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Abstract

Each patient’s cancer consists of multiple cell subpopulations that are inherently heterogeneous and may develop differing
phenotypes such as drug sensitivity or resistance. A personalized treatment regimen should therefore target multiple
oncoproteins in the cancer cell populations that are driving the treatment resistance or disease progression in a given
patient to provide maximal therapeutic effect, while avoiding severe co-inhibition of non-malignant cells that would lead to
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toxic side effects. To address the intra- and inter-tumoral heterogeneity when designing combinatorial treatment regimens
for cancer patients, we have implemented a machine learning-based platform to guide identification of safe and effective
combinatorial treatments that selectively inhibit cancer-related dysfunctions or resistance mechanisms in individual
patients. In this case study, we show how the platform enables prediction of cancer-selective drug combinations for patients
with high-grade serous ovarian cancer using single-cell imaging cytometry drug response assay, combined with
genome-wide transcriptomic and genetic profiles. The platform makes use of drug-target interaction networks to prioritize
those combinations that warrant further preclinical testing in scarce patient-derived primary cells. During the case study in
ovarian cancer patients, we investigated (i) the relative performance of various ensemble learning algorithms for drug
response prediction, (ii) the use of matched single-cell RNA-sequencing data to deconvolute cell population-specific
transcriptome profiles from bulk RNA-seq data, (iii) and whether multi-patient or patient-specific predictive models lead to
better predictive accuracy. The general platform and the comparison results are expected to become useful for future
studies that use similar predictive approaches also in other cancer types.

Key words: toxic effects; combination synergy; ovarian cancer; network visualization; precision oncology; machine learning;
drug combinations

Introduction
Combinatorial cancer treatments may lead to therapeutic ben-
efits both by enhancing treatment efficacy and by avoiding
monotherapy resistance [1]. Furthermore, individual drugs used
in the combinatorial treatments may sometimes be adminis-
tered at lower doses than when used as monotherapies, thus
reducing the risk of treatment toxicity and other side-effects.
High-throughput drug screening (HTS) of the phenotypic effects
of drug combinations in preclinical cancer models is often used
for unbiased exploration of candidate drug combinations. How-
ever, even with automated HTS instrumentation, systematic
screening of drug combinations quickly becomes impractical,
both in terms of time and patient specimens required for the
combinatorial testing, due to combinatorial explosion of the
number of potential combinations. Furthermore, the pathways
that drive cancer progression or treatment resistance are often
highly variable between individual patients even with the same
cancer type, hence leading to further experimental challenges,
as the panels of combinations need to be tested in cells of each
individual patient. Therefore, we and others have developed
computational approaches to guide the discovery of most potent
combinations to be prioritized in HTS for further testing [2–5].

Most computational and experimental combinatorial dis-
covery strategies aim to identify drug combinations that are
more effective when combined, compared to the single-agent
responses when used as monotherapies, hence leading to syner-
gistic effects [6]. At the same time, the successful combinations
should show minimal toxicity to the non-malignant cells. How-
ever, most preclinical screening efforts emphasize merely the
combination synergy as key determinant of the drug combina-
tion performance [7], even though cancer cell selectivity is crit-
ical for the clinical success of combinatorial therapies [8]. This
leads to the translational challenge that requires careful assess-
ment of potential toxic effects along with synergistic efficacy, as
there is a fundamental trade-off between treatment efficacy and
tolerable toxicity [9]. To date, there has been a lack of compu-
tational approaches that could address these experimental and
translational challenges: (i) identifying among the massive num-
ber of potential drug combinations those that simultaneously
show both maximal therapeutic potential and cancer selectivity,
and (ii) bridging the gap to the clinical practice to enable real-
world applications in translational studies and to establish their
potential utility in clinical decision-making process.

We recently developed a two-phase machine learning (ML)
and interactive visual-evaluation strategy for efficient in silico

prioritization of combinations for individual cancer patients
[10]. In the first phase, the ComboPred algorithm predicts patient-
customized drug combinations by integrating single-drug
responses and molecular profiles of the primary patient cells
from ex vivo cell cultures. To explore the massive combinatorial
search spaces among potential combinations, the algorithm
uses drug-target interaction networks combined with Random
Forest algorithm to identify cancer-selective and synergistic
combinations as safe and effective treatment options. The toxic
effects were estimated using differential single-drug sensitivity
profiles between patient cells and healthy controls. In the
next phase, PatientNet web-application allows for interactive
visualization of patient-customized co-vulnerability networks
using the baseline genomic and molecular profiles of indi-
vidual patients to guide further testing of the patient-specific
combination and clinical translation phases. The platform was
initially piloted in a hematological cancer, T-cell prolymphocytic
leukemia (T-PLL), where it successfully identified distinct
combinations for T-PLL patients, each presenting with different
resistance patterns and synergy mechanisms [10].

In the present case study, we show how the same approach
can be modified to predict cancer-selective drug combinations
also for solid tumors, here in cells from patients with high-grade
serous ovarian carcinoma (HGSOC). Instead of using bulk drug
response profiling, as in the pilot study, we make use of single-
cell data from imaging cytometry drug response assays to make
combination predictions at the level of tumor cell subpopula-
tions. The subpopulation-level analysis also avoids the need of
healthy individuals as controls, as the non-malignant cells of
each patient can serve as her own control. We investigate a num-
ber of ensemble ML algorithms that enable learning from sparse
and heterogeneous data sources (drug response data combined
with genomic data), with the aim to provide accurate patient-
tailored response predictions. The platform prioritizes those
combinations that warrant further pre-clinical testing in scarce
patient-derived primary cells. During the case study on HGSOC
patient cells, we made several important observations, related
to both computational and experimental analyses, which we
expect to become useful for others using similar precision oncol-
ogy approaches also in other cancer types that are accessible for
bulk or single-cell RNA-sequencing and drug sensitivity testing.

Material and Methods
This case study made use of four genetically-validated HGSOC
patient samples that had functional single-drug response

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/22/6/bbab272/6337896 by H

U
S-N

AISTEN
SAIR

AALA-N
AISTEN

KLIN
IKK TIETEELLIN

EN
 KIR

JASTO
 user on 17 D

ecem
ber 2021



Network-guided identification of ovarian cancer 3

Table 1. Profiling data available from the 4 HGSOC patient cell cultures ex vivo

Data Level Note

Single-drug response profiling (DSS) Subpopulation (PAX8+/−) Imaging cytometry-based cell population viability assay
Bulk RNA-sequencing (RNA-seq) Sample PRISM decomposition for subpopulation-specific profiles
Bulk whole-genome sequencing (WGS) Sample Assuming no somatic mutations in PAX8- subpopulations
Single-cell RNA-sequencing (scRNA-seq) Sample EOC0939_pAsc before and after 1 week of culture ex vivo

These data come from the patients profiled in the HERCULES project (https://www.project-hercules.eu/).

profiles, as well as genome-wide molecular and genomic data
available from the same cell cultures in the HERCULES study
(Table 1). Two of the patients (EOC0939 and EOC1103) had rapidly
progressing platinum resistant disease, whereas one patient
(EOC1107) had platinum sensitive disease. Two of the patient
samples (EOC0939_pAsc and EOC1107_pAsc) contain cells from
primary ascites of the newly-diagnosed patients 0939 and
1107, where ‘primary’ means that the sample is taken before
chemotherapy (i.e. treatment-naive). The other two samples
(EOC1103_pOme1 and EOC1103_pPer1) were sampled from
omental and peritoneal tumor sites, respectively, i.e. primary
cells from surgically removed tumors from a newly diagnosed
treatment-naive patient 1103. In each patient sample, we
considered two cell subpopulations: cells that are either positive
for the HGSOC lineage marker PAX8 [11] (PAX8+ cells) with a
TP53 mutation (malignant ‘cancer cells’), or PAX8- cells without
a TP53 mutation (non-malignant ‘normal cells’). The single-
drug responses were profiled for both of the cell populations
in the ex vivo cell cultures (see below), and these were used
as outcome vectors for the population-level ML predictions,
while the genome-wide transcriptomic and genetic profiles
were obtained at the sample-level (so-called ‘bulk’ assays).
Fresh dissociated tissue specimens were available from all
the four samples, where ‘fresh’ means that the dissociation
protocol is started after surgery without freezing of the tumor
cells, important for genomic analyses. Genome-wide single-cell
transcriptomic data were available from only one of the ex vivo
patient cell cultures (from cultured cryopreserved dissociated
tissue of EOC0939).

For high-throughput ex vivo drug sensitivity and resistance
testing in patient-derived HGSOC cultures, we performed imag-
ing cytometry-based analysis of the tumor cell subpopulation
responses [12]. The technology offers single-cell resolution that
captures heterogeneous cell behavior in response to multiple
drug treatments (i.e. changes in number of cells expressing
a specific marker protein). Dissociated tumor cell samples
were pre-cultured for one week in the optimal medium and
seeded at 1000 cells per well in 384-well plates with pre-added
drugs. A total of 528 approved and investigational drugs were
tested over five different concentrations covering a 10 000-fold
concentration range, where the dose range was individually
optimized for each drug to cover relevant concentrations [13].
The cells were incubated with the drugs for 7 days. To detect
the surviving cells of different subpopulations at the end of
drug treatment, the cells were fixed with 4% paraformaldehyde
and immunostained with polyclonal anti-PAX8 rabbit antibody
(Peprotech) using automated liquid handling. Imaging cytometry
used automated microscopy to determine the numbers of PAX8-
expressing HGSOC cells and PAX8-negative non-cancerous cells
(stromal and normal epithelial cells). These raw cell counts were
used for calculation of the PAX8+/− subpopulation-specific drug
sensitivity scores (DSS) [14], based on the dose–response curve
fitting in the web-based interactive application Breeze (https://

breeze.fimm.fi/) [15]. The DSS values were determined for the
two subpopulations, the PAX8-positive HGSOC cells and the
PAX8-negative non-cancerous cells, based on the cell viability
values for each dose. The cell viability was calculated as a
percent of cells of each subpopulation after each drug treatment,
normalized to the number of cells of the respective population
in the DMSO control.

Since our focus was on molecularly targeted drugs that
should lead to more selective responses and less toxic effects,
we used 352 single-drugs targeting 423 proteins (Figure 1;
Supplementary Table S1), and excluded standard cytotoxic
chemotherapeutics and compounds with undefined molecular
targets. Each of the 352 drugs were tested on each of the eight
cell subpopulation cultures ex vivo (4 patient samples, each
with PAX8+/− subpopulations). The 423 targets were extracted
based on the bioactivity dose–response measurements from our
crowdsourcing bioactivity data platform DrugTargetCommons
(DTC) [16] (https://drugtargetcommons.fimm.fi/), similar to
the original study [10]. Briefly, for each drug-target pair,
we compared the median level of available dose–response
bioactivity measurements in DTC (log-transformed Kd, Ki or
IC50 endpoints), and classified as potent targets all the proteins
within log-fold change ≤ 2 from the smallest bioactivity value
among all the profiled targets of the drug (so-called nominal
or primary target). This drug-target binary interaction matrix
was then subjected to further examination by an expert (K.W.),
who manually excluded non-potent off-targets and included
known potent targets of the drugs that were missed by the
target profiling studies available in DTC (Supplementary Table
S1). Since the combination prediction model makes use of the
drug-target interaction profiles (Supplementary Figure S1), the
aim was to collect as comprehensive target profiles as possible
among proteins that are expected to contribute to the mode-
of-action of the drugs. We also excluded drugs with extreme
monotherapy responses (DSS ≥ 40), since it would become
challenging to find a partner drug to gain synergistic effect if
one of the drugs already alone is showing an extreme response.
Many of the extreme responses also originated from broadly
toxic non-targeted chemotherapeutics.

The computational methodology present in our earlier
study [10] was extended to combine the imaging cytometry-
based ex vivo drug response profiling of HGSOC patient cell
cultures with corresponding sequencing data to investigate
cancer cell subpopulation-specific responses to treatments, both
monotherapies and combinatorial therapies, and to identify
potential mechanisms involved in drug combination synergy
(Supplementary Figure S1). Due to the lack of scRNA-seq
data from each of the HGSOC patient cultures (Table 1), we
decomposed the sample-level bulk RNA-seq data into PAX8+
and PAX8- subpopulation profiles using a latent statistical
framework PRISM [17]. PRISM utilized the scRNA-seq data
available from the fresh dissociated tissues as reference to infer
the expression profiles for the PAX8+ and PAX8- subpopulations
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Figure 1. Molecularly targeted drug classes among the 352 single-agents used in the predictive modeling. HSP, heat shock protein. NSAID, nonsteroidal anti-

inflammatory drugs.

from each individual bulk sample (Supplementary Figure S2).
PRISM has been shown to provide an accurate estimation of
both the cell composition and expression profiles for cancer,
stromal, and immune cells based on 214 HGSOC samples from
the HERCULES study using only eight samples that had both bulk
and scRNA data [17]. This is because it adapts the expression
profiles both to each individual bulk data and to the single-
cell reference. The original combination prediction platform
combined multi-omics data from all the patients to train a
single model [10]. In addition to such a multi-patient model,
we also trained separate models for each patient case using
patient-specific data as an alternative way of modeling drug
responses. While the original study used random forest (RF)
algorithm [18], we also explored in this study other ensemble
learning methods, namely, gradient boosting (GB) [19, 20] and
XGBoost [21], to investigate what is an optimal ML algorithm to
obtain robust and reliable predictions in such a small sample
size learning task (i.e. n = 1 for patient-specific model and n = 4
for multi-patient model).

Results
Predictive modeling and cross-validation setups

As inputs for the prediction algorithms, we used binary vari-
ables for both 423 drug-targets and 110 point mutations, as
detected from the four HGSOC patient cell cultures using the
WGS data (Supplementary Figure S1), combined with the con-
tinuous expression levels of 698 cancer genes (Supplementary
Table S1). The mutation detection was focused only on exonic
and splicing variants (mutation frequency > 0.2, and combined
annotation dependent depletion (CADD) score [22] > 10). The
expression levels were measured with reads per kilobase of
transcript, per million mapped reads (RPKM). The cancer genes
combined both ovarian and pan-cancer markers. The ovarian
cancer markers come from the overexpressed genes, calculated
based on the differential gene expression of 76 HGSOC samples
from the HERCULES study (Wilcoxon test, adjusted P < 0.01
and log fold-change > 0.2). The pan-cancer markers are genes
associated with cancer development, tumor suppressors, and
drug sensitivity or resistance from the best performer teams in

AstraZeneca-Sanger Drug Combination Prediction DREAM Chal-
lenge [4].

We used 10-fold cross validation (CV) for tuning the model
parameters and for selecting the best performing models. In the
leave-drug-out CV setup (Figure 2), we used 90% of the data as
training data, and the remaining 10% was used as test data to
evaluate how well the models generalize to new drug responses.
For each subpopulation, the same drugs were left out for test-
ing (10% of the total drugs), and therefore the drugs in the
test dataset were not seen in the training data. We used this
setup to investigate the effect of various experimental and com-
putational factors on the accuracy of predicting monotherapy
response DSS values in the eight subpopulations (see next sec-
tions). Spearman correlation was used in the fine-tuning of the
model parameters in CV, due to its generally robust behavior, and
the estimated models were also evaluated using Pearson cor-
relation, mean-squared error and mean absolute error (Supple-
mentary Figures S3–S7). The optimized prediction models were
then used to make combinatorial predictions for each patient
(see Drug combination predictions and network visualizations
section), similar to the original study [10].

Effect of using scRNA-seq data on prediction accuracy

We first investigated whether the availability of the scRNA-seq
data from one of the patient cultures could improve the accuracy
of deconvolution of the bulk RNA-seq data into subpopulation-
specific gene expression profiles, and hence the prediction of
population-level monotherapy responses. We observed that
the use of scRNA-seq from the EOC0939_pAsc sample slightly
improved the predictions of the patient EOC0939 responses, as
expected, but when considering all the samples, the use scRNA-
seq data from one of the samples did not affect the monotherapy
predictions, regardless whether using the multi-patient or
patient-specific models (Figure 3). This result indicates that
there is no advantage in performing scRNA-seq for each patient
culture ex vivo, provided scRNA-seq data are available from the
fresh tumors for the subpopulation deconvolution. However, this
result could change if scRNA-seq data were available from each
individual patient culture.
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Figure 2. Construction and validation of the multi-patient and patient-specific predictive models. For a given sample, each drug was associated with a feature vector

corresponding both to its drug-target profile and to the gene expression profile (decomposed from bulk RNA-seq) and point mutation detections (extracted from WGS)

of the particular sample (left). In each iteration of 10-fold CV, 90% of the drug-sample feature matrix were used for training and the remaining 10% was used for testing

of the monotherapy prediction accuracy, either using the PAX8+ and PAX8- samples from a single patient case (right, Patient-specific model), or all the patient samples

(multi-patient model).

Figure 3. Comparison of different models for monotherapy response predictions with/without scRNA-seq data from EOC0939_pAsc sample. (A) Multi-patient models,

(B) patient-specific models. The bar heights show the mean accuracies over the 10 CV folds, and the error bars mark the standard error of the mean (SEM). RF, random

forest; GB, gradient boosting; XGB, XGBoost; +scRNA, with scRNA from the EOC0939 sample.

When comparing the multi-patient models against the
patient-specific models (Figure 3), we observed that in four
out of the eight patient subpopulations (EOC0939_pAsc PAX8-
, EOC1103_pOme1 PAX8+, EOC1103_pOme PAX8-, EOC1107_pAsc
PAX8-) a single multi-patient model had slightly better perfor-
mance compared to that of using the patient-specific models
(see also Supplementary Figure S7). In the remaining samples,
the multi-patient model led to similar performance as the
patient-specific models. This result suggests that leveraging
information from the other patient samples boosts predictive
power to some degree in such a n of 1 personalized medicine

prediction task. However, we note that also the multi-patient
model makes patient-specific predictions, even though it was
trained also using the data from the other samples (Figure 2).
The multi-patient model was used also in the original study [10],
but there a leave-one-drug-out CV was used instead of a 10-fold
leave-drug-out CV.

Even though there were no large differences in the pre-
dictive accuracy among the ensemble learning approaches,
the GB algorithm combined with scRNA-seq data provided
overall accurate and robust predictive behavior (Figure 3). In
comparison to the methodological factors (e.g. use of matched
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Figure 4. Monotherapy prediction accuracy of the multi-patient model after keeping only reliable curve fittings based on visual quality control (QC). (A) Pearson

correlation, (B) Spearman correlation. The numbers in parentheses show the number of drugs used for predictive modeling before/after a visual inspection of the

dose–response curve fittings by an expert (D.B.).

scRNA-seq data, multi-patient or patient-specific models, or dif-
ferent ML algorithms), there appeared to be much higher inter-
individual differences in the accuracy of predicting monotherapy
responses; in particular, the sample EOC1103_pOme1 was
the most difficult to predict, followed by EOC1107_pAsc,
EOC1103_pPer1 and EOC0939_pAsc.To study whether the
location of the specimen affects prediction accuracies would
require large sample cohorts. While these conclusions were
made based on Pearson correlation, the other evaluation metrics
(Spearman correlation, mean squared error and mean absolute
error) generally showed the same trend (Supplementary Figures
S3 and S4).

Effect of drug response data on predictive accuracy

We next investigated whether there would be any factors related
to the drug information and dose–response data that could
explain the variability in the accuracy of predicting monother-
apies across the eight subpopulations. In particular, we investi-
gated the effect of (i) the number of other drugs with the same
protein target(s) than the drug whose response was being pre-
dicted, (ii) filtering out unreliable dose–response curve fits (i.e.
bad quality monotherapy outcome data based on expert visual
examination of the dose–response curve shapes, IC50 values, and
variability between responses to drugs of the same classes of
mechanism of action), and (iii) various drug and target classes
(Figure 1). Among these factors, we observed that the use of
drugs with reliable curve fittings improved predictive perfor-
mance in most of the samples (Figure 4A), and this improvement
was even more consistent in terms of Spearman correlation
(Figure 4B); one notable exception was EOC1103_pOme PAX8+
subpopulation, which had only 98 drugs left after the drug
filtering. This result indicates that the inter-individual differ-
ences in prediction performance were mainly related to the drug
response data (i.e. the outcome variable).

When investigating the patient sample EOC1103_pOme that
had the lowest prediction accuracy, we noticed it had largest
number of experimentally measured DSS values close to zero
(i.e. no efficacy, Figure 5). Even though it is quite expected that

many of the targeted drugs do not show high DSS values, if they
do not target the cancer driving oncoproteins or pathways of
the particular patient, such zero-peaked outcome distributions
may pose challenges for the predictive modeling algorithms.
More specifically, the total number of drugs with DSS ≤ 0.2
values in the four patient samples was: EOC1103_pOme1, 192
(31%); EOC1107_pAsc, 148 (24%); EOC1103_pPer1, 145 (23%);
EOC0939_pAsc, 116 (19%), when combining the PAX8 +/−
populations. We therefore tested whether excluding all the drugs
that show no significant monotherapy efficacy (DSS ≤ 5) before
the monotherapy modeling phase would improve the predictive
accuracy. Even though there were inter-sample differences, we
observed that keeping the drugs even with low efficacy generally
improved the model performance (Figure 6). This result is likely
due to the increased number of drugs available for model
training and CV.

Drug combination predictions and network
visualizations

We made combination predictions for each patient sample using
the prediction model that led to the generally best and rela-
tively robust accuracy for monotherapy predictions (XGBoost
using only drugs with reliable curve fittings and scRNA-seq
from EOC0939 culture, see Supplementary Table S2). To identify
combinations that show selective efficacy and synergy mostly
in the PAX8+ tumor cell population, and that avoid severe co-
inhibition of the non-malignant PAX8- cells, we used the highest
single-agent (HSA) synergy score to rank the pairwise combina-
tions, similar to the original study [10]. More specifically, HSA
score uses both the measured and predicted DSS values, i.e.
HSA = predicted combination DSS – max(measured drug1 DSS,
measured drug2 DSS). In the present study, however, all the DSS
values corresponded specifically to the PAX8+ cell population.
When selecting the combinations for further consideration, we
also required that the HSA score in the PAX8+ population must
be positive (i.e. showing selective synergy in the tumor cells), and
that HSA score in the PAX8- population must be negative (i.e.
non-synergistic co-inhibition in the non-malignant cells). In the
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Figure 5. Distribution of experimentally measured DSS values for the eight subpopulations. The total number of overlapping drugs in the multi-patient model was 313.

Note: the y-axis range varies between the panels.

combination shortlisting, we also required that the measured
DSS values for both of the single-agents must be between 5 and
20 in the PAX8+ cells to exclude single-agents with no efficacy
at all (that are prone to experimental noise), and those with
extreme potency already as monotherapy (for which it is difficult
to find partner drugs to boost the synergy).

Based on the top-20 model-ranked combinations (Sup-
plementary Tables S3–S6), the domain experts selected one
combination for each of the four patient samples based on the
robustness of the drug response observed in the drug testing
experiments, translational potential of the combination, previ-
ous success of the single-agents of the combination in clinical
trials, and the known mechanistic interactions of the drug
targets. We then used the PatientNet R/Shiny web-application
to visualize the patient-customized co-vulnerability networks
using the baseline genomic and molecular profiles of individual
patients that may provide additional support for the combina-
tion discoveries for the clinical translation phase. The PatientNet
application uses as input the patient-specific somatic mutations

from whole-genome or exome-sequencing, transcriptional
changes form whole-genome RNA-seq data, along with the
single-agent responses and target annotations to highlight the
most plausible target pathways and networks. The PatientNet
algorithm finds the shortest paths that connect the potent drug
targets of the predicted combinations to the patient-specific
genetic aberrations and molecular changes, including mutated
or dysregulated genes, through comprehensive cancer signaling
networks [23]. We implemented in this case study a new version
of the algorithm that allows for the user to specify the maximum
path length from the drug targets to the mutations to simplify
the network visualizations. The patient-customized network can
be visualized either in a web browser or in Cytoscape network
analysis software [24].

For the patient sample EOC0939_pAsc, we selected the
combination between vistusertib (mTOR inhibitor) and A1155463
(BCL2L1 inhibitor), since these two agents when used alone
showed rather modest efficacy in the EOC0939 PAX8+ cells
(DSS of 11.4 and 11.8, Supplementary Table S3), whereas their
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Figure 6. Monotherapy prediction accuracy of the multi-patient model with/without removing drugs with low efficacy (DSS ≤ 5). (A) Pearson correlation, (B) Spearman

correlation.

predicted combination effect became relatively high (DSS of
21.6), leading to high synergy score (HSA of 9.7). In this sample,
BCL2L1 and MTOR showed also overexpression in the PAX8+
cells, compared to PAX8- cells (Figure 7A), further supporting
the dual inhibition of these two cancer survival pathways
(metabolic PI3K/AKT/mTOR pathway and apoptotic Bcl-2/Bcl-
xL signaling pathway). For the EOC1107_pAsc sample, we
selected the combination between AZD-5363 (AKT inhibitor)
and Panobinostat (HDAC inhibitor), which also targets the
PI3K/AKT/mTOR pathway, but this time combined with HDAC
signaling pathway for this particular patient sample, in which
both AKT2 and HDAC9 showed overexpression in the PAX8+
tumor cells (Figure 7D). For the EOC1103_pPer1 sample, we
selected combination between verdinexor and AZD-8186, since
PIK3CA was mutated in this patient sample, hence providing
additional support for its pharmaceutical targeting (Figure 7C).
We also note that verdinexor was combined with six other
agents among the top-20 combinations in this particular
sample, supporting its importance and patient-specificity
(Supplementary Table S5). For EOC1103_pOme1, we selected
cobimetinib-BMS777607 combination, since this combination
co-targets many of the overexpressed proteins in this particular
patient sample (Figure 7B).

Comparison of cultured cells against fresh tumors

We next explored how similar the ex vivo cultured cells and
the fresh dissociated tissue of the patients are in terms of
transcriptomic signatures by investigating how accurately the
deconvoluted RNA-seq profiles of the patient cell cultures cap-
ture the PAX8 subpopulation-specific marker genes, originally
identified using the scRNA-seq data from the fresh tumor tis-
sues (Wilcoxon test, adjusted P < 0.01 and log fold-change >

1). Using the same statistical cutoffs in the scRNA-seq from
cultured cryopreserved dissociated tissue, we observed that the
accuracy of the marker detection was ≥91% for the PAX8+ mark-
ers and ≥ 57% for the PAX8- markers (Table 2). Interestingly, the
usage of the scRNA-seq data available for the EOC0939_pAsc
sample improved the detection of PAX8- subpopulation markers

(≥78%), while it slightly decreased the accuracy of detecting
PAX8+ subpopulation markers (≥85%). The differences in the
detection accuracies were relatively similar across all the patient
samples.

When investigating the scRNA-seq profiles of EOC0939_pAsc
cells before and after the ex vivo culturing for 1 week in terms
of the PAX8 marker signatures, we observed that the cells from
the cryopreserved dissociated tissue (before culture) were rather
different from cultured cryopreserved dissociated tissue cells
(after culture), and also from the fresh tumor single-cell disso-
ciate sample (Figure 8). This result might be attributed to the
negative selection of a specific subset of tumor cells by the
cell culture conditions. Collectively, these results indicate that
the deconvolution of the bulk RNA-seq data using the PRISM
algorithm into the PAX8 positive and negative profiles was able
to capture relatively accurately the marker genes detected based
on the scRNA-seq data of the fresh tumor samples, and this was
further improved by using the available scRNA-seq data from
the ex vivo cultures. However, the cultured cells remained rather
distant from the fresh tumors, especially for the PAX8- markers,
which needs to be taken into account in the eventual clinical
applications.

Discussion
To the best of our knowledge, this is the first computational
network-guided approach to tailor personalized combinatorial
regimens in solid tumors that takes into account both the molec-
ular heterogeneity of cancer cells and the possible nonselective
effects of the drug combinations. Comprehensive drug-target
interaction networks were used both in the prediction phase,
with the aim to improve both combination efficacy and tolerabil-
ity, and in the combination interpretation phase, together with
genomic and molecular aberrations to construct patient-specific
co-vulnerability networks. Such in silico prediction approach is
expected to reduce the need for systematic HTS combinato-
rial screening that requires extensive resources and automatic
instrumentation, beyond the capability of most academic lab-
oratories. Testing of hundreds of drug combinations is also
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Figure 7. Patient-customized co-vulnerability networks for the selected drug combination for each patient case. (A) Combination between vistusertib (mTOR inhibitor)

and A1155463 (BCL2L1 inhibitor) for EOC0939_pAsc, (B) combination between cobimetinib (MAP2K2 inhibitor) and BMS777607 (DDR1, MET and MERTK inhibitor) for

EOC1103pOme1, (C) combination between verdinexor (XPO1 inhibitor) and AZD-8186 (PIK3C inhibitor) for EOC1103_pPer1, (D) combination between AZD-5363 (AKT1/2

inhibitor) and panobinostat (HDAC9 inhibitor) for EOC1107_pAsc. The maximum path length in the PatientNet algorithm from the protein targets to differentially

expressed or mutated genes was set to 3 in panels (B-D), whereas for panel (A) the network was simple enough without further filtering of pathways and nodes. The

patient-specific cancer vulnerability network allows for a visual investigation of the mechanisms of action of the selected drug combinations in the patient’s cellular

context, hence providing further support for the tumor-selective combination effects, with possibilities to identify potential biomarkers for the synergistic responses.

impossible in limited numbers of primary cells from patients.
The computational prediction models are therefore expected
to enormously increase cost- and time-efficacy, since the drug
screening efforts can be targeted to verifying the most promising

drug combinations only, with maximal cancer-selectivity, using
more advanced cancer models that are not accessible for HTS.
For instance, the fact that the ex vivo cultured ovarian cancer
cells were relatively distant from the fresh tumor samples in
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Table 2. Coverage of PAX8 marker gene detection using deconvoluted RNA-seq data

Patient sample PAX8+ marker coverage with scRNA data
without scRNA data

PAX8- marker coverage with scRNA data
without scRNA data

EOC1103 pOme1 87% 94% 82% 64%
EOC1103 pPer1 87% 91% 82% 70%
EOC1107 pAsc 85% 91% 78% 57%

Coverage was defined as the number of overlapping markers divided by the number of fresh samples markers, where the markers were identified in the fresh tumor
samples and after ex vivo culturing using the same marker selection criteria (Wilcoxon test, adjusted P < 0.01 and log fold-change > 1 cutoffs). The total number of
PAX8+ and PAX8- markers was 46 and 74, respectively, as detected from the scRNA-seq data of the fresh dissociated tissues.

Figure 8. Overlap of marker genes detected in EOC0939_pAsc scRNA-seq data versus fresh tumor samples. (A) PAX8+ markers, (B) PAX8- markers. The marker genes

were detected from the scRNA-seq data with Wilcoxon test, using adjusted P < 0.01 and log fold-change > 1 cutoffs. Fresh tumor, scRNA-seq from fresh dissociated

tissue; before culture, scRNA-seq from cryopreserved dissociated tissue; after culture, scRNA-seq from cultured cryopreserved dissociated tissue after 1 week in culture.

terms of their transcriptomic signatures indicates that there are
unique molecular-level changes that are not well represented
in the cultured cells, as well as new changes that appeared
during the ex vivo cultures (Figure 8). Therefore, the predicted
combinations need to be further validated in ex vivo or in vivo
tumor models with higher levels of inner heterogeneity, such as
3D organoids or patient-derived xenografts [25, 26], which better
represent the complexity of the patient tumors, before clinical
translation.

A wide range of computational models have been developed
to prioritize the most potential drug combinations for experi-
mental testing [1–3, 27, 28]. The recent AstraZeneca-Sanger Drug
Combination DREAM Challenge benchmarked a variety of such
prediction methods, and observed that the winning methods
incorporated prior knowledge of drug-target interactions [4].
Predictive models learned on rich data available from in vitro
cancer cell lines enable the training of more advanced machine
learning algorithms, such as tensor learning [5] or deep learning
[29]. However, translating the results from the established cell
lines to individual cancer patients is not straightforward [30],
whereas testing of multiple combinations in patient-derived
cells is limited by the scarcity of patient specimens [31]. There-
fore, a recent study made use of ex vivo high-throughput screen-
ing of cancer biopsies using a microfluidic assay, combined with
logic-based modeling of signaling pathways to generate patient-
specific dynamic models for predicting personalized combina-
torial treatments with limited number of cells from pancreatic
cancer patients [32]. However, all of these models predict the
combination effects on tumor cells only, while not considering
the nonselective toxic effects on non-malignant cells. In our

original study [10], we estimated the toxic effects using differ-
ential ex vivo single-drug sensitivity profiles between patient
cells and healthy controls to make sample-level combination
predictions for hematological cancer patients. In the present
case study, we made subpopulation-level treatment predictions
to identify cancer-selective drug combinations for patients with
solid tumors. The RF algorithm that was used in the original
study provided also relatively accurate predictions in the cur-
rent case study (Supplementary Table S2), whereas the overall
best-performing multi-patient model was based on the XGBoost
algorithm [21].

A primary standard chemotherapy treatment for HGSOC
is based on the combination of platinum drugs (carboplatin
and cisplatin) with taxanes (paclitaxel and docetaxel), and
in rare cases, platinum is combined with other cytotoxic
chemotherapeutics (gemcitabine and doxorubicine) [33]. Most of
the recurring HGSOC tumors are subjected to re-treatment under
the same chemotherapeutic regimen. In advanced disease,
combining anti-angiogenic drug bevacizumab with chemother-
apy has improved progression free survival as maintenance
therapy. Targeted therapeutics, including inhibitors of poly (ADP-
ribose) polymerase (PARP) protein family, have been increasingly
used both as front-line and recurrent cancer therapy, typically
as maintenance therapy for platinum sensitive cases [34].
However, the rapid chemotherapy resistance development and
lack of sensitivity to PARP inhibitors in half of the HGSOC
cases urge the need to find targeted drug combinations to
eliminate HGSOC cells more effectively and selectively. Novel
combinatorial regimens, including combinations of immunother-
apy and anti-angiogenesis agents, may further change the
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current treatment landscape [33]. Furthermore, new biomarker-
driven drug approvals indicate that women may benefit from
somatic molecular testing of BRCA and other genes [34]. From
computational point of view, there is a need for mechanistic-
agnostic prediction models that will be applicable also to non-
targeted treatments, including cytotoxic chemotherapeutics and
non-specific immunotherapies, which modulate their effects
through tumor-agnostic mechanisms. To gain the best trade-off
between treatment efficacy and side effects, predictive models
should be applied in the context of physiologically relevant
disease models to identify combinations that target multiple
malignant cell populations that drive the cancer or treatment
resistance, including also cancer stem cells, while avoiding co-
inhibition of non-malignant cells, including immune cells, which
trigger the immune system to destroy cancer cells.

Planned future developments for the computational predic-
tion platform include the implementation of regularized feature
selection approaches and the use of sparse modeling approaches
for more explainable models that may also enable more
systematic identification of omics marker combinations for
synergy prediction. More comprehensive drug-target interaction
networks could be extracted from community efforts toward
bioactivity data collection and harmonization [16, 35], or from
predictive models for target activities [36]. For selected drug
combinations, the use of copy number variation (CNV) might
boost the predictive power, and CNV data could be used as
additional features in the prediction model (Supplementary
Figure S1). In addition, more fine-grained modeling of the genetic
events could be used as categorical features, instead of treating
point mutations as binary variables. Similarly, the use of gene
isoform-level features from bulk RNA-seq data [37], or scRNA-
seq data from multiple time points [38], is also expected to
lead to more predictive and selective longitudinal models. In
particular, single-cell data provides high-resolution information
about the different cell subpopulations present in the complex
samples. We recently demonstrated in a leukemia case study
how the XGBoost algorithm enables combining scRNA-seq data
with ex vivo drug response profiles for accurate prediction
of patient-specific combinations that resulted not only in
synergistic cancer cell co-inhibition, but were also capable of
selectively targeting of specific leukemic cell subpopulations
that emerge in differing stages of disease pathogenesis or
treatment regimens with close to real-time clinical timeframe
[38]. The predictive approach is widely applicable to various
cancer types, where ex vivo monotherapy profiling can be done,
and it may significantly accelerate the future design and testing
of combination therapies, as well as increase their success
rates in pre-clinical and clinical studies. The generic approach
is also applicable beyond cancer research, e.g. finding drug
combinations that synergistically inhibit virus replication, with
minimal effects on non-infected host cells.

Key Points
• The scRNA-seq transcriptomic profiles obtained

before and after cell culture were relatively different
from each other, and also from the fresh dissociated
tissue, in terms of differentially expressed marker
genes.

• The use of scRNA-seq data even from one of the pri-
mary patient cell cultures partially improved marker
coverage of the deconvoluted profiles, but not so

much the predictive accuracy of the monotherapy
responses.

• The multi-patient models across samples led to better
prediction accuracies when compared to the patient-
specific models, suggesting that leveraging informa-
tion from multiple patient samples boosts predictive
power.

• Based on our systematic evaluations, the overall
best-performing multi-patient model was based on
XGBoost algorithm that included only drugs with reli-
able curve fittings and scRNA-seq data from all the
samples available.

• The drug-combination predictions showed wide het-
erogeneity in terms of both drugs and targets, even in
distinct tissue origins of the same patient, highlight-
ing the need for tailored approaches for combination
optimization.
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Supplementary data are available online at https://academi
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