Atheliaceae, Lactarius necator, L. rufus and Piloderma sp. decreased with 

increasing C/N-ratio. 

 

Fungal community composition of the litterbags 

 

Fungal community composition in litterbags clearly differed between the Rich1 and Poor1 sites (Fig. 

4). Site explained 7 % of the variation in the fungal composition (Supporting Information Table S3). 

Sampling depth, litter type and trenching treatment explained 8, 7 and 4 % of the variation in the fungal 

community composition in the litterbags, respectively. There were several interactive effects of site, 
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depth, litter type and/or treatment, but they all explained only a minor part (1– 4 %) of the variation, 

and almost half (48 %) of the variation remained unexplained. 

Fungal richness (assessed by OTU numbers) did not differ between sites, depths or litter types, but it 

was higher in control compared to trenching (Supplementary figure S2). About 80% of the fungal 

OTUs (total of 436 OTUs) were shared across sites, depths, litter types and trenching treatment 

(Supporting Information Fig. S5). Site specific unique fungal OTUs affiliated to 46 and 24 different 

fungal genera and grouped into 21 and 12 functional fungal guilds in the Rich1 and Poor1 sites, 

respectively. In addition, corn litter compared to wheat, the lower 15-30 cm sampling layer compared 

to the 0-15 cm layer, and trenching compared to control, had lower amounts of specific functional 

fungal guilds (data not shown). The litterbag OTUs were grouped into 64 different functional guilds. 

About half of the reads belonged to undefined saprotrophs and over 20 % remained unknown for their 

ecological function (Supporting Information Fig. S6). 

The dominant fungal representatives in the litterbags affiliated to 26 different taxa including, e.g., 

genera Apiotrichum, Ascococryne, Botrytis, Gymnopilus, Hypholoma, Hypochnicium, Hyaloscypha, 

Mortierella, Mucor and Sugiyamalla (Fig. 5). Almost half of the dominant taxa, 46 %, affiliated to 

saprotrophic fungal guilds, 27 % affiliated to guilds having mixed roles or combination to act as 

pathogens, saprotrophs or symbiotrophs, 23 % were not identified to any known functional guilds and 

only 4 % were pure pathogens. Trenching decreased the proportion of ECM fungi by 40 % after even 

though in general the proportion was very low (data not shown). Differential abundance analysis 

showed that there were various fungal representatives that had significantly different abundance either 

between sites, sampling depths, litter types or treatments (Supporting Information Table S6). For 

example, there were 40 and 46 fungal indicators to Rich1 and Poor1, respectively. OTUs affiliating to 

Trichoderma fertile, Pseudeurotium bakeri, Ascobolus sp., Hypochnicium albostramineum and 

Gyoerffyella sp. were more common in the Rich site, whereas those affiliating to taxa Pyronemataceae 

and Gymnopilus decipiens were more common in the Poor site. Ascobolus sp. were more common in 

the 15-30 cm layer, in wheat litter and in control plot without trenching. Pyronemataceae was more 
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common in the 0-15 cm sampling layer, in corn litter and after trenching. Pseudeurotium bakeri was 

more common in the 15-30 cm sampling layer and in corn litter. 

We detected several strong and moderate positive and negative correlations between the abundance 

of 22 dominant fungal representatives and soil pH, nutrients, C/N-ratio and fungal biomass in the 

litterbags (Supporting Information Table S7). For example, Apiotrichum xylopini and Hypochnicium 

albostramineum showed positive correlation with soil pH, total N and C content, and iron (Fe) 

concentration and negative correlation with C/N-ratio. In contrast, Hyaloscypha variabilis, 

Sugiyamaella paludigena, Sordaria fimicola, Mucor silvaticus and Trichoderma viride had negative 

correlations with pH and N content, and positive correlation with C/N-ratio. Fungal representatives 

affiliating to Hyaloscypha variabilis and Sugiyamaella paludigena also had negative correlations with 

phosphorus, potassium, copper, boron, manganese, calcium, magnesium and zinc concentrations. 

 

Discussion 

 

EMM biomass production differed with site fertility 

 

This was the first study to our knowledge to estimate fungal biomass production and community 

composition in a range of peatland forest sites and compare them with mineral-soil forests. Our results 

indicate firstly that EMM production is an equally important component in ecosystem function in 

peatland forests as in forests on mineral soils. They also indicate that the in-growth method works 

equally well in forests on peat and mineral soils, even though we cannot fully reject the possibility that 

mineral matter in the bags attracts EMM growth dissimilarly to the ambient organic soil in peatlands. 

Overall, the results were in range with earlier studies when considering the length of the recovery time 

of the bags (Potila et al., 2009; Yiyang et al. unpublished data). Our results suggest that the EMM 

production and community composition of ECM fungi in peatland forests are quite strongly determined 
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by the site nutrient regime, which can be described by floristically defined site type, and the depth of 

the soil water-table level (WT).  

The overall effect of site type was higher EMM production in the nutrient-poor sites, supporting our 

hypothesis 1. This indicates that it is beneficial for ECM plants to invest more into supporting EMM 

production to harvest nutrients in low-nutrient sites, which appears logical and has been shown before 

for forests on mineral soils (Nilsson et al., 2005). It is somewhat more intriguing that production 

further increased with decreasing N:P ratio or increasing P concentration in the soil. Fertilization 

studies (e.g. Paavilainen, 1980; Pietiläinen et al., 2005) indicate that tree growth in peatland forests 

may be limited by N in sites similar to our Poor sites, but rather by P and/or K in Rich sites. Thus, it 

would seem more logical if EMM production increased with increasing N:P ratio, indicating 

investment in EMM to harvest P. In earlier studies higher EMM production at high N and low P and K 

conditions have been detected in both mineral-soil (Wallander and Nylund, 1992; Ekblad et al., 1995) 

and peatland forests (Potila et al., 2009). Thus, we have no explanation currently for the opposite 

pattern, which seems to indicate that trees can “afford” investing into EMM when more P is available 

relative to N. However, fungal community composition may offer at least two partial explanations; 

ergosterol content is known to vary between fungal species (Baldrian et al., 2013) and fast-growing 

species may comprise a major part of the biomass in mesh bags (Wallander, 2006).  

Since the nutrient and WT regimes varied independently, the site type impact is not visible when 

looking at the production values between the individual sites. Clearly, production was strongly 

modified by the depth of the WT in the soil. This makes sense, since lower WT generally means a 

thicker soil layer under oxic conditions, as opposed to the anoxic conditions prevailing below the WT. 

Accordingly, the highest production values were determined from the Rich1 site where WT was 

deepest. WT is in general a strong constraint for ecosystem structure and function in peatlands (e.g. 

Mäkiranta et al., 2018), and thus always needs to be considered to facilitate ecologically meaningful 

interpretation of any results for peat soils. 
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Supporting hypothesis 3, EMM biomass production seemed to follow the recovery time of the bags, 

i.e., its rate decreased over time. The results likely refer to a natural seasonal turnover process as has 

been also reported by Wallander at al. (2001) where the fungal biomass colonization peaks in the 

growing season and ceases in the winter period and is thus not recognized as production in longer 

recovery time. The higher amount of living fungal biomass after 1 year in sites Rich1 and Poor1 as 

compared to the other two peatland sites needs further investigation. However, compared to old tree 

stock in Rich2 and Poor2 sites, tree stocks in Rich1 and Poor2 are still young and growing well. In 

mineral forest soils, well-growing young stands are shown to have more actively growing EMM fungal 

communities (Kalliokoski et al., 2010). Thus, it seems that the ectomycorrhizal community produces 

biomass rapidly during the first summer months, and these two sites, especially the N-rich, can retain 

much of the fungal cells as living after the winter period. This may indicate differences in turnover 

times of EMM in sites of varying fertility, or alternatively due to the presence of a resilient fungal 

community in nutrient-rich sites. 

Sampling depth alone did not have an impact on EMM production. Even the community was not 

very different, as discussed below. Also, in our previous study on a WT gradient, fungal biomass, 

estimated based on PLFAs and assumed to be mostly ECM, was relatively high in the deeper layers of 

the driest location (Jaatinen et al., 2008). This would indicate that ECM fungi can grow equally well in 

the deeper layer as in the surface layer in organic soils, and the closer proximity to the WT was not 

impacting them negatively. 

 

Fungal richness and unique fungal representatives in sandbags 

 

In contrast to EMM biomass production, fungal richness in sandbags was not higher in nutrient-poor 

sites. About half of the common fungal genera in all sites belonged to the dominant ones, and many of 

the ECM fungal species common in nutrient-poor sites were belonging to long exploration type fungus, 

implying a potential to produce greater amount of EMM biomass (Agerer, 2001). Thus, it seems that 
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the specific fungal signature of each site was contributed to by only a few fungi unique to each specific 

site. ECM fungi harvesting sandbags seemed to work equally well in the peatland as in the mineral soil 

forests, since the proportions of ECM fungi were similar or even higher in the peatland sites. Also, 

most of all dominant genera affiliated to ECM fungi. 

Both fungal richness and the number of unique fungal OTUs were higher in the lower soil horizon. 

The result is consistent with the findings of Lindahl et al. (2007) from mineral-soil forest that 

mycorrhizal fungi dominated in the underlying, more decomposed soil. Like biomass, fungal OTU 

numbers indicate higher richness after 2 months, further suggesting that the more diverse fungal 

community is able to produce a large amount of fungal biomass rapidly in the very beginning of the 

growing season. 

 

Site determines ECM fungal community composition 

 

Supporting hypothesis 2, site type was a strong predictor of the fungal community composition in 

sandbags. The composition nicely followed a fertility gradient from the most nutrient-rich peatland 

forest to the nutrient-poor mineral-soil forest. Fungal communities in boreal forests on mineral soils are 

also known to follow the fertility gradient (Toljander et al., 2006; Sterkenburg et al., 2015), and our 

results indicate that peatland forests follow the same pattern surprisingly well. Sampling depth and 

recovery time explained much less of the fungal community composition, yet still supported hypothesis 

3. 

The results suggest fungal indicator taxa that are typical of a specific peatland forest type. Many of 

the indicative taxa in nutrient-rich sites were short or medium exploration type, such as Laccaria which 

was clearly more common in the Rich1 site compared to other sites. Genus Laccaria is a known r 

strategist which is capable of rapid mycelial growth, has low carbohydrate demand and is highly 

competitive (Dighton and Mason, 1985), and found abundantly from fertilized Sphagnum-peat growing 

media used in forest nurseries (Flykt et al., 2008). It appears that species of Laccaria would benefit 
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from nutrient-rich conditions from the very beginning of the growing period through the winter. On the 

other hand, the genus Lactarius was also significantly more abundant and common especially in deeper 

layers in Rich1. 

Interestingly, fungal representatives affiliating to Hyaloscypha bicolor were also much more 

common in the Rich1 site compared to other sites and appeared more common in the beginning of the 

growing period (after 2 months) and then again after the winter (after 12 months). H. bicolor is known 

to form short exploration type mycelia and associate with both ericoid and ectomycorrhizal hosts 

(Grelet et al., 2016). Species of Hyaloscypha (former Meliniomyces) have high melanin content in their 

cell walls, and melanized fungal necromass has been reported to decompose slowly (Fernandez et al., 

2013; Fernandez and Koide, 2014) and contribute significantly to C accumulation in soil organic matter 

(Clemmensen et al., 2015). However, the effect seems to be ECM species-specific as in our study the 

proportion of another melanized ECM fungus, Cenococcum geophilum, decreased with recovery time. 

Later, Fernandez and Kennedy (2017) showed that whether fungal necromass was melanized or non-

melanized affected the structure of the microbial decomposer communities. Thus, melanized ECM 

fungi act as ecological engineers of the forest soil impacting both C cycle and soil microbial 

composition. Our results suggest that H. bicolor could be an important and persistent species 

contributing to fungal biomass production in young nutrient-rich peatland forests like Rich1.  

On the other hand, long exploration type ECM fungal genera Piloderma and Suillus were typical of 

the nutrient-poor sites characterized by higher C/N-ratio, lower P amounts and lower soil pH. These 

results are consistent with earlier findings that Suillus is a common genus in pine dominated boreal 

forests with high C/N-ratio (Sterkenburg et al., 2015) and that species of Piloderma are known to 

favour under low-N conditions (Högberg et al., 2014). Piloderma may contribute largely to cycling of 

critical nutrients in nutrient-poor peat since it is known to be capable of releasing organic N and 

delivering it to its tree host (Heinonsalo et al., 2015) and possess great potential to acid phosphatase 

production enabling mobilization of P (Velmala et al., 2014). Furthermore, compared to Suillus and 
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Lactarius genera, Piloderma in tree seedlings has been shown to accumulate more N into the roots 

while getting C as a reward by the plant (Sarjala and Potila, 2005). 

Interestingly, the ECM fungus Paxillus involutus which was very common in almost all peatland 

sites, especially in Rich1 and Poor1 in the very beginning of the growing season, may play a dual role 

in peatland forests since it was recently shown to liberate organic N from soil organic matter via 

hydroxyl radicals produced by the Fenton reaction (Op de Beeck et al., 2018). This ability to release N 

from soil organic matter and P at low concentrations (Colpaert et al., 1999) might give Paxillus a 

competitive advantage over others in early stages of fungal colonization, especially in organic rich 

peatlands. As P. involutus is also known for rapid and explorative mycelial growth (Agerer, 2001), it 

might be a putative candidate for the relatively higher EMM fungal biomass production in both Rich1 

and Poor1 sites during the first summer months. Another functionally interesting and abundantly found 

ECM fungal sequences were belonging to the genera of Cortinarius; several species have been shown 

to produce Mn-peroxidases enabling decomposition of N from complex organic matter (Bödeker et al., 

2014). A few ECM fungal genera showed specificity to a certain sampling depth or recovery time of 

the bag. For example, Tylospora and Tomentellopsis were more common in the upper soil horizon (0-

15 cm) whereas Russula and Piloderma were more common in the deeper soil horizon (15-30 cm). 

Since genus Russula have also previously been commonly observed from various types of drained 

boreal peatland sites, we suggest that its prevalence in the ECM fungal community in peatland forests 

(Peltoniemi et al., 2009, 2012, 2015) may be due to the large species-specific variation across different 

types of peatlands (see Table S4). Furthermore, Tomentellopsis was also more abundant in mineral-soil 

forest sites compared to others, indicating that it would prefer more mineral soils than the organic ones. 

It seems that vertical distribution of ECM species did not follow any previously observed trends, 

probably because in peatlands ECM and fine roots of trees follow WT rather than stratification of 

podzolic soil layers (Lindahl et al., 2007). 
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Peatland forest site type affects the magnitude of saprotrophic fungal biomass production and 

community composition 

Hypothesis 4 was supported by our findings, although site explained only 10 % of the variation in 

saprotrophic fungal biomass production. Fungal biomass production in litter was higher in the Rich1 

site if the values were converted to unit-area basis and assuming an even cover of litter across the sites, 

which is highly unrealistic, the values would correspond to 2.0 T ha
-1

 month
-1

 in Rich1 vs. 1.6 T ha
-1

 

month
-1

 in Poor1. Even though these values are not comparable to the values estimated for EMM 

production, they indicate a very high production potential for saprotrophic fungi. This should not be 

surprising in a case where relatively easily decomposed litters were used, and where a high proportion 

of the soil itself is organic matter. Further, according to hypothesis 4 the fungal community 

composition showed differences between the Rich1 and Poor1 sites. Thus, a specific saprotrophic 

fungal community may be responsible for the higher fungal biomass production in the more nutrient-

rich environment. Lower production in the nutrient-poor site may also indicate increased turnover of 

saprotrophic fungal biomass, if saprotrophic mycelia attracted other decomposers to rapidly recycle N 

bound in biomass in the nutrient-poor habitat (Brabcová et al., 2018). Interestingly, trenching in the 

Poor1 site resulted in less biomass in the deeper peat layer, whereas in the both sites it resulted in more 

biomass in the surface layer. The result may be an indirect evidence of a phenomenon referred to as the 

„Gadgill effect‟ (Gadgil and Gadgil, 1971, 1975), where saprotrophic fungi may benefit from increased 

resources due to decreased competition with mycorrhizal fungi. Though, the Gadgil effect has recently 

been shown to be substrate-specific and thus case-dependent in mineral boreal forests (Sietiö et al., 

2019). 

Although a major portion (80%) of the fungal representatives was observed across both sites, a 

closer look at the saprotrophic fungal community and functional guilds may explain the differences 

between sites. For instance, Hyaloscypha variabilis which showed correlation to nutrient-poor 

conditions is a particularly common ERM fungi known to form associations with several species of 

Ericaceae and act as an endophyte in ECM roots of northern conifers (Grelet et al., 2010; Vohník et al., 

This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e



2013). Interestingly, a recent study verified that H. variabilis has a large gene repertoire for cell-wall 

and membrane degrading enzymes to switch from a symbiotic to a saprotrophic lifestyle (Martino et 

al., 2018). Another fungal representative, Trichoderma viride, showed correlation to lower N content 

and pH. Genus Trichoderma is widespread and can be easily found in soil, on decaying wood and 

contains opportunistic mycoparasites feeding on other fungi (Chet et al., 1998). 

Rich1 had more unique genera which represented more diverse functional fungal groups. This may 

indicate that a nutrient-rich site has a functionally more diverse fungal community pool to respond to 

changing conditions, e.g., a sudden input of fresh organic matter, which shows as increased biomass 

production. Presence of a fungal representative affiliating to the wood-decomposing saprotrophic 

white-rot genus Hypochinicium was typical of Rich1 and correlated positively with iron content, which 

was one of the strongest factors separating fungal communities between sites. The soil of Rich1 was 

especially rich in Fe, deriving from its past as a wet site before drainage (see Westman and Laiho, 

2003). 

Both sites appeared to contain site-specific fungi with similar functions, but from different fungal 

taxa. For example, Rich1 had dung and wood saprotrophic (Ascobolus) and wood decomposing white 

rot taxa (Hypochinicium), while Poor1 had fungi with similar broad functions related to dung and wood 

saprotrophs, including white and soft rot decomposers (family Pyronemataceae, genera Sordaria and 

Gymnopilus). Typical for both sites were also r strategists including mostly yeasts and molds; both sites 

seemed to have a specific niche for Hypocreales (Trichoderma species) and Poor1 for Mucorales 

(Mucor) and Saccharomycetales (Sugiyamaella) found commonly in boreal forest soil (Sterkenburg et 

al., 2015). These results might indicate functional redundancy, but we cannot exclude a possibility that 

different fungal taxa showing specificity for studied sites would be a result of adaptation to certain 

fertility requirements. 

 

Conclusion 
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The fungal in-growth mesh bag method was used for the first time to estimate the impact of site fertility 

on EMM fungal and saprotrophic mycelia production and ECM and saprotrophic fungal community 

composition in typical boreal peatland forest sites. The method that was initially designed for mineral 

soils seems to work well also for peat soils. Nutrient-poor conditions and a lower water table level in 

the peatland forest site in general predict higher EMM fungal biomass production. On the contrary, 

nutrient-rich conditions predict higher saprotrophic fungal biomass production. Both mycorrhizal and 

saprotrophic fungal community composition differed according to site fertility. We suggest that 

different ECM fungal communities and exploration types between peatland forest types may explain 

the differences in mycelial biomass production. The results suggest that the melanin-rich and slow-

decomposing genus Hyaloscypha may be responsible for the high EMM fungal biomass in young 

nutrient-rich peatland forest. In addition, fungi with different life-strategies belonging to genera 

Lactarius and Laccaria may be important as well in nutrient-rich conditions. In contrast, species of 

Piloderma may have importance in releasing organic N and P in nutrient-poor conditions. Paxillus 

involutus and Cortinarius sp. may be an important generalist contributing to organic N release in all 

sites irrespective of fertility, especially during the early summer months. Functionally more diverse 

litter-inhabiting fungal community together with decreased competition of ECM fungi after trenching 

may be responsible for the higher fungal biomass in nutrient-rich compared to nutrient-poor conditions. 

Since our results clearly showed that site fertility affects fungal biomass production and community 

composition, they might be linked to studies estimating soil C balance in peatland forests. Therefore, 

one reason for previously reported soil C loss from nutrient-rich drained peatland forests (Ojanen et al., 

2013) could be a functionally diverse and active saprotrophic fungal community, which enables fast 

decomposition. In contrast, in nutrient-poor peatland forests the ECM community which produces 

recalcitrant necromass could contribute to slow decomposition and positive soil C balance (Ojanen et 

al., 2013; Minkkinen et al., 2018). 

 

Experimental procedures 
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Study sites 

 

The study was done in four drained peatland forest sites located in southern Finland. The sites included 

two Norway spruce (Picea abies), dominated nutrient-rich forests, Lettosuo (Rich1) in Tammela 

(60°39‟N, 23°57‟E) and another site (Rich2) in Orivesi (61°80‟N, 24°30‟E) in the vicinity of the 

Lakkasuo peatland complex. The two Scots pine (Pinus sylvestris) dominated nutrient-poor sites were 

Kalevansuo (Poor1) in Loppi (60°39‟N, 24°22‟E), and another (Poor2) in Orivesi in the Lakkasuo 

peatland complex (61°79‟N, 24°31‟E, respectively). Rich1, originally a herb-rich sedge birch-pine fen, 

was classified as Vaccinium myrtillus type II, Rich 2, originally a Vaccinium myrtillus spruce swamp, 

as V. myrtillus type I, and both Poor1 and Poor 2, originally dwarf shrub pine bogs, as dwarf-shrub type 

I according to Laine et al. (2012). The tree stand basal area and main ground vegetation for all sites is 

described in supporting information table ST1. 

The sites were drained in the 1960‟s or early 1970‟s. In Rich1, the dominant pine tree storey was 

harvested in March 2016 before our experiment and uneven spruce-dominated stand with a mixture of 

pubescent birch (Betula pubescens) was retained (Korkiakoski et al., 2020). Other sites had tree stands 

typical of the site types: Rich2 a mature spruce stand and Poor1 (for further site information, see Lohila 

et al., 2011) and Poor2 mid-rotation pine stands. Average annual water-table levels estimated from 

continuous monitoring data for year 2016 for Rich1, Rich2, Poor1 and Poor2 sites were 37 ± 6 (mean ± 

SD), 31 ± 2, 30 ± 3, and 25 ± 1 cm below the peat surface, respectively. Nutrient elements and soil pH 

were measured from a separate set of peat samples taken 5–15 and 15–25 cm below the moss layer 

(Table 1). Total C and N were determined from air-dried samples with a LECO CHN-1000 analyser, 

and the concentrations of other elements with an ICP-emission spectrometer (ARL 3580) using dry ash 

dissolved in hydrochloric acid. 

Two mineral-soil forest sites located in the vicinity of the Lakkasuo peatland complex in Orivesi 

were included in the experiment for comparison: nutrient-rich Norway spruce dominated site (RichM) 
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and nutrient-poor Scots pine dominated site (PoorM). EMM production in these sites was measured 

earlier by Yiyang et al. (unpublished data). We repeated the measurements to exclude the potential 

impact of annual variation in the results. 

 

Sandbag method to determine EMM biomass and ECM fungal community 

 

To estimate the biomass production of EMM of ECM fungi and their community composition, five 

replicate in-growth mesh bags (6 × 11 cm) were filled with approximately 125 g of acid washed quartz 

sand. The bags were buried at two depths (0-15 cm, 15-30 cm) in all four peatland forests and the two 

mineral-soil forests in the end of May 2016, and recovered after 2 (late July), 5 (October), and 12 

months (late May 2017). 

Recovered sandbags were cleaned of external dirt and gently opened with scissors. Homogenic sub-

samples were ensured by mixing several spoonsful of sand all over the bag and immediately stored at -

20°C for ergosterol extractions. The remainder of the sand was washed as described in Peltoniemi et al. 

(2015) and the harvested mycelia were frozen at -20°C for DNA extractions. A separate sample of sand 

or litter from each bag was dried at +105°C to determine the dry matter content. Ergosterol was 

extracted and measured from homogenized sub-sample by-taking 3 g of sand as described by 

Peltoniemi et al. (2015). We used a conversion factor, 3 mg ergosterol concentration corresponds to 1g 

fungal biomass, to calculate the fungal biomass production estimates from ergosterol concentrations 

(Salmanowicz and Nylund, 1988; Ekblad et al., 2016). The final EMM biomass production from the 

sandbags is reported as kg fungal biomass ha
-1

 month
-1

. For EMM biomass we accounted for sand 

density (1.45 g/cm
3
), and the soil depth covered by the bag (ca. 10 cm), and the obtained value per cm

2
 

was scaled per hectare. Finally, EMM biomass production values from sandbags with different 

recovery times were converted to production per month. 

 

Litterbag method to determine saprotrophic fungal biomass and community 
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To estimate the biomass production of saprotrophic fungi and their community composition, five 

replicate in-growth mesh bags were filled with approximately 11 grams of either sterilized corn or 

wheat litter. They were placed into trenched subplots in the Rich1 and Poor1 peatland forest sites, at 

two depths (0-15 cm, 15-30 cm) at the end of May 2016 and recovered after 5 months (October 2016). 

Initially, litters from the C4 plant (corn) and the C3 plant (wheat) were chosen to evaluate whether 

isotopic patterns could aid the estimation of saprotrophic fungal biomass production. In the end, 

however, we did not have enough material for isotopic measurements. To avoid non-saprotrophic fungi 

entering the bags, trenching was conducted just prior to installing by cutting all the root connections to 

the depth of 40cm with a chainsaw around a 1 × 1 m
2
 area and surrounding the subplots with a 

herbicide-free root barrier fabric (polypropylene 220g/m
2
). Control litterbags without trenching were 

buried outside the trenched subplots in a corresponding manner. 

Recovered litter bags were cleaned for external dirt and sub-samples of litter were immediately 

stored at at -20°C for DNA and ergosterol extractions. Dry matter contents and ergosterols were 

determined as previously described for the sand material. The biomass production of saprotrophic fungi 

from the litters is reported as mg fungal biomass g
-1

 (litter dry weight) month
-1

. 

 

Chitin analyses for 12-month sandbags 

 

The procedure for chitin-derived glucosamine extraction is described in detail by Adamczyk et al. 

(2020). The fraction of living fungal biomass (% of total) was calculated with the formula: 100(14/s − 

c)/(1− c) where 14 is the chitin:ergosterol ratio in living cells, s is the chitin:ergosterol ratio of the 

sample, and c is the relative ergosterol concentration in inactive fungal cells which was assumed to be 

10% (Ekblad et al., 1998). 

 

DNA extraction, sequencing and sequence data processing 
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DNA from freeze-dried sand was extracted with a NucleoSpin Soil kit (Macherey Nagel, Germany) 

and from litter with a NucleoSpin Plant kit (Macherey Nagel, Germany) according to the protocols of 

the manufacturer. DNA concentrations were measured with a Cubit fluorometer 

(ThermoFisherScientific, US) and DNA samples were sequenced by an Illumina Miseq platform at the 

Biotechnical Institute of Helsinki University. The ITS2 region was amplified in a 2-step PCR using the 

primers ITS4 (White et al., 1990) and gITS7 (Ihrmark et al., 2012) containing partial TruSeq adapter 

sequences at the 5‟end. The first PCR was done in two replicate 25 µl reactions using Phusion Hot Start 

II polymerase (Thermo Fischer) and cycling conditions consisted of an initial denaturation step at 98°C 

for 30s, followed by 15 cycles at 98°C for 10s, 55°C for 30s, 72°C for 10s, and a final extension for 5 

minutes. After PCR the two replicates were combined and treated with Exonuclease I (Thermo 

Scientific) and Thermosensitive Alkaline Phosphatase (FastAP; Thermo Scientific). A second PCR was 

performed with full-length TruSeq P5 and Index containing P7 adapters and 1-5 µl from the first PCR 

as template. Cycling conditions were similar to the first amplification but with 18 cycles and 50µl 

reactions with no replicates. Final purification was performed with Agencourt® AMPure® XP 

magnetic beads from Agencourt Bioscience (Beckman Coulter Inc, MA, USA). DNA concentration 

and quality were verified with Qubit and Fragment Analyzer (Advanced Analytical), respectively. The 

final PCR fragments were pooled in equal concentrations and run on a MiSeq Sequencer (Illumina) 

using v2 600 cycle kit paired-end (325 bp + 285 bp). 

Quality filtering and removal of artifacts, primer-dimers and primers from raw sequence reads was 

conducted with the PipeCraft 1.0 pipeline (Anslan et al., 2017). Raw fungal ITS sequence reads were 

processed according to the manual as described by Soinne et al. (2020). OTUs that had affiliation other 

than fungi and singleton OTUs were removed from the data. Raw ITS sequence data is deposited in the 

sequence read archive (SRA) of NCBI/EMBL database under the BioProject id PRJNA586760 with the 

accession numbers SAMN13166700-SAMN13166799. All the downstream analyses were conducted 

from sequence reads that were normalized with geometric mean of pairwise ratios (GMPR) method 
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(Chen et al., 2018) from OTUs that matched with representative taxa in the ITS2 database 

(sh_genral_release_dynamic_01.12.2018.fasta) from UNITE (Nilsson et al., 2018) representing unique 

fungal phylotypes. 

 

Statistical analyses of the fungal biomass data  

 

The response of EMM fungal biomass production (kg ha
-1 

month
-1

) to site and soil characteristics was 

analyzed with linear mixed models using MLwiN 2.26 software considering the hierarchical structure 

in the data (Rasbash et al., 2019). Models including only constants were used for estimating the mean 

production values. For the ECM fungal (sandbag) data, site (l; 4 sites), location within site (k; 5 

locations per site), depth level within location (j; 2 levels: 0-15 cm and 15-30 cm), and recovery time 

within depth level, location and site (i; 2, 5, and 12 months after installation), were coded as 

hierarchical levels. The basic form of the model was 

 

Fbmijkl = β0ijkl · constant + β(1-n) · x(1-n)l-ijkl 

 

where the value of the constant, β, is allowed to vary at all hierarchical levels (ijkl) resulting in the 

residuals also being estimated at each level as f0l, v0kl, u0jkl, and e0ijkl, whereas the parameters P for 

variables V vary at different levels depending on the level at which the variables were measured (e.g., 

site type was measured at the site level, while average peatland WT was available at the recovery time 

level). The residuals form the random part of the model and are expected to be uncorrelated and follow 

normal distribution, so that it is sufficient to estimate their variances only.  

Potential explanatory variables for the peatland sites were peat characteristics shown in Table 1 

(individual characteristics plus element ratios to C and N were tested), and other variables shown in 

Supporting Information Table ST1 including site type (identified as Rich and Poor), tree stand basal 

area, cover of different plant functional types in the ground vegetation, average WT for the recovery 
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times as well as for a 13 month period including the month preceding installation, and fine root 

production estimated for 0-10 cm and 0-50 cm layers based on root ingrowth core data collected by 

Raija Laiho and coworkers (Lampela et al. unpublished data; measured as in Bhuiyan et al., 2017). 

Some variables identified as hierarchical levels were also tested as explanatory variables (depth, 

recovery time = length of the burying period of the bags). In such cases their residual variances 

generally became non-significant. Also, if the effect of some level was well explained by the fixed part, 

the variance of that level approached zero. All levels were nevertheless retained in the model structure 

to facilitate direct comparison of the goodness of fit for different models using the -2*loglikelihood 

measure (Rashbash et al., 2019). 

In several models only the contribution of the last hierarchical level, recovery time, to the residual 

variance was significant. This basically indicates non-significant autocorrelation in the data, but it may 

alternatively be caused by the relatively small number of observations. We chose to report the results of 

the full mixed models in each case, even though in the case of non-significant variance components, a 

simple regression analysis with only the fixed part of the models could also be applied. 

The litterbag fungal biomass data [mg g
-1

 (litter dry weight) month
-1

] was analyzed similarly, but 

the models lacked the repeated measures aspect as there was just one recovery time. Also, since there 

were only two sites in that data set, we were able to analyze only the impacts of site, depth, litter type 

and trenching treatment. All other variables in the data set would simply describe the difference 

between the two sites. 

Significance of differences in the average amount of living fungal biomass in sandbags after 12 

months between sites and depths was tested with analysis of variance (ANOVA) with R-studio version 

1.1.442 (RStudio Team 2016) with R version 3.4.4 or 3.5.2 (R Core Team, 2018). Tukey‟s HSD 

(Honest Significant Differences) post-hoc test was used to reveal statistically different groups. 

 

Analyses to investigate fungal community composition 
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For all community analyses we used R-studio version 1.1.442 (RStudio Team 2016) with R version 

3.4.4 or 3.5.2 (R Core Team, 2018). Significant differences in OTU numbers, i.e., fungal richness, 

between sites, depths and recovery time of the sandbags, or sites, depths, litter types and treatments 

(trenched or not) from the litterbags was tested with analysis of variance (ANOVA). Tukey‟s HSD 

(Honest Significant Differences) post-hoc test was used to reveal statistically significantly different 

groups. Shared and unique OTUs between sites and depths from the sandbags or sites, depths, litter 

types and treatments (trenched or not) from the litterbags were visualized for 2, 5 and 12 month data 

separately by applying R packages venn (Chen, 2018), VennDiagram (Dusa, 2018) and car (Fox and 

Weisberg, 2011). FUNGuild, the online application tool, was used to detect functional information, 

fungal guilds of OTUs (Nguyen et al., 2016). We did permutational multivariate analysis of variance 

(PERMANOVA) using distance matrices with function adonis in package vegan (Anderson, 2001) to 

test the effect of site, depth and recovery time on sandbag fungal community composition, and the 

effects of site, depth, treatment and litter type on litter bag fungal community composition. We also 

conducted nonmetric multidimensional scaling (NMDS) with stable solution from random starts, axis 

scaling and species scores with function metaMDS from vegan using the Bray-Curtis dissimilarity 

index and plotted the NMDS with fitted environmental variables with function envfit from vegan 

(Oksanen et al., 2018). Paired comparisons to identify fungal indicator OTUs were conducted with 

differential abundance analysis using DESeq2 (Love et al., 2014). This produced a list of significant 

fungal representatives which differed in their abundances in compared cases when the ratio of the 

difference between final value and the initial value over the original value (log2FoldChange) is > 1.8 

(adjacent p >0.05). Nonparametric Spearman's rank-order correlation analyses (function cor.test in R) 

were conducted for the dominant fungal representatives from both sand- and litterbags with fungal 

biomass, soil pH and nutrient data  
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Figure legends 

Fig 1. Fungal biomass production in peatland forest and mineral-soil forest sites at two depths (0−15 

cm, 15−30 cm) from a) in-growth sandbags targeting ECM fungi recovered after 2, 5 and 12 months 

and from b) litterbags targeting saprotrophic fungi recovered after 5 months. Bars represent standard 

error of means. Abbreviations: corn, c, and wheat, w, litter types. 

Fig 2. Nonmetric multidimensional scaling (NMDS) plots showing differences in fungal community 

composition from sandbags targeting ECM fungi between four peatland forest (Rich1, Rich2, Poor1, 

Poor2) and two mineral-soil forest sites (RichM, PoorM). Data originating from 2, 5 and 12 month and 

0-15 and 15-30 cm sampling depth bags have been combined. Ellipses show the confidence level of 

95%. Arrows show environmental variables that fit the x-y data of the NMDS significantly (P > 0.05). 

Fig 3. The heatmap of the most dominating taxa in sandbags (proportion of the normalized reads at 

least in 5% in the sample type (n=3). Functional guilds: ECM, ectomycorrhiza; SAP, saprotroph; PAT, 

pathogen; SYM, symbiotroph; END, endophyte. 

Fig 4. Nonmetric multidimensional scaling (NMDS) plots showing differences in fungal community 

composition from litterbags targeting saprotrophic fungi between nutrient-rich (Rich1) and nutrient-

poor (Poor1) peatland forest sites. Ellipses show the confidence level of 95%. Arrows show 

environmental variables that fit the x-y data of the NMDS significantly (P > 0.05). See abbreviations in 

Fig 1. 

Fig 5. The heatmap of the most dominating taxa in litterbags (proportion of the normalized reads at 

least in 5% in the sample type (n=3). See abbreviations in Figs 1, 2 and 4.
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Table 1. Soil pH and element concentrations in the surface peat of the peatland forest sites. 
 

Site Depth soil pH P K Ca Mg Fe Mn Zn Cu B N% C% CN NP 
________________________________________________________________________________________________________________________________________________________________ 

Rich1 5-15 cm 4.1 0.95 0.41 3.0 0.40 8.2 79 36 8.4 2.8 2.0 50 25 2.1 

Rich2  3.9 0.68 0.79 3.8 0.57 1.8 274 34 5.3 3.1 1.5 49 41 1.9 

Poor1  3.8 0.65 0.66 2.7 0.49 1.1 88 61 5.5 2.3 1.2 50 34 2.1 

Poor2  3.9 0.65 0.63 2.6 0.54 0.6 108 49 4.3 2.0 1.2 49 40 1.9 

Rich1 15-25 cm 4.1 0.61 0.06 2.0 0.13 4.9 10 3 3.9 1.0 2.2 55 25 3.6 

Rich2  4.1 0.52 0.14 3.9 0.41 8.4 14 6 5.3 1.4 2.0 54 56 3.5 

Poor1  3.8 0.27 0.08 1.1 0.25 2.3 3 10 1.1 0.9 1.0 53 27 3.8 

Poor2  4 0.32 0.06 1.7 0.30 0.2 3 6 1.3 1.1 1.2 48 41 3.7 
_______________________________________________________________________________________________________________________________________________________________ 
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Table 2. The model best explaining the variation in the fungal biomass production (kg ha
-1

 month
-1

) in 

the sandbags. Fixed part includes the significant explanatory variables, their parameters, and parameter 

standard errors in parentheses. The random part includes the variance components of the different 

hierarchical levels identified in the data after fitting the model (see Experimental procedures). The 

model explained 41.6% of the initial variation (accounting for also the non-significant variance 

components). The production depended on site type (Poor vs Rich), average WT during the recovery 

time, length of the recovery time, and soil N:P ratio. 

_________________________________________________________________________________________________________________ 

Fixed part Random part 
_________________________________________________________________________________________________________________ 

Constant  -98.8 (38.0) Site 0.0 (0.0) 

Poor
1
 39.3 (9.4) Location 11.3 (77.8) 

WT (cm below surface) 5.1 (1.0) Depth 4.9 (118.7) 

N:P -7.6(3.6) Recovery time 986.6 (156.9) 

5-month recovery time
2
 -30.6 (7.1) 

12-month recovery time
2
 -45.6 (7.1) 

_________________________________________________________________________________________________________________ 

1
 as compared to the reference category Rich 

2
 as compared to the reference category 2-month recovery time; recovery time was coded 

as three categorical variables, since that improved the model as compared to coding time 

as a continuous variable, indicating that the temporal pattern was not quite linear 
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Table 3. The model best explaining the variation in the fungal biomass production [mg g
-1

 (litter dry 

weight) month
-1

] in the litterbags incubated at two peatland forest sites, Rich1 and Poor 1. Fixed part 

includes the significant explanatory variables, their parameters, and parameter standard errors in 

parentheses. The random part includes the remaining variance components of the different hierarchical 

levels identified in the data after fitting the model (see Experimental procedures). 

__________________________________________________________________________________________________________________ 

Fixed part Random part 
__________________________________________________________________________________________________________________ 

Constant 16.2 (0.8) Site 0.0 (0.0) 

Site
1
 x Trenching 4.6 (1.0) Location 0.2 (1.3) 

Depth
2
 -5.4 (0.9) Depth 12.1 (2.5) 

Litter type
3
 -6.3 (0.9)  

__________________________________________________________________________________________________________________ 

1
 difference of the nutrient-rich site from the nutrient-poor site 

2
 difference of depth 15-30 cm from the depth 0-15 cm 

3
 difference of the wheat litter from the corn litter 
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Fig 1. Fungal biomass production in peatland forest and mineral-soil forest sites at two depths (0−15 cm, 
15−30 cm) from a) in-growth sandbags targeting ECM fungi recovered after 2, 5 and 12 months and from 

b) litterbags targeting saprotrophic fungi recovered after 5 months. Bars represent standard error of means. 
Abbreviations: corn, c, and wheat, w, litter types. 
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Fig 2. Nonmetric multidimensional scaling (NMDS) plots showing differences in fungal community 
composition from sandbags targeting ECM fungi between four peatland forest (Rich1, Rich2, Poor1, Poor2) 

and two mineral-soil forest sites (RichM, PoorM). Data originating from 2, 5 and 12 month and 0-15 and 15-
30 cm sampling depth bags have been combined. Ellipses show the confidence level of 95%. Arrows show 

environmental variables that fit the x-y data of the NMDS significantly (P > 0.05). 
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Fig 3. The heatmap of the most dominating taxa in sandbags (proportion of the normalized reads at least in 
5% in the sample type (n=3). Functional guilds: ECM, ectomycorrhiza; SAP, saprotroph; PAT, pathogen; 

SYM, symbiotroph; END, endophyte. 

Wiley-Blackwell and Society for Applied MicrobiologyThis article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e



 

Fig 4. Nonmetric multidimensional scaling (NMDS) plots showing differences in fungal community 
composition from litterbags targeting saprotrophic fungi between nutrient-rich (Rich1) and nutrient-poor 

(Poor1) peatland forest sites. Ellipses show the confidence level of 95%. Arrows show environmental 
variables that fit the x-y data of the NMDS significantly (P > 0.05). See abbreviations in Fig 1. 
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Fig 5. The heatmap of the most dominating taxa in litterbags (proportion of the normalized reads at least in 
5% in the sample type (n=3). See abbreviations in Figs 1, 2 and 4. 
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