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To the Editor, 

Skin and soft tissue infections are frequent infections in healthcare that vary in presentation 

and severity. The severe forms often require surgical intervention and antimicrobial therapy and 

their recovery should be assessed frequently to catch treatment failures [1]. Here, we used random 

sequencing of coding bacterial RNA (metatranscriptomics) and 16S rRNA-gene amplicon 

sequencing (16S-profiling) to characterise the post-treatment bacterial communities of a 

complicated burn wound and assess infection clearance. 

A 2-year-old female sustained a ~5% total body surface area boiling water burn injury on 

the left side of her head and right arm. After initial conservative treatment by silver dressings, the 

healing was complicated by prolonged and persistent infections (Fig. 1A). During the course of the 

treatment, the patient underwent conventional microbiological testing, several antibiotic treatments, 

and multiple surgical debridements and skin graftings. The last adjustment of antibiotics occurred 

on day 96 (a switch to intravenous levofloxacin) and the last grafting operation three days later. 

Healing progressed and the wound was cured by day 147. 

The post-treatment tissue samples (wound) for metatranscriptomics and 16S-profiling were 

extracted during the last grafting operation. Body site-matched, non-infected tissue was obtained 

from an independent patient and control samples with (spike-in) and without (normal) added 

Staphylococcus epidermidis ATCC 12228 were prepared. The metatranscriptomics workflow is 

outlined in Figure 1B and involved depletion of rRNAs and poly-adenylated-transcripts to enrich 

bacterial mRNAs. Illumina HiSeq (PE100) was used in sequencing. Data analysis followed our 

previous protocol [2] and employed an in-house built genome and gene sequence classification 
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databases (Fig. 1C). For 16S-profiling, DNA was extracted, V3-V4 region of 16S rRNA gene 

amplified, and amplicons sequenced using Illumina MiSeq (PE250). Reads were classified to 

species level. The detailed methodology is provided in the Supplementary text. The Operative 

Ethics Committee of the Hospital District for Helsinki and Uusimaa approved the study protocol 

(HUS 2076/2016). Written informed consent was obtained from all participants or their guardians. 

 Metatranscriptomics and 16S-profiling analyses both revealed samples to contain bacterial 

reads in varying portions (Fig. 1D). To account the variation, samples were sequenced to different 

total depths in both technologies. 

A genus-level classification was assigned to 99.25% of metatranscriptomic (with an 

estimated precision of 0.94 and recall of 0.96; Table S1) and 99.99% of 16S-profiling bacterial 

reads. The identified major genera are listed in Figures 1E and S1. Correlation analysis revealed 

that genus-level abundancies correlated well across technologies in spike-in (r=0.95) and normal 

(r=0.87) but not in wound (r=-0.46; Fig. S2). A strong correlation was also identified in 

metatranscriptomics between wound and normal (r=0.86), while these were negatively associated in 

16S-profiling (r=-0.89, Fig. S2). Diversity analyses corroborated the trends observed in the 

correlation analysis and highlighted the highest diversities for wound samples (Fig. 1F, Fig. S3-S4). 

Differential abundance analysis revealed eight genera enriched between wound and normal 

by either technology (Fig. 1G, Fig. S5, Table S2). The skin commensal Cutibacterium was 

underrepresented in wound compared to normal. Genera enriched in wound harboured clinically 

associated pathogens, established 16S-profiling contaminants, and environmental bacteria unlikely 

to exist in the sample. Clinically associated Micrococcus, Dietzia, and Corynebacterium were 

highly enriched especially in 16S-profiling. The species-level results agreed with genus-level 

findings and revealed enrichment of specific Micrococcus, Corynebacterium, and Dietzia species 

by 16S-profiling (Fig. S6-S7, Table S3). 
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Examination of microbial gene activity at the UniRef90-level (with an estimated precision 

of 0.95 and recall of 0.83; Table S1) revealed activity of 594 (normal), 960 (wound), and 5,325 

(spike-in) bacterial protein groups with ≥2.5 counts per million reads. The genes expressed in 

wound were mostly involved in basic cellular activities. Pathway enrichment analysis revealed no 

functional differences (Fig. 1H, Tables S4 and S5). 

Metatranscriptomics is an interesting approach to assess treatment success. In this study, it 

revealed marked similarity between bacterial communities of post-treatment and normal samples 

and captured activity of normal cellular processes in wound; results which indicate infection 

clearance and agree with the clinical picture. The 16S-profiling in contrast supported the presence 

of an abnormal community and indicated marked enrichment of Corynebacterium 

tuberculostearicum associated to wound infections in patients with a long history of antibiotics [3] 

and an infection-associated and often misdiagnosed Dietzia cinnamea sensitive to levofloxacin [4]. 

Technical differences are unlikely to explain these discrepancies given the high cross-platform 

concordance among controls. Instead, the inability of DNA-amplicon-based approaches to 

differentiate the live and dead [5] might explain the differences, especially as microbiological 

cultures taken four days earlier listed coagulase-negative staphylococci and diphtheroids without 

detailing the species and were thereby partly in agreement with the 16S-profiling results unveiling 

unenriched levels of Staphylococcus and enriched levels of Corynebacterium in wound. 

To conclude, this study demonstrated the value of metatranscriptomics in understanding 

rapid microbial alterations in complex host-microbe samples. Its use in infection clearance 

assessment warrants further investigations. 
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Figure legend: 

 

Fig 1. A: Clinical course of the patient. The timeline illustrates admissions, antimicrobial 

medications, and results of standard microbial diagnostics from injury to recovery. Study samples 

were taken 3-days after a switch from the oral trimethoprim and sulphasalazine to the intravenous 

levofloxacin at post-injury day 99 during a grafting operation. B: Metatranscriptomics sample 

processing and data analysis workflow. Samples were immersed in transcriptome preserving 

reagent immediately upon extraction, tissue structure and cells were disrupted, total RNA was 

extracted and DNase treated, and bacterial mRNA was enriched by depleting rRNAs and poly-

adenylated-transcripts. C: Gene classification scheme. The reads were aligned against all known 

bacterial, archaeal, and viral coding sequences that were organized into sequence clusters in the 

presence of UniRef information as well as to human and technical sequences. Reads classified to 

human and technical references were ignored in analyses. D: Read survival in 

metatranscriptomics and 16S-profiling. For each sample, the stacked columns depict the portions 

of reads classified as bacterial (grey), classified ambiguously as bacterial and non-bacterial (cyan), 

classified solely as non-bacterial (blue), passing preprocessing but not classified (light blue), and 

failed in preprocessing (brown). The total number of reads (black) and the number of bacterial reads 

(grey) in millions are given above columns. E: Relative distribution of bacterial genera. Only 

genera accounting >5% of the bacterial reads in any samples by either metatranscriptomics 

(MetaTRS) or 16S-profiling (16S) are shown. Reads assigned to other genera are marked as ‘other 
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genera’. Bacterial reads without genus-level classifications are marked as ‘other Bacteria’. Both 

technologies correctly identified the spiked-in Staphylococcus as the major genera in the spike-in 

sample and reported the normal skin commensal Cutibacterium in the normal sample. F: Bacterial 

beta-diversity. Bray-Curtis dissimilarity-based principal coordinates analysis at the genus level 

revealed a high similarity between control samples assessed with different platforms. Wound 

samples assessed with different platforms were more dissimilar. G: Enriched genera in wound 

versus normal. The bar graph depicts fold change (log10) of the enriched genera in wound versus 

normal. The difference between fold changes determined by 16S-profiling and metatranscriptomics 

are given above columns. Small values mark taxa likely related to inter-sample variance. High 

values represent taxa likely associated with the treatment response. Asterisks highlight genera 

accounting ≥5% of the total bacterial read count and with ≥2-fold-change. Double asterisks 

highlight genera accounting ≥5% of the total bacterial read count and with ≥5-fold-change. 

Conservative cut-offs were used to avoid false findings. H: Pathways in wound and normal. 

Pathways with ≥10 UniRef90-level assignments in wound and normal are listed. For each pathway, 

shown are the number of assignments to the given pathway, number of assignments to any pathway, 

and the Bonferroni corrected p-value of Chi-squared test between expected and observed 

frequencies. Example of the glycolysis pathway is detailed in the figure. Blue, red, and purple 

colours indicate functions supported by ≥2.5 counts per million bacterial reads in wound, normal, or 

both, respectively. 
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