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Abstract  15 

1. Areas that contain ecologically distinct biological content, called bioregions, are a central 16 

component to spatial and ecosystem-based management. We review and describe a variety 17 

of commonly-used and newly-developed statistical approaches for quantitatively 18 

determining bioregions.  19 

2. Statistical approaches to bioregionalisation can broadly be classified as two-stage 20 

approaches that either ‘Group First, then Predict’ or ‘Predict First, then Group’, or a newer 21 

class of one-stage approaches that simultaneously analyse biological data with reference to 22 

environmental data to generate bioregions. We demonstrate these approaches using a 23 

selection of methods applied to simulated data and real data on demersal fish. The methods 24 

are assessed against their ability to answer several common scientific or management 25 

questions. 26 

3. The true number of simulated bioregions was only identified by both of the one-stage 27 

methods and one two-stage method. When the number of bioregions was known, many of 28 

the methods, but not all, could adequately infer the species, environmental, and spatial 29 

characteristics of bioregions. One-stage approaches however, do so directly via a single 30 

model without the need for separate post-hoc analyses and additionally provide an 31 

appropriate characterisation of uncertainty.  32 

4. One-stage approaches provide a comprehensive and consistent method for objectively 33 

identifying and characterising bioregions using both biological and environmental data. 34 

Potential avenues of future development in one-stage methods include incorporating 35 

presence-only and multiple data types as well as considering functional aspects of bioregions.   36 

 37 
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1. Introduction 40 

As human pressures on natural systems increase, understanding and predicting the distribution of 41 

biodiversity has become vital for managing marine habitats. One important task is to define 42 

coherent and ecologically meaningful spatial units that can aid in planning, evaluating and 43 

implementing spatial management options. These spatial units are particularly useful for a diverse 44 

range of applications including: designing monitoring efforts, managing human activities (especially 45 

in marine protected area designation) and informing the relative scales required for ecosystem 46 

based assessments (Koubbi et al. 2011; Baker & Hollowed 2014; Rose et al. 2016; Hill et al. 2017; 47 

Stephenson et al. 2018; Koen-Alonso et al. 2019). This task requires identifying where different 48 

groups of species, or distinct assemblages, are found and has been variously termed 49 

ecoregionalisation, biogeographic classification, ecological mapping, and bioregionalisation (Woolley 50 

et al. 2019). Here we use ‘bioregionalisation’ to describe the process of identifying individual 51 

‘bioregions’ which are geographic regions that are relatively homogeneous and distinct in terms of 52 

their biological contents.  53 

Bioregionalisation is not a new concept. Early marine bioregionalisations drew on data from limited 54 

biological collections and expert knowledge to draw spatial boundaries (Ekman 1953; Hedgpeth 55 

1957) and many global or large-scale bioregionalisations still rely heavily on the input of expert 56 

knowledge in various forms (GOODS UNESCO (2009), MEOW Spalding et al. (2007)). Since the 57 

widespread availability of remotely-sensed data, many bioregionalisations have used statistical 58 

methods to classify environmental data into distinct groups (Raymond 2014; Roberson et al. 2017; 59 

Sayre et al. 2017). The assumption underlying this approach is that different environments are 60 

representative of distinct habitats and should contain different assemblages of species, thus 61 

reflecting biogeographic patterns. However, evidence supporting this assumption is equivocal 62 

(Rickbeil et al. 2013; Ware et al. 2018). Where a reasonable amount of biological data exists for a 63 

region of interest, an alternative, and arguably more representative, approach is to explicitly 64 
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incorporate it into a quantitative analysis. Quantitative, biologically-derived bioregions incorporate 65 

patchy biological data into statistical models that directly relate the distribution and abundance of 66 

multiple species to broader-coverage environmental data (Rubidge, Gale & Curtis 2016; Hill et al. 67 

2017; Woolley et al. 2019). We refer readers to (Woolley et al. 2019) for a detailed discussion on the 68 

current state of marine bioregionalisation. Presently, quantitative bioregionalisations that explicitly 69 

incorporate biological data are most feasible at small to large regional scales. We also note that 70 

while we focus on marine systems, terrestrial bioregionalisation and vegetation classification have 71 

undergone analogous evolution (Köppen 1884; Lyons, Foster & Keith 2017) and most of the concepts 72 

and analytical approaches that we discuss are applicable to terrestrial systems. 73 

Analytical approaches to bioregionalisation that incorporate both biological and environmental data 74 

can broadly be classified into two-stage or one-stage approaches (Woolley et al. 2019). Two-stage 75 

approaches are most common, in which either biological groups are first determined and then 76 

related to their environment (‘Group First, then Predict’) or species are related to their environment 77 

and then biological groups identified (‘Predict First, then Group’). Ferrier and Guisan (2006) provide 78 

a definition of these approaches in a related setting. Within the ‘Predict First, then Group’ approach, 79 

methods that predict the turnover in community composition (beta diversity) rather than the 80 

species themselves are becoming increasingly popular for bioregionalisation (Ferrier et al. 2007; 81 

Leaper et al. 2011; Ellis, Smith & Pitcher 2012; Stephenson et al. 2018). The introduction of models 82 

that jointly predict multiple species distributions, but not bioregions per se (e.g. Warton et al. 83 

(2015a); Ovaskainen et al. (2017)) with reported superiority in predicting community-level patterns 84 

(Norberg et al. 2019) also advance two-stage methods. In a one-stage approach, biological groups 85 

and their relationship with the environment are defined in a single model (i.e. analysed 86 

simultaneously), and various implementations of this have recently become available (ter Braak et al. 87 

2003; Dunstan, Foster & Darnell 2011; Foster et al. 2013). Noted advantages of one-stage 88 

approaches are the direct ecological interpretation of bioregions and appropriate characterisation of 89 
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uncertainty in the distribution of bioregions (Hill et al. 2017; Lyons et al. 2017; Fiorentino, Lecours & 90 

Brey 2018). 91 

As many jurisdictions are moving rapidly toward implementation of marine spatial planning and 92 

ecosystem approaches to management that require bioregion information as a key input (e.g. Koen-93 

Alonso et al. (2019)), it is timely to review recent methodological developments for 94 

bioregionalisation. We categorise a range of modelling approaches available for bioregionalisation 95 

into one of the three approaches listed above and apply a selection of methods to simulated data 96 

and a more complex, real dataset of occurrences of demersal fishes on the Kerguelen Plateau.  97 

We demonstrate each of the approaches and focus our comparison on how the approaches answer 98 

five core questions that allow ecologists and managers to interpret and use bioregionalisations:  99 

i) How many bioregions are there? 100 

ii) What is the spatial distribution of each bioregion across our region of interest? 101 

iii) What species characterise these bioregions? 102 

iv) What are the environmental characteristics of each bioregion? 103 

v) How certain are we about the distribution of bioregions and their composition? 104 

We acknowledge that for particular applications other aspects, such as spatial scale and coherence, 105 

may also be relevant, but do not consider them in detail here. We then explore the advantages and 106 

disadvantages of the approaches from a statistical and ecological viewpoint. Finally, we discuss 107 

future research directions for statistical approaches to bioregionalisation.  108 

2. Materials and Methods 109 

2.1 Categorising quantitative approaches to bioregionalisation  110 

Quantitative approaches are categorised as two-stage if they separate the two components of 111 

bioregionalisation (i.e. identifying biological groups and relating biology to environmental 112 

characteristics), and one-stage if they delineate bioregions based on a simultaneous use of biological 113 
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data and their relationship to environment. Two-stage approaches can be further divided according 114 

to which component occurs first, and by how the biological components are modelled. Here we give 115 

an overview of the approaches (Fig. 1) and their ability to address key questions (Table 1). We very 116 

briefly introduce the methods selected for comparison and refer readers to Appendix 1 for a 117 

comprehensive description of each method. 118 

  119 

Fig. 1. Conceptual framework for bioregionalisation approaches and a selection of approaches that 120 

fall within each of these categories. Asterix (*) indicate methods compared in this paper and 121 

described in detail in Appendix 1. 122 

2.1.1. Two-Stage Analyses: Group First, then Predict 123 
In a ‘Group First, then Predict’ approach, biological data at sampled sites are first clustered to 124 

represent groups of relatively homogenous species composition, and these groups are secondarily 125 

related to environmental data. The first stage (clustering) addresses how many groups or bioregions 126 

can be defined. While there are many approaches to clustering data (Kaufman & Rousseeuw 1990), 127 

here we focus on hierarchical clustering because it is a popular approach used by ecologists (e.g. 128 

Rubidge et al. (2016); Bloomfield, Knerr and Encinas-Viso (2018)). Similarly, many metrics are 129 

available to determine the optimal number of clusters and we use the popular metric, average 130 
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silhouette width (Rousseeuw 1987). The second stage relates thegroups into which each site has 131 

been clustered toenvironmental data to allow prediction of bioregions. This is typically done using a 132 

single model for each group (e.g. Cooper et al. (2019)), or by using a multinomial technique (e.g. 133 

Rubidge et al. (2016)). Here for the second stage of our analysis we used Random Forests (RF; 134 

Breiman (2001), a method that produces an ensemble of classification trees, because it generally has 135 

a high predictive power and is becoming increasingly popular for single species distribution 136 

modelling. Characterising the bioregions produced by the ‘Group First, then Predict’ approaches 137 

usually involves generating summary statistics from the clustered site data (Table 1).  Note that 138 

many methods for predicting bioregions can produce estimates of uncertainty, but these only 139 

represent a portion of the variability in the analysis as they do not account for variability in 140 

clustering. This includes the methods demonstrated in this work.  141 

2.1.2. Two-Stage Analyses: Predict First, then Group 142 
Under a ‘Predict First, then Group’ approach, the distribution of individual species or a 143 

representation of community turnover is modelled and predicted across the region of interest, and 144 

these predictions are subsequently clustered to represent bioregions. We divide this approach into: i) 145 

stacked species distribution models, which model each species independently and then compile 146 

(‘stack’) predictions to generate species composition for each prediction cell (Norberg et al. 2019); ii) 147 

multi- species distribution models , that jointly model and predict the distribution of multiple species 148 

at once (Ovaskainen et al. 2017); and iii) community turnover approaches, which depict how the 149 

composition of communities change through space as a function of the environment (Ferrier et al. 150 

2007; Ellis et al. 2012). Common to all ‘Predict First, then Group’ approaches, the number of groups 151 

and their spatial distribution is determined in the second stage of the analysis by clustering the 152 

predicted species composition, turnover of species composition or transformed environmental 153 

space at cells in the region of interest. Like the ‘Group First, then Predict’ approaches, the species 154 

and environmental characteristics of groups are usually determined by summarising classified site 155 

data and uncertainty is only characterised for one of the stages (Table 1).  156 
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In the stacked species distribution approach, there are a multitude of methods for modelling single 157 

species distributions ranging from variations on linear and generalised linear models (GLM) to a vast 158 

array of machine learning approaches. We use Random Forests to model the distribution of each 159 

species individually because of the advantages noted above and to facilitate fair comparisons 160 

between the approaches. 161 

In the multi-species distribution approach we use the recently-developed, Bayesian Joint Species 162 

Distribution modelling framework called Hierarchical Modelling of Species Communities (HMSC; 163 

(Ovaskainen et al. 2017)). This framework is built upon multi-response generalised linear models 164 

(GLMs) and has shown promise for a number of distribution modelling applications (Ovaskainen et al. 165 

2017). Our implementation uses latent variables to account for spatially structured species’ co-166 

occurrences and enhance spatial prediction capacity. We also use a recently- developed multi-167 

species implementation of the machine learning method Artificial Neural Networks (Mistnet, Harris 168 

(2015)) as neural networks are inherently able to model complex and non-linear relationships and 169 

interactions, a counter point to HMSC which is based on GLMs, and have been shown to have good 170 

predictive ability.  171 

Of the compositional turnover (beta diversity) approaches, we used the popular Generalised 172 

Dissimilarity Modelling (GDM) and Gradient Forests (GF) methods. In GDM a pairwise biological 173 

dissimilarity metric (e.g. Jaccard) is modelled as the response variable and the corresponding site-174 

wise differences in each of the environmental variables as the predictor variables in a regression 175 

spline GLM (Ferrier et al. 2007). Spatial predictions are made by transforming the environmental 176 

differences between pairs of prediction cells using the function identified by the GDM model and 177 

processing the outputs as described in section 3.1.1. Recently a bootstrapped version of GDM 178 

(bbGDM) has been developed to account for that fact that pairwise dissimilarities are not 179 

independent and violate the assumptions of GLMs (Woolley et al. 2017). Gradient Forests aggregate 180 

information from single-species Random Forests to build functions of how species composition 181 
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changes along environmental gradients (Ellis et al. 2012). Predictions are made by transforming the 182 

environmental covariates at all cells across the region of interest using these functions followed by 183 

clustering. 184 

2.1.3. One-stage Analyses 185 
In a One-Stage approach to bioregionalisation, biological groups and their relationship with 186 

environmental data are defined in a single model or analysed simultaneously. This means that 187 

groups (and their associated species composition) can be directly predicted across the region of 188 

interest with measures of uncertainty that encapsulate the entire analytical process. Also, the 189 

species composition and environmental characteristics of groups are derived directly from model 190 

parameters (Woolley et al. 2013; Leaper et al. 2014; Hill et al. 2017). As opposed to silhouette width 191 

or other discrimination metrics, the number of groups within one-stage approaches is currently 192 

chosen based on the model likelihood, using the Bayesian Information Criterion (BIC). Limited 193 

methods are available for one-stage approaches, which currently include Species Archetype Models 194 

(SAMs; Dunstan et al. (2011); Dunstan et al. (2013)), Regions of Common Profile models (RCPs; 195 

Foster et al. (2013) but also see ter Braak et al. (2003)) and Multivariate Regression Trees (MRTs; 196 

De'ath (2002) and Appendix 1). Here we focus on SAMs and RCPs that are both types of finite 197 

mixture models. This means that they can both handle data with non-constant mean-variance 198 

relationships (e.g. abundance data; Warton et al. (2015b)). The difference between SAMs and RCPs 199 

is that SAMs form groups of species based on the species’ responses to environmental data (Dunstan 200 

et al. 2011), whereas RCPs group sites and model those sites grouping as a function of the 201 

environment data (Foster et al. 2013). 202 

2.1.1. Comparison of methods using simulated and real data: 203 

In this section, we run a selection of methods for bioregionalisation on a simulated and a real 204 

dataset. For the simulated data, we generated eight environmental variables across a hypothetical 205 

region of interest. We randomly assigned thirty species exclusively to one of three groups. These 206 
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groups responded to two of the eight environmental variables (temperature and oxygen, Table A3.1, 207 

Fig. A3.2) and we refer to the spatial distributions of these groups as the ‘true’ distributions. These 208 

data were designed to generate a distinct bioregional pattern with minimal spatial overlap between 209 

groups (see Figs. A3.3-5). Presence-absence data were randomly drawn from the probability of 210 

occurrence for each of the 30 species at 200 sites (a subset of all sites) and used as the biological 211 

data input for all methods. Further details for the simulation process are given in Appendix 3. 212 

Our real dataset consisted of the presence-absence of demersal fish recorded in 524 trawls from 213 

random stratified surveys conducted during 2006, 2010 and 2013 on the Kerguelen Plateau in the 214 

Southern Indian Ocean. For illustration purposes, the 20 species that occurred in at least 10 trawls 215 

were retained for analyses. Eight environmental variables representing seafloor (e.g. depth) and sea 216 

surface (e.g. chlorophyll-a) conditions likely to affect the distribution of demersal fish were sourced 217 

at a 0.1 degree resolution. Details on the demersal fish and associated environmental data are in 218 

Appendix 4. 219 

We compared nine modelling methods spread across the three broad modelling approaches 220 

discussed above. The approaches and the way that they answer our five key bioregionalisation 221 

questions are outlined in Table 1. As a final comparison we clustered the environmental data directly, 222 

representing bioregionalisations that do not incorporate biological data. Overall, we tried to ensure 223 

as much consistency as possible amongst the analysis steps for the different approaches to enable a 224 

fair comparison. Implementation details for each method and the derivation of comparison plots 225 

and statistics are in Appendix 2. R code to run the analyses for both the simulation and demersal fish 226 

data are provided in the supplementary material.   227 



11 
 

3. Results 228 

3.1. Simulated Data 229 

3.1.1. How many bioregions are there and what is their spatial distribution? 230 

The type of bioregion outputs produced by the different methods can be described as either hard-231 

class, where each site is assigned uniquely to a particular bioregion, or probabilistic, where each site 232 

has some chance of belonging to more than one bioregion. The three ‘true’ bioregions derived from 233 

the simulated data have a probabilistic and distinct spatial distribution (Fig. 2a). Two-stage 234 

approaches that used hierarchical clustering in the second stage produce hard classes (Fig. 2b), while 235 

the one-stage approaches have a probabilistic output (fig. 2c).  236 

Most two-stage methods identified two bioregions as optimal (Fig. 2b,c). The exceptions were the 237 

Hierarchical Bayesian Model (HMSC_HC) and multi-response neural network (MNet_HC) ‘Predict 238 

First, then Cluster’ methods, where three and five bioregions respectively were selected as optimal.  239 

Most methods that identified two bioregions discriminated bioregions 1 and 3 but did not 240 

distinguish bioregion 2. There are several options for presenting the outputs of naïve and 241 

bootstrapped GDM models (Ferrier et al. 2007). Here we cluster the predicted cell-wise 242 

dissimilarities directly (Fig. 2b, GDM_Dissim_HC) as well as the environmental space which has been 243 

transformed using the GDM model’s spline functions (Fig. 2b, GDM_TransEnv_HC). The latter is most 244 

comparable to the Gradient Forest approach. In this instance, the overall pattern in the distribution 245 

of bioregions is similar using either technique. Clustering the environmental data directly, and 246 

without any biological information, results in 11 bioregions whose distribution looks like a 247 

‘patchwork quilt’ and does not resemble the distribution of ‘true’ bioregion distributions (Fig. 2a). 248 

While the two-stage BioHC_RF method produces a probabilistic output that broadly distinguishes 249 

two groups, it has an increased degree of patchiness in predictions compared to the methods with 250 
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hard-class outputs (Fig. 2c). There are no estimates of uncertainty of the entire analysis process for 251 

BioHC_RF though – these probabilistic maps are only for the second stage. 252 

The one-stage approaches produce probabilistic outputs of the entire analytical process and 253 

distinguish three bioregions that largely correspond to the ‘true’ distribution of bioregions. It should 254 

be noted however, that the model used to simulate bioregions most closely resembles the SAMs 255 

model. The RCP method predicts distinct groups that have a high probability of occurrence and do 256 

not overlap except at the boundaries of the bioregions. The SAM method produces bioregions with a 257 

lower probability of occurrence with less distinct boundaries between groups (Fig. 2c). This results 258 

from a fundamental difference in philosophy and implementation of the SAM and RCP 259 

methodologies; SAM models groups of species with a common response to the environmental data, 260 

while RCP models groups of sites with a common species composition and environmental profile. 261 

Therefore, often more than one SAM group is likely at a location. The RCP model assumes that there 262 

is a single assemblage type at each location, and the model is trying to find that type.  263 
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Fig. 2. The number and spatial distribution of bioregions selected as optimal for each method. A) The ‘true’ 265 

bioregion distribution from the simulation. Colour ramp corresponds to probability of occurrence. B) Hard-266 

classes resulting from hierarchical classification in the ‘Predict First, then Group’ methods. Groups are colour-267 

coded to reflect the best match to the ‘true’ bioregions. C) Probability of occurrence for one-stage and ‘Group 268 

First, then Predict’ methods. Only the one-stage methods (SAM and RCP) and the two-stage method HMSC_HC 269 

correctly identify the number of bioregions and their approximate distribution. Note that the BioHC_RF 270 

probabilities represent only the second-stage of the analysis. Acronyms match those in Table 1. 271 

The number of bioregions chosen as optimal has a large influence on the results of the different 272 

approaches. For the remainder of the simulation results, we remove this influence and assume we 273 

know there are three bioregions (Fig. 3). Approaches that produce probabilistic outputs were 274 

converted to hard-class bioregions by assigning each cell its most probable bioregion. When the 275 

number of bioregions was fixed at three, the distribution of groups in many of the approaches bears 276 

strong resemblance to the simulated true number of bioregions. Nearly all methods overestimate 277 

the spatial extent of bioregion 2. The clustering of the environment alone (Env_Only), divides 278 

bioregions 1 and 3 into an E-W direction and displaces the distribution of bioregion 2 to the NE of its 279 

true region. The ‘Group First, then Predict’ method (BioHC_RF) again produces groups with a 280 

patchier distribution than other methods. Clustering the spline transformed environmental space 281 

from the bootstrapped GDM model (bbGDM_TransEnvHC) produces a different spatial  pattern, 282 

although investigations (not shown here) using many different starts and numbers of bootstraps 283 

produced one of two contrasting patterns suggesting some instability in the model or influential 284 

sites even after many bootstraps. 285 
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 286 

Fig. 3.  Distribution of simulated bioregions for each method when the number of bioregions has been fixed 287 

at three and where cells for methods with probabilistic outputs are assigned their most likely bioregion 288 
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(denoted by ‘Hard Class’). The distribution of bioregions for most methods are more similar to the ‘true’ 289 

bioregions when the number of bioregions are known (except Env_Only, and the bbGDM methods). Bioregions 290 

have been colour-coded to best match the ‘true’ bioregions. Method abbreviations match Table 1. 291 

3.1.2. How certain are we about the distribution of these bioregions? 292 

The only methods that generate appropriate measures of uncertainty for predicted distributions of 293 

the bioregions are the one-stage approaches. For SAMs uncertainty is low overall with few 294 

consistent patterns between the bioregions, while for RCPs the highest uncertainties lie in the 295 

transition between areas of high and low predicted RCP bioregion probability (Fig. 4). 296 

 297 

Fig. 4.  Standard error of predicted probability of simulated bioregion occurrence for SAM and RCP, the only 298 

methods that appropriately characterise uncertainty for the entire bioregionalisation process. Uncertainty is 299 

low overall for SAM and for RCP is most uncertain along transitions between bioregions. 300 

 301 
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3.1.3. What is the species composition of each bioregion? 302 

We derived the species composition of each bioregion for two-stage approaches by summarising the 303 

observed species’ data at clustered survey sites. The one-stage models estimate species membership 304 

for each group directly and probabilistically. RCP models estimate parameters for the species 305 

composition of each RCP bioregion (its ‘profile’), while SAMs estimate the relationships between 306 

species and the environment and thus do not directly provide species composition at site-based 307 

bioregions. For a fair comparison between approaches, we calculated average species responses for 308 

each of the three hard-class version of  bioregions from the ‘true’ (simulated), one- and two-step 309 

approaches. In addition, for the RCP method we directly interpreted the model’s estimated 310 

parameters (Fig. 5). Overall most methods recovered the ‘true’ tabulated distribution of species 311 

reasonably well, with some intra-method variability amongst the species composition (see Figs. 5 312 

and A3.6 for all species). Surprisingly this included, the bbGDM_TransEnvHC that had a distinctly 313 

different spatial distribution of bioregions. The probability of species’ occurrence estimates from the 314 

RCP model coefficients were slightly larger than the standard errors from the tabulated results.  315 

 316 
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Fig. 5.  Abridged species composition of each simulated bioregion, when the number of groups has been 317 

fixed to three. Most methods recovered the ‘true’ tabulated distribution of species reasonably well, with some 318 

intra-method variability amongst the species composition. Mean and standard error of the prevalence (or 319 

probability of occurrence for RCP Coeficients) for species 1- 5 (all 30 species are in Fig. A3.7). For comparative 320 

purposes, SAM, RCP and BioHC_RF results were also calculated using the hardclass conversion of the 321 

probability predictions (denoted “Hard Class”)). Estimates directly from model parameters are also included 322 

for RCP (RCP Coefficients). Acronyms match Table 1.  323 

3.1.4. What are the environmental characteristics of each bioregion? 324 

Temperature and oxygen were the environmental variables that determined the simulated 325 

bioregions but all variables were considered in the models. Examination of the environmental 326 

characteristics for each bioregion a posteriori showed that each bioregion has a distinct combination 327 

of environmental values that are largely consistent with the truth (Fig. 6a, Fig. A3.7). The clustering 328 

of the environmental data only (Env_Only) is most different, followed by the bootstrapped GDM 329 

transformed environment (bbGDM_TransEnvHC, Fig. 6a, Fig. A3.7), reflecting differences in the 330 

spatial distribution of bioregions for these methods. For all two-stage approaches, the 331 

environmental characteristics of each bioregion were derived by summarising environmental 332 

covariates at clustered sites (Fig. 6a). In order to enable a fair comparison, we also calculated 333 

environmental characteristics for methods with probabilistic outputs (‘true’, BioHC_RF, SAM and 334 

RCP) by summarising the observed environmental conditions at sites assigned their most likely 335 

bioregion (denoted by “Hard Class”).  336 

The ‘Group First, then Predict’ and one-stage approaches provide additional information on the 337 

response of bioregions to each environmental variable in the form of partial response plots (see Figs. 338 

A3.8-11 and associated explanation). Responses of bioregions to simulated variables are largely in 339 

line with expectations from the simulation set up.  340 
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 341 

Fig. 6.  A subset of the environmental characteristics of each simulated bioregion determined for each 342 

method when the number of groups is fixed at three.  Each bioregion has a distinct combination of 343 

environmental values that are largely consistent with the truth with Env_Only and bbGDM_TransEnv_HC most 344 

different. Data are are the summarised from classified site data and representmean (+/- 1 SD) environmental 345 

conditions in each bioregion. For comparative purposes, SAM, RCP and BioHC_RF results were also calculated 346 

using the hard class conversion of the probability predictions (denoted “Hard Class”). 347 

3.2. Kerguelen Plateau demersal fish 348 

Analysis of the Kerguelen Plateau demersal fish data yielded many similarities to the simulation 349 

results. (). Most of the two-stage methods discriminate two bioregions (exceptions were MNet_HC 350 

and both spline transformed GDM methods), while the one-stage methods SAM and RCP identify 351 

four and five bioregions respectively (Fig. A4.3). If we assume four bioregions for ease of comparison, 352 

then patterns in the spatial distribution of bioregions are more similar, including when clustering 353 

only the environmental data (Fig. 7, Fig. 8). Most methods consistently distinguished a shallow 354 

bioregion and a deep bioregion with varying boundaries for intermediate bioregions (Fig. 7). The 355 
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hard-class  of SAM archetype probabilities in Fig. 7 results in three dominant bioregions, with the 356 

fourth spatially limited. This is because bioregion 3 has a low predicted probability of occurrence 357 

across the region which is more clearly seen in Fig. 8 and illustrates a key difference in the SAM 358 

compared to RCP methodology. RCP bioregions generally have a high and distinct probability of 359 

occurrence across the study region, whereas some of the SAM bioregions overlap and have 360 

moderate probability of occurrence (Fig. 8).  361 

Patterns in the species associated with and environmental characteristics of each bioregion are 362 

complex. For many species and methods there is reasonable agreement in composition (Fig. A4.10) 363 

particularly for Bioregions 1 and 4. There was less agreement in the composition of Bioregions 2 and 364 

3. Most methods distinguished depth bands for the different bioregions, while these appear to 365 

overlap more for SAM bioregions (Fig A4.6). Of all the methods the BioHC_RF most often stood apart 366 

from the others in its environmental characteristic. See Appendix 4 for additional results and their 367 

discussion. 368 
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 369 

Fig. 7. Distribution of Kerguelen Plateau demersal fish bioregions for each method when the number of 370 

bioregions has been fixed at four and where cells for methods with probabilistic outputs are assigned their 371 

most likely bioregion (denoted by ‘Hard Class’). The spatial distribution of bioregions are more similar 372 

between methods when the number of bioregions are set to four and largely reflect depth-related patterns. 373 

Bioregions have been colour-coded to best highlight similarities in the distribution of bioregions. Method 374 

abbreviations match Table 1. 375 
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 376 

Fig. 8. Probabilistic predictions of the distribution of Kerguelen Plateau demersal fish bioregions from 377 

the one-stage methods, when the number of groups is set to four.  A) Species Archetype Model (SAM) 378 

and B) Regions of Common Profile (RCP). Colour ramp indicated probability of bioregion presence. RCP 379 

bioregions generally have a high and distinct probability of occurrence across the study region, whereas some 380 

of the SAM bioregions overlap and have moderate probability of occurrence. 381 

4. Discussion 382 

We have categorised three broad approaches for quantitatively generating bioregions using both 383 

biological data and environmental data and compared some common and recently developed 384 

methods within each approach. We demonstrated that most methods could adequately delineate 385 

and characterise bioregions, but only if the number of bioregions was known. The exception is 386 

clustering only environmental data, which was unable to give any information on the expected 387 

species in each bioregion. In reality however, the optimal number of bioregions are not known a 388 

priori as they are not directly observed. In our simulation where we set the number of bioregions, 389 

only both of the one-stagemethods and one two-stage method correctly identified the true number 390 

of bioregions. We argue that in addition to correctly identifying the number of bioregions in the 391 

simulated data, one-stage approaches offer advantages over many of the other methods in terms of 392 

appropriately characterising uncertainty, direct interpretation, and transparency in what is actually 393 
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being modelled, and therefore represent a promising direction for quantitative bioregionalisation. 394 

We discuss some challenges and opportunities for bioregionalisation and one-stage methods into 395 

the future.  396 

4.1. Advantages and Disadvantages of approaches 397 

Most methods can provide answers to many of the questions ecologists and managers ask in order 398 

to identify, interpret and use bioregionalisations. In the two-stage approaches however, the 399 

clustering and prediction stages are decoupled from each other and often the original data which 400 

means that additional post-hoc analyses must be conducted to interpret the bioregions. For example, 401 

any method that uses a dissimilarity metric in either stage of the analyses loses the information 402 

about individual species needed to interpret the composition of bioregions. An advantage of one-403 

stage approaches is that this information is recoverable directly via estimated model parameters, 404 

with variances that explicitly account for estimating bioregional groups (ter Braak et al. 2003; Foster 405 

et al. 2013). An important feature that sets one-stage approaches apart is that the mathematical 406 

model provides a formal definition of bioregions and their relationship with the environment. Thus, 407 

this explicitly provides transparency and repeatability (Warton et al. 2015b).  408 

Currently only one-stage methods are able to appropriately quantify the uncertainty in the final 409 

bioregionalisation map.Many applications of two-stage approaches either do not consider 410 

uncertainty (Koubbi et al. 2011) or present ‘final stage’ uncertainty estimates that are incomplete or 411 

optimistic (Lasram et al. 2015; Rubidge et al. 2016) because of the difficulty in appropriately 412 

propagating uncertainty through both stages . Theoretically improvements to two-stage Bayesian 413 

models to allow uncertainty to propagate across stages are possible, but we are unaware of any 414 

current implementations in this context. In contrast, one-stage methods directly model and predict 415 

biological groups based on environmental data, explicitly quantifying the uncertainty in the 416 

predictions of the groupings themselves. Appropriate measures of uncertainty are important in 417 

many applications of bioregionalisation because they allow an assessment of risk associated with 418 
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applying (or not applying) spatial management to a location. These assessments are already 419 

standard in fisheries assessments (e.g. Koen-Alonso et al. (2019)) and are likely to become more 420 

important in bioregionalisation decision-making, where financial costs and biological costs are often 421 

traded to meet competing objectives. 422 

There are several other trade-offs that may influence the method chosen to conduct 423 

bioregionalisation analyses (see Table .1). In terms of implementation, most methods have some 424 

model diagnostics, although only the diagnostics for the one-stage approaches are appropriate for 425 

the entire bioregionalisation process. Some methods (e.g. hierarchical clustering, random forests) 426 

are easy to implement within common software, while some of the newer methods, particularly the 427 

one-stage methods, require more investment. For example, currently optimising the parameters for 428 

the multi-response artificial neural networks and deriving the species’ profiles for RCPs are not trivial. 429 

However, code is publicly available for these tasks and new packages are under development for 430 

facilitating the ‘user-friendliness’ of one-stage approaches. Similarly, some methods are relatively 431 

computationally intensive for moderate size datasets (Bayesian Bootstrapped GDM, Hierarchical 432 

Bayesian models, RCPs, artificial neural network). Finally, some methods, such as random forests and 433 

artificial neural networks, more naturally handle non-linear species responses to environmental 434 

variables and interactions, than methods based on GLMs which include the one-stage methods.  435 

 436 

Focussing on the one-stage approaches used here, Species Archetype Models (SAM) and Regions of 437 

Common Profile (RCP), formulate and describe different types of groups that are useful for different 438 

applications. SAMs group species based on a similar environmental response, while RCPs group sites 439 

based on environments with similar species’ composition. SAMs’ species-centric approach fits with 440 

ecological theory about how species assemble and is well suited to answering questions surrounding 441 

species’ responses to environmental factors now and into the future. RCP’s site-based approach 442 

makes it particularly well suited to many explicitly spatial applications such as assessing the 443 
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comprehensiveness and representativeness of marine protected areas (Hill et al. 2017), developing 444 

monitoring programs (Rose et al. 2016), and considering fisheries management under an ecosystem 445 

based management approach (Baker & Hollowed 2014). In cases where groups of species have very 446 

distinct responses to their environment and environmental gradients are strong, then the two 447 

approaches are likely to coincide.  448 

4.2. Challenges and Future Directions 449 

A key challenge for bioregionalisation is determining the appropriate number of bioregions since 450 

they represent the simplification of a complex system and are not directly observed. For all methods, 451 

the number of groups identified as optimal makes the largest difference to the final 452 

bioregionalisation, affecting the location of bioregions and the interpretation of the species and 453 

environmental conditions they represent. Clearly this has ramifications when using bioregions for 454 

spatial or ecosystem-based management. In our study, the optimal number of groups was often 455 

underestimated by the two-stage methods which used hierarchical clustering and average silhouette 456 

width, while better discriminated in the one-stage methods using information criteria (BIC, AIC). In 457 

simulations, Hui (2017) also found information criteria superior to a range of common clustering 458 

algorithms for discriminating groups. Explicitly considering the spatial nature of the data when 459 

clustering may improve the discrimination of groups for two-stage methods (Liu et al. 2012) and 460 

spatial clustering is also an area of active research (Alfó, Nieddu & Vicari 2009). Alternatives for 461 

determining the number of groups may be more pragmatic than statistical, such as the feasibility of 462 

managing bioregions or the desire to have bioregions at multiple scales. However, we emphasise 463 

that statistical approaches are repeatable, and that information criteria and model-based 464 

approaches appear a promising way forward to objectively identify the optimal number of 465 

bioregions using the data themselves. 466 

Two exciting areas of potential development for one-stage bioregionalisation models include 467 

incorporating multiple data types and considering other aspects of biodiversity. Incorporating 468 
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multiple data types, especially presence-only data, will become ever more important as the spatial 469 

scale of management applications increases and online databases grow (Isaac et al. 2020). This could 470 

be achieved using Inhomogeneous Poisson Point Process Models (IPPM) which have demonstrated 471 

advantages for modelling presence-only data (Warton & Shepherd 2010; Renner et al. 2015), 472 

including multiple data types and attempting to account for sampling biases (Warton, Renner & 473 

Ramp 2013; Fithian et al. 2014). Similarly  genetic, phylogenetic and functional aspects of diversity 474 

are becoming increasingly important considerations for conservation and ecosystem-based 475 

management (Guilhaumon et al. 2015). These metrics are tractable by replacing species with 476 

functions or traits as the unit for analyses. Alternatively, the concept used in the hierarchical 477 

Bayesian framework (HMSC) where species are modelled, but an explanation for their response is 478 

sought using functional or phylogenetic factors at a higher level (Ovaskainen et al. 2017), could be 479 

extended to one-stage methods.  480 

While we have shown that most methods demonstrated here can potentially provide answers to 481 

questions commonly posed by ecologists and resource managers, it is our view that one-stage 482 

approaches offer the most comprehensive and consistent method for objectively identifying 483 

bioregions, and for describing their biological and environmental characteristics. As the need for and 484 

spatial scale of bioregionalisation increases, future developments of one-stage methods that can 485 

incorporate presence-only and multiple data types as well as considering functional aspects of 486 

bioregions will see the broader uptake and application of quantitative bioregionalisations that 487 

incorporate both biological and environmental data.   488 
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Table 1. Summary of the methods selected to illustrate the broad modelling approaches, how they answer the five core bioregionalisation questions, as 658 
well as other key features of the selected methods. Boxes relating to bioregional questions are coloured to indicate: orange = not possible, yellow = 659 
possible; green = better approach because it does not require separate post-hoc analyses or considers the entire bioregionalisation process. Max. sil width= 660 
maximum silhouette width which was used in this study to determine the number of groups in two-stage approaches. Uncertainty is classed as ‘No’ unless it 661 
can be quantified throughout the entire analysis, not just part of it. BIC= Bayesian Information Criteria. * Only the one-stage methods have appropriate 662 
diagnostics to capture the bioregionalisation process. Other methods have diagnostics for a single stage of the analyses, listed in brackets. + Relative 663 
indication of computational requirements.  Note that even simple hierarchical clustering methods may run into computational and memory issues with a 664 
large dataset. 665 
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Appendix S1:  
Detailed description of approaches and 
selected methods 
What data goes into bioregionalisation analyses? 
Bioregional analyses at regional scales are generally underpinned by data collected during scientific 
surveys. Surveys typically collect data on the presence-absence, abundance, or biomass of multiple 
species sampled at sites across an area. Data from several surveys may be collated to gain better 
geographic coverage or sampling intensity. Environmental data usually consist of variables with 
synoptic coverage across the region of interest. In the marine realm, these can include data from 
satellites but may also be interpolated data or output from oceanographic models. Using synoptic 
environmental data allows us to ‘fill the gaps’ and map bioregions at sites where biological data has 
not been collected. 

Two-stage approach 
All two-stage approaches involve a clustering step where either the biological data or the predictions 
of single-species distribution models are clustered. Clustering data into groups is a long-standing 
analytical problem and numerous clustering techniques have been developed (Kaufman & 
Rousseeuw 1990). Here we use hierarchical clustering, a type of ‘algorithmic’ clustering techniques 
because it a popular method used by ecologists to group biological data (e.g. Chiba et al. (2001); 
Schiele, Darr and Zettler (2013). We note that there have been recent developments in model-based 
and machine -learning clustering approaches that are applicable to this task (e.g. Pledger and Arnold 
(2014); Hui (2017); Du (2010)). 

‘Algorithmic’ clustering techniques, such as hierarchical clustering, are based on calculating pairwise 
dissimilarity between sites. They aim to simultaneously minimise the dissimilarity of sites within 
groups and maximise the dissimilarity of sites between groups (Kaufman & Rousseeuw 1990). 
Hierarchical clustering iteratively groups the data either divisively (where all sites are initially treated 
as one group) or agglomeratively (where individual sites are initially treated as groups) producing a 
tree-like structure. In this work we consider agglomerative hierarchical clustering based on Ward’s 
linkage as a typical algorithmic method often employed in ecological studies. 

Two-stage Analyses: Predict first, then Group 
Stacked Species Distribution Models 
In the stacked species distribution methods, each species is modelled independently and then 
predictions are compiled (‘stacked’) to generate species composition for each prediction cell 
(Norberg et al.). There are a multitude of approaches for modelling the distribution of individual 
species ranging from variations on linear and generalised linear models (GLM) to a vast array of 
machine learning approaches (described in Elith et al. (2006); Elith and Leathwick (2009); Franklin 
(2009).  Here we briefly discuss tree-based machine learning methods because they are good at 
prediction, are becoming increasingly popular for single SDMs (De'ath & Fabricius 2000; De'ath 2007; 
Elith, Leathwick & Hastie 2008) and form the basis for more complex models discussed under other 
approaches. We also note that many of the methods applicable to modelling single species 
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distributions are applicable to modelling the relationship between groups and environmental factors 
in the second stage of the ‘Group first, then Predict’ approach. 

Tree-based methods 
Tree-based methods recursively partition species data into smaller and smaller groups basing the 
splits on environmental variables that reduce the error or variance within groups (De'ath & Fabricius 
2000). Single trees are extremely sensitive to the input data and are highly variable, which reduces 
their predictive capacity. Ensemble trees that take random subsets of the data, build many trees and 
combine the predictions from all trees solve this issue. The best-known ensemble methods are 
Boosted Regression Trees (BRT; Elith et al. (2008) and Random Forests (RF; Breiman (2001). Here we 
focus on Random Forests as an example of an ensemble method that has been shown to have high 
predictive power (Lawler et al. 2006; Cutler et al. 2007) and is increasingly used in ecological 
applications (Knudby, LeDrew & Brenning 2010; Wei et al. 2011). Random Forests take a bootstrap 
sample of the data and of the environmental predictors to build independent trees (a forest). The 
final predicted value for the forest is the summary of all the predictions from all the trees in the 
forest. Interpreting which variables are important and how they relate to the distribution of species 
relies on aggregating information on the split points and their influence in reducing group error or 
variance for each environmental variable across all trees in the ensemble (Breiman 2001). Tree-
based methods inherently model non-linearity and interactions in the data. We also use Random 
Forests in the second stage of the “Group first, then Predict’ approach for comparability.  

Multispecies Distribution Models 
As opposed to stacked species distribution models, multispecies distribution models simultaneously 
model the distribution of multiple species within the single model to generate predictions of 
community composition. He we focus on a subset of recently-developed methods based on 
multivariate GLMs and a machine-learning technique.  

Multivariate Models, which model more than one response at a time, provide a flexible means to 
simultaneously estimate the distribution of multiple species using environmental and other data and 
encompass a variety of specific models.  Often also called Joint Species Distribution Models (Pollock 
et al. 2014; Warton et al. 2015; Ovaskainen et al. 2017), these models recognise that species’ 
distributions are correlated due to factors such as biological interactions. JSDMs seek to model 
species’ co-occurrence or other types of interaction through explicit joint correlation structures. This 
is often in the form of a multivariate response GLM with carefully designed random effects to 
account for interspecific interactions (Pollock et al. 2014; Warton et al. 2015; Ovaskainen et al. 
2016b). As the number of required correlation terms between species grows quickly with the 
number of species, a clever solution is to use a small number of latent (unobserved) variables that 
map to the correlation structure to reduce dimensionality and simplify the problem (Hui 2016; 
Ovaskainen et al. 2016a; Thorson et al. 2016). Such a model effectively performs dimension 
reduction whilst simultaneously conditioning on the species’ responses to the environment. Many 
variations of JSDMs exist and, depending on the data and context, can include temporal (Thorson et 
al. 2016) and spatial correlation structures (Latimer et al. 2009; Thorson et al. 2015; Ovaskainen et 
al. 2016b), experimental design considerations (Ovaskainen et al. 2016a), can accommodate the 
influence of functional traits (Sebastián-González et al. 2010; Abrego, Norberg & Ovaskainen 2017) 
or phylogeny (Ovaskainen et al. 2017)  on the distribution of species. JSDMs can be more accurate at 
predicting individual species (Maguire et al. 2016; Norberg et al. 2019) and community-level 
properties such as species richness (Norberg et al. 2019) than stacked species distribution models 
(but see Caradima, Schuwirth and Reichert (2019)). Rarer species can more effectively be modelled 
than when using single species models as they ‘borrow strength’ from other species via correlation 
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structures (Hui et al. 2015; Norberg et al. 2019). The particular type of Joint Species Distribution 
Model we use here is a Bayesian Hierarchical model within the Hierarchical Modelling of Species 
Communities (HMSC) that uses latent variables to account for spatially-structured species’ co-
occurrences (Ovaskainen et al. 2016b; Tikhonov et al. 2020). In this instance the spatial structure 
aids in the prediction to unsampled locations within the region of interest. 

Artificial Neural Networks (ANN) are a machine learning technique that is gaining popularity in 
species distribution modelling due to their generally high predictive performance and ability to 
accommodate interactions and non-linear responses (Olden 2003; Olden, Joy & Death 2006; 
McKenna, Carlson & Payne-Wynne 2013). Artificial Neural Networks consists of three types of layers, 
the environmental (input) layer, at least one hidden layer and the species (output) layer. All layers 
consist of neurons, akin to variables, or functions of them (Olden et al. 2006). Sometimes it is also 
advantageous to use random variables as inputs (Harris 2015), as these can improve prediction 
properties. The hidden layer takes transformations and combinations of the environmental 
covariates to form new variables – the hidden layer’s neurons – with the number of neurons 
optimised using cross-validation. Weighting is applied to connections and determines the influence 
of the neurons in one layer on the neurons in the next layer. The ANN is trained to the data by 
iteratively adjusting the connection weights to find the set that minimises the error in the network 
as it is sequentially presented samples (Olden et al. 2006). The relative influence of environmental 
variables are quantified using the connection weights across the layers for each input neuron.  

In the context of bioregionalisation, the outputs of multispecies ANNs and JSDMs are typically 
predictions of the probability of occurrence or abundance of each species in each spatial cell over 
the domain of interest. These predictions, although potentially more accurate than stacked single 
SDMs, still need to be clustered to define bioregions. 

Compositional turnover models 
Two methods have been developed in recent years to model the turnover of community 
composition (beta diversity), which can act as a proxy for defining bioregions; Generalised 
Dissimilarity Modelling (GDM; Ferrier et al. (2007) and Gradient Forests (GF; Ellis, Smith and Pitcher 
(2012). 

GDM uses dissimilarity metrics as the basis for model building and inference. These pairwise 
dissimilarities are treated as the response variable, and the predictor variables are the 
corresponding site-wise differences in each of the environmental variables (Ferrier et al. 2007). This 
ecological dissimilarity is modelled using a regression spline within Generalised Linear Model (GLM) 
that enforces the constraint that sites that have greater environmental differences must be more 
ecologically dissimilar (Ferrier et al. 2007; Woolley et al. 2017). Spatial predictions are made by 
transforming the environmental differences between pairs of prediction cells using the function 
identified by the GDM model. Predictions are the dissimilarity of every cell to each other cell and are 
therefore difficult to visualise. Generally, the dimension of these dissimilarities is either reduced 
using multidimensional scaling (MDS) and the first three or four MDS axes plotted (Lasram et al. 
2015) or the entire dissimilarity matrix is directly clustered to produce bioregions (Ferrier et al. 2007; 
Koubbi et al. 2011). Alternatively, the spline transformed environmental differences between pairs 
of prediction cells can be either ordinated or clustered (Leaper et al. 2011). We classify GDM as a 
two-stage method because a clustering step is necessary to derive bioregions. 

One criticism of GDM is that the pairwise dissimilarities number m(m -1)/2, where m is the number 
of sites. GLMs assume stochastic independence, which cannot be obtained when modelling 
dissimilarities. This has important implications, chiefly that there is an overstatement of the amount 
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of information in the data that will under-estimate uncertainty and exaggerate the statistical 
significance of environmental factors that propagates through to the predictions of mean 
dissimilarities between sites (Woolley et al. 2017). A recent modification of GDM uses Bayesian 
bootstrap sampling to obtain better estimates of the significance of environmental variables for 
determining community turnover (Woolley et al. 2017). 

Gradient Forests (GF) aggregate the information from single-species Random Forests (RF, discussed 
earlier) to generate a picture of which environmental predictors are important in determining 
distribution across all species and where compositional changes occur along each environmental 
gradient (Ellis et al. 2012). To do this GF aggregates the (cumulative) distribution of split values along 
each environmental variable, weighted by its importance in determining the split in the forest and 
the goodness of fit of the RF for each species. These cumulative split distributions are treated as 
functions that describe community turnover along environmental gradients.  Predictions are made 
by transforming the environmental covariates at all cells across the region of interest using the 
cumulative importance functions (Pitcher et al. 2012). These ‘biologically informed’ environmental 
variables can then either be ordinated (Pitcher et al. 2012; Thomson et al. 2014) or clustered directly 
(Baker & Hollowed 2014; Stephenson et al. 2018) in a similar way to that performed in Leaper et al. 
(2011) using GDM, to produce groups that represent different assemblages or bioregions.  

One-Stage Analyses 
One-stage approaches delineate bioregions based on a simultaneous use of biological data and their 
relationship to environment. Limited methods are available for one-stage approaches, which 
currently include Species Archetype Models (SAMs; (Dunstan, Foster & Darnell 2011; Dunstan et al. 
2013), Regions of Common Profiles models (RCPs; Foster et al. (2013) but also see ter Braak et al. 
(2003) and Multivariate Regression Trees (MRTs; De'ath (2002)). 

In Species Archetype Models (SAMs), species are grouped based on their response to environmental 
gradients through application of a finite mixture of GLMs of species’ data onto a set of 
environmental variables (Dunstan et al. 2011). The aim is to find subsets of species that can be 
described by a set of common environmental responses. Because these groups are unobserved, 
SAMs can also be classified as a latent factor model and has the property that rarer species can 
‘borrow strength’ from more common species in terms of their environmental responses (Hui et al. 
2013). The number of groups (species archetypes) supported by the data is determined using the 
Bayesian Information Criteria (BIC), but this measure is not infallible. BIC can also be used to select 
and quantify the relative importance of environmental variables in discriminating groups of species. 
Each species has a probability of belonging to each archetype via estimated model coefficients 
(Dunstan et al. 2011). Each archetype is defined by its response to the environment, which means 
that the environmental characteristic of each group are also defined by the model’s coefficients. 
SAM has been used mainly in the marine environment to examine diversity patterns for 
conservation management and to examine ecological paradigms (Woolley et al. 2013; Leaper et al. 
2014; Jansen et al. 2018). 

Using the groups’ responses to environmental variables, the probability of finding each archetype 
can be directly predicted into areas with synoptic coverage for environmental covariates but with 
limited biological sampling. It is important to emphasise that SAM groups species and not sites, 
therefore more than one archetype (i.e. group with common response to the environment) may be 
likely at any location. Importantly, the uncertainty in finding an archetype at a new location is 
quantifiable and appropriate (i.e. it captures the uncertainty in both the grouping of species and 
their response to the environment). 
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Regions of Common Profile (RCP; Foster (2013) models are another model-based, one-stage 
statistical approach to bioregionalisation. RCP defines environmental regions with a distinct species 
profile and essentially simultaneously uses biological and environmental data to cluster sites. Like 
SAMs, RCPs are based on multivariate GLMs. Technically, they are a mixture-of-experts model 
(Foster, Hill & Lyons 2017) where region is a latent factor whose probability of occurrence varies as a 
function of environment. The number of regions and influential environmental variables can be 
chosen using BIC (Hill et al. 2017). The expected prevalence or abundance of each species in each 
region (i.e. the species profile or composition) is defined directly by model coefficients. Because 
each region is defined by environmental variables, the environmental characteristics of each region 
are also defined by model coefficients and the probability of finding each region can be directly 
predicted at new sites. Similarly to SAM, RCP appropriately quantifies uncertainty in the probability 
of finding each RCP at each new site. In contrast to SAM, RCP groups sites based on their species 
composition and environment. RCPs are relatively new and are starting to see uptake in the marine 
and terrestrial realms to inform conservation management (Hill et al. 2017; Lyons, Foster & Keith 
2017). 

Multivariate regression trees (MRTs) are extensions of univariate regression trees, where each split 
in the tree is based on a division of the environmental predictor that minimises the sums of squares 
about the multivariate mean (De'ath 2002). The terminal nodes of MRTs indicate a relatively 
homogenous group of sites, characterised by the mean values of their associated species. Thus, 
MRTs also give information about the environment and species’ composition of groups directly from 
a single model. Multivariate Regression Trees have been implemented primarily for abundance data 
using various standardisations (e.g. site standardisation) that are amenable to the sums of squares 
metrics. These can equate to different inter-site distances (e.g. Chi-squared distances) (De'ath 2002). 
Theoretically, it is possible to run MRTs directly on any dissimilarity matrix but interpreting the 
resulting tree and generating predictions are problematic and similar to the two-stage methods that 
explicitly model dissimilarity metrics. Similarly, to single univariate trees, multivariate trees can be 
sensitive to outliers. A Random Forest version of MRTs has been developed that builds ensembles of 
trees using bootstrapped samples (Segal & Xiao 2011). While the random sampling of data for each 
tree in the forest increases the robustness of individual species’ predictions, it complicates 
interpreting which sites belong to which terminal node or group. The proximity matrix of each tree 
describes how sites are associated and when aggregated over re-sampled trees can be converted 
into a distance matrix can then be clustered to determine the number of groups (Miller et al. 2014).  
Because of this second classification step, we do not consider multivariate random forests as a truly 
one-stage method and because we are interested in presence-absence data (MRTs are available only 
for continuous data), we do not consider MRTs or multivariate random forests in this paper.  
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Appendix S2:  
Detailed description of implementation 
of selected methods 
 

General 
In order to keep the results as comparable as possible, hierarchical clustering was used in the 
clustering step of the two-stage methods. We used Ward’s Distance as the linkage criteria (Kaufman 
& Rousseeuw 1990) and the maximum average silhouette width to determine the number of 
clusters supported by the data (i.e. where to cut the dendrogram; Rousseeuw (1987). All analyses 
were conducted in the R statistical environment (R Development Core Team 2015). The main 
packages used for each method are listed in Table 1. 

All code is publicly available via Zenodo: https://zenodo.org/record/3936354 

Within each of the folders ‘Simulation’ and ‘KP_Fish’ devoted to the analysis of the two datasets, 
code within ‘…_Run_Models.R’ implements the analyses described below. Additional code files are 
provided that were used for interpreting and plotting model outputs for each dataset. 

 

Environment Only 
We performed a cluster analysis on the environmental data (Env_Only) available for the simulated 
and Kerguelen Plateau (KP) regions. This represents a common scenario where no biological data are 
available or incorporated into bioregionalisation analyses. Environmental data were scaled and 
centred, before being clustering based on Euclidean distances. The average (and SD) environmental 
characteristics of each group were determined by tabulating the environmental conditions of the 
hard clusters assigned to each cell in the simulated or KP region.  

Group first, then Predict 
Hierarchical cluster, Random Forest predict (BioHC_RF) 
Hierarchical clustering was performed on species’ presence-absence data converted to Jaccard 
dissimilarity, which represents the number of species shared between pairs of sites. The groups 
assigned to the sites by the hierarchical clustering were then related to environmental data using a 
classification Random Forest (RF) implemented in the R package ‘extendedForest’. Default settings 
were used for the number of variables to try at each step (mtry= 2) and the number of trees to build 
(500). The correlation threshold was set to 0.65 to account for highly correlated predictor variables. 
Model fit was assessed by calculating a confusion matrix using the model’s out of bag (OOB) 
samples. Variable importance was assessed using the mean decrease in accuracy and the mean 
decrease in node purity. The form of the relationship between environmental variables and the 
groups was assessed using partial plots. The species and environmental characteristics of each group 
were tabulated from the RF classification of the survey sites. Group predictions for the entire 
simulation and KP region were generated from the RF model using the ‘predict’ function. 
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Predict first, then Group 
Stacked Single Species Distribution Models  
Random Forest species’ predictions, Hierarchical clustering (SpRF_HC) 
Classification Random Forests were performed on presence-absence of each species separately 
using the same settings as above. Predictions for the probability of occurrence of each species across 
the simulated or survey region from each RF model were generated using the ‘predict’ function. The 
probability of finding each species in each cell was used as the input to the hierarchical clustering 
that was based on the Euclidean distance between the cells. The species and environmental 
characteristics of each group were tabulated from the classification of the survey sites. 
 

Multispecies Distribution Models 
Multiresponse Artificial Neural Networks prediction, Hierarchical clustering (MNet_HC) 
Multi-response neural networks with latent variables that are able to capture unmeasured 
environmental and/or biological correlations, were implemented using source code for the R 
package ‘mistnet’ (Harris 2015) and optimisation code available on 
https://github.com/davharris/mistnet . We built a network with three layers; the input layer, 1 
hidden layer and the output layer. We used 5-fold cross-validation and a modification of the github 
optimisation code to optimise the number of latent variables used as well as the number of nodes in 
hidden layer, while keeping other settings at their default. The final model for the simulation data 
had 2 latent input variables and 8 nodes in the hidden layer, while the final model for the KP fish 
data had 4 latent input variables and 12 nodes in the hidden layer. The species and environmental 
characteristics of each group were tabulated from the classification of the survey sites. 

Hierarchical Bayesian Model prediction, Hierarchical clustering (HMSC_HC) 
Hierarchical Bayesian Models were implemented using the Hierarchical Modelling of Species 
Communities (HMSC) framework (Ovaskainen et al. 2017) in the R package ‘HMSC’ (Blanchet 2013; 
Tikhonov et al. 2020). Environmental variables were centred and scaled (linear terms for simulation) 
or orthogonal quadratic polynomials created (KP fish analyses) before input into the HMSC models. 
A spatially explicit model was run where the latitude and longitude of survey sites were used to 
generate spatially-structured latent variables that had an exponential spatial covariance function 
(Ovaskainen et al. 2016). A spatially explicit model was run to improve predictive capacity across the 
study region. The model used a probit link and parameters were estimated using 10,000 MCMC 
iterations with a burn in of 1000 and a thinning rate of 10. The mixing of chains was assessed 
visually. Model fit was assessed by calculating Tjur’s R for each species. The spatially explicit model 
was used to generate predictions of the occurrence of each species across the simulated or survey 
region. These predictions were used as the input into the hierarchical cluster analysis. The species 
and environmental characteristics of each group were tabulated from the classification of the survey 
sites. 

 

Compositional Turnover Models 
Generalised Dissimilarity Modelling, Hierarchical clustering (GDM_Dissim_HC, 
GDM_TransEnv_HC and bbGDM_Dissim_HC, bbGDM_TransEnv_HC) 
A bootstrapped and naïve (i.e. non-bootstrapped) Generalised Dissimilarity Model were run using 
the presence-absence version of the Bray-Curtis metric. The default settings were used for the 
splines (i-spline, with 2 degrees of freedom and 1 knot) and geographic predictors were not used. 
For the bootstrapped model, 10,000 and 5,000 Bayesian bootstraps were used to estimate the 
distribution of simulation and fish model parameters respectively, using a bootstrapping wrapper 
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function to ‘gdm’ in the ‘gdm’ package sensu  (Woolley et al. 2017). To capture the various ways that 
GDM outputs have been clustered, we generated two different hierarchical clustering results. These 
were; i) direct clustering of pairwise site dissimilarities (e.g. Koubbi et al. (2011)) which is the most 
intuitive step and ii) clustering the spline transformed environmental variables (e.g. Leaper et al. 
(2011); this is most similar to the approach used in gradient forests). Predictions of pairwise site 
dissimilarities were generated using a function analogous to ‘gdm.predict’ that could accommodate 
bootstrap estimates. Similarly, the spline transformed environment at each site differences was 
generated using a function analogous to ‘gdm.transform’ that could accommodate bootstrap 
estimates. Similar to the other two stage methods, the species and environmental characteristics of 
each group were tabulated from the classification of the survey sites. GDM models were 
implemented in the R package ‘gdm’ and bootstrapped versions of functions are available in our 
code on zenodo. 

Gradient Forests prediction, Hierarchical clustering (GF_HC) 
Gradient Forests were run on the presence-absence of species at sites. Forests used the default 
settings, with 500 trees. Predictions of compositional turnover were made for the entire simulation 
or survey region using the ‘predict’ function, which transforms the environmental data at prediction 
sites using the cumulative splits determined by the individual species’ forests, weighted by their fit. 
These transformed environmental variables were used as the input to hierarchical clustering using 
Euclidean distance (Ellis, Smith & Pitcher 2012). The species and environmental characteristics of 
each group were tabulated from the classification of the survey sites 

Analyse Simultaneously 
Species Archetype Models (SAM) 
Scaled and centred linear (simulation) or orthogonal quadratic polynomials (KP fish) of each of the 
predictor variables were generated and used as input into SAM models with a Bernoulli error 
distribution. Models with between 1 and 6 archetypes were examined. The final number of 
archetypes/groups was selected by considering the first group where the change in BIC from the 
previous group was positive, where the prior probability of any one group was greater than 
1/number species (this removes archetypes that are unlikely to be useful) and where each archetype 
contained at least 1 species. The appropriateness of the model was checked using randomised 
quantile residuals (Dunn & Smyth 1996). Predictions of the probability of occurrence of each 
archetype were generated for the survey region using the environmental covariates used in the 
training model. The response of each group to the environmental variables was quantified using 
model co-efficients and partial plots where the value of all environmental variables, except the 
variable of interest, were held at their mean value. Although, the species belonging to each 
archetype can be identified directly from the model using the species’ posterior probability of group 
membership (tau), we obtained site-based species’ composition and environmental characteristic of 
each group for comparison with the other methods. To do this the SAM group predictions at survey 
sites were hard clustered and the observed prevalence of species and value of environmental 
variables tabulated. SAMs were implemented in the R package ‘ecomix’ available on: 
https://github.com/skiptoniam/ecomix  

Regions of Common Profile (RCP) 
Scaled and centred linear (simulation) or orthogonal quadratic polynomials (KP fish) of each of the 
predictor variables were generated and used as input into RCPs with a Bernoulli error distribution. 
For the fish model, survey was used as the sampling factor that affects the catchability of species. 
What this does is increase or decrease, for a particular level of the sampling factor, the expectation 
of each species by the same amount for all RCPs and so can account for seeing more or less of a 
particular species in a particular year. Five hundred model restarts were run to avoid local maxima.  
A forward selection procedure was used to select environmental variables and the number of RCPs 

https://github.com/skiptoniam/ecomix


Determining Marine Bioregions: A comparison of quantitative approaches. Hill et al. 
 

12 
 

simultaneously (Hill et al. 2017). Starting from the null model for each step we considered the 
addition of each environmental variable (linear and quadratic term simultaneously) for between 1 
and 8 RCPs. The best model for that step was the combination of environmental variables and 
number of RCPs that minimised BIC. The process was repeated until there was no improvement in 
BIC between selection steps. Model assumptions were checked by examining randomised quantile 
residuals. Five hundred Bayesian bootstraps were used to estimate uncertainty in model 
parameters. RCP predictions were generated using the ‘predict’ function using the environmental 
covariates used in the training model. For the fish data, which included survey as a sampling factor, 
predictions represent the values expected for the first survey. The species composition of RCP 
groups was calculated directly from the model co-efficients. The response of each group to the 
environmental variables was quantified using model co-efficients and partial plots where the value 
of all environmental variables, except the variable of interest, were held at their mean value. For 
comparison with the other methods, the RCP group predictions at survey sites were also hard 
clustered and the observed prevalence of species and value of environmental variables tabulated. 
The importance of environmental variables was assessed using the change in BIC between models in 
the forward selection procedure. Models were implemented in the R package ‘RCPmod’ (Foster 
2013). 
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Appendix S3:  
Simulation Study 
 

Simulation Set up 
All code for generating the simulated data and its subsequent analysis is hosted on Zenodo: 
https://zenodo.org/record/3936354 

  

The simulation data consisted of a set of environmental variables and the probability of occurrence 
of 30 species across a hypothetical region.  

Environmental Data 
A set of eight environmental variables loosely modelled on patterns observed in real environmental 
data were generated for the simulation region. Two types of variables were simulated; variables that 
exhibit a gradient over the regions, and variables that exhibit a patchier distribution.  This was 
achieved by manipulating the spatial dependency between cells in the simulation region, multiplying 
this dependency by cells values randomly chosen from a normal distribution and re-scaling to give 
values within a realistic range of the environmental variables that the simulated variables were 
intended to represent. The code for generating the simulated environmental variables can be found 
in the file: simulation_env_070518.r 

 

 

  

https://zenodo.org/record/3936354
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Table A3.1. Pearson’s correlation between simulated environmental variables. 

  temp O2 NO3 sal depth chla ssh curr 
temp 1        

O2 -0.26 1       
NO3 -0.57 0.89 1      
sal 0.66 0.34 -0.07 1     

depth -0.44 0.19 0.20 -0.08 1    
chla 0.67 -0.39 -0.53 0.36 -0.44 1   
ssh -0.21 -0.14 -0.04 -0.28 -0.09 0.01 1  
curr 0.46 0.40 0.11 0.83 -0.06 0.35 -0.26 1 

 

 

Simulated species’ and group distributions 
The distribution of 30 species across the simulation region was generated using a multivariate 
normal mixture model using code adapted from (Woolley et al. 2017). The mixture model was 
parameterised to generate species with three groups of responses to the environmental variables. 
The groups were designed to represent bioregions with minimal spatial overlap. These three 
groupings were determined by temperature and O2 with the remaining six environmental variables 
having little or no influence. The response of each species belonging to each group to the above 
environmental variables (betas) was drawn randomly from a multivariate normal distribution with 
the mean betas for each group tabulated in Table A3.2 and a variance of 0.05. The prevalence 
(alphas) of simulated species was drawn from a beta distribution and informed by the prevalence of 
species observed in the Kerguelen Plateau fish dataset. The mixing parameter (that determines the 
number of species allocated to each group) was set to 0.3, 0.4, 0.3, to generate a roughly even 
allocation of species to groups. These parameters were used to generate a probability of occurrence 
for each species in each cell of the simulation region, and these simulated data were simplified to 
additionally provide a realisation of species’ presence/absence. From the realisation of 
presence/absences, 200 samples were randomly chosen and form the ‘sites’ used for analysis and 
methods comparison. 

The ‘true’ distribution of groups was calculated using the average alpha of all species and the mean 
beta values set in the simulation (Table A3.2) applied to the values of the environmental variables in 
each cell in the simulation region. 

This method of generating the simulated distribution of species is most similar to the model 
underpinning Species Archetype Models (SAMs). The code for generating simulated species’ and 
group distributions can be found: Sim_Setup/simulate_communities_final.R. 

Table A3.2. Mean response (betas) of each group (bioregion) to environmental variables used in 
simulation study. 

Group temp O2 NO3 sal depth chla ssh curr 
1 0.75 0 0 0 0 0 0 0 
2 0 -0.5 0 0 0 0 0 0 
3 -0.5 0 0 0 0 0 0 0 

 



Determining Marine Bioregions: A comparison of quantitative approaches. Hill et al. 
 

16 
 

 

Fig. A3.2.  Response (betas) of each species to environmental variables colour coded by group 
(representing a bioregion).  
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Fig. A3.3.  Probability of occurrence of each simulated species across the simulation region, plotted 
according to their grouped response to the environmental variables. 
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Fig. A3.4. ‘True’ distribution of species’ groups in simulation used to represent bioregions. 

 

 

 

Fig. A3.5. Hard-class version of ‘true’ distribution of species’ groups. Hard classes generated by 
assigning each cell it’s most probable group. 
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Additional Simulation Results 
Code to run the selected models can be found in ‘Simulation_Run_Models.R’ and additional code 
provided in the ‘Simulation’ folder was used to interpret and generate plots. 

 

 

Fig. A3.6.  Full species composition of each simulated nioregion, when the number of groups has 
been fixed to three. Mean and standard error of the prevalence (or probability of occurrence for 
RCPCoeficients) of each species in each group. Species composition for all two-stage methods was 
calculated by summarising the prevalence of species at clustered survey sites. To calculate 
equivalent, site-based measures for the ‘true’ distribution, SAM and RCP, the probabilistic 
predictions were converted to a hard class by assigning each site it’s nost probable bioregion 
(denoted ‘Hard Class’), and the prevalence of each species observed in each group calculated. For 
RCP, the expected probability of occurrence of each species in each group was also calculated 
directly from the model using model coefficients and bootstrap sampling (RCP Coeficients). 
Acronyms match those specified in Table 1 of the main paper. 
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Fig. A3.7.  Full environmental characteristics of each simulated bioregion determined for each 
method when the number of groups is fixed at three. For all two-stage methods, the average (and 
SD) environmental conditions for each group were calculated from the clustered survey sites. For 
comparative purposes, SAM, RCP and BioHC_RF results were also calculated using the hard class 
conversion of the probability predictions (denoted “Hard Class”).Acronyms match those specified in 
Table 1 of the main paper. 
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Fig. A3.8.  Partial response plots for all environmental variables considered in the BioHC_RF 

method when the number of groups is fixed at three. The non-linear and non-smooth bioregion 

responses to environmental variables that are characteristic of tree-based methods.  
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Fig. A3.9.  Partial response plots for all environmental variables considered in the SAM method, 

when the number of groups is fixed at three. The SAM bioregions exhibit a mostly linear response 

and at any one site the sum of all groups present can exceed one.    

 

 

 



Determining Marine Bioregions: A comparison of quantitative approaches. Hill et al. 
 

23 
 

 

Fig. A3.10.  Partial response plots for all environmental variables considered in the RCP method, 

when the number of groups is fixed at three. The RCP bioregions have a smooth non-linear partial 

response which highlights the fact the probability of the sum of all bioregions at any one site is 

constrained to one for RCPs, unlike in SAMs. 
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Fig. A3.11.  RCP bioregional membership probabilities (pi; when the number of groups is fixed at 
three) for each modelled site plotted against corresponding environmental variables used to 
construct the RCP model. These values are directly from the RCP model and are most analogous to 
predictions that use only environmental data. Bioregion 1 is characterised by higher values of 
temperature; Bioregion 2 is characterised by lower values of O2 and salinity (which are moderately 
correlated); Bioregion 3 is characterised by low temperatures. This corresponds with Fig. A3.7. 

 

References: 
Woolley, S.N.C., Foster, S.D., O'Hara, T.D., Wintle, B.A. & Dunstan, P.K. (2017) Characterising 

uncertainty in generalised dissimilarity models. Methods in Ecology and Evolution, 8, 985-
995. 
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Appendix S4:  
Kerguelen Plateau Fish Analysis 
Kerguelen Plateau fish and environmental data are archived at Australian Antarctic Data centre:  

http://dx.doi.org/doi:10.26179/5f0528de8c1d2 

http://dx.doi.org/doi:10.26179/5f055cd217aa8 

All code for analysing the demersal fish data on Zenodo: https://zenodo.org/record/3936354 

Biological data: 
Biological data were obtained from Random Stratified Trawl Surveys conducted in the Australian EEZ 
surrounding Heard and MacDonald Islands. The surveys were conducted primarily for stock 
assessment purposes and stratification was based on depth and geomorphology  (Duhamel & 
Hautecoeur 2009). Surveys were conducted on a commercial trawling vessel by a trained scientific 
observer. Data consists of 524 trawls between 100 and 1200 m depth evenly spread across four 
surveys in 2006, 2010 and 2013. Otter bottom trawls were towed for ~ 30 minutes (Duhamel & 
Hautecoeur 2009; Nowara, Lamb & Welsford 2014) and trawls on the shelf were conducted during 
the daytime to capture icefish which diurnally aggregate near the seafloor. All fish species caught in 
trawls were recorded. Species nomenclature was based on names published in appendix 5 of the 
Biogeographic Atlas of the Southern Ocean (Duhamel et al. 2014) and common names based on Gon 
and Heemstra (1990). Species that are primarily pelagic were removed from analyses and some 
species were aggregated (e.g. Paraliparis spp., Macrourus spp. and Muraenolepis spp.) Data are 
presence-absence, and the twenty species that occur in at least 10 trawls (2% sites) were retained 
for analyses. Our choice of cut-off value for species’ occurrence is somewhat arbitrary. For our 
purposes here we do not feel that very rare species add much to the analysis and are generally 
poorly modelled by SDM methods (although multi-species methods will tend to do better than single 
species methods (Hui et al. 2013)). The choice of any cut-off value, and what they represent for 
conservation, is left to the practitioner’s discretion.  

http://dx.doi.org/doi:10.26179/5f0528de8c1d2
http://dx.doi.org/doi:10.26179/5f055cd217aa8
https://zenodo.org/record/3936354
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Fig. A4.1. Location of A) Kerguelen Plateau and B) survey sites. Sites are colour-coded by survey and 
the red contour line is the 1200 m the limit of the deepest trawls.  
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Environmental data:  
Environmental climatological variables representing sea floor and sea surface conditions likely to 
affect the distribution of demersal fish were obtained from various sources (outlined in (Hill et al. 
2017)) at a resolution of 0.1 degree. Variables were screened so that those retained for analyses 
were not highly correlated (< |0.7|). This process left the eight variables described in Table A4.1 and 
plotted in Fig. A4.2. 

Table A4.1. Description and source of environmental variables used in analyses of Kerguelen 
Plateau demersal fish 

  Variable Description Units Source Reference 

Se
a-

 fl
oo

r 

Depth Seafloor depth m Trawl data/ Polar Environmental Data Raymond (2012) 

Slope Seafloor slope degrees Polar Environmental Data Raymond (2012) 

Floor_temp Average temperature near seafloor ° C Polar Environmental Data Raymond (2012) 

Current 

Average current speed near 

seafloor m/s2 Polar Environmental Data Raymond (2012) 

NO3_mean 

Average nitrate concentration near 

seafloor μmol/l CSIRO Atlas of Regional seas (CARS) 

Ridgway, Dunn 

and Wilkin (2002) 

Se
a-

 su
rf

ac
e 

Surface_temp 

Average of daily surface 

temperature (1982- 2014) ° C NOAA OI SST v2 

Reynolds et al. 

(2007) 

Chla_SD 

Standard deviation of yearly mean 

chl-a (1997-2010)  mg/m3 

L3 SeaWiFs data corrected for 

Southern Ocean 

Johnson et al. 

(2013) 

ssha_SD Standard deviation of sea surface 

height (indicates surface currents 

and fronts) 

mm/km Polar Environmental Data Raymond (2012) 
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* Slope and current were log transformed prior to analyses.

 

Fig. A4.2. Maps of environmental variables used in analyses of Kerguelen Plateau demersal fish.  
All maps were cropped at 1200 m corresponding to the depth limit of the trawls. 
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Additional Kerguelen Plateau Fish results 

Analysis of a real dataset, demersal fish on the Kerguelen Plateau, yielded results with many 
similarities to the simulation results.  The number of bioregions identified as optimal varied between 
the methods. Many of the two-stage methods only identified two bioregions (Fig. A4.3), the 
exceptions being MNet_HC (four bioregions), and the clustering of the transformed environmental 
spaces of the naïve and bootstrapped GDM (three bioregions). The one-stage methods, SAM and 
RCP identified four and five bioregions respectively.  Nearly all methods distinguished a shallow -
water bioregion (Bioregion 1) surrounding Heard and MacDonald Islands (HIMI) and on the banks. 
The spatial distribution of the Env_only and MNet bioregions were very similar and showed greater 
discrimination of depths as did the one-stage methods, SAM and RCP (Fig. A4.3). 

If we assume there are in fact four groups from this point forward and compare hard-clustered 
predictions, patterns in distribution of groups were generally more similar amongst the methods 
(Fig. A4.4). Most methods consistently identified a shallow (Bioregion 1) and deep bioregion 
(Bioregion 4) with boundaries of the intermediate-depth bioregions more variable (Fig. A4.4). The 
one-stage methods are the only methods that capture uncertainty in the entire bioregionalisation 
process. For SAM, there are no clear patterns in uncertainty within bioregions, however, the highest 
uncertainty across all bioregions appears in the NW of the study region (Fig. A4.5). For the RCP 
bioregions, uncertainty was highest between the boundaries of bioregions 1 and 4, and in areas of 
moderate probability of occurrence in bioregions 2 and 3 (Fig A4.5) 

Patterns between methods in the environmental conditions characterising the groups are difficult to 
discern. However, most methods distinguish depth bands for the different groups, while these 
appear to overlap more for SAM bioregions (Fig A4.6). Of all the methods the BioHC_RF most often 
stood apart from the others in its environmental profile (Fig A4.6). Methods that produce partial 
plots again highlight the depth niche of the different bioregions (Figs. A4.7-9), with some bioregions 
also differentiated by other environmental variables (e.g. surface temp for BioHC_RF and RCP (Fig. 
A4. 7 & 9) and chla for SAMs (Fig. A4. 8). RCP groups have a more curvi-linear pattern that is due to 
the fact that the probability of occurrence of all groups at a particular site is constrained to one. This 
means that as the probability of a site being one group increases the probability of it being other 
groups must decrease.  

Patterns in the species associated with each bioregion are also complex. For many species and 
methods there is reasonable agreement in composition (Fig. A4.10) particularly for Bioregions 1 and 
4. There was less agreement in the composition of Bioregions 2 and 3. No one particular methods 
consistently stood apart from the rest. 

Finally we provide and interpretation of bioregions from the RCP method that combines the species 
composition (Fig A4.11) and environmental characteristics (Figs A4.9) derived directly from model 
parameters. RCP bioregions are mostly distinguished by depth, with bioregion 1 a shallow bioregion 
occurring in depths <300m and with a high prevalence of endemic and/or shelf species such as 
G.acuta, C. gunnari and C. rhinoceratus. Bioregion 2 is most likely found in depth around 300-400m 
and contains some similar species to bioregion 1 (e.g. C. rhinoceratus) with additional species 
becoming more prevalent (e.g. L. squamiforms). Bioregion 3 is deeper again, most prevalent around 
600 m and on the NW of the Plateau corresponding with warmer surface temperatures and contains 
known deeper-water species (e.g. Macrourus spp.).  The deepest bioregion, increasingly likely to be 
found at depth greater than 600m and cooler temperatures, is a species poor bioregion predicted to 
mostly contain Macrourus spp. and D. eleginoides. Some species such as the Patagonian Toothfish 
(D. eleginoides) are ubiquitous on the plateau and highly prevalent in all bioregions. This 
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interpretation is consistent with what is known of the biogeography and ecology of the region (See 
Hill et al. (2017) more detailed discussion).  

 

 
Fig. A4.3. Distribution of bioregions identified for demersal fish on the Kerguelen Plateau using the 
various modelling methods.  A) Bioregions identified by clustering the environmental data only 
(Env_Only) and by most two-stage approaches that produce hard classes from the hierarchical 
clustering. B) Probability of occurrence of each bioregion for methods that produce probabilistic 
outputs. Note that the BioHC_RF probabilities represent only the second stage of the analysis. 
Method abbreviations match those in Table 1. 
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Fig. A4.4. Distribution of Kerguelen Plateau demersal fish bioregions for each method when the 
number of bioregions has been fixed at four and where cells for methods with probabilistic 
outputs are assigned their most likely bioregion (denoted by ‘Hard Class’). The spatial distribution 
of bioregions are more similar between methods when the number of bioregions are set to four and 
largely reflect depth-related patterns. Bioregions have been colour-coded to best highlight 
similarities in the distribution of bioregions. Method abbreviations match Table 1. 
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Fig. A4.5. Uncertainty associated with the one-stage approaches, Species Archetype Models (SAM) 
and Regions of Common Profile (RCP). 
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Fig. A4.6. Environmental characteristics of each bioregion determined for each method when the 
number of groups is fixed at four. For all two-stage methods, the average (and SD) environmental 
conditions for each group is summarised from the clustered survey sites. For comparison BioHC_RF, 
SAM and RCP values were calculated by first converting probabilistic predictions to hard classes then 
summarising the environmental conditions observed at each site belonging to each group. Method 
abbreviations match those in Table 1 of the main paper.  
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Fig. A4.7. Partial response plots for the BioHC_RF method when the number of groups is fixed at 
four. Response plots are calculated using random forests of the hierarchically clustered biological 
data.  

 



Determining Marine Bioregions: A comparison of quantitative approaches. Hill et al. 
 

35 
 

 

Fig. A4.8. Partial response plots for the one-stage method, SAM, when the number of groups is 
fixed at four. Response plots are calculated using the SAM model coefficients, which describe the 
relationship between groups and environmental variables, and holding all variables except the 
variable of interest at their mean values. 

 

 

Fig. A4.9. Partial response plots for the one-stage method, RCP, when the number of groups is 
fixed at four. Response plots are calculated using the RCP model coefficients, which describe the 
relationship between groups (and species) and environmental variables, and holding all variables 
except the variable of interest at their mean values. Only two variables are included because these 
were selected in the final model. 
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Fig. A4.10. Composition of species in each bioregion determined for each method when the 
number of groups is fixed at four.  Mean and standard error of the prevalence (or probability of 
occurrence for RCP_Coefs) of each species in each group. Species composition for all two-stage 
methods was calculated by tabulating the prevalence of species at classified survey sites. To 
calculate equivalent, site-based measures for RCP (RCP_Hard), the probabilistic predictions were 
converted to hard classes and the prevalence of each species observed in each group tabulated. For 
RCP, the expected probability of occurrence of each species in each group was also calculated 
directly from the model using model coefficients and bootstrap sampling (RCP_Coeficients). Method 
abbreviations match those in Table 1 of the main paper. 
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Fig. A4.11. Species profile for each RCP when the number of groups is fixed at four.  Species’ mean 
(and SE) prevalence in each RCP was determined using model co-efficients and Bayesian bootstrap 
sampling.  
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