
Master’s thesis

Master’s Programme in Computer Science

Managing Variability in Robot Cooperation
Software

Tomi Laurinen

November 25, 2021

Faculty of Science
University of Helsinki

Supervisor(s)

Prof. Tomi Männistö, Ph.D. Niko Mäkitalo, Ph.D. Anna Kantosalo, M.Sc. Simo Linkola

Examiner(s)

Prof. Tomi Männistö, Ph.D. Niko Mäkitalo

Contact information

P. O. Box 68 (Pietari Kalmin katu 5)
00014 University of Helsinki,Finland

Email address: info@cs.helsinki.fi
URL: http://www.cs.helsinki.fi/

Faculty of Science Master’s Programme in Computer Science

Tomi Laurinen

Managing Variability in Robot Cooperation Software

Prof. Tomi Männistö, Ph.D. Niko Mäkitalo, Ph.D. Anna Kantosalo, M.Sc. Simo Linkola

Master’s thesis November 25, 2021 51 pages

Software architecture, variability management, software as a service, multiple views

Helsinki University Library

Software Systems specialisation line

Tämä tutkielma esittelee Robot Configurator -ohjelman, jolla voi konfiguroida Cooperative
Brain Service -robottiyhteistyöohjelman käynnistykseen liittyviä asetuksia. Muuttuvuuden
konfigurointi on ongelma, jossa yritetään valita validi yhdistelmä komponentteja muodosta-
maan jokin kokonainen tuote. Se on sovellettavissa myös ohjelmistoihin, sillä on olemassa
lähestymistapoja missä valmis ohjelmainstanssi muodostetaan erilaisista ennalta valmistetuista
komponenteista.

Cooperative Brain Service on Creative and Adaptive Cooperation between Diverse Autonomous
Robots (CACDAR) -nimisen Helsingin yliopiston tutkimusprojektin pääasiallinen tuotos. Pro-
jektin päämääränä on mahdollistaa autonominen yhteistyö monenlaisten robottien välillä.
Tämän vuoksi Cooperative Brain Service -ohjelma on suunniteltu niin, että uusille roboteille ja
niiden toiminnoille lisätään tuki uusien moduulien kautta. Käyttöön tulevat moduulit määritel-
lään ohjelman käynnistyksen yhteydessä annettavan JSON-tiedoston kautta. Ongelmana on,
että tämän JSON-tiedoston muokkaaminen vaatii muun muassa tietämystä siitä, millaisia mod-
uuleja Cooperative Brain Service -komponentissa on sillä hetkellä sisäisesti toteutettuna. Robot
Configurator -ohjelman tarkoituksena on mahdollistaa näiden JSON-tiedostojen luominen käyt-
täjäystävällisemmällä tavalla, jotta pystyisimme CACDAR-projektissa tekemään tehokkaam-
min kokeiluja erilaisilla robottiyhteistyöskenaarioilla.

Tämän tutkielman pääasiallinen kontribuutio on Robot Configurator, jonka toiminnan
selitän ja dokumentoin monipuolisesti arkkitehtuurikuvauksen kautta. Lisäksi esittelen lu-
omani lähestymistavan Cooperative Brain Servicen käynnistykseen liittyvän muuttuvuuden
mallintamiseen.

ACM Computing Classification System (CCS)
Software and its engineering → Software organization and properties → Software system struc-
tures → Software system models → Entity relationship modeling
Software and its engineering → Software organization and properties → Software system struc-
tures → Abstraction, modeling and modularity

HELSINGIN YLIOPISTO – HELSINGFORS UNIVERSITET – UNIVERSITY OF HELSINKI
Tiedekunta — Fakultet — Faculty Koulutusohjelma — Utbildningsprogram — Study programme

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Ohjaajat — Handledare — Supervisors

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — övriga uppgifter — Additional information

Faculty of Science Master’s Programme in Computer Science

Tomi Laurinen

Managing Variability in Robot Cooperation Software

Prof. Tomi Männistö, Ph.D. Niko Mäkitalo, Ph.D. Anna Kantosalo, M.Sc. Simo Linkola

Master’s thesis November 25, 2021 51 pages

Software architecture, variability management, software as a service, multiple views

Helsinki University Library

Software Systems specialisation line

This thesis introduces Robot Configurator, a software for performing variability configuration
for a robot cooperation software named Cooperative Brain Service. The variability config-
uration problem concerns selecting appropriate combinations of components to form a valid
complete product. It is applicable to the realm of software as well, as there are approaches
where an instance of software is formed from different pre-made components.

Cooperative Brain Service is the main product of Creative and Adaptive Cooperation between
Diverse Autonomous Robots (CACDAR), a University of Helsinki research project. One of
the main principles of the project is enabling cooperation between various types of robots. In
Cooperative Brain Service, this is taken into account by having support for any new robots
and actions be added as new modules. In the current implementation, the modules to be
loaded are determined during startup, through a manually written JSON configuration file.
The problem is, managing such JSON files requires beforehand knowledge of what modules
there are implemented in Cooperative Brain Service. As it is crucial to be able to flexibly
experiment with different cooperation scenarios in CACDAR, I design Robot Configurator as
a tool to assist in the creation and management of these JSON configuration files.

The main contribution of this thesis is Robot Configurator, for which I provide an architecture
description that describes and documents it from multiple stakeholder perspectives. Addition-
ally, a novel approach to modeling variability involved in the initialization of Cooperative Brain
Service is also introduced.

ACM Computing Classification System (CCS)
Software and its engineering → Software organization and properties → Software system struc-
tures → Software system models → Entity relationship modeling
Software and its engineering → Software organization and properties → Software system struc-
tures → Abstraction, modeling and modularity

HELSINGIN YLIOPISTO – HELSINGFORS UNIVERSITET – UNIVERSITY OF HELSINKI
Tiedekunta — Fakultet — Faculty Koulutusohjelma — Utbildningsprogram — Study programme

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Ohjaajat — Handledare — Supervisors

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — övriga uppgifter — Additional information

Contents

1 Introduction 1

2 Background and research problem 4
2.1 The CACDAR project . 4
2.2 Research problem . 6
2.3 Research questions . 8
2.4 Research method . 8
2.5 Artifacts produced . 9

3 Designing Robot Configurator 12
3.1 Capturing stakeholder requirements . 12
3.2 Variability modeling . 12

3.2.1 Research on Variability in Software Product Lines 13
3.2.2 Capturing variability in Cooperative Brain Service 15

3.3 Configurator software design . 16

4 Models of variability in Cooperative Brain Service 18
4.1 Capability Configuration and Robot Models 18

4.1.1 Robot Platform . 19
4.1.2 Capabilities . 19
4.1.3 Robot Template . 21
4.1.4 Mapping Scheme . 21

4.2 Scenario Configuration and Environment Models 22
4.2.1 Ontology Object . 22
4.2.2 Environment Knowledge Set . 23

5 Robot Configurator architecture 24
5.1 Architecture description through viewpoints 24
5.2 Context view . 25

5.3 Functional view . 26
5.3.1 Functional components . 27
5.3.2 User workflow . 31

5.4 Information view . 35
5.4.1 Models of Variability . 35
5.4.2 Robot Description . 35
5.4.3 Configuration Formats . 37

5.5 Development view . 39
5.5.1 Configurator API . 40
5.5.2 Configurator GUI . 40
5.5.3 Launch Server . 40
5.5.4 Launch Client . 41

5.6 Deployment view . 41
5.6.1 Server-side deployment . 42
5.6.2 Robot-side deployment . 44
5.6.3 Client-side requirements . 44

6 Discussion 45

7 Conclusions 47

Bibliography 49

1 Introduction

In this thesis I document the circumstances and design processes behind a configurator
software named Robot Configurator, and also provide a multi-perspective description of
its architecture. The purpose of Robot Configurator is to streamline the configuration of
settings for a robot cooperation software named Cooperative Brain Service.

The fundamental concept of configuration originates from product line configuration, a
decades-old practice tracing back to industrial product design concerns (Peltonen et al.,
1994). Different customers often have their own specific needs in terms of what a product
should be like, which is a problem when significant efforts would be required to design a
new product for each and every one of them. A so-called product line approach can be
used as a more efficient solution (Brownsword and Clements, 1996). It works as thus: first,
a wide variety of interchangeable components are designed meticulously for some type of
product. Then, new versions of the product can be tailored for customers by selecting
valid combinations of suitable components, in a process called configuration. Notably, this
approach is not limited manufacturing industries; it is very much applicable to software
also.

Variability refers to different kinds of abstract optional or alternative elements in a product
line. In the context of software, Galster et al. (2011) describe variabilities as the different
ways a software can be adapted to various contexts in a pre-planned manner. A typical
variability is the presence of some function. With correct combinations of components,
the function becomes implemented in the product.

At times, a configurator tool may be introduced to help choosing combinations of compo-
nents in such a way that desired variabilities are implemented (Myllärniemi et al., 2012).
However, creating a successful configurator often also requires proper models of variability
to make its scope of configuration clear. Such models can define constraints that limit
what components can coexist in a configuration, for example.

As for configuration in the field of software, there are multiple ways in which a configurable
software architecture can be implemented: the entire software can be built from existing
smaller software components, or alternatively the software itself may have a range of com-
ponents available which it loads at runtime. In University of Helsinki robotics cooperation
research project CACDAR, we are using the latter approach. However, this has also made

2

the usefulness of having a configurator system apparent to us, for reasons subsequently
described.

The primary artifact being designed in CACDAR is a robot cooperation software, named
Cooperative Brain Service, that can be run preferably on a wide variety of robots if rea-
sonably possible. Yet, robotics has long been a field marked by a certain dichotomy: while
great advancements are being made, the solutions and technologies themselves tend to be
very fragmented between different players of the industry (Gates, 2007). Separate robots
have often their own underlying software implementations, so the cooperation software
cannot be designed with any single platform in mind. Similarly, we cannot make any
assumptions of what kinds of cooperative actions the robots could be capable of, other
than potentially anything.

However, what we can do is frame this as a software configuration problem. To make
Cooperative Brain Service work on as many robots as possible, it is designed to bemodular :
the base functionality is very generic, and support for new robot development platforms or
capabilities is added through new modules as needed. From the configuration perspective,
these abstract concepts of robot platforms and capabilities are effectively our models
of variability; capabilities can even require the presence of some other capabilities as
constraints. The code modules accordingly are our components, because they implement
the robot platforms and capabilities in the software.

When an instance of the cooperation software is initialized on a robot, the platform and
capability modules that are to be loaded are determined through a manually written
configuration file provided as a startup parameter. Unfortunately, there are flaws to this
approach: not only is having to manually modify the configuration files cumbersome, but it
also requires insider knowledge of what software modules there are currently implemented
to know what options there are select from. In other words, though we essentially have a
product line like solution where the platform and capability modules are the components,
our options for doing configuration with it are severely lacking.

As a result, I designed a configurator system, named Robot Configurator, to assist in
the creation and management of configuration files used in Cooperative Brain Service.
The stakeholders of this software are us CACDAR researchers, and the purpose of the
software is to make robot cooperation experimentation with Cooperative Brain Service
more straightforward for us.

Robot Configurator consist of four separate components with their own responsibilities.
The first component is Configurator API, which contains all configuration logic and

3

data models. The second is Configurator GUI, a Graphical User Interface that allows
the user to select appropriate platforms, capabilities and other settings for robots. The
remaining two components are Launch Server and Launch Client, whose purpose is
solely to enable sending configurations to Cooperative Brain Service instances of robots
over a network. Figure 1.1 illustrates what components there are interacting in a full
Robot Configurator setup. Additionally, as the basis of configuration logic in Robot
Configurator, I also contribute the models used to represent variability in Cooperative
Brain Service. These are separated into two categories: Robot models and Environment
models.

To start off this thesis, I give more background on the CACDAR project and the config-
urator approach in Chapter 2. To frame the research of this thesis as design science, the
design reasoning behind the development of artifacts is documented in Chapter 3. The
models designed to represent variability in Cooperative Brain Service are introduced in
Chapter 4. An extensive description of the configurator’s architecture from the perspec-
tives of different stakeholder interests is given in Chapter 5. Finally, the significance of
this thesis is discussed, both in terms of what has been achieved so far in Chapter 6, and
what could be the direction for further research in Chapter 7.

Robot

Configurator
server

User PC

Web Browser Cooperative Brain
Service

Launch ClientLaunch Server

Configurator API

Configurator GUI

Robot Configurator
component

External
component

Components interact

Figure 1.1: Components involved in a complete Robot Configurator setup, under the environments they
are typically run on.

.

2 Background and research problem

To make clear the inspirations and purposes of this thesis, I explain what the motivations
and goals of the CACDAR project are, and describe the circumstances why it warrants
the creation of a configurator tool.

2.1 The CACDAR project

Creative and Adaptive Cooperation between Diverse Autonomous Robots (CACDAR) is
a University of Helsinki research project aiming to design peer models and create a frame-
work for collaboration between diverse types of robots (Mäkitalo et al., 2021). Interests
of the project range from reducing the amount of robots needed for separate tasks, to
possibly even facilitating the emergence of some form of creativity within the cooperation
efforts.

To better illustrate the type of problems CACDAR project addresses, we have a package
delivery scenario as an example. The scenario features two robots with distinct roles: a
delivery robot trying to deliver a package to a building, and a cleaning robot native to the
building. The delivery robot arrives into the building, where it runs into a problem: it
does not have a map of the building. It is only given the name of the target location, but
it has no further information about where this location could actually be in the building.
To proceed, the delivery robot broadcasts a message asking for help, which the cleaning
robot receives. The cleaning robot pauses its current cleaning task, and goes to help the
delivery robot. The cleaning robot, knowing already the map of the building, then leads
the delivery robot to its target location. At the same time, the delivery robot builds its
own map of the building using its radar sensors. After successfully delivering the package,
the delivery robot then navigates out of the building using the map it made so far. Should
there be obstacles such as doors, it may have to ask for help in opening those on the way
back.

The primary goal of CACDAR is to develop a framework that facilitates this sort of
flexible, independent cooperation between robots. The gist of this undertaking is in the
autonomy of the robots: every participating robot runs its own independent instance
of the cooperation software, making it an autonomous agent with its own model of the

5

surrounding world. In other words, there is no centralized server or decision-making
algorithm. To enable robots to reason about their cooperation capabilities in contrast to
their peers, a Cooperation Ontology of concepts abstract enough to function as a common
language between robots is being created in CACDAR research, separate from this thesis.

Moreover, the framework is also meant to enable swift and flexible robot cooperation
experimentation using three different worlds of abstraction: simplified 2D world, 3D world
that simulates real world, and the real world itself. The idea is to create a feedback loop
between the worlds: when we implement a new cooperative action, we may first verify
that it works at least on an abstract level, namely the 2D world. When it works, we may
then see if this is also the case in our 3D world, and lastly the real world environment.

To put it another way, if there is trouble implementing some cooperative action in the 2D
world, there may be fundamental issues with the logic. But when we are implementing
the same action for 3D worlds and the real world, we can more certain that any issues
faced pertain to the pecularities of those worlds, rather than the fundamental idea, if we
have already a successful implementation in the logically pure 2D world.

The implementation of the robot cooperation framework, and the main software artifact
of CACDAR, is named Cooperative Brain Service. Cooperative Brain Service is intended
to be agnostic of the development platform of the robot, supporting potentially any type
of robot that possesses communication capabilities. To make it possible for Cooperative
Brain Service to accommodate to any robot’s capabilities and limitations at all abstrac-
tion levels, it consists of three components that are mainly generic in design. Only Task
Runtime, the component responsible for the concrete execution of cooperative actions, re-
quires that support for new platforms and capabilities is added as modules. The remaining
two components, Planner and Knowledge Manager, have no such concerns. The Planner
component performs decision making at an abstract level using Cooperation Ontology
concepts, and Knowledge Manager stores various knowledge also in a platform-agnostic
manner. As a separate component from Cooperative Brain Service, we also have the Coop
Communication Service that is used for messaging between Cooperative Brain Service
instances. Figure 2.1 illustrates what artifacts there are already made in CACDAR, and
also what are the new artifacts created in this project.

Also, we use Turtlebot3 (TurtleBot3 Features 2021) as our main research robot model
in CACDAR, which is why it is occasionally mentioned in the examples of this thesis.
Robot Operating System 2 (ROS 2 Design 2021) is also used in the examples, as it is the
development platform we use with Turtlebot3.

6

Artifacts of CACDAR project

Cooperation
Ontology

Cooperative Brain Service

Task Runtime

Knowledge
Manager

Planner

Coop
Communication

Service

Robot
Configurator

Models of
Variability

in CBS

Previously
existing
artifact

Robot
Configurator

artifact

Communicates
with

Used in

Abstract
modeling

Software
component

Figure 2.1: All current artifacts of CACDAR project, with the artifacts produced in this thesis marked
in green. CBS is short for Cooperative Brain Service.

2.2 Research problem

Due to the need to support potentially any types of robots, the Task Runtime component of
Cooperative Brain Service employs a modular design where functionality can be extended
through new code modules. The code modules to be loaded, among other information, are
defined in a JSON (JavaScript Object Notation) file (Pezoa et al., 2016) the Cooperative
Brain Service loads at startup. While this makes switching the modules to be loaded
technically a matter of rewriting several lines in a JSON file, there is a certain issue from
the user perspective: the user cannot know what modules there are available without direct
access to the module folders of Task Runtime. This heavy burden of knowledge on the user
would make the software cumbersome to use in the long run. As Cooperative Brain Service
is specifically meant to enable easy robot experimentation in different environments and
abstractions, some form of more user-friendly solution is definitely warranted. This leads to
the primary research problem of this thesis: how can we design a variability configuration
tool that successfully simplifies the deployment of Cooperative Brain Service?

7

The modular approach to initializing software is explored in research on variability in
software architectures. The current implementation which Cooperative Brain Service uses
corresponds to a variation realization mechanism called adaptation on startup (Bachmann
and Bass, 2001). Section 3.2.1 features a more in-depth look into these methods of realizing
variability, and various approaches to modeling variability also.

The combinations of modules and other information are called configurations. One solu-
tion to managing a variable software is developing a system that assists in finding valid
configurations, an approach known as a configurator tool (Myllärniemi et al., 2012). No-
tably, a configurator also needs proper models of the variability it configures, to set it clear
what is legal to include in a configuration. Thereby, we will define both models of vari-
ability involved in initializing Cooperative Brain Service, and create a new configurator
system, titled Robot Configurator, to assist in creating the JSON configuration files user
for Cooperative Brain Service. The previously introduced Figure 2.1 pictures how these
newly created artifacts fit with the existing CACDAR artifacts.

A distinction should be made that the main function of a configurator can be considered
to be in giving feedback on validity of configurations. However, the purpose of Robot
Configurator is also to streamline the use of Cooperative Brain Service for us CACDAR
researchers. Therefore, I look into user interface solutions suitable for the purpose.

An another concern is preventing the user from accidentally sending incompatible config-
urations that cause errors in Cooperative Brain Service. Even though Task Runtime itself
is capable of running the code logic, it is of not much use if the robot being controlled is
not compatible and cannot communicate with the code being run. Therefore Robot Con-
figurator needs to feature some form of validation process to ensure incompatible modules
are not loaded for a robot inadvertently.

Moreover, the architecture of Robot Configurator is also to be documented comprehen-
sively. As the usability of Cooperative Brain Service is of high importance for the larger
CACDAR project, it is appropriate to describe of how exactly the Robot Configurator
streamlines the use of Cooperative Brain Service. However, it is also vital to document
how Robot Configurator is maintained and developed further, to ensure it can be used in
the future too.

8

2.3 Research questions

As discussed in this chapter, we have decided to use a configurator tool to simplify the
usage of Cooperative Brain Service. Therefore, the overall research problem and main
purpose of this thesis can be summarized with one question: How do we design a vari-
ability configuration tool that successfully simplifies the deployment of Cooperative Brain
Service?

In addition, we may define several research questions to further clarify the principal con-
cerns of this thesis.

• RQ1: How can the configurator tool streamline Cooperative Brain Service configu-
ration for the user?

• RQ2: How do we validate that a configuration is compatible with a robot?

• RQ3: How do we comprehensively document the architecture of Robot Configurator?

2.4 Research method

Because this work involves modeling variability and creating a whole new configurator
component, I have chosen design science (Brocke et al., 2020) as the appropriate research
methodology. Design science research concerns innovating novel artifacts that solve real-
world problems, all while building design knowledge on the matter. The intention is to
not to just document the artifact itself, but to also knowledge learned from its creation
that could be useful for future research. This documentation of knowledge is effectively
design science’s version of research data collection.

The Design Science Research Methodology process described by Peffers et al. (2007) can be
used to illustrate how different Chapters and Sections of this thesis correspond to existing
design science methodology. The process consists of six phases: (1) Problem identification
and motivation, (2) definition of objectives for a solution, (3) designing and development,
(4) demonstration, (5) evaluation, and (6) communication. Also, as this six-part process
is meant to be iterative, the knowledge learned in (6) could be utilized in the development
of further artifacts.

(1) The research problem of this thesis is explained and motivated in detail in Sections
2.1 (The CACDAR project) and 2.2 (Research problem).

9

(2) Definition of objectives: The objectives of this research are defined in Sections 2.2 (Re-
search problem), 2.3 (Research questions) and 3.1 (Capturing stakeholder requirements).

(3) Designing and development: The design and development processes are discussed in
all of Chapter 3 (Designing Robot Configurator).

(4) Demonstration: The usage of Robot Configurator from user perspective is demon-
strated in 5.3.2 (User workflow).

(5) Evaluation: The evaluation of Robot Configurator is discussed in Chapter 6 (Discus-
sion).

(6) Communication: Chapters 3 (Designing Robot Configurator), 4 (Models of variability
in Cooperative Brain Service) and 6 (Discussion) present what work this research is based
on and what new knowledge is contributed. For the stakeholders, as in the CACDAR
researchers meant to use the software, Chapter 5 (Robot Configurator architecture) com-
municates how the artifact itself works. I borrow from existing architecture description
practices to employ a comprehensive approach.

2.5 Artifacts produced

Both concrete and abstract artifacts are produced in this thesis. The concrete artifacts
are the components of Robot Configurator: Configurator API, Configurator GUI,
Launch Server and Launch Client, listed in Table 2.1.

The abstract artifacts are models for capturing the variability involved in starting up
Cooperative Brain Service, labeled under two categories: Robot Model and Environment
Model. However, several of these models do not originate from this thesis, but the pri-
mary CACDAR research instead. Table 2.2 can be used as a reference to separate what
models originate from this thesis, and what is applied from existing CACDAR research.
The artifact Tables also show how the names of the artifacts are highlighted differently
depending on the category, e.g. Configurator API for Configurator Components.

On the other hand, I have not created any artifacts based on formal software variability
modeling methods in this thesis. As Chapter 3 discusses, the configuration validation
problem is trivial to the point of not being interesting to formalize, and the variability
models themselves are still entirely subject to change and improvement. I have therefore
decided to focus on the architectural aspects of design instead, as seen in Chapter 5, a
documentative artifact.

10

Configurator Com-
ponent

Responsibility Section

Configurator
API

Contains models of variability, performs val-
idation of configurations.

5.3.1

Configurator
GUI

User interface for creating configurations,
communicates with Configurator API to
receive models and perform validation, com-
plete configurations can be sent to Launch
Server.

5.3.1

Launch Server Middleman server for passing configurations
on to Launch Clients.

5.5.3

Launch Client Robot-side client, receives configurations to
launch Cooperative Brain Service with.

5.5.4

Table 2.1: The Robot Configurator component artifacts created in this thesis.

11

Robot Model Responsibility Section

Robot Platform The software implementation of a robot
(ROS for example).

4.1.1

Task Abstract concept of activity, common be-
tween robots. Implemented by combinations
of Actions. Not tied to any Robot Plat-
form.

4.1.2

Action More specific than a Task, the same Action
can be implemented by different Logics. Be-
long to Robot Platforms.

4.1.2

Logic The actual implementation of an Action,
corresponds to a code module implemented
in Task Runtime, uses Mappings.

4.1.2

Mapping Robot Platform specific interface used to
communicate with a robot in a Logic code
module.

4.1.2

Robot Template Represents a robot model (TurtleBot3 for ex-
ample) as a list of Mappings, used in con-
figuration validation. Specific to a Robot
Platform.

4.1.3

Mapping
Scheme

Rules that determine how Mappings are
mapped, specific to a Robot Platform.

4.1.4

Environment
Model

Responsibility Section

Ontology Object Locations, objects or even other robots in the
environment, used in reasoning about the en-
vironment.

4.2.1

Environment

Knowledge Set

Environment-specific knowledge used in
Logics, provided to robots to simplify set-
ting up cooperation scenarios.

4.2.2

Table 2.2: The model artifacts used in Robot Configurator. Artifacts created in this thesis are marked
in light green, and artifacts from other CACDAR research are in light cyan.

3 Designing Robot Configurator

Design science research is set apart from plain system building mainly by the act of
documenting knowledge that could be useful for further similar studies. This chapter
documents what design processes were involved in creating the artifacts of this thesis.

3.1 Capturing stakeholder requirements

The basis of design science lies in creating solutions for stakeholder needs. In the case of
this thesis, the stakeholders are the members of the CACDAR research project, includ-
ing myself. I obtained the stakeholder requirements for Robot Configurator in weekly
CACDAR meetings, through discussions with the other researchers.

Three fundamental functions required of Robot Configurator shaped up in the discussions:
(1) it is to capture software variability involved in the deployment parameters of Coop-
erative Brain Service, (2) provide an intuitive method for the user to configure variables
with, and (3) enable checking that the variables chosen form a valid configuration. The
first (1) of these is a function concerning abstract designs, while the latter two (2) (3)
require concrete software design. I will therefore discuss the design processes of Robot
Configurator as two separate categories: the abstract modeling of variabilities, and the
concrete design of the configurator.

Also, during the design process of Robot Configurator, I received regular feedback in
the weekly discussions on how I should develop the Robot Configurator further. This
helped me decide what the Configurator API model formats should be like, and what
elements the Configurator GUI should feature.

3.2 Variability modeling

To form the basis for Robot Configurator, an appropriate approach for modeling the
variability in Cooperative Brain Service was needed. For this, I explored what kinds of
solutions have already been researched in the field, and also looked into what sort of
variability Cooperative Brain Service itself features.

13

3.2.1 Research on Variability in Software Product Lines

The product line approach was introduced in Chapter 1, but it should be explored further
how it relates to software in particular. There are multiple definitions of what a Software
Product Line, or Family, is. One such definition, by Bosch (2000), defines that a "Software
Product Line consists of a product line architecture and a set of reusable components
that are designed for incorporation into the product line architecture. In addition, the
product line consists of the software products that are developed using the mentioned
reusable assets". Applying this definition, Cooperative Brain Service and its components,
particularly Task Runtime and the different cooperation action logic modules loaded within
it, can be considered a Software Product Line, along with all of the possible runtime
instances of Cooperative Brain Service. However, it should be noted that a Software
Product Line typically already contains most of the components necessary for creating
new products. Yet in our case, component reuse is more limited, as the introduction of
new robot platforms and actions usually require creating new modules for Task Runtime.

Furthermore, if the Software Product Line is designed in a manner where models can
be loaded during runtime, it can be considered a Dynamic Software Product Line (Hall-
steinsen et al., 2008). Cooperative Brain Service is technically not a Dynamic Software
Product Line presently, as the logic modules are loaded only during startup. However,
the current architecture of Task Runtime would allow the easy implementation of runtime
module switching for any logic module not currently running, if it would come up as a
purposeful feature to have.

In research that classifies different methods for realizing variability, the current implemen-
tation used in Task Runtime is designated as adaptation on startup by Bachmann and
Bass (2001). In adaptation on startup, the software is designed so that it can handle all
possible variants, and configuration files are used to tell the software how it should adapt.
If applied to the taxonomy of variability techniques by Svahnberg et al. (2005) instead, the
current approach would belong under the category Condition on Constant: the Cooper-
ative Brain Service configuration parameters determine what modules are loaded in Task
Runtime on startup, but the modules cannot be changed anymore at runtime. However, if
we were to modify Task Runtime so that the loaded modules can be switched dynamically
even when it is running, the approach would change to Condition on Variable. In the
terms of Bachmann and Bass (2001), this would be Adaptation during normal execution:
adding and removing modules as the program is running.

14

Nonetheless, the module loading logic of Task Runtime was implemented long before
work on this thesis and Robot Configurator began. The implementation concerns of Task
Runtime are not the focal point of this thesis; it is more appropriate to look into what
options there are for modeling variability in Cooperative Brain Service.

Over time, numerous methods have been explored in software variability modeling re-
search. Many of these methods belong to so-called feature modeling paradigm (Kang et
al., 1990; Czarnecki et al., 2002; Asikainen et al., 2006). In feature modeling, the vari-
ability in a software architecture is captured as features. The definition of feature varies
between the methods: it can be "an end-user visible characteristic of a system" (Kang
et al., 1990), or an "a distinguishable characteristic of a concept (e.g. system, component,
etc.) that is relevant to some stakeholder of the concept" (Czarnecki et al., 2002). The
feature model then is what captures the variability of a system as the total of these fea-
tures. As an alternative approach to feature modeling, the variability of a software can be
modeled also as components of a product line (Asikainen et al., 2003).

Of particular interest to me is that both feature and component modeling feature con-
straints between elements. In fact, both Forfamel (Asikainen et al., 2006) and Koalish
(Asikainen et al., 2003) models can be translated to Weighted Constraint Rule Language
(Simons et al., 2002), which is used for systematic reasoning about validity. If a configura-
tion made by a user meets the constraints set in the configuration model, the configuration
can be deemed internally valid. As per stakeholder requirement (3), this validity checking
is of great interest to us.

I however decided to look into a more recent implementation in variability managing:
the Kumbang language (Asikainen et al., 2007), which synthesises both feature and com-
ponent modeling approaches to software variability as Forfamel (Asikainen et al., 2006)
and Koalish (Asikainen et al., 2003) respectively. Kumbang had been applied successfully
in previous projects concerning configuration (Myllärniemi et al., 2012; Tiihonen et al.,
2018), and it could be translated into the Constraint Satisfaction Problem format used by
the Choco solver (Prud’homme et al., 2016). In other words, the combination of Kum-
bang and Choco solver was a good candidate for covering both variability modeling and
configuration validation concerns of Robot Configurator. For example, the platforms of
robots and cooperative actions could be mapped as features in Kumbang. But before
looking further into these methods, I started to outline what variability the initialization
of Cooperative Brain Service would involve.

15

3.2.2 Capturing variability in Cooperative Brain Service

In practice, the process of modeling variability involves identifying so-called variation
points (Bachmann and Bass, 2001) relevant to the problem at hand. In the context of
robotics, these variation points can be both various general capabilities, like whether the
robot has a camera, and more specific attributes like the pixel count of the camera. This
meant that I would need concepts that describe properties of robots in a manner that is
not tied to any specific platform, but still informative enough to be useful. Fortunately,
we had already explored this matter together in the CACDAR project, prior to my work
on this thesis, which is why there already were applicable concepts in use in Cooperative
Brain Service: capabilities of robots, modeled in four layers: Tasks, Actions, Logics and
Mappings. Describing the state of the example robot having a camera would fit in the
lowest level of these abstractions.

As mentioned in stakeholder requirement (3), being able to check whether a configuration
is valid was also a major motivator behind using the configurator approach. However, after
the decision to use the capability models as the basis of variability modeling, it became
apparent to me that the problem of checking whether a robot is capable of running a
configuration is essentially trivial in terms of complexity. This meant that specifically
using formal variability modeling methods, such as the combination of Kumbang and
Choco, for this simple problem did not appear very purposeful nor interesting in terms of
scientific contribution. Accordingly, the focus of this thesis instead moved on to providing
more extensive architectural descriptions, as they would be also be of use to stakeholders.

Moreover, though I decided to not apply any formal software variability modeling method
in the scope of this thesis, the option of trying to apply Kumbang or something similar
may be worth considering in the future, particularly if the variability models were to be
extended so that the configuration problem increases in complexity.

There was also still more to the startup parameters of Cooperative Brain Service than
just determining the capability modules. Namely, Cooperative Brain Service is also given
various data such as knowledge and initial goals on startup, to better control what robots
do in demos. From the modeling perspective, this meant we needed concepts for describing
environmental information that had significance in robot cooperation.

As the the robot itself and the environment were essentially different domains, I separated
configuration into two types, both with their own models: configuration related to the
composition of the robot, and configuration related to the current cooperation environ-

16

ment. Named Capability Configuration and Scenario Configuration respectively, Chapter
4 will describe more about these configuration types.

3.3 Configurator software design

Here I describe design choices pertaining to the software design of Robot Configurator
itself, and how I ended up separating it into four different artifacts. They are Configu-
rator API, Configurator GUI, Launch Server and Launch Client, highlighted
as seen here to make them easier to distinguish.

From early on in the work on this thesis, it was intended for the design of the Robot
Configurator to have the configurator interface and the configurator itself be separate
components. An initial prototype Graphical User Interface was made using Qt (Nord and
Chambe-Eng, 2021) for Python, as a multi-platform desktop application. However, in the
CACDAR meetings it was clarified that it would be preferable to be able to host the GUI
over network, and make it usable through internet browsers. This would enable on-the-
fly creation and validation of configurations for any cooperative robot connected to the
network of the configurator, as a "configurator-as-a-service" type of approach (Myllärniemi
et al., 2012).

Accordingly, the design evolved into a system that has two primary components: a browser-
based Graphical User Interface as the frontend, and the configurator itself as a REST
(Fielding and Taylor, 2000) backend service, containing all models and rules of variability.
These two services became to be known as Configurator GUI and Configurator
API respectively.

The user interface, Configurator GUI, was implemented using Vue.js (You, 2021), due
to its reputation as an easy to use JavaScript framework. While the framework itself was
relatively simple to use, there was some initial challenge to using it due to my lack of prior
experience in frontend development in general. Nevertheless, all of the intended features
were implemented successfully in the end.

The implementation of configuration validation was also an important design point. There
were two notable benefits motivating it: firstly, sending a broken configuration to Cooper-
ative Brain Service can lead to an early failure at best, and unexpected behavior at worst.
By validating configurations beforehand, it is distinctly easier to keep track of such risks.
Secondly, the existence of a proper validation process helps guide the user in selecting a

17

valid combination of parameters, especially when the user is given feedback on what went
wrong with the configuration parameters. Having validation be done through its own
solver service was considered, inspired by the configurator-as-a-service approach (Myl-
lärniemi et al., 2012). However, as it became apparent that the computational complexity
of the validation as virtually trivial in comparison, the validation logic was implemented
simply as a REST endpoint within Configurator API backend instead. This was con-
venient also in the sense that all models of variability, including the constraints used in
validation, were already present in the backend.

Moreover, I also needed to implement components for communication between the con-
figurator and robots, namely to make it possible to send configurations. Contrary to how
Cooperative Brain Service is about promoting peer-to-peer autonomous cooperation, a
centralized server was selected as the approach. This is because it would not be sharing
information between robots, but simply setting their configurations. However, trying to
incorporate the server into Configurator GUI, a Vue.js application, turned out to not
be very elegant nor practical. Therefore the middleman server was made its own separate
component. For communication I used Socket.IO (Rauch, 2021), a socket communication
component I was already familiar with. The resulting component was named Launch
Server, due to its role in launching any connected robots by sending configurations to
them. Respectively, Launch Client was created as the robot-side Socket.IO endpoint
that would launch Cooperative Brain Service upon receiving a configuration. Lastly,
Configurator GUI was also added a Socket.IO client, as the client logic was readily
supported by Vue.js.

An additional mention goes to the design of configuration formats, as in contrast to the
variability models. These are the formats in which the configurations are exchanged
between the configurator components and sent to the Cooperative Brain Service. As it
was not immediately apparent what sorts of configuration formats would be suitable, it
was natural to design them hand-in-hand with the Robot Configurator, particularly with
the Configurator GUI.

In the Architecture Description (Chapter 5), I give a more detailed, multifaceted descrip-
tion of all of these components, configuration formats included.

4 Models of variability in Coopera-
tive Brain Service

In Chapter 3, I separated configuration in Robot Configurator into two types: Capability
Configuration and Scenario Configuration. In this chapter, I introduce these configuration
types, and also describe variability model artifacts under categories that correspond to the
two configuration types: Robot Models and Environment Models.

It should also be emphasized that I am not describing the actual formats of created
configurations in this chapter, but the models of data that form the basis for the creation
of configurations in Robot Configurator. This creation of configurations happens in the
views explained in Section 5.3.1. The data formats of created configurations are more
of an implementation concern, and are thus described in the Information view of the
architecture description, Section 5.4.

4.1 Capability Configuration and Robot Models

As mentioned in Chapter 2, the Task Runtime component of Cooperative Brain Service
loads the capabilities of a robot as code modules. I have decided to separate configuration
concerning the composition of the robot itself as its own configuration type, Capability
Configuration, and have the relevant models be called Robot Models.

As the basis of Robot Models, I have utilized several concepts from existing CACDAR
research, namely the Robot Platform and the four-layered capabilities, as they are
involved in the initialization of Cooperative Brain Service. Moreover, I also contribute
additional models Robot Template and Mapping Scheme, which currently are only to be
used in logic specific to Robot Configurator.

It should be stressed that unlike Environment Model, which already defines everything
belonging to an environment in a single instance, the Robot Models are separate pieces:
they are used for different purposes in Robot Configurator for the purpose of creating a
coherent Capability Configuration, which finally is the complete definition of a robot.

To make them stand out better, capability-related models are highlighted in bold.

19

4.1.1 Robot Platform

Robot Platform refers to the underlying software level implementation of a robot which
determines how the robot is interfaced with. Examples of Robot Platforms would be
Robot Operating System (ROS) (Quigley et al., 2009), a leading open-source robotics
development platform, and its successor ROS2 (ROS 2 Design 2021). Considering how
platforms can have very different paradigms regarding how controlling and developing a
robot works, we cannot make any assumptions about reusability of components or oper-
ational code between them. For the abstract decision making parts of Cooperative Brain
Service, this is not an issue. But in Task Runtime, which is responsible for running the
cooperation activities, support for different platforms is realized by having each platform
be implemented through its own code module.

As for what significance Robot Platforms have in Robot Configurator, the subsequent
explanations of Actions, Mapping Schemes and Robot Templates will mention how
they are tied to Robot Platforms.

4.1.2 Capabilities

Instead of describing a robot’s physical configuration for instance, CACDAR takes an
approach more appropriate for our cooperation context: four different levels of abstractions
of what a robot is currently capable of. These four layers are Tasks, Actions, Logics and
Mappings, in order from abstract to concrete. Strictly speaking, there is no overarching
concept of "capability" in Task Runtime logic, but I will use it as a catch-all term for these
four concepts.

It must be also emphasized that these capability concepts are not contributions of this
thesis; they originate from earlier CACDAR research done in tandem with the develop-
ment of Cooperative Brain Service, and are heavily tied to the logic of the Task Runtime
component in particular. Two of these concepts, Task andAction originate from DOLCE
+ DnS Ultralite (Gangemi, 2017) ontology, which is used in developing the Cooperation
Ontology in the main CACDAR research. Logic and Mapping, on the other hand, are
concepts we invented for use in Task Runtime specifically.

Task. Task is the abstract concept of activity, used in Cooperation Ontology as a com-
mon language between robots. Thus, it is also agnostic of the Robot Platform. A single

20

Task is implemented by some number of Actions. Also, different combinations of Ac-
tions can accomplish the same Task. The entire package delivery illustrated in Chapter
2 would be an example of a Task, named simply Delivery.

Action. An Action describes some interaction or feature a robot is capable of. The
goal of an Action can potentially be implemented in many different ways, which is why
its implementation is made a separate concept, Logic. Actions also need to distinguish
what Robot Platforms they are intended for. Multiple platforms can be defined in case
there is much similarity in between, such as with ROS and ROS2, but this may be subject
to change.

As an example of what is currently implemented in Task Runtime, the Delivery Task
consists of Actions AskHelp, SendGoalId and Follow, in that order. AskHelp asks nearby
guide robots for help, SendGoalId sends the ID of the desired location to a guide that
agreed to help, and Follow has the robot following the guide robot to the location. On
the other hand, nothing prevents separating these three Actions into their own Tasks.

Logic. A Logic, shortened from Action Implementation Logic, is the name of the actual
set of instructions that make a robot act out an Action. Essentially, a Logic corresponds
to a similarly named code file loaded in Task Runtime. A Logic usually requires Map-
pings, and can also contain Logic Settings. Logic Settings are parameters specific
to the Logic that affect how it is carried out, and can be adjusted in the Configura-
tor GUI for any Logics selected for the Capability Configuration. Taking the Follow
Action as an example, there are two options for a Logic: follow_with_poses and fol-
low_with_bluetooth. The former has the following done through QR codes and compar-
isons of rotational poses, while the latter uses Bluetooth signal strength to let the follower
estimate how far away the guide is.

Mapping. A Mapping defines some interface of the robot, necessary for the imple-
mentation of a Logic. What the Mappings actually are like depends entirely on the
Robot Platform. Let us use ROS2 as an example. In case of ROS2, Mappings include
Topics, Services and Action Clients∗. Topics are used for communicate with ROS2 robots
by subscribing to Topics that provide information of the robot’s state, and publishing
to Topics that control the robot’s behavior. Services and Action Clients are also types

∗The Action Client of ROS2 is separate from our concept of Actions.

21

of abstractions for communication with the robot. As an example, a Navigation Action
Client communicates with a Navigation Server by sending goal coordinates to navigate
to, after which the server gives the client status updates of the navigation process. In
our follow_with_poses Logic made for ROS2, "odometry" topic is listened to for rotation
information, and "cmd_vel" topic is used to send movement commands to the robot so
that it tries to keep the QR code in its view.

Because Tasks can consist of multiple Actions, and an Action can have multiple imple-
mentation Logics, they can together be represented as a tree structure. This capability
tree is employed in Configurator GUI, as described in Section 5.3.1.

4.1.3 Robot Template

To make it possible to reason whether a robot meets all Mapping requirements of a
Capability Configuration, there needs to be a definition of a robot to compare against.
One desirable approach could be that of determining a robot’s Mappings through some
type of program that analyzes the robot automatically. Unfortunately, implementing such
a solution in a robust enough manner would most likely necessitate a considerable amount
work, and thus is not currently reasonable within this thesis. As a more pragmatic solution,
I introduceRobot Templates. ARobot Template lists theMapping names of a robot,
and can also optionally contain Robot Settings to be adjusted in the Configurator
GUI similarly to Logic Settings. Robot Settingsmay involve limiting the robot’s move
and turn speeds, for instance. A Robot Template is also tied to the Robot Platform
of the robot.

4.1.4 Mapping Scheme

Even within the same Robot Platform, there may be multiple ways in which Mappings
are mapped. Taking ROS2 Topic Mappings as example, a Camera topic may be mapped
differently between real world and 3D simulation even for the same type of robot. Yet
on the other hand, it is also possible for different robots to have identical mappings.
Hence, I have made the intentional decision of not including Mapping definitions in a
Robot Template. Instead, they are provided as their own Mapping Schemes, which
are specific to a Robot Platform, but separated from Robot Templates.

22

4.2 Scenario Configuration and Environment Models

The purpose of a robot is to interact with the world surrounding it. To set up various
experiments reasonably in CACDAR, we need to be able to give the robot information of its
surroundings, and also set various parameters such as the robot’s goals and settings based
on the current environment. In contrast to Capability Configuration, where the domain
is strictly the robot’s own composition, I introduce a separate type of configuration for
the "external" world as Scenario Configuration. The "scenario" in the name refers to how
these parameters are crucial in setting up cooperation demo scenarios.

To configure scenarios, we need a standardized way to describe the surrounding envi-
ronment the cooperation scenario takes place in. For this purpose I define Environment
Models, extended from "Environment Description", a prototype draft from earlier CAC-
DAR research. These consist of lists of two types of objects, Ontology Objects and
Environment Knowledge Sets, emphasized in the manner shown. The original Environ-
ment Description model only contains a list of Ontology Objects. However, specific to
this thesis, I chose to extend it with a list of Environment Knowledge Sets, as a means
of supporting environment-specific information for Logics in a practical way. As this new
model no longer only describes the environment as Ontology Objects, but contains ad-
ditional information for convenience in configuration, I will name it "Environment Model"
for it to be in line with "Robot Model". Notably, unlike the Robot Model concepts which
act as separate pieces, a single Environment Model instance contains everything describing
the environment.

4.2.1 Ontology Object

The concept of Ontology Object as used in this thesis is an early draft from CACDAR
research on Cooperation Ontology. They can be locations, objects or even other robots,
determined by a type field, and their purpose is to be used for reasoning about the en-
vironment in the decision making components of Cooperative Brain Service. However,
currently only Ontology Objects of type "Location" have a role in the Configurator
GUI of Robot Configurator: the user can define locations where Tasks are to be done.
It is then up to the Planner component of Cooperative Brain Service to interpret this
information.

23

4.2.2 Environment Knowledge Set

Knowledge of the environment the robot operates in is beneficial if not crucial for many
Logics. Ideally, robots would learn about the environment cumulatively as much as pos-
sible through their own observations. However, to simulate knowledge difference between
robots, and to add an element of control that helps in creating purposeful scenarios, there
has to be some method to provide information to robots beforehand.

Taking the Package Delivery scenario as an example, the Guide robot needs knowledge of
the different locations in the environment, and the Delivery role needs to have some idea
of a target location. Inspired by this need, a Scenario Configuration can contain initial
environment knowledge to be included in a robot’s knowledge base at launch.

To make it possible to include such environment knowledge other than writing by hand, I
introduce pre-made Environment Knowledge Sets. Environment Knowledge Sets are
included within Environment Models, and can be viewed and chosen in the Configu-
rator GUI. In the description of the Package Delivery demo for example, we have two
Environment Knowledge Sets: one named Helper, which includes the environment lo-
cations in the forms of IDs and coordinates, and another named Delivery, which only
features the ID of the target location. On the other hand, if no such information is pro-
vided, the Guide and DeliveryActions cannot be performed due to the absence of location
information required for their Logics to function.

5 Robot Configurator architecture

In this chapter, an established software architecture documentation methodology by Rozan-
ski and Woods (2012) is introduced first. The architecture of Robot Configurator is then
described through multiple perspectives, or viewpoints, presented in the methodology.

5.1 Architecture description through viewpoints

Describing software architecture in a meaningful manner can be a challenging task, as soft-
ware design is a significantly multifaceted endeavor. To adequately document the design of
Robot Configurator while avoiding well-known mistakes, I borrow from established work
on architecture description practices, and use the guidebook Software systems architec-
ture: second edition (Rozanski and Woods, 2012) as the basis for architecture descriptions
in this thesis. The book claims to take a reasonable stance to the realities of architecture
description, and particularly the multi-perspective approach it describes is useful for my
documentation purposes.

First of all, Rozanski and Woods (2012, p. 23) emphasize that attempting to explain all the
different design choices of differing abstraction levels at once has historically proven to be
not very effective. Rather, software may be described through multiple architecture views.
A view describes the software, or a part of it, to some perceived group of stakeholders. The
idea is to address the requirements of the group using concepts understood by it. Here, an
important distinction to make is that the term stakeholders refers not only to the direct
end users of the software, but all people involved with the software in some way, such as
developers and maintainers.

Nonetheless, it can be a nontrivial task to determine what concepts and models are the
most meaningful to different stakeholder groups. This is why there are established models
for common types of views, called viewpoints (Rozanski and Woods, 2012, p. 24). A
viewpoint is essentially a template that describes a certain type of view and what should
be included in it. The Functional viewpoint (Rozanski and Woods, 2012, p. 277), for
example, requires a description of the functional elements and interfaces of the architecture
in a manner all stakeholders should be able to understand.

25

In this chapter, the architecture of Robot Configurator is described using viewpoints of
Rozanski and Woods (2012, p. 255). Of them, I chose to use Context, Functional, In-
formation, Deployment, and Development viewpoints. The Concurrency and Operational
viewpoints I left out: there is very little concurrency in Robot Configurator and essentially
no race conditions or competition for resources, and the latter is meant for systems where
failure would have critical implications, but ours is meant strictly for explorative research
and thus has no such concerns.

5.2 Context view

Context viewpoint (Rozanski and Woods, 2012, p. 257) treats all inner functionality and
components of the software architecture as a black box, and is only concerned with what
other, external software it interacts with. The idea is to call attention to the environment
and purposes the software is developed for. Context viewpoint is meant to be useful to
anyone concerned with the software’s place in the larger picture, and thus is best kept
short and simple.

The role of Robot Configurator is to provide configurations, essentially launch parameters,
for Cooperative Brain Service. Therefore as far as the software context goes, the sole
software component Robot Configurator interacts with is Cooperative Brain Service, as
pictured in Figure 5.1. Multiple robots’ Cooperative Brain Services can connect to a single
instance of Robot Configurator. Any connected robots can then be launched with saved
configurations from the user interface of Robot Configurator. Configurations can also be
downloaded as JSON files (Pezoa et al., 2016) and provided directly to Cooperative Brain
Service in launch, without having to connect to Robot Configurator at all.

Sends launch request
(contains configuration)

«system»
Robot Configurator

Connects as ready to launch

1

User

Server Robot

«system»
Cooperative Brain Service *

Figure 5.1: The context of Robot Configurator. There can be any number of Cooperative Brain Services
connected to a single Robot Configurator (signified by the * symbol)

26

5.3 Functional view

Functional viewpoint (Rozanski and Woods, 2012, p. 277) is described as the cornerstone
of almost all architecture descriptions. Its purpose is very straightforward: describe what
the software actually does, in a manner any potentially interested parties can understand.
Anyone working with Cooperative Brain Service, the main artifact of CACDAR, evidently
is the primary audience. However, as a research project, the software should be under-
standable to anyone interested in the research of CACDAR. Therefore, I will aim to keep
this view comprehensible even without beforehand knowledge of the concepts.

«external»
User Web Browser

«external»
Cooperative Brain Service

Launch Client Launch Server

Configurator API Configurator GUI

REST API

Socket.IO

HTTP

Socket.IO

Python method call

Figure 5.2: Functional components of Robot Configurator and the interfacing methods between them.

27

5.3.1 Functional components

As a whole, the purpose of Robot Configurator is to guide in creation of configurations
necessary for launching Cooperative Brain Service, the robot cooperation software of CAC-
DAR. In practice, it consists of four separate Robot Configurator components with distinct
functional purposes. These are Configurator API, Configurator GUI, Launch
Server and Launch Client.

Configurator API

The essence of a configurator system lies in models that describe variation points, and
validation that checks that all the constraints between variables are met. In Robot Con-
figurator, these models are as described in Chapter 4. The role of Configurator API is
to contain these configuration concerns in a single backend component, as a RESTful API.
As thus the two functions, or endpoints, provided by this API answer these two concerns.

The first REST endpoint is named "/available-variables". It returns all variability models
currently included as a JSON object. The format of this object is specified in Information
view. The Configurator GUI queries this endpoint at launch, and uses the model data
to populate its user interface.

The second endpoint, "/configuration-validation", concerns validation naturally. It expects
a Scenario Configuration as a JSON string as input, and returns a JSON object containing
message "VALID" on successful validation, or a list containing errors and inconsistencies
met otherwise. The validation process itself checks whether all Mappings of the selected
Capability Configuration are included in the Robot Template chosen. If the validation
fails, the error returned lists what Mappings are missing from the Robot Template.

Through these endpoints, the Configurator API component both contains and sup-
plies the models for creating configurations, and also enables reasoning about the internal
consistency of created configurations.

Configurator GUI

As the frontend of the configurator, Configurator GUI is a browser-based Vue.js GUI
application that provides various views and menus for the user to create a complete con-
figuration with.

28

All data used by Configurator GUI is received by querying the "/available-variables"
REST endpoint of Configurator API on startup. If the query fails, Configurator
GUI will keep querying at specific intervals until it succeeds.

To make the user experience more intuitive, the functionality of Configurator GUI is
separated into three primary Vue views: CAPABILITY CONFIGURATION, SCENARIO
CONFIGURATION, and CONNECTED ROBOTS.

Figure 5.3: CAPABILITY CONFIGURATION allows selecting the capabilities of a robot. Pictured:
The follow_with_poses Logic of Follow Action has just been selected.

The CAPABILITY CONFIGURATION view (Figure 5.3) enables the user to create Ca-
pability Configurations by selecting the desired capabilities, meaning Tasks, Actions,
Logics and Mappings, with the help of a D3 (Bostock, 2012) Scalable Vector Graphics
tree.

In particular, a Robot Template to validate against can also be selected. If a Robot
Template is chosen, the Capability Configuration must be successfully validated against
the Robot Template before the Capability Configuration can be saved.

When validation is initialized, Configurator GUI sends the Capability Configuration to

29

the "/configuration-validation" endpoint of Configurator API. If validation fails, error
messages are shown on whatMappings of the Capability Configuration are not supported
by the selected Robot Template, and the user can edit the Capability Configuration
accordingly.

Created Capability Configurations can be saved and downloaded as JSON files. At least
one saved Capability Configuration is needed for creating a Scenario Configuration, which
is in turn necessary for launching a connected robot.

Figure 5.4: SCENARIO CONFIGURATION allows setting various scenario-specific parameters. Pic-
tured: Camera-equipped TurtleBot3 being configured to do Delivery Task in GazeboDemo1.

The SCENARIO CONFIGURATION view (Figure 5.4) enables the user to set various

30

information specific to the scenario the robot is meant to be run in, as an extra layer on
top of a saved Capability Configuration.

There are two types of settings to configure: Robot settings and Scenario settings. Robot
settings can contain settings specific to a Robot Template if one is implemented by the
Capability Configuration chosen, and also for Logics in the Capability Configuration if
they contain settings to adjust. Scenario settings lets the user set Goals to be done in
the scenario, and also other initial knowledge through a free-form JSON field that can
optionally be filled using Environment Knowledge Sets.

Figure 5.5: CONNECTED ROBOTS shows all robots standby for a Launch Request.

Lastly, the CONNECTED ROBOTS view (Figure 5.5) shows all robots currently con-
nected to the Launch Server. Each connected robot describes some of its properties:
an ID, a name, and the name of a recommended Robot Template. A Launch Request,
which contains a Scenario Configuration, can be sent to any connected robot as long as
there is a Scenario Configuration to include. However, a warning message is shown if the
Robot Template the Scenario Configuration selected implements differs from that of the
recommended one.

31

Through these views, the Configurator GUI both provides a user interface for creating
configurations, and also acts as a hub for launching robots’ Cooperative Brain Services.

Launch Server

The Launch Server is a Socket.IO application, serving as the middleman between the
Configuration GUI and Launch Clients running on the robots. As this middleman
component is not really significant for the overarching functionality of the program, and
other views will cover its implementation details. Nonetheless, it does have its function in
creating the CONNECTED ROBOTS hub for launching Cooperative Brain Services.

Launch Client

The Launch Client is the robot side Socket.IO client. On startup, Launch Client
loads a Robot Description chosen. When Launch Client connects to Launch Server
through Socket.IO, it sends its Robot Description parameters at the same time. Launch
Client also has the role of launching its respective Cooperative Brain Service, using a
Launch Request sent from Configurator GUI through Launch Server.

5.3.2 User workflow

The purpose of Robot Configurator is to enable the user to create complete Cooperative
Brain Service configurations, namely Scenario Configurations, from scratch in a guided
manner. All user input, through the entire basic workflow process of creating a config-
uration and launching a robot, happens strictly within the Configurator GUI. Yet
in terms of functionality, the process encompasses the whole configurator. By walking
through the user actions in order, I can explain the functions happening at the same time.
However, it should be noted that several elements of functionality described are tied to
the models of variability in Cooperative Brain Service, explained in Chapter 4. Figure 5.6
also visualizes what happens in the different Robot Configurator components in the user
input process.

Let our initial situation be one where all four Robot Configurator components have been
successfully launched. The user launches the Configurator GUI on their web browser,
which first fetches the models of variability from Configurator API. Now, to launch
a robot, a complete Scenario Configuration is needed to tell Cooperative Brain Service

32

Configurator GUI (User actions)

Create
Capability

Configuration

Save Capability
Configuration

Create Scenario
Configuration (contains

Capability
Configuration)

Save Scenario
Configuration

Choose robot to
launch

Send Launch
Request (contains

Scenario
Configuration)

Open GUI

Upload
Capability

Configuration
from JSON as

base

Upload Scenario
Configuration from

JSON as base

Configurator API

Validate
Capability

Configuration

Validate Scenario
Configuration

Provide all
variability data

Launch Server

Provide list of
connected robots

Forward Launch
Request to Launch

Client

Launch Client

Launch Cooperative
Brain Service using

Launch Request

Figure 5.6: Activity in Robot Configurator components during Configurator GUI user workflow.

33

what capabilities and knowledge we want to initialize the robot with. But before we can
create a Scenario Configuration, we need to first create and save at least one Capability
Configuration in the CAPABILITY CONFIGURATION view of Configurator GUI.

In the CAPABILITY CONFIGURATION view (Figure 5.3), the first steps in creating
a Capability Configuration are choosing a Robot Platform and a Mapping Scheme
specific to the Robot Platform. After this, an interactive Scalable Vector Graphics tree
appears that allows selecting what capabilities to include in the Capability Configuration.

The capability tree includes Tasks, Actions and Logics fetched from the Configura-
tor API, based on what Actions belong to the current Robot Platform. Importantly,
only Logics can be directly toggled as included or excluded by the user. In turn, selecting
a Logic also highlights the Action it implements. When all Actions pertaining to a
Task are highlighted, the Task also becomes highlighted, signaling its inclusion in the
current Capability Configuration.

Optionally, a Robot Template can be chosen to be implemented by the Capability
Configuration. However, this means that the Capability Configuration cannot be saved
until it is validated successfully in Configurator API against the Robot Template.
Validation checks if the Robot Template contains all Mappings required by the Capa-
bility Configuration. If the validation is unsuccessful, Configurator API returns error
messages that are shown to the user, so they can adjust the Capability Configuration
accordingly.

Saving Capability Configurations adds them to a list within the Configurator GUI ap-
plication. This list only persist for as long as the application is open, and there is currently
no support for storing Capability Configurations on the server side. To alleviate this lim-
itation, saved configurations can be downloaded as JSON files from the Configurator
GUI. When a saved configuration JSON is uploaded to Configurator GUI, the fields
are populated accordingly. Additionally, the CAPABILITY CONFIGURATION view has
an alternate, Robot Template based method for quick population. If a Robot Tem-
plate is chosen, the AUTOFILL BY TEMPLATE button becomes available. Clicking it
causes all of the Logics that have their Mapping requirements fulfilled by the Mapping
list of the Robot Template be automatically chosen in the capability tree.

With at least one Capability Configuration saved, the user can move to the SCENARIO
CONFIGURATION view (Figure 5.4) next. At bare minimum, this view requires the
user to select a saved Capability Configuration to include. However, if the intention is to
launch the robot with any scenario-specific settings and goals, the user is likely interested

34

in setting those with the help of this view. The settings come in two categories: Robot
settings and Scenario settings.

The Robot settings originate from the chosen Capability Configuration. If the Capability
Configuration chosen implements a Robot Template, settings specific to that robot can
be adjusted. In case of Turtlebot3, its move speed can be adjusted, for example. Moreover,
Logics included in the Capability Configuration can also contain settings to adjust; the
robot may use a custom move speed during the follow_with_poses Logic, which can be
adjusted here in Robot settings.

Scenario settings lets the user set goals and also other initial knowledge for use in Logics.
To set Scenario settings, the user may first select an Environment Name. Selecting an
Environment Name allows adding Environment Knowledge Sets from the corresponding
Environment Model to the robot’s initial knowledge of the environment. Also, any number
of so-called Goal Tasks can be added to the Scenario Configuration. A Goal Task consist
of a Task and optionally a Location. Their purpose is to define the initial Tasks a robot
is meant to do. The Task for Goal Task can be chosen from among any of those in
the Configurator API data, but choosing one that is not supported by the current
Capability Configuration will cause validation to fail. A Location can also be chosen, but
only if an Environment is selected, as they are fetched from the Ontology Objects of
the Environment Model. The Location is meant to be interpreted by the decision making
components of Cooperative Brain Service. Moreover, the Goal Tasks are order sensitive:
the robot attempts to carry them out in the order they are given.

In reality, the Goal Task is a simplification instead of a real format used: in the inner logic
of Configurator GUI they are mapped toGoal Configurations, a different format, when
saving the Scenario Configuration. The Goal Configuration format is briefly introduced
in Section 5.4.3.

With a Scenario Configuration created, a robot can finally be launched. The CON-
NECTED ROBOTS view shows all robots connected to Launch Server through a
Launch Client. Any connecting or disconnecting robots appear or disappear respec-
tively in real time. Connecting robots provide three descriptive parameters: Robot ID,
Robot Name and Recommended Robot Template. Of these, Recommended Robot Tem-
plate has a specific purpose in theConfigurator GUI: a warning text appears if the user
chooses a Scenario Configuration whose Capability Configuration implements a Robot
Template different from the recommended one. When a robot is chosen for launch, a
Launch Request is created, which contains the robot’s Robot ID and Robot Name along

35

with the Scenario Configuration. The Launch Request is then sent to the robot’s Launch
Client through Launch Server. The robot’s Launch Client then launches the Co-
operative Brain Service of the robot with the contents of Launch Request as parameters.

5.4 Information view

The Information viewpoint (Rozanski andWoods, 2012, p. 302) concerns manipulation and
storage of information within the architecture. Considering how the variability models are
tied to this configurator’s design and configuration formats affect directly the data being
produced, this viewpoint is of use to stakeholders interested in this software beyond raw
functionality.

All data models in this architecture use JSON format. Notably, no database whatsoever
is used in any of the components. The Configurator API models are instead saved
as JSON files in the program’s folder structure, but this is a concern to be covered in
Deployment view (Section 5.6) instead.

Models of Robot Configurator can be designated under two fundamentally differing pri-
mary categories: models of variability that are provided by Configurator API, and
configurations created in Configurator GUI. However, there is also Robot Descrip-
tion, which does not quite fall under either. I will mostly focus on the formats of created
configurations here, as they are not covered elsewhere.

5.4.1 Models of Variability

The models of variability are described already in Chapter 4. The concrete formats of
the models, meant to cover all necessary variability, can be seen in Figure 5.7. Figure 5.8
shows the format Configurator GUI receives the variability models in.

5.4.2 Robot Description

A Robot Description JSON is provided to Launch Client on startup. It describes the
Robot ID, Robot Name and Recommended Robot Template of a robot. The purpose
is to show this information in the Configurator GUI. The robot’s Robot ID and
Robot Name fields are also used in forming a Launch Request together with a Scenario
Configuration.

36

RobotTemplate

name: String

platform: String

EnvironmentModel

name: String

type: String

environmentKnowledge: Object

Mappings (ROS2)

actionClient: String [0..*]

service: String [0..*]

topic: String [0..*]

providedMappings 1

OntologyObject

ID: String

symbolicName: String

ontologyObjectType: String RobotProperty

robotType: String

properties 0..*

SettingForm

name: String

type: String

description: String

defaultValue: String

robotSettings 0..*

IdentifyingMethod

identifierType: String

identifierProperties: Object

identifyingMethods 0..*

ActionDefinition

name: String

description: String

actionImplemented: String

category: String

compatiblePlatforms: String [1..*]

fileName: String

LogicOption

name: String

description: String

requiredMappings: String [1..*]

logicOptions 1..*

settings 0..*

TaskDefinition

name: String

description: String

requiredActions: String [1..*][1..*]

ontologyObjects 0..*

ontologyObject 1

mappings 1..*

MappingScheme

name: String

platform: String

params 0..1

Mapping

name: String

type: String

value: String

ProvidedMappings

ServiceParams

logic: String

requires: String [0..*]

provides: String [0..*]

MappingParams

TopicParams (ROS2)

messageModule: String

messageClass: String [0..*]

reliabilityPolicy: Integer

OntologyProperty

Figure 5.7: Formats of models contained in Configurator API. Highlighted in blue are the root
elements, returned by a GET endpoint in the format shown in Figure 5.8.

37

ModelData

platforms: String [1..*]

mappingSchemes: MappingScheme [1..*]

robotTemplates : RobotTemplate [0..*]

taskDefinitions : TaskDefinition [0..*]

actionDefinitions : ActionDefinition [1..*]

environmentModels : EnvironmentModel [0..*]

Figure 5.8: Data format returned by the "/available-variables" GET endpoint of Configurator API.

5.4.3 Configuration Formats

As opposed to the models of variability contained in Configurator API, these models
are the actual formats of configurations produced in Configurator GUI through user
input. Figure 5.9 shows the structures and relations of these formats.

Capability Configuration format

A Capability Configuration is created in the CAPABILITY CONFIGURATION view of
the Configurator GUI, and having at least one Capability Configuration is a prereq-
uisite to creating a Scenario Configuration. A Capability Configuration has a Name for
the sake of separating it from other saved configurations in a user-controlled manner. A
Platform Name is also included to tell Task Runtime which Robot Platform module to
load when initiating the robot.

The Robot Template Name is included for the purpose of validation. When the configu-
ration is sent to the Configurator API for validation, this field determines the Robot
Template to be validated against. If no Robot Template Name is provided, validation
will be omitted. In other words, if a Capability Configuration has a Robot Template
Name, it means the configuration promises to successfully implement that corresponding
Robot Template.

The Mapping Type field is used solely to keep track of whichMapping Scheme to choose
if the Capability Configuration JSON is uploaded to the Configurator GUI. Lastly,
Tasks, Actions, Logics and Mappings are included as they are chosen by the user in
the tree element of the CAPABILITY CONFIGURATION view.

38

goals 0..*

GoalConfiguration

name: String

ontologyGoalType: String

params: Object

capabilityConfiguration 1

robotSettings 0..*ScenarioConfiguration

environmentName: String

environmentType: String

environmentKnowledge: Object

actions 1..*

CapabilityConfiguration

name: String

platformName: String

robotTemplateName: String

mappingType: String

mappings: Mapping [1..*]

logic 1

ActionConfiguration

name: String

module: String

Setting

name: String

type: String

value: String

logicSettings 0..*

LogicConfiguration

name: String

requirements: String [1..*]

module: String

scenarioConfiguration 1

LaunchRequest

robotId: String

robotName: String

Figure 5.9: The formats of the configuration files created in Configurator GUI, color coded for visual
clarity between concerns of the different formats.

Scenario Configuration format

Whereas Capability Configuration defines strictly capabilities of a robot, Scenario Configu-
ration adds a layer of environment- and scenario-specific information on top of a Capability
Configuration. As a valid Scenario Configuration contains everything there is necessary
to configure, it is almost ready to be used in launching a robot.

The fields specific to Scenario Configuration are Environment Name, Environment Type,
Robot Settings, Logic Settings, Environment Knowledge, and Goals.

The Environment Name parameter is included only to make it possible forConfigurator
GUI logic to choose the correct Environment when uploading Scenario Configuration
JSON in the Configurator GUI.

The Environment Type parameter, in contrast, has distinctive use in Task Runtime for
handling nonstandard occasions in the initialization of capabilities. For example, specific
to ROS2, having an Environment Type "Gazebo" will result in a "namespace" being added

39

to certain ROS2 Topics as a necessary special measure. This type of behavior is imple-
mented entirely within a Platform Module, but should be avoided if possible due to being
hard to follow in terms of program logic.

Robot Settings are settings related directly to the robot’s own functionality, such as move-
ment speed. Logic Settings are settings specific to the Logics of the Capability Configu-
ration contained in the Scenario Configuration.

Environment Knowledge is a JSON object of to be provided to the robot’s knowledge
base in initialization, crucial for setting up demo scenarios. Environment Knowledge can
be written manually as JSON in the GUI, or appended to from Environment Knowledge

Sets of Environment Models.

Goals is a list of Goal Configurations, a format that is specific to Cooperation Ontology
and not utilized in any Robot Configurator logic. In effect, Goal Configurations contain
the initial Tasks accompanied with Location information for the Planner component of
Cooperative Brain Service to interpret on startup. Goal Tasks created in the SCENARIO
CONFIGURATION view (covered in Section 5.3.2) are mapped into this format when
saving the Scenario Configuration.

Launch Request

A Launch Request is the ultimate end product of the Robot Configurator, containing all
settings necessary to initialize a robot’s Cooperative Brain Service. It only adds fields
Robot ID and a Robot Name on top of a Scenario Configuration. The Robot ID is what is
used to differentiate robots in the cooperation ontology, while the Robot Name is included
mainly for the convenience of the user.

5.5 Development view

The Development viewpoint (Rozanski and Woods, 2012, p. 366) emphasizes that docu-
menting the development environments is generally important for the upkeep of a system.
Robot Configurator features multiple components of various concerns and technologies,
and Configurator GUI particularly has a somewhat sizeable codebase. For these rea-
sons, some degree of explanation is certainly warranted in case of further development
efforts by other developers. The languages used are JavaScript for the three server-side
components, and Python3 for the Launch Clients on robots. Technologies used include

40

Vue.js (You, 2021) and Socket.io (Rauch, 2021). I will describe the components one by
one, as each one uses its own particular technologies.

5.5.1 Configurator API

Created in plain JavaScript, Configurator API provides REST endpoints for Con-
figurator GUI to query. No JavaScript web application framework was used, as the
sparse amount of REST endpoints did not to necessitate it.

The folder structure of Configurator API contains the various models of variability
as JSON files, which are loaded into Configurator API on startup. This is discussed
in the Deployment view (Section 5.6) instead.

5.5.2 Configurator GUI

The Configurator GUI is implemented as a browser-based Vue.js (You, 2021) appli-
cation. Vuetify.js (Leider and Leider, 2021), a Material Design framework, is used for UI
elements and design. D3 (Bostock, 2012), a data manipulation library, is used in tandem
with Scalable Vector Graphics to create the tree interface found in the Capability Config-
uration view. As per the design principles of Vue, the page consists of Vue components
nested in different ways. Each component consists of its own HTML, methods and data
fields. Data fields can be passed to other components, but mutating them anywhere except
in the owner component is against Vue’s principles.

For some component files with extensive amounts of methods, the methods are put into
separate implementation files categorized under the views they are responsible for.

5.5.3 Launch Server

The server that acts as a middleman between the Configurator GUI and Launch
Clients, made using Socket.IO for JavaScript. It is essentially a very basic Socket.IO
implementation, to the point of not warranting any detailed technical description beyond
the basics described in the Socket.IO documentation (Rauch, 2021). The main point of
note is that the Configurator GUI connects to the server using a different endpoint
than the Launch Clients.

41

5.5.4 Launch Client

Launch Client is a basic Python3 Socket.IO client that connects to the Launch
Server. Target server IP address and Robot Description folder are read from a con-
figuration file, making it easy to change them as necessary. Upon receiving a Launch
Request, the Launch Client runs the main method of Cooperative Brain Service, also
a Python3 program, as a Python import.

5.6 Deployment view

The Deployment viewpoint (Rozanski and Woods, 2012, p. 380) is concerned with the
physical and technical circumstances involved in successfully deploying and maintaining
the software system. An applying stakeholder would be anyone who intends to set up
Robot Configurator by themselves or modify the model data contained, instead of only
accessing an already running Configurator GUI instance. Especially because the
model data is to be changed as the modules implemented in Task Runtime change, this
view can be useful to anyone doing research in CACDAR.

While Robot Configurator itself does not have noteworthy performance requirements by
modern-day hardware standards, it does involve running multiple separate software com-
ponents over different machines. These components also require certain technologies and
dependencies to be installed, so there is a plenty of incentive to include this type of view
description. Also, adding new data to Configurator API will be covered in this view,
which in particular is a concern of rather great importance.

As illustrated in Figure 5.10, deploying the entire Robot Configurator involves launching
three components, Configurator API, Configurator GUI, and Launch Server,
as separate processes on a server system. The components can be launched in any order.
Each robot intending to use Robot Configurator is to run its own instance of Launch
Client, which in turn launches a Cooperative Brain Service instance when provided a
valid configuration.

Additionally, being a web service, Configurator GUI has to be used through a web
browser with JavaScript support. Though the user PC is pictured as a separate entity,
Configurator GUI can naturally be accessed on the server machine itself should it
support graphical web browsing.

42

«artifact»
Launch Server

«artifact»
Configurator API

«executionEnvironment»
Python 3

«executionEnvironment»
NodeJS

«artifact»
Configurator GUI

«executionEnvironment»
Vue.js + NodeJS

«executionEnvironment»
Python 3

«artifact»
Cooperative Brain

Service

«artifact»
Launch Client

«executionEnvironment»
Web Browser

«device»
User PC

«device»
Configurator Server

«device»
Robot

Figure 5.10: How the components of Robot Configurator are to be deployed on the different devices.

5.6.1 Server-side deployment

The server system must have a working installations of JavaScript and Vue.js (You, 2021).
The Configurator API, Configurator GUI, and Launch Server all have to be
launched separately, e.g. in separate terminal windows. The READMEs of each compo-
nent contain the specific launch commands used for this.

A major deployment concern of this system lies in the models of variability included in
Configurator API, described in Chapter 4. Only on startup, Configurator API
loads its model data from JSON files, and this is currently the only way to provide them.
Therefore, adding or editing models requires access to these files. Moreover, be it a robot
template or Action definition, it is necessary to know what the JSON format is like and
where the files are to be placed.

The files are stored in a folder structure that mimics that of the models seen in Chapter 4.
E.g. the "platforms" folder contains its own folder for eachRobot Platform, ("ROS1" and
"ROS2"), which in turn contain subfolders for "robot-templates" and "mapping-schemes".
These subfolders contain the JSON files defining Robot Templates and Mapping
Schemes respectively, particular to that platform.

Adding a newAction is a matter of creating a definition file for it in the "action_definitions"
folder. Tasks, on the other hand, have to be added separately to "task_definitions" folder.
The definitions are made separate because there is no direct correlation between the two:
a Task is implemented by a list of Actions, but the same Action can be used in multiple
Tasks.

An Action definition defines which Robot Platforms it supports, and also contains

43

definitions for all Logics it is implemented by. In other words, a Logic definition is
included in the definition file of the Action it belongs to. A Logic definition mainly
lists the required Mappings, and optionally also contains Logic Settings. These Logic
Settings can be adjusted when doing Capability Configuration in the Configurator
GUI.

For the exact formats of the Task and Action definition files, Figure 5.7 can be used as a
reference. As the figure shows, Task and Action definitions are kept separate from each
other.

To illustrate better how these Capability definitions are added, let us assume a user
trying to add a new Action for opening doors, named OpenDoor. To add the Action,
the user simply has to create a JSON definition file for it in the "action_definitions"
folder. However, the Action definition must also contain at least one Logic definition. If
we imagine an environment with automatic doors that can be opened by sending signals,
an appropriate Logic could be "open_by_sending_signal". This Logic definition then
would in turn define whatever Mappings are needed to make the robot send the signal
to the door.

The OpenDoor Action and its Logic were added successfully as a result. However, they
are not of much use if there are no Tasks that would use the OpenDoor Action. Let
us suppose there is an existing Task definition file in "task_definitions" folder for Patrol
Task, and that this Task has previously been defined to be implemented only using
Action NavigateToLocation. We may now add a new alternative list of required Actions
that consist of both OpenDoor and NavigateToLocation. As a result, it becomes possible
to have Patrol Tasks where the robot may also open doors on its patrol route.

It should also be briefly mentioned how Socket.IO is used for communication between
Configurator GUI and Launch Server. Configurator GUI first connects to
Launch Server, and then waits for messages through two Socket.IO endpoints: "robot-
Connected" and "robotDisconnected". Any Launch Clients that connect to Launch
Server send a Robot Description, which contains data identifying the robot. Launch
Server then forwards this data to Configurator GUI through the "robotConnected"
socket. If any Launch Clients disconnect from Launch Server, Launch Server
informs Configurator GUI of this through the "robotDisconnected" socket.

44

5.6.2 Robot-side deployment

Each robot runs its own Launch Client. Though it is not run on the configurator server,
we consider Launch Client a part of Robot Configurator due to it being entirely tied
to its functionality.

Launch Client itself uses Cooperative Brain Service as a Python import, which is why
the Launch Client is typically put in the Cooperative Brain Service folder. A Python
3 installation of version 3.7 or above is a necessity to run both the Launch Client and
Cooperative Brain Service.

Upon running, Launch Client tries to read a "client-settings.json" file from its folder.
This file informs the Launch Client of the server IP to connect to, and the folder name
for Robot Descriptions. The Launch Client also needs a name of a Robot Description as
a launch parameter, which it searches for in the folder defined in client settings. By default,
this folder is named "robot-settings". If a valid Robot Description is found, Launch
Client attempts to connect to Launch Server using the server IP in the client settings
file.

Though it is not directly a concern of this Robot Configurator, it should be mentioned
that on the Cooperative Brain Service side, support for the platform of the robot must
be implemented within the Task Runtime component as Robot Platform and Action
modules.

5.6.3 Client-side requirements

As Configurator GUI is a web service, it can be simply connected to through network
access. However, using it does require a graphical web browser modern enough to run
Vue.js and Scalable Vector Graphics manipulated through D3 (Bostock, 2012). Otherwise,
no guarantees can be made about the page working properly. Also, Configurator GUI
most likely will not work on mobile platforms, as it is not tested on those nor is it developed
with such platforms in mind.

6 Discussion

As explicated in Chapter 2, the purpose of this thesis is to create and document Robot
Configurator, a system for streamlining the use of Cooperative Brain Service by providing
an intuitive way to configure its initialization parameters. Let us first reflect on how the
designs documented in this paper answer the research questions set in Section 2.3.

RQ1: How can the configurator tool streamline Cooperative Brain Service configuration
for the user? For this purpose, I have specifically included a Graphical User Interface
component in Robot Configurator, as Configurator GUI. Configurator GUI fea-
tures views that guide the user in creating both Capability Configurations and Scenario
Configurations, and it also allows launching robots with the created configurations from a
hub-like view. Section 5.3.1 gives a detailed explanation of the Configurator GUI, and
Section 5.3.2 explains the basic workflow from the perspective of a user. Nevertheless, it
is still possible that the user interface or even some non-critical functionality of Config-
urator GUI could have room for improvement, as development was done with priority
on implementing functionality necessary for the basic workflow first. However, I believe
further Configurator GUI development is better done after getting more feedback of
it in use, separate from this thesis.

RQ2: How do we validate variability configurations made? The validation in Robot
Configurator concerns whether a robot is actually capable of performing the Actions it is
designated to have in a Capability Configuration. Robot Templates are introduced to
represent robots’ capabilities as lists of Mappings. Validating whether a type of robot can
run a Capability Configuration is now rather straightforward, as long as we have a Robot
Template representing the robot: the validation checks whether all of the Mappings
required by the Capability Configuration are included in the Robot Template. Sections
5.3.1 and 4.1.3 concern this topic.

RQ3: How do we comprehensively document the architecture of Robot Configurator?
By "comprehensively" I refer to how the documentation should cover not just bare function-
ality, but also how the software can be maintained and developed further. For this purpose,

46

I have chosen to use a viewpoint-based architecture documentation framework (Rozanski
and Woods, 2012), where the viewpoints correspond to different types of concerns, mainte-
nance (as deployment) and development included. This architecture description of Robot
Configurator is presented in Chapter 5.

Though it is always possible further requirements will come up as the Robot Configurator
is put to use, all the current documented requirements were answered as described in this
thesis. Therefore, it could be said Robot Configurator meets the requirements set to it at
the time being. That being said, though Robot Configurator has been evaluated to work
as intended in manual use, as per the basic workflow described in Section 5.3.2, it has
not been formally tested in any way. This is because it was not seen as necessary at the
time. If there is interest, further work could involve creating test cases from stakeholder
requirements, and using those tests to evaluate that the system is working as intended.

One point that also warrants discussion is the development of the Configurator GUI
frontend. Creating the Configurator GUI ended up being an undertaking of unex-
pected scale and complexity, not helped by the lack of previous frontend development
experience. In short, getting all the GUI views implemented required a significant work
effort for what might not be seen as the most compelling part of this thesis research. The
initial lack of know-how also led to some difficulty in creating a sensible code structure for
the Configurator GUI, especially in terms of the data models and flow. However, at
least this experience will surely be beneficial should an opportunity arise to work with an
another Vue.js project in the future.

Finally, it must be conceded that though a degree of design knowledge was documented, the
problem domain itself of this thesis, deployment parameters of autonomous cooperative
robots, is rather niche. Accordingly, the research focus was on answering stakeholder
concerns over trying to present generalisable scientific contribution. Even so, Chapter 3
is dedicated to discussing the design of Robot Configurator, and the models of variability
described in Chapter 4 are essentially a novel approach to modeling properties of robots
and environments from the cooperation-oriented perspective of Cooperative Brain Service.

7 Conclusions

The Robot Configurator was implemented as defined by the requirements, and is already
integrated for use with Cooperative Brain Service. In the primary research of CACDAR,
it had become apparent that there are many elements particularly in simulated 3D worlds
and the real world that can cause experimenting with robots to be challenging (Mäkitalo
et al., 2021). Therefore, it is greatly beneficial to have a tool that can streamline setting
up various experiments. The new models introduced can potentially also be used as-is or
as inspiration for other elements of the whole CACDAR research project, or even other
future robot research.

As for what direction the Robot Configurator could go next, one idea would be that of
making the Cooperative Brain Service support changing configurations in real time, as
opposed to the current approach which determines the modules loaded at startup. In fact,
Robot Configurator being hosted as a service already hints towards this sort of real-time
approach. As for how to actually implement this, it could either be as simple as changing
only the parameters specific to Scenario Configuration, which would be comparatively
straightforward, or changing even the Capability Configuration and thus swapping the
Logic modules, which would require careful procedures to make this work during runtime.
Either way, most of the work in doing these changes would be on the Cooperative Brain
Service side. From Robot Configurator’s perspective, the way configurations are sent could
stay practically the same. As a somewhat tangential idea, the CONNECTED ROBOTS
view could be updated to show more about robots’ current statuses.

An another relevant idea for future research could be developing further the models of
variability featured in Chapter 4. In particular, they could be applied to some existing
software variability modeling methodology such as Kumbang (Asikainen et al., 2007).
However, this proposal would appear more acute if the complexity of the configuration
problem were to increase in some manner first.

In my view, however, currently the best next step for Robot Configurator would be to put
it into proper practical use in the experiments of CACDAR, and then improve it based on
the feedback received.

Bibliography

Asikainen, T., Mannisto, T., and Soininen, T. (2006). “A unified conceptual foundation
for feature modelling”. In: 10th International Software Product Line Conference
(SPLC’06), pp. 31–40. doi: 10.1109/SPLINE.2006.1691575.

Asikainen, T., Männistö, T., and Soininen, T. (2007). “Kumbang: A domain ontology for
modelling variability in software product families”. English. In: ADVANCED
ENGINEERING INFORMATICS 21.1, pp. 23–40. issn: 1474-0346.

Asikainen, T., Soininen, T., and Männistö, T. (Aug. 2003). “A Koala-Based Ontology for
Configurable Software Product Families”. In:

Bachmann, F. and Bass, L. (2001). “Managing variability in software architectures”. In:
ACM SIGSOFT Software Engineering Notes 26.3, pp. 126–132.

Bosch, J. (2000). Design and Use of Software Architectures: Adopting and Evolving a
Product-Line Approach. USA: ACM Press/Addison-Wesley Publishing Co. isbn:
0201674947.

Bostock, M. (2012). D3.js - Data-Driven Documents. url: http://d3js.org/.
Brocke, J. v., Hevner, A., and Maedche, A. (Sept. 2020). “Introduction to Design Science
Research”. In: pp. 1–13. isbn: 978-3-030-46780-7. doi:
10.1007/978-3-030-46781-4_1.

Brownsword, L. and Clements, P. (1996). A Case Study in Successful Product Line
Development. Tech. rep. CMU/SEI-96-TR-016. Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University. url:
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=12587.

Czarnecki, K., Østerbye, K., and Völter, M. (Jan. 2002). “Generative Programming.” In:
pp. 15–29.

Fielding, R. T. and Taylor, R. N. (2000). “Architectural Styles and the Design of
Network-Based Software Architectures”. AAI9980887. PhD thesis. isbn: 0599871180.

Galster, M., Männistö, T., Avgeriou, P., and Weyns, D. (June 2011). “First International
Workshop on Variability in Software Architecture (VARSA 2011)”. In: Software
Architecture, Working IEEE/IFIP Conference on. Los Alamitos, CA, USA: IEEE
Computer Society, pp. 280–281. doi: 10.1109/WICSA.2011.44. url:
https://doi.ieeecomputersociety.org/10.1109/WICSA.2011.44.

https://doi.org/10.1109/SPLINE.2006.1691575
http://d3js.org/
https://doi.org/10.1007/978-3-030-46781-4_1
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=12587
https://doi.org/10.1109/WICSA.2011.44
https://doi.ieeecomputersociety.org/10.1109/WICSA.2011.44

50

Gangemi, A. (2017). DUL: the DOLCE + DnS Ultralite ontology. url:
http://ontologydesignpatterns.org/wiki/Ontology:DOLCE+DnS_Ultralite

(visited on 11/17/2021).
Gates, B. (Feb. 2007). “A Robot in Every Home”. In: Scientific American 296,
pp. 58–65. doi: 10.1038/scientificamerican0208-4sp.

Hallsteinsen, S., Hinchey, M., Park, S., and Schmid, K. (2008). “Dynamic Software
Product Lines”. In: Computer 41.4, pp. 93–95. doi: 10.1109/MC.2008.123.

Kang, K., Cohen, S., Hess, J., Novak, W., and Peterson, A. (Jan. 1990).
“Feature-Oriented Domain Analysis (FODA) feasibility study”. In:

Leider, J. and Leider, H. (2021). Vuetify — A Material Design Framework for Vue.js.
url: https://vuetifyjs.com/en/ (visited on 09/02/2021).

Mäkitalo, N., Linkola, S., Laurinen, T., and Männistö, T. (2021). “Towards Novel and
Intentional Cooperation of Diverse Autonomous Robots: An Architectural Approach”.
In: Companion Proceedings of the 15th European Conference on Software Architecture.
url: http://ceur-ws.org/Vol-2978/casa-paper1.pdf.

Myllärniemi, V., Ylikangas, M., Raatikainen, M., Pääkkö, J., Männistö, T., and
Aaltonen, T. (2012). “Configurator-as-a-Service: Tool Support for Deriving Software
Architectures at Runtime”. English. In: International Workshop on Variability in
Software Architecture(VARSA), Helsinki, August, 2012. ACM, pp. 151–158. isbn:
978-1-4503-1568-5.

Nord, H. and Chambe-Eng, E. (2021). Qt - Cross-platform software development for
embedded & desktop. url: https://www.qt.io/ (visited on 10/08/2021).

Peffers, K., Tuunanen, T., Rothenberger, M. A., and Chatterjee, S. (2007). “A Design
Science Research Methodology for Information Systems Research”. In: Journal of
Management Information Systems 24.3, pp. 45–77. doi:
10.2753/MIS0742-1222240302.

Peltonen, H., Männistö, T., Alho, K., and Sulonen, R. (Jan. 1994). “Product
Configurations - An Application for Prototype Object Approach.” In: pp. 513–534.

Pezoa, F., Reutter, J. L., Suarez, F., Ugarte, M., and Vrgoč, D. (2016). “Foundations of
JSON schema”. In: Proceedings of the 25th International Conference on World Wide
Web. International World Wide Web Conferences Steering Committee, pp. 263–273.

Prud’homme, C., Fages, J.-G., and Lorca, X. (2016). Choco Solver Documentation.
TASC, INRIA Rennes, LINA CNRS UMR 6241, COSLING S.A.S. url:
http://www.choco-solver.org.

http://ontologydesignpatterns.org/wiki/Ontology:DOLCE+DnS_Ultralite
https://doi.org/10.1038/scientificamerican0208-4sp
https://doi.org/10.1109/MC.2008.123
https://vuetifyjs.com/en/
http://ceur-ws.org/Vol-2978/casa-paper1.pdf
https://www.qt.io/
https://doi.org/10.2753/MIS0742-1222240302
http://www.choco-solver.org

51

Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T., Leibs, J., Wheeler, R., and
Ng, A. Y. (2009). “ROS: an open-source Robot Operating System”. In: ICRA
Workshop on Open Source Software.

Rauch, G. (2021). Socket.IO. url: https://socket.io/ (visited on 09/21/2021).
ROS 2 Design (2021). url: https://design.ros2.org/ (visited on 11/17/2021).
Rozanski, N. and Woods, E. (2012). “Software systems architecture: second edition”. In:
ACM SIGSOFT Softw. Eng. Notes 37.2, p. 36. url:
http://dblp.uni-trier.de/db/journals/sigsoft/sigsoft37.html#Ra12a.

Simons, P., Niemelä, I., and Soininen, T. (2002). Extending and Implementing the Stable
Model Semantics.

Svahnberg, M., Gurp, J. van, and Bosch, J. (July 2005). “A Taxonomy of Variability
Realization Techniques: Research Articles”. In: Softw. Pract. Exper. 35.8, pp. 705–754.
issn: 0038-0644.

Tiihonen, J., Raitahila, I., Raatikainen, M., Felfernig, A., and Männistö, T. (Sept. 2018).
“Generating Configuration Models from Requirements to Assist in Product
Management: Dependency Engine and its Performance Assessment”. English. In:
Proceedings of the 20th Configuration Workshop. Ed. by F. Alexander, J. Tiihonen,
L. Hotz, and M. Stettinger. Vol. Vol-2220. CEUR Workshop Proceedings. Germany:
CEUR-WS.org, pp. 69–76.

TurtleBot3 Features (2021). url:
https://emanual.robotis.com/docs/en/platform/turtlebot3/features/ (visited
on 11/22/2021).

You, E. (2021). Vue.js - The Progressive JavaScript Framework. url:
https://vuejs.org/ (visited on 09/21/2021).

https://socket.io/
https://design.ros2.org/
http://dblp.uni-trier.de/db/journals/sigsoft/sigsoft37.html#Ra12a
https://emanual.robotis.com/docs/en/platform/turtlebot3/features/
https://vuejs.org/

	Introduction
	Background and research problem
	The CACDAR project
	Research problem
	Research questions
	Research method
	Artifacts produced

	Designing Robot Configurator
	Capturing stakeholder requirements
	Variability modeling
	Research on Variability in Software Product Lines
	Capturing variability in Cooperative Brain Service

	Configurator software design

	Models of variability in Cooperative Brain Service
	Capability Configuration and Robot Models
	Robot Platform
	Capabilities
	Robot Template
	Mapping Scheme

	Scenario Configuration and Environment Models
	Ontology Object
	Environment Knowledge Set

	Robot Configurator architecture
	Architecture description through viewpoints
	Context view
	Functional view
	Functional components
	User workflow

	Information view
	Models of Variability
	Robot Description
	Configuration Formats

	Development view
	Configurator API
	Configurator GUI
	Launch Server
	Launch Client

	Deployment view
	Server-side deployment
	Robot-side deployment
	Client-side requirements

	Discussion
	Conclusions
	Bibliography

