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ABSTRACT 

Locomotor behavior, the entire set of movements an individual utilizes to modify its spatial 
location in time, is a crucial attribute of an organism’s life. Though not responsible for 
movement initiation or rhythmic locomotor pattern generation, the cerebellum, an ancient 
and functionally conserved feature of the vertebrate brain, plays a key role in many aspects of 
motor performance. Variations in its morphology, relative size and cortical organization, likely 
resulting from divergent developmental programs, have been observed even in closely related 
vertebrate species, often reflecting a tight linkage between cerebellar organization and 
functional demands associated with ecologically relevant factors and distinct behavioral traits. 

Taking advantage of the extraordinary ecomorphological diversity of squamates (lizards and 
snakes) and adopting a multidisciplinary approach, this thesis explores the impact of 
locomotor behavior on squamate brain, particularly on different levels of cerebellar biological 
organization, and investigates cerebellar morphogenesis in two squamate species to gain 
insights on the developmental mechanisms potentially responsible for squamate cerebellar 
divergence. 

Along with significant variations in cerebellar morphology and relative size across squamates, 
this thesis first highlights a wide heterogeneity in Purkinje cell (PC) spatial layout as well as in 
gene expression pattern, all correlating with specific locomotor behaviors, unveiling unique 
relationships between a major evolutionary transition and organ specialization in vertebrates. 
At the developmental level, the thesis indicates that developmental features considered, so far, 
exclusive hallmarks of avian and mammalian cerebellogenesis characterize squamate 
cerebellar morphogenesis. Furthermore, the thesis suggests that variations in the 
spatiotemporal patterning of different cerebellar neurons could be, at least partially, at the 
base of the large phenotypic diversification of the squamate cerebellum. 

Finally, this thesis reveals that squamates provide an important framework to expand our 
knowledge on organ system-ecology relationships and central nervous system (CNS) 
development and evolution in vertebrates. 
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1 INTRODUCTION 

The brain is the command-and-control center coordinating the most diverse and fundamental 
processes of an animal’s life. By integrating sensory information originating from both the 
external world and the individual’s internal environment it enables an animal to perform the 
proper set of actions in response to perceived environmental changes. Thus, the precise 
control of movement execution, the capability to learn new motor tasks and to quickly react 
to unexpected discrepancies between the planned and executed movement are among brain 
functions of crucial ethological importance. Not surprisingly, motor behavior, the entire 
spectrum of movements an organism can perform, is finely governed by an entangled network 
of highly interconnected brain areas and nuclei as well as by specialized neuron pools in the 
spinal cord.  

The cerebellum, a major feature of the vertebrate hindbrain, occupies a pivotal position in this 
network and it is fundamental for fine movement execution, motor error correction and motor 
learning. Cerebellar functions, cellular organization and both intrinsic and extrinsic 
connectivity are well-conserved, nonetheless, this brain subdivision exhibits a high degree of 
variation in morphology, relative size and cortical organization, not only between different 
vertebrate groups, but also in closely related taxa characterized by divergent ecology and 
behavioral traits. Such apparent dichotomy between conservation and diversification, 
together with the relatively simple cytoarchitecture of the cerebellar cortex, have made this 
brain subdivision an attractive model to understand basic principles of brain evolution and 
development. Several comparative analyses have, indeed, correlated the relative size or other 
neuroanatomical features of the cerebellum with specific behavioral traits in all major 
vertebrate lineages. Moreover, the developmental characterization of this brain subdivision in 
different vertebrates has highlighted the existence of shared morphogenetic patterns as well 
as of group-specific developmental strategies, these latter likely playing a key role in 
determining various aspects of cerebellar phenotypic diversity across vertebrates. 

Squamates (lizards and snakes) are a heterogeneous vertebrate group, characterized by an 
extreme ecomorphological diversification. They also feature a wide repertoire of motor 
behaviors, ranging from various kinds of limbless locomotion to the highly sophisticated aerial 
gliding of some snake and lizard species, paralleled by a large diversity in both whole-brain 
and major brain subdivision organization. In particular, the squamate cerebellum extensively 
varies in morphology, size, and cortical arrangement. Despite all these characteristics, prior 
to this thesis work, squamate cerebellar morphogenesis and evolution have been poorly 
investigated. This thesis now demonstrates that squamates are a key model not only to assess 
the potential role of ecology and behavior on brain evolution, but also to expand our 
understanding of the developmental mechanisms responsible for the wide array of vertebrate 
cerebellar morphologies and cortical arrangements. 
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2 REVIEW OF THE LITERATURE 

 OVERVIEW OF THE VERTEBRATE BRAIN 

The brain of vertebrates consists of five major subdivisions: the telencephalon, the 
diencephalon, the mesencephalon or midbrain, the metencephalon, which dorsally includes 
the cerebellum and, finally, the medulla oblongata or myelencephalon. Telencephalon and 
diencephalon collectively constitute the forebrain while the cerebellum with the ventral 
metencephalic structures and the medulla oblongata are referred to as the hindbrain. 

Despite even remarkable anatomical and physiological differences subsist across groups, such 
basic brain organization is common to all vertebrates (Fig. 1; Butler and Hodos, 2005; 
Striedter, 2005; Sugahara et al., 2016; Sugahara et al., 2017).  

2.1.1 THE FOREBRAIN 

The forebrain, or prosencephalon, is the rostral-most portion of the brain and includes the 
extensively interconnected telencephalon and diencephalon. It has a pivotal role in controlling 
purposeful behaviors and it modulates instinctive actions and reflexes generated in lower CNS 
centers as a response to environmental or internal stimuli. The basic organization and 
functions of the forebrain are well conserved across vertebrates, nonetheless, this brain region 
exhibits a remarkable heterogeneity in terms of relative size, cytoarchitectonic organization 
and connectivity with other brain districts. The divergent evolution of the prosencephalon has 
led to an increase in its size and to the elaboration of an entangled network of interconnected 
centers which paralleled the emergence of complex, highly sophisticated, behaviors in some 
vertebrate groups. 

2.1.1.1 The telencephalon 

The vertebrate telencephalon can be subdivided in a dorsal and ventral component, the 
pallium and the subpallium, respectively (Medina et al., 2005; Northcutt, 1977; Northcutt, 
1981; Pombal and Puelles, 1999; Puelles et al., 1999; Wullimann and Rink, 2002). The 
subpallium is the telencephalic region which shows the highest degree of developmental, 
structural, physiological and functional conservation across vertebrates (Moreno et al., 2009). 
Comparative studies highlighted a shared developmental blueprint underlying the origin of 
the different subpallial derivatives, including the territorial specification of progenitor pools 
and cell migration. Among the subpallial derivatives, the striatopallidal complex (dorsal and 
ventral striatum and pallidum) plays a key role in movement control as part of the highly 
elaborated basal ganglia system which, by interconnecting the striatopallidal complex with 
both diencephalic (subthalamic nucleus) and mesencephalic (substantia nigra and ventral 
tegmental area) nuclei, integrates proprioceptive and motivational state information and 
assists in planning appropriate motor responses.  
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Figure 1 Gross brain morphology in vertebrates. Schematic drawings illustrating the 
morphological heterogeneity of major brain subdivisions in different vertebrate 
lineages. 

While the dorsal component of the striatopallidal complex is present in most vertebrate 
lineages, the segregation of its ventral component appeared in anurans (Butler and Hodos, 
2005; Endepols et al., 2004; Marín et al., 1998; Rink and Wullimann, 2001; Tay et al., 2011). 
Furthermore, the striatopallidal complex underwent an increase in complexity both in its 
composition and connectivity at the anamniote-amniote transition, especially with the 
development of additional pathways to the dorsal thalamus. The evolution of these circuits, 
involved in both involuntary movement suppression and purposeful movement initiation, 
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likely paralleled the emergence of new ecological and behavioral challenges imposed by land 
colonization (Butler and Hodos, 2005).  

In contrast to the conserved structural organization of the subpallium, the potential 
homologies between pallial derivatives across the different vertebrate lineages are only 
partially resolved. Substantial evidences indicate a well conserved spatial compartmentation 
of the pallium in four main regions, medial, dorsal, lateral, and ventral (Butler and Hodos, 
2005; Ebbesson and Schroeder, 1971; Ganz et al., 2015; Harvey-Girard et al., 2012; Kicliter 
and Northcutt, 1975; Kokoros and Northcutt, 1977; Mueller et al., 2011; Sugahara et al., 2016; 
Sugahara et al., 2017; Suryanarayana et al., 2017). However, while a general consensus has 
been reached on the topographical and functional correspondences of the medial pallium, 
which in in anamniotes and non-avian reptiles gives rise to structures involved in spatial 
cognition and map-like memory representations of the allocentric space, similar to the more 
complex mammalian and avian hippocampus (Broglio et al., 2015; Butler and Hodos, 2005; 
Holtzman et al., 1999; LaDage et al., 2012; López et al., 2001; Nieuwenhuys et al., 1998; 
Rodríguez et al., 2002a; Rodríguez et al., 2002b), the evolution and diversification of the other 
pallial subregions is less clear. In mammals, the dorsal pallium gives rise to the cerebral cortex, 
the lateral pallium to the olfactory cortex whereas the ventral pallial regions contribute to the 
amygdalar complex, a set of nuclei relevant for emotional processing and motivation. The 
cerebral cortex has a high elaborated, six-layered structure clearly distinguished from the 
simpler three-laminar olfactory cortex. It is site of higher associative areas involved in learning 
capabilities, memory formation and storage, emotions and social behavior and, in humans, is 
ultimately responsible for conscious thinking. As a consequence, great efforts have been made 
to identify putative homologs of the six-layered mammalian cerebral cortex in the other 
amniote radiations. Non-avian reptile and bird dorsal pallia are characterized by a three-
layered structure and by a dorsal pallial thickening, the dorsal cortex and the hyperpallium, 
respectively. Additionally, they both feature a large non cortical region, the dorsal ventricular 
ridge (DVR), which extensively protrudes in the lateral ventricle. Despite an apparent and 
radically different anatomical organization, comparative analyses of sensory afferents to 
pallial regions, in mammals and birds, evidenced putative homologies between the avian 
hyperpallium and DVR with the visual and temporal areas of the mammalian cortex, 
respectively (Butler et al., 2011; Karten, 1969). Moreover, recent studies highlighting the 
existence of a comparable microcircuitry and input-output configuration in subregions of the 
avian DVR and areas of the mammalian cortex (Ahumada-Galleguillos et al., 2015; Calabrese 
and Woolley, 2015; Wang et al., 2010), further suggest a dual origin of the mammalian 
cerebral cortex. On the other hand, developmental and gene expression analyses (Aboitiz, 
1992; Aboitiz et al., 2003; Bruce and Neary, 1995; Montiel and Molnár, 2013; Puelles et al., 
2000; Striedter, 1997), clearly indicating a lateral and ventral pallial origin of both the 
reptilian and avian DVR, rather support homologies between the reptilian and avian DVR with 
pallial components of the mammalian amygdalar complex, and favor the hypothesis of the 
expansion of the dorsal pallium as the principal event in mammalian cortex origin. 
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2.1.1.2 The diencephalon 

The diencephalon lies caudal to the telencephalon and it consists of the thalamus and the 
pretectum. The thalamus can be subdivided along its dorsoventral axis in epithalamus, dorsal 
thalamus, ventral thalamus and hypothalamus. Furthermore, some anamniotes feature an 
additional structure, the posterior tuberculum. The complexity of the different diencephalic 
components varies across vertebrates with anamniotes, actinopterygians (ray-finned fishes) 
in particular, displaying a complex organization of the posterior tuberculum, pretectum and 
hypothalamus, whereas amniotes exhibit more elaborated dorsal thalamic regions (Butler and 
Hodos, 2005).  

The nuclei of the pretectum occupy a transitional area over the forebrain and midbrain and 
are spatially arranged in three different zones which are in continuation with analogous 
regions in the optic tectum (dorsal midbrain) which, together with retinal projections 
represents the major pretectal input. Outputs from the pretectum give rise to pathways 
mediating eye movements in relation to salient visual stimuli (Gamlin, 2006). 

The ventral-most division of the diencephalon is the hypothalamus which is functionally 
interconnected with a rostrally adjacent diencephalic region, the preoptic area. The 
hypothalamus and the preoptic areas are connected with the pituitary gland by both neuronal 
projections and hormonal systems, and with some brainstem nuclei and components of the 
limbic system. Such highly interconnected and entangled system is fundamental in regulating 
a wide array of relevant functions ranging from circadian rhythm and body temperature 
regulation to feeding and emotional responses (Saper and Lowell, 2014). 

The ventral thalamus, lying in an intermediate position between the hypothalamus and the 
dorsal thalamus, is part of circuits related to both sensory processing and motor control. Three 
ventral thalamic nuclei, all receiving retinal projections, are present in anamniotes. Like 
anamniotes, mammals feature three nuclei, tightly interconnected both with the globus 
pallidus in the striatopallidal telencephalic complex and the substantia nigra in the midbrain 
tegmentum, which are primary involved in motor control. These nuclei participate in basal 
ganglia-related circuitry and, so far, similar connections have not been identified in anamniote 
ventral thalamic nuclei. They may be an exclusive hallmark of amniotes, related to increased 
motor control demands associated with the transition to terrestrial environment (Butler and 
Hodos, 2005). The ventral thalamus includes also the ventral lateral geniculate nucleus which, 
in mammals, relays inputs from the retina and from superficial and intermediate areas of the 
dorsal midbrain carrying visual and both motor and multimodal sensory inputs, respectively. 
Moreover, it receives inputs from the pretectum and from different visual areas of the cerebral 
cortex. The ventral lateral geniculate nucleus projections do not ascend to the cortex but rather 
feedback to the intermediate dorsal midbrain and pretectum and target also the cerebellum 
via the pontine nuclei. Owing to its connectivity the ventral lateral geniculate nucleus is 
involved in the control of eye movements upon relevant stimuli presentation and in the 
regulation of coordinated head and eye movements (Butler and Hodos, 2005). 

The dorsal thalamus comprises nuclei that transmit different modality sensory information to 
the telencephalon and, in some vertebrates, nuclei that are highly integrated in circuits with 
pallial telencephalic areas. Sensory information reaching the dorsal thalamic nuclei are largely 
relayed through bilateral projection in anamniotes while ipsilateral projections to the 
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telencephalon are predominant in amniotes. In addition, the majority of anamniotes feature 
three dorsal thalamic nuclei while, in contrast, amniotes show many distinguished nuclei 
(Butler, 1994; Butler, 2008). However, the basic structural organization of the dorsal 
thalamus is largely conserved across vertebrate radiations. In all gnathostomes, indeed, the 
dorsal thalamic nuclei can be grouped into a lemnothalamic (rostral) and a collothalamic 
(caudal) division, receiving either direct visual and somatosensory stimuli or indirect sensory 
information through relays in the midbrain roof, respectively. Within amniotes, a similar 
configuration of both lemnothalamic and collothalamic nuclei have been identified, 
nonetheless the putative homology and correspondence of individual nuclei are not fully 
elucidated (Butler and Hodos, 2005).  

2.1.2 THE MIDBRAIN 
The vertebrate midbrain, or mesencephalon, consists of a dorsal part or roof, including two 
laminar structures—the tectum and the tori semicirculari, corresponding to mammalian 
superior and inferior colliculi, respectively—and a ventral region, known as the tegmentum 
mesencephali, with a nuclear structure. Both mesencephalic subdivisions play a relevant role 
in sensorimotor integration as part of an extensively interconnected system which includes 
sensory and motor nuclei, as well as integrative structures residing in the hindbrain and 
forebrain. In addition, the transitional region between the mesencephalon and the hindbrain, 
the isthmus, plays a crucial role during embryonic brain patterning and it is site of nuclei with 
a widespread neuromodulatory function and of the midbrain locomotor region, a conserved 
and likely ancestral system that mediates locomotor behavior. 

2.1.2.1 The optic tectum and tori semicirculari 

The tectum, or superior colliculi in mammals, is the most conserved brain region in both 
anamniotes and amniotes. Its multi-layered architecture, cell subtypes and connectivity are, 
indeed, quite similar in all vertebrates (Butler and Hodos, 2005). Owing to the conspicuous 
inputs received from the retina it is generally called optic tectum and it is remarkably 
expanded in animals with a particularly developed visual system. However, while retinal 
connections predominate in the superficial layers of the optic tectum, the most internal 
laminae are provided with auditory, somatosensory and, in organisms with specialized 
receptive organs, infrared-sensory and electro-sensory information (Hartline et al., 1978; 
Ingle, 1973; Schaefer, 1970; Zeymer et al., 2018). These extra-visual stimuli are relayed to the 
optic tectum by nuclei in the hindbrain or by a paired structure, forming two bilateral bulges 
in the lower midbrain roof, the tori semicirculari—known as inferior colliculi in mammals. 
The tori semicirculari are present, except for hagfishes, in all vertebrates and mediate auditory 
stimuli as well as mechano- and electro-sensory information transmitted by the lateral line 
system in aquatic anamniotes (Syka and Straschill, 1970; Zeymer et al., 2018). 

Both the number and the thickness of the tectal layers vary among taxa, nonetheless, the 
majority of both incoming and outgoing projections are arranged in a similar topographic 
fashion in all vertebrates. Such organization, together with the segregation of tectal afferents 
in different layers, results in the formation of stacked three-dimensional unimodal sensory 
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maps of the external environment, mutually in register in a way that a specific point in the 
visual space has a corresponding point in the in the auditory space (Drager and Hubel, 1976; 
Hartline et al., 1978; Stein et al., 1976). Furthermore, this configuration is paralleled by a 
similar distribution of the efferent projections descending to brainstem motor nuclei in most 
vertebrates as well as to the spinal cord in mammals. This congruence of sensory and motor 
maps allows the optic tectum to play a central role in motor responses following the 
individuation of a relevant stimulus in the environment, such as reorienting eyes and head 
towards a prey or escaping from predators (Evans et al., 2018; Schneider, 1967; Schneider, 
1969; Sprague and Meikle, 1965). In addition, the sensory spatiotopic information generated 
in the tectal laminae is also relayed, via efferents to the thalamus, to upper pallial and 
subpallial areas in the telencephalon, which, in turn, exert a positive or negative selection on 
tectum-mediated motor behaviors (Everling and Johnston, 2013; Hu et al., 2019). 

 Both the optic tectum and the tori semicirculari show variations in their relative size, 
complexity and organization which, in parallel with the degree of development of the sensory 
systems they are interconnected to, have been correlated to specific ecological and behavioral 
traits in different vertebrate groups, ranging from fishes to birds and mammals (Barton and 
Harvey, 2000; Barton et al., 1995; Corfield et al., 2011; Crish et al., 2003; Gutiérrez-Ibáñez et 
al., 2013; Hoops et al., 2017; Iglesias et al., 2018; Wagner, 2001a; Wagner, 2001b). Such 
findings highlight the role of ecological factors in shaping morphological and structural 
features of the vertebrate brain and the tight relationships linking the form and the function 
of specific brain areas.  

2.1.2.2 The midbrain tegmentum  
Ventral to the optic tectum, the midbrain tegmentum contains a collection of nuclei 
completely lying in the midbrain floor, like the red nucleus, the substantia nigra and the nuclei 
of the ventral tegmental area—all playing a key role in motor behaviors, the former involved 
in limb movement coordination and the others in mediating the initiation and control of 
voluntary movements. Other tegmental nuclei, instead, are integral part of diffuse motor-
related networks that extend to the hindbrain, such as the reticular formation and the nucleus 
of the III cranial nerve (oculomotor). Moreover, the tegmentum mesencephali is extensively 
traversed by both ascending and descending fiber systems which transmit sensory 
information to forebrain areas and motor commands to brainstem nuclei and spinal cord, 
respectively. Data regarding the structure and composition of the tegmentum in different 
vertebrate groups are fragmented, nonetheless, despite anamniotes (except for sharks, rays 
and skates) seem to lack both the ventral tegmental area and substantia nigra, most of the 
tegmental structures and fiber systems appear to be well-conserved, at least among 
gnathostomes (Butler and Hodos, 2005). 

2.1.3 THE HINDBRAIN 
The hindbrain is composed by the medulla oblongata, the floor of the metencephalon and the 
cerebellum (for a detailed description of the cerebellum, please, see chapter 2.2). While in 
most vertebrates the ventral hindbrain floor constitutes an homogeneous structure with no 
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obvious structural and morphological transition between the metencephalic and 
myelencephalic subdivision, in mammals, the ventral metencephalon presents a highly 
developed and distinctive formation, the pons, which hosts several cranial nerve nuclei and it 
is massively crossed by projections from the cerebral cortex that either terminate on site 
(corticopontine tract) or descend to the spinal cord (corticospinal tract). The corticopontine 
tract is part of a bi-synaptic pathway connecting cortical areas in the telencephalon with the 
contralateral cerebellum through a relay in pontine nuclei. Pontine nuclei, though much 
smaller than the mammalian counterpart, have been identified in birds while their presence 
in reptiles is debated. 

The hindbrain contains most of the nuclei of the cranial nerves (III-X, XII) and has a pivotal 
role in in key biological functions like the control of breathing, alertness, sleep and motor 
coordination. Large part of these functions is mediated by a complex, extensively ramified 
coordinating system, the reticular formation which, made up of loosely packed neuronal 
clusters and fibers interspersed between the sensory and motor nuclei of the cranial nerves, 
spans the entire hindbrain and extends to forebrain areas. The coordinating activity of the 
reticular formation is elicited through its extensive and capillary interconnection with sensory, 
and both somatomotor and visceromotor systems. The reticulospinal tract, conveying 
information from upper motor systems to spinal cord motor neurons largely involved in axial 
and proximal limb musculature activity and tone (Davidson and Buford, 2004; Davidson et 
al., 2007; Drew et al., 2004; Lawrence and Kuypers, 1968; Mewes and Cheney, 1991; Prentice 
and Drew, 2001), is a crucial route in motor control and execution in all vertebrates. 
Embedded in the entangled mesh of the reticular formation, specialized groups of neurons 
characterized by the production of distinctive neuropeptides form, together with other 
brainstem and hypothalamic nuclei, a neuromodulatory system that regulates key 
physiological processes, including sleep and wakefulness, heart rate and blood pressure, with 
its pervasive ascending and descending pathways.  

In addition to the reticular formation, the motor control-related functions of the hindbrain 
are also mediated by a nuclear complex localized in the medulla oblongata and strongly 
interconnected with the cerebellum, the inferior olive (IO). The IO receives motor and sensory, 
especially proprioceptive, information from multiple CNS regions including cortical motor 
areas, brainstem nuclei, spinal cord (Berkley and Worden, 1978; Swenson and Castro, 1983; 
Swenson et al., 1989), and sends efferents to the cerebellar cortex and to the deep cerebellar 
nuclei (DCNi). The cortico-olivary projections carry information related to ongoing motor 
activity and intention while spino-olivary fibers transmit information about limb position and 
muscle tone. IO axons, known as climbing fibers, branch extensively and ascend to the 
molecular layer of the cerebellum where they wrap around proximal Purkinje cell (PC) 
dendrites, providing the cerebellum with information crucial for the motor control and motor 
learning functions exerted by this brain subdivision. 

Hindbrain structures have been quite conservative during vertebrate evolution. All jawed 
vertebrates, indeed, display a well recognizable reticular formation and its principal neuronal 
groups as well as a similarly organized IO and neuromodulatory system. The acquisition of 
some additional hindbrain structures in tetrapods, particularly in birds and mammals, 
paralleled the transition to land and the evolution of a sophisticated use of limbs and digits 
(Butler and Hodos, 2005). 
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2.1.4 THEORIES OF BRAIN EVOLUTION 

Despite sharing a basic configuration, vertebrate brains display a wide array of variations in 
their overall- and single subdivision size and morphology, cellular organization and 
composition, and functional capabilities, but the evolutionary mechanisms underlying such 
phenotypic diversification are poorly understood. 

Two opposing models have been proposed to explain the observed changes in vertebrate brain 
architecture, the concerted and the mosaic model of brain evolution.  

The concerted model (Finlay and Darlington, 1995) considers the brain as an integrated whole 
and suggests that brain parts evolve in a coordinated fashion. Strict developmental 
interdependencies between brain regions, according to this hypothesis, would limit the range 
of potential changes involving individual brain subdivisions without affecting the rest of the 
brain, thus, leading to a uniform scaling of brain structures, even in the case of selective 
pressure acting on specific brain regions. Such model emphasizes shared features between 
individuals and attributes to developmental pattern modifications, such as temporal 
variations in neurogenetic events, the key process driving brain evolution (Anderson and 
Finlay, 2014; Cahalane et al., 2014; Finlay et al., 1998; Finlay et al., 2001; Reep et al., 2007; 
Workman et al., 2013).  

The mosaic model of brain evolution (Barton and Harvey, 2000), on the other hand, views the 
brain as a collection of independently evolving units. It suggests that brain evolution occurs 
through alterations in individual functional brain modules in response to specific selective 
pressures, thus, correlating the phenotypic diversity observed in brain architecture across 
vertebrates to their different ecological and behavioral traits. According to this model, brain 
diversity would result from the summation of isolated changes in individual brain areas, 
derived from modifications in selected genes influencing the structure of a brain module 
functionally involved in a specific behavior (Hager et al., 2012).  

Experimental evidences in support of both theories have emerged in comparative studies of 
different vertebrate group brain gross anatomy, in the last decades. Indeed, while several 
volumetric analyses on mammalian and fish brains highlighted a significant proportionality 
in brain region volume changes (Finlay and Darlington, 1995; Yopak et al., 2010), other 
studies outlined mosaic changes and significant correlations between different brain module 
development and specific ecological or behavioral traits, in different vertebrate groups (Barton 
and Harvey, 2000; Boire and Baron, 1994; Dobson and Sherwood, 2011; Gonzalez-Voyer and 
Kolm, 2010; Gonzalez-Voyer et al., 2009; Iwaniuk et al., 2004; Kotrschal et al., 1998; Yao et 
al., 2021). Furthermore, quantitative genetic studies, indicating the existence of low levels of 
phenotypic and genetic correlations among different brain regions in sticklebacks (Noreikiene 
et al., 2015) and that volumetric variation of brain subdivisions is regulated by distinct loci 
independent of each other and of whole-brain size in chicken and mice, (Hager et al., 2012; 
Höglund et al., 2020) have provided a genetic base for the mosaic model of brain evolution.  

A possible reconciliation of these two contrasting views emerged from quantitative analyses 
on the brain composition of different mammalian taxa (insectivores, tree shrews and 
primates), evidencing a tendency for each brain subdivision to occupy a nearly-fixed fraction 
of the whole-brain volume in a given taxon, whereas significant deviations in brain subdivision 
proportions were found between taxa (Clark et al., 2001). These observations suggested the 
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existence of evolutionary shifts in the balance between conservation and variability—this latter 
driven by ecological or behavioral requirements—in developmental processes regulating brain 
regions growth within and across taxa, and led to the elaboration of the concept of 
cerebrotypes (Clark et al., 2001), specific patterns of brain composition that diverge among 
taxa and ecological niches. Cerebrotypes have been recently demonstrated in amphibians, 
birds as well as in invertebrates (Doré et al., 2002; Iwaniuk and Hurd, 2005; Ponte et al., 
2021). Moreover, several studies conducted before the formulation of the cerebrotype concept 
had already revealed the existence of specific brain subdivision patterns in a broad range of 
mammals (De Winter and Oxnard, 2001; Lapointe et al., 1999; Legendre et al., 1994) and fish 
(Huber et al., 1997; Wagner, 2001a; Wagner, 2001b), often associated to specific ecological 
niches or behavioral traits.  

Importantly, large part of the comparative studies on brain evolution has focused on 
volumetric measurements and the possibility that evolutionary principles similar to those 
proposed to act in defining brain composition and size could be extended to other, volume-
independent, aspects of brain organization, like brain subdivision morphological features or 
cytoarchitecture, has been poorly investigated. 

 THE CEREBELLUM 

The cerebellum or “little brain”, is the main feature of the vertebrate hindbrain. It is highly 
involved in sensorimotor integrative processes underlying the execution of coordinated 
movements, motor learning, and motor error correction. However, along with this well-
recognized role in motor dynamics, evidences accumulating from physiological, 
neuroanatomical and behavioral studies are highlighting a pivotal role of this brain 
subdivision also in higher cognitive functions, ranging from working memory to language and 
emotions (Balsters et al., 2013; Baumann et al., 2015; Buckner, 2013; Koziol et al., 2014; 
Schmahmann, 2019; Strick et al., 2009; Vandervert, 2016).  

A rudimental and poorly recognizable plate-like cerebellum is present in jawless vertebrates 
such as lampreys, where PCs and granule cells (GCs), the main cerebellar cell types have been 
observed despite the absence of cortical lamination (Dow, 1942; Johnston, 1902; Pearson, 
1936; Sugahara et al., 2017). All gnathostomes possess a morphologically distinct cerebellum 
featuring a peculiar laminar organization. Cerebellar neurons and accessory interneurons are, 
indeed, orderly segregated in three distinct layers, the internal GC layer (IGL), the PC layer 
(PCL) and the molecular layer (ML). 

The sensorimotor integrative function exerted by the cerebellum relies on an extensive 
connectivity bridging this brain subdivision with vestibular, somatosensory, auditory, visual 
and motor systems (D’Angelo, 2011). Sensory signals from multiple nuclei both in the spinal 
cord and brain stem (Gould, 1980; Matsushita et al., 1979; Sotelo, 2004) as well as inputs 
carrying motor information from the cerebral cortex and relayed to nuclei in the pons (Apps 
and Watson, 2013) are conveyed by mossy fibers (MFs) to GCs while climbing fibers (CFs), 
extending from the IO, transfer signals coming from the spinal cord (Armstrong, 1974), and 
higher brain areas to PCs (Crill, 1970; Dias-Ferreira et al., 2010; Lang et al., 2006; Onodera, 
1984; Watson et al., 2009). Such a remarkably diffuse pattern of connectivity characterizes 
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also cerebellar outputs. Signals generated by the cerebellar processing activity are transmitted 
from PC axons to DCNi neurons which, in turn, sort them towards multiple destinations, 
including the thalamus in the forebrain, the red nucleus and reticular formation nuclei in the 
brain stem (Batton et al., 1977; Buisseret-Delmas et al., 1998; D’Angelo, 2018; Homma et al., 
1995; Nowak et al., 2007; Teune et al., 2000). 

The cerebellum shows a wide range of variation in its overall morphology and relative size, 
both within and between vertebrate groups (Fig. 2).  

 

 

 

Figure 2 Phenotypic diversity and structural features of the cerebellum across 
vertebrates. GCs, granule cells; PCs, Purkinje cells; DCNi, deep cerebellar nuclei; 
(*) The cerebellar foliation displayed by some shark species is achieved through 
mechanisms different than those of birds and mammals. (**) In ray-finned fishes, the 
cerebellar output is relayed to target regions by the eurydendroid cells, which lack a 
nuclear organization.  

Several modifications, indeed, occurred during the gnathostome radiation involving both the 
basic cerebellar architecture and connectivity which paralleled an increase in cerebellar 
complexity. The appearance of DCNi in amphibians and their progressive multiplication in 
amniotes, together with an increase in the number of accessory interneuron types likely 
contributed to a better resolution and fine tuning of incoming and outgoing signals. Moreover, 
the extreme cortical surface expansion in birds and mammals and the establishment of new 
routes connecting the cerebellar hemispheres with different areas of cerebral cortex in 
mammals, enhanced the power of cerebellar computations expanding its functional repertoire 
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(Apps and Watson, 2013). Nonetheless, the main cellular, structural, functional and 
developmental features of the cerebellum are remarkably conserved among all vertebrates 
(Butler and Hodos, 2005; Dow, 1942; Larsell, 1923; Larsell, 1926; Larsell, 1932; Nieuwenhuys, 
1967; Voogd and Glickstein, 1998) making this brain subdivision an excellent model to study 
basic brain pattern evolution and development. 

2.2.1 CORTICAL STRUCTURE AND INTRINSIC CIRCUITRY  

Except for agnathans, the cerebellar cortex displays a tripartite organization (Fig. 3A), which, 
with only few exceptions, is highly stereotyped across vertebrate groups. The IGL is densely 
populated by the abundant, glutamatergic, small GCs and by excitatory interneurons. The PCL 
contains the large and pear-shaped somata of the GABAergic PCs, which in most vertebrates 
are distributed in a well-ordered monolayer along the outer contour of the IGL. The ML is 
largely dominated by the entangled network formed by GC axons and PC dendrites, and hosts 
two types of inhibitory interneurons, the basket cells (BCs) and stellate cells (SCs), which 
occupy distinct subregions of the ML (Fig. 3A). The diverse types of accessory interneurons 
of the cerebellar cortex establish specific connections with PCs, GCs as well as with afferent 
fiber terminals. This internal connectivity, built upon the broader main incoming and 
outgoing circuitry of the cerebellum, exerts a modulatory effect that aids in sculpting 
cerebellar response. 

Together with neurons, cerebellum hosts a particular type of astroglial cells, known as the 
Bergmann glia (BG). The BG plays a crucial role in cerebellar cortex patterning. During 
development, in fact, it provides a radial scaffold both PCs and GCs use as guidance during 
the migration from their place of origin towards their final destination (Consalez et al., 2021; 
Yuasa et al., 1991; Yuasa et al., 1993). In the adult cerebellum, BG is essential for cerebellar 
physiology and signal processing optimization by actively participating to a vast gamut of 
functions (De Zeeuw and Hoogland, 2015). 

The output cells of the cerebellum are the DCNi neurons. They lie in the deep regions of the 
cerebellum and are contacted both by incoming afferents (MFs and CFs) and PC axons. The 
product of the integrative activity occurred in the cerebellar cortex is relayed by bundles of 
fibers (the cerebellar peduncles), originating in the DCNi, to different locations both in upper 
and lower brain areas (Fig. 3A; Batton et al., 1977; Buisseret-Delmas et al., 1998; D’Angelo, 
2018; Homma et al., 1995; Teune et al., 2000; Voogd et al., 2013). Among vertebrates, ray-
finned fish cerebella are devoid of DCNi. In these organisms the cerebellar output is 
transmitted from PCs to specific cells, the eurydendroid cells, which lack a defined nuclear 
organization (Ikenaga et al., 2006). DCNi number shows a progressive increase during 
vertebrate evolution (Butler and Hodos, 2005; Nieuwenhuys, 1967), with lampreys, sharks 
and amphibians displaying a single nucleus, non-avian reptiles having two and birds and 
mammals featuring three DCNi (Butler and Hodos, 2005; Larsell, 1923; Larsell, 1926; Paul 
and Roberts, 1984; Pose-Méndez et al., 2016).  



 

13 
 

2.2.1.1 The internal granular layer 

The IGL is the internal-most layer of the cerebellar cortex and it consists of a tightly packed 
array of GCs, the most abundant cells of the entire brain (Sawtell and Abbott, 2015), but it also 
includes local excitatory interneurons. Large Golgi cells (GoCs), absent in amphibians (Llinás 
and Hillman, 1969), are intermingled between GCs, exerting their inhibitory action at the level 
of MF-GC synapses. GoCs display an elaborated branching with basal and apical dendrites 
differing in their spatial extension. The basal dendrites are confined in the IGL, while the 
apical ones penetrate into the ML where they establish contacts with PFs (Fig. 3A).  

The mammalian cerebellum features additional interneurons, either widely distributed, like 
the inhibitory Lugaro cells, or restricted to areas involved in vestibular information processing 
(the vestibulocerebellum), like the unipolar brush cells (UBCs), which stand out as the only 
glutamatergic interneurons of the cerebellum (Butler and Hodos, 2005; Mugnaini et al., 2011; 
Schilling et al., 2008).  

GCs are characterized by their small dimension and by the peculiar morphology of their axons. 
GC neurite ascends towards the upper layers of the cortex as a single process and, once reached 
the molecular layer, it bifurcates towards opposite directions conferring GCs a typical T-
shaped appearance. The geometry of these parallel fibers (PFs) is such that the direction of 
each parallel fiber is orthogonal to the plane of PC dendrites, thus allowing each GC to contact 
hundreds of PCs (Fig. 3A,B; Eccles et al., 1967; Ito, 2006). GC neurite bifurcation has not 
been described in weakly electric fishes where a divergent arrangement of cortical layers 
causes the ascending GC processes to lie already in a plane orthogonal to PC dendrites. The 
contacts between GCs and PCs, however, are not exclusively restricted to PFs. En passant 
synapses between the ascending GC axon (AGA) and PCs are, indeed, recurrent (Fig. 3B; 
Bower, 2002; Bower and Woolston, 1983; Gundappa-Sulur et al., 1999; Huang et al., 2006; 
Sims and Hartell, 2005). In contrast with the weak and delayed stimulation provided by PFs 
innervating the distal portion of PC arborization, these en passant synapses, located in 
proximal regions of PC arborization, are capable to deliver a powerful and instantaneous 
excitatory input to PCs (Bower, 2002; Huang et al., 2006). These divergent transmission 
modalities likely play distinct role in cerebellar physiology. Synapses between AGA and 
proximal PC dendrites are, indeed, thought to work as coincidence detectors whereas PF-PC 
synapses, owing to their high plasticity, are likely to act as modulators of cerebellar signal 
processing (Sims and Hartell, 2005). Excitatory inputs from different brain nuclei and spinal 
cord reach the IGL through MFs. MFs, GCs and GoCs terminals form a specialized synaptic 
complex, known as glomerulus. In the glomerulus GoCs receive excitatory input from the MFs 
and exert an inhibitory action on neighboring GCs causing waves of lateral inhibition that 
propagate beyond the afferent synaptic field. These effects have been correlated with specific 
physiological and morphological properties of GoCs and are considered fundamental in fine 
tuning long-term synaptic plasticity at the MF-GC interface (D’Angelo et al., 2011; Galliano et 
al., 2010). 
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Figure 3 Structure of the cerebellar cortex. (A) Cerebellar cytoarchitecture and circuitry. 
The presence and type of cerebellar interneurons varies across vertebrates. (B) 
Synapse distribution and spatial relationships between main cerebellar cell types and 
their afferents. CF and MF synapses with DCN are not represented. 
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In the mammalian cerebellum and in weakly electric fishes, an additional and particular type 
of interneuron participates in GC mossy fiber synapses, the UBCs. UBCs are small, excitatory 
interneurons that possess a single and stubby dendrite which ends in a brush-like structure 
and contacts a single mossy fiber terminal carrying a vestibular input. UBC axons locally 
arborize in the granular layer to contact proximal GCs and MFs forming rosette-like 
structures. The main function of UBCs is to generate an intracortical circuitry responsible for 
a sustained feed-forward amplification of single mossy fiber input (Schilling et al., 2008). In 
contrast with the other accessory interneurons, uniformly distributed in all cerebellar areas, 
UBCs are almost exclusively located in cerebellar region targeted by vestibulocochlear stimuli,  
suggesting a pivotal role of these cells in balance and posture (Mugnaini et al., 2011).  

2.2.1.2 The Purkinje cell layer 

Purkinje cells are among the largest cells of the entire brain (Dusart and Flamant, 2012) and 
display peculiar morphological features. They show a pear-shaped cell body and an elaborated 
dendritic arborization which ramifies along a single plane. PCs somata lie along the outer 
contour of the IGL and are distributed in a well-ordered monolayer in most vertebrate groups 
(Fig. 3A,B), exception being some cartilaginous fishes, lungfishes and snakes which display, 
instead, various nuances of PC scattering. The reciprocal organization of PC dendrites is also 
highly stereotyped. PC dendritic trees, in fact, extend along parallel planes, orthogonal to PF 
direction. This overall PC spatial layout allows single GCs to propagate their output to several 
thousand PCs via their PFs. PCs are inhibitory GABAergic cells capable of a vast repertoire of 
electrophysiological responses, mediated by complex sets of ion channels, and are the sole 
output of the cerebellum. Their myelinated axons contact the underlying DCNi that will 
eventually relay the outcome of cerebellar computation to multiple brain nuclei in the brain 
stem and forebrain (Fig. 3A,B).  

PCs are the direct target of signals originating in various districts of both brain and spinal cord 
(Armstrong, 1974; Crill, 1970; Dias-Ferreira et al., 2010; Lang et al., 2006; Onodera, 1984; 
Watson et al., 2009), relayed by IO CFs (Desclin, 1974; Sotelo et al., 1975) which tightly wrap 
around PC dendrite initial segment and proximal portion (Fig. 3A,B). PC innervation by CFs 
represents a unicum in the entire CNS due to an almost exact numerical matching between 
PCs and CFs. CF ramifications establish extensive contacts with PC dendrites but each PC is 
contacted by only one CF (Armstrong and Schild, 1970; Cesa and Strata, 2009; Eccles et al., 
1966; Hashimoto and Kano, 2013; Kano et al., 2018). Such a precise pattern of innervation is 
grossly set already during development and refined postnatally (Cesa and Strata, 2009).  

In addition to PC somata, the PCL also hosts the cell bodies of a highly specialized type of 
astrocytes, the BG. BG physiological properties and morphology are finely adapted to the 
cerebellar network where BG tasks are thought not be restricted to simple housekeeping 
processes but rather strongly connected to cerebellar computational dynamics. BG have been 
shown, indeed, to both regulate the extracellular ionic milieu and have a neuroprotective 
function (Jakoby et al., 2014; Wang et al., 2012), but also to extensively contribute both to 
synaptic stability and plasticity (Balakrishnan and Bellamy, 2009; Balakrishnan et al., 2014; 
Iino et al., 2001; Saab et al., 2012).  
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2.2.1.3 The molecular layer 
The ML is outermost layer of the cerebellar cortex and it is dominated by PC dendritic 
arborizations and GC parallel fibers which give rise to an ordered, though extremely 
entangled, network spanning the entire ML thickness. Due to the peculiar structure and 
orientation of GC axons, PC somata and dendrites, each parallel fiber synapses with a 
multitude of PCs along its way. The synapses between PFs and PCs are highly plastic with 
adaptive rearrangements in their strength and location reflecting modifications of both 
environmental and internal parameters induced by a wide gamut of events, including physical 
exercise, social interaction and neurotransmitter modulation (Floeter and Greenough, 1979; 
Ito and Schuman, 2008; Pysh and Weiss, 1979). Therefore, the ML is a dynamic environment 
where crucial events underlying cerebellar processing capabilities occur. 

The cellular fraction of the ML is constituted by two types of inhibitory interneurons, the BCs 
and SCs. BC and SC position in the internal cerebellar circuitry is quite similar as they both 
receive inputs almost exclusively from the PF system and direct their output to PC. They are 
distinguished by the branching pattern of their axons and dendrites, by the topography of their 
synapse on PCs, and by the different regions their perikarya occupy in the ML (Chan-Palay 
and Palay, 1970; Chan-Palay and Palay, 1972; Lemkey‐Johnston and Larramendi, 1968; 
Schilling et al., 2008). Moreover, while SCs have been thoroughly documented in all jawed 
vertebrates, BCs are an exclusive feature of the avian and mammalian cerebellum (Butler and 
Hodos, 2005; Chan-Palay and Palay, 1972; Eccles et al., 1970; Kaslin and Brand, 2013; Llinás 
and Hillman, 1969; Midtgaard, 1992; Rushmer and Woodward, 1971). 

SCs populate the upper part of the ML and their axons run parallel to PFs before descending 
along an almost orthogonal plane to contact multiple PC dendrites with their branches. SC 
axons rarely reach PC somata and they generally terminate abruptly (Chan-Palay and Palay, 
1972). BCs, instead, are found in the lower third of the ML and directly inhibit PCs by forming 
remarkably elaborated pericellular cages (baskets) with their axons, giving rise to numerous 
perisomatic synapses with PCs. Additionally, BC axons form specialized terminals, 
characterized by a brush-like appearance and known as pinceaux, which contact the initial 
segment of PC axons (Chan-Palay and Palay, 1970; Zhou et al., 2020). The divergent 
topography of SC and BC synapses on PC strongly influences the intensity of the inhibition 
these interneurons exert on target PCs, likely reflecting a differential contribution to PC 
response modulation. The contacts between SCs and PCs, occurring in distal regions of the PC 
dendrites are, indeed, only capable of weakly altering PC membrane potential, whereas, the 
perisomatic stimulation from BCs exerts a much powerful effect. Altogether, ML inhibition is 
thought to give a crucial contribution to cerebellar computational processes aiding in 
dynamically sculpting PC output, thanks to the diversified structural and physiological 
properties of SCs and BCs, via complex combinations of lateral, and both feedforward and 
feedback inhibition mechanisms (Ito, 2014; Prestori et al., 2019). 

2.2.2 CONNECTIVITY OF THE CEREBELLUM 

On par with the internal architecture and circuitry of the cerebellar cortex, the organization of 
both cerebellar inputs and outputs is highly stereotyped and well conserved among vertebrates 
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(Butler and Hodos, 2005). Virtually, all important districts of the whole CNS are in 
connection, either directly or indirectly, with the cerebellum, including brain stem, spinal 
cord, basal ganglia, limbic system, thalamus and telencephalic motor areas (Bangma and ten 
Donkelaar, 1982; Bangma et al., 1984; Bostan et al., 2010; Bostan et al., 2013; Gonzalez et al., 
1984; Gould, 1980; Matsushita et al., 1979; Sotelo, 2004). Moreover, multiple non motor, 
associative regions of the mammalian cerebral cortex show an extensive bi-directional 
connectivity with the cerebellum (Glickstein et al., 1985; Middleton and Strick, 1994; 
Middleton and Strick, 2001; Sasaki et al., 1979; Schmahmann, 1996), forming a closed loop 
circuit influencing cognitive functions such as attention, executive control, language, working 
memory, and learning (Strick et al., 2009). Such extensive and capillary connectivity provides 
the cerebellum with the anatomical foundation to perform its diffuse and heterogeneous tasks.  

2.2.2.1 Climbing fibers and inferior olive 

CFs originate solely from the IO, a large and composite nucleus in the ventrolateral surface of 
brainstem (Szentágothai and Rajkovits, 1959). IO neurons send axons that travel to the 
contralateral ML where they contact discrete groups of PCs, distributed along a parasagittal 
stripe of the cerebellar cortex. Once in the cortex, IO neuron axons extensively branch giving 
rise to an average of seven CFs which wrap around proximal regions of PC dendrites 
establishing a conspicuous number of large synapses (Fig. 3B). A remarkable feature of CF 
innervation, revealed by studies in rat, is the nearly perfect match between IO neurons and 
PCs. In fact, although each IO cell targets an average of seven PCs, each PC is innervated by 
one IO neuron only (Armstrong and Schild, 1970; Cesa and Strata, 2009; Eccles et al., 1966; 
Hashimoto and Kano, 2013; Kano et al., 2018). This precise innervation pattern is refined 
from the originally overconnected network generated during embryogenesis through a 
thorough process of synapse elimination taking place during the first postnatal weeks in 
rodents (Crepel et al., 1976; Hashimoto and Kano, 2013; Kano et al., 2018; Mariani and 
Changeux, 1981). CF input to PC stands as one of the strongest synaptic connections in the 
whole-brain and it has been proposed to act as an error signal, modulating associative 
plasticity at the level of PF-PC synapses (Albus, 1971; Ito, 2001; Marr, 1969). CFs form wide 
synapses capable to induce strong depolarizations in PCs and trigger distinctive complex spike 
responses, which are remarkably different from the graded potentials induced by PF 
stimulation. The information relayed by CFs originates from many brain districts connected 
to the IO, each targeting specific IO subnuclei. IO is provided with somatosensory, motor, 
visual, optokinetic and vestibular information by afferents from the spinal cord, vestibular 
nuclei, midbrain superior colliculi and from nuclei at the mesodiencephalic junction relaying 
inputs from the cerebral cortex (De Zeeuw and Ruigrok, 1994; Onodera, 1984; Onodera and 
Hicks, 1995; Swenson and Castro, 1983). Furthermore, IO neurons constitute an entangled 
network of communicating cells thanks to gap junctions interconnecting them (Condorelli et 
al., 1998). Such configuration allows the electrotonic coupling of IO cells, facilitating the 
generation of synchronous, subthreshold, oscillations among them. Such properties of IO 
neurons, influencing both the rate and the timing of PC complex spikes are thought to be 
fundamental for learning-dependent timing in motor control (Devor and Yarom, 2002; Lampl 
and Yarom, 1993; Van Der Giessen et al., 2008). 
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2.2.2.2 Mossy fibers 

Mossy fibers are the second major input to the cerebellar cortex. Like CFs, MFs arise from 
multiple sources in the brain and spinal cord, and compose a heterogeneous population of 
cerebellar afferents, conveying an highly diversified range of information (Gould, 1980; 
Matsushita et al., 1979). However, both the trajectory and the destination of mossy fibers 
substantially differ from those of CFs. In fact, MF projections are bilateral, innervating 
multiple groups of GCs along the medio-lateral extent of the cerebellum. Moreover, MFs do 
not extend to upper cortical areas but terminate in the IGL (Fig. 3B) where they participate 
in the formation of remarkable synaptic structures, described for the first time by Ramón y 
Cajal (1888), and known as glomeruli. Glomeruli are tripartite anatomic elements composed 
by the enlarged loops of MF terminals, the clawed edges of GC dendrites and GoC axons and 
basal dendrites. They allow stimuli conveyed by MFs, in form of either prolonged discharges 
or as bursts of very high instantaneous firing frequencies (Arenz et al., 2008; Chadderton et 
al., 2004; Kase et al., 1980; Rancz et al., 2007), to activate both GCs and GoCs. Each mossy 
fiber can contact up to fifty GCs and form several tens of glomeruli. The combined effect of 
the peculiar arrangement of glomerular synapses and of the asymmetrical morphology of GoC 
dendrites, is that GoCs can exert their inhibitory activity on GCs by means of both feedforward 
and feedback loops (Cesana et al., 2013; D’Angelo, 2009; D’Angelo et al., 2013; Kanichay and 
Silver, 2008). The feedforward inhibition is driven by MF stimulation of the glomerular basal 
dendrites of GoCs which, in turn, inhibit groups of neighboring GCs in the range of its axonal 
field. The inhibitory feedback loop is, instead, triggered by AGAs and PFs and mediated by 
GoC apical arborizations.  

Among MF sources in the brainstem are nuclei that also provide important descending motor 
tracts (rubrospinal, reticulospinal, vestibulospinal), like the red nucleus, the reticular 
formation and the vestibular nuclei. MFs originating in these nuclei provide the cerebellum 
with relevant information related to the ongoing motor performance and body segment spatial 
arrangement. Such connection pattern is highly conserved in and it reflects the common 
sensorimotor integrative function the cerebellum exerts in vertebrates (Bangma and ten 
Donkelaar, 1982; Butler and Hodos, 2005; Künzle, 1983b; Pose-Méndez et al., 2016). 
Differences exist, however, in some groups, and are linked both to the presence of additional 
cerebellar structures or to the remarkable development of dorsal telencephalic structures 
which established a tight functional link with the cerebellum. In ray-finned fishes, for 
instance, the valvula cerebelli, an accessory and specialized part of the cerebellum associated 
with mechano- photo- and electro-sensory functions, is target of a conspicuous number of 
mossy fibers arising from a special mesencephalic nucleus—the nucleus lateralis valvulae—
which has no homologue in other vertebrates (Meek et al., 1986; Meek et al., 2008). In 
mammals, instead, the most important source of mossy fibers originates in the pons, which 
mostly relays inputs generated in the cerebral cortex from both sensory and motor areas 
(Glickstein, 2013; Glickstein et al., 1985). The pons is a prominent structure of the mammalian 
brain extending from the posterior end of the mesencephalon to the anterior edge of the 
medulla and is absent in other vertebrate groups. In fact, despite two pontine nuclei (lateral 
and ventral) have been described in birds, they relay only sparse afferents to the cerebellum, 
and a distinctive pons is absent in the avian brain. Remarkably, the pons shows an increase in 
its relative size which parallels the expansion of cerebral and cerebellar hemispheres (the 
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destination of mossy fibers from pontine nuclei) occurred in mammal brain evolution, 
outlining a tight functional link between the cerebellum and the cerebral cortex, and 
highlighting the importance of distributed neural systems in the evolution of complex 
behaviors (Balsters et al., 2010; Barton and Venditti, 2014; Brodal and Bjaalie, 1992; Whiting 
and Barton, 2003). 

2.2.2.3 Deep cerebellar nuclei 

The DCNi distribute the ultimate result of cerebellar computation to the rest of the brain (Fig. 
3A). Cerebellar outgoing projections are directed to the upper encephalic areas and to a wide 
set of brainstem nuclei. With the exclusion of teleosts, which feature specialized cerebellar 
efferent cells (the eurydendroid cells), lacking a nuclear organization, all vertebrates possess 
one or more DCNi. In particular, anamniotes have one, non-avian reptiles two (a medial and 
a lateral), while both birds and mammals show three nuclei (a medial, an interposed and a 
lateral nucleus). The higher number of DCNi in birds and mammals is likely linked to the 
enlargement of their cerebellum compared to other vertebrates and to a more refined system 
for pallial control of medullary and spinal pathways. DCN projections can be grouped in two 
main categories. The first one, comprising efferents that ultimately influence motor neurons 
in the spinal cord, and the second one, composed by projections ascending to nuclei in the 
thalamus relaying, in turn, the signal to telencephalic motor areas. Subsets of fibers arising 
from the DCN are bundled together and constitute the so-called cerebellar peduncles. In 
gnathostomes the most relevant cerebellar efferent pathway is via the brachium conjunctivum 
(the superior cerebellar peduncle of mammals) which massively targets neurons in the red 
nucleus. Neurons in the red nucleus are the origin of the rubrospinal tract, which descends in 
the contralateral spinal cord and, by influencing the activity of motor neurons, exerts a 
fundamental role in limb movements. A second destination of brachium conjunctivum fibers 
are the nuclei of the reticular formation. Such diffuse brainstem nuclei give rise to the 
reticulospinal tract, another primary descending spinal pathway bilaterally influencing motor 
circuits, involved in axial and proximal limb movements. Furthermore, brachium 
conjunctivum efferents also ascend to diencephalic districts, in particular to the dorsal 
thalamic division, which provides motor-related areas in the telencephalon with important 
feedback information from the periphery. In addition to the brachium conjunctivum, a minor 
efferent pathway, displaying a hooked trajectory and known as the fasciculus uncinatus in 
mammals, contributes projections to the vestibular nuclei, to the cervical region of spinal cord, 
as well as to several motor nuclei of the hindbrain, including the reticular formation. 
Surprisingly, regardless of the number of individual DCN featured, though a certain 
heterogeneity may exist in the relative innervation of the different targets, such efferent 
pattern appears well conserved among gnathostomes (Arends and Zeigler, 1991; Bangma, 
1983; Bangma et al., 1984; Ebbesson and Campbell, 1973; Faull, 1978; Finger, 1978; 
Hindenach, 1931; Künzle, 1985a; Larsell, 1923; Montgomery, 1988; New et al., 1998; 
Wullimann and Northcutt, 1988). 

DCN, however, are not simply a relay station distributing cerebellar outputs but are highly 
integrated in the cerebellar circuitry. The signal transmitted by the DCN is, in fact, not only 
influenced by the inhibitory stimuli from PC axons. Both CFs and MFs, before ascending to 
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their destinations in the cerebellar cortex, send axon collaterals conveying excitatory inputs to 
DCN (De Zeeuw et al., 1997; Gerrits and Voogd, 1987; Shinoda et al., 1992).  

2.2.3 FUNCTIONAL REGIONALIZATION OF THE CEREBELLUM 

One of the most striking differences between the cerebellar and the cerebral cortex is the 
extreme cytoarchitectural homogeneity the former exhibits. While the neocortex 
microstructure shows a marked divergence in terms of single layer thickness, cellular density 
and intracortical connectivity across its surface (Brodmann, 1909; Charvet et al., 2015; 
Defelipe et al., 1999; Scala et al., 2019; Watson and Puelles, 2017), revealing the presence of a 
functional diversification between cortical areas (Bayer and Altman, 1991; Elston, 2003; Hof 
and Nimchinsky, 1992), the array of layers and cells as well as the internal circuitry of the 
cerebellum displays a uniform pattern which is replicated, uninterrupted, along its entire 
extent. 

However, in sharp contrast with such regular and homogeneous internal organization and 
circuitry, both cerebellar afferents and corticonuclear projections, show a compartmentalized 
distribution pattern, suggesting that a functional regionalization may exist also in this brain 
subdivision, though imparted by its connectivity rather than its cortical cytoarchitecture. 

At the beginning of the twentieth century, comparative analyses, electrophysiological 
measurements and lesion studies, aiming to characterize cerebellar functional 
compartmentation, evidenced the existence of a somatotopic organization of the cerebellum, 
where representations of different body parts were topographically mapped in specific 
cerebellar domains (Adrian, 1943; Bolk, 1906; Dow, 1938; Ferraro and Davidoff, 1931; Larsell, 
1934; Snider and Stowell, 1944). Since then, technical progress allowed to improve the 
resolution and refinement of the cerebellar somatotopic map, offering a much more complex 
picture than previously thought (Manni and Petrosini, 2004). Experimental evidences 
indicate that body segments are not represented as a continuum over a wide area of the 
cerebellar cortex but are fragmented into discontinuous patches. In addition, the same body 
parts are mapped in multiple locations. Such topographic representation is defined as 
fractured somatotopy (Grodd et al., 2001; Shambes et al., 1978).  

Furthermore, investigations on the fine structure and circuitry of cerebellum in the last 
decades highlighted an exquisite parasagittal modular arrangement of cerebellar inputs and 
outputs, based on the topography of corticonuclear PC projections and both olivocortical and 
olivonuclear innervation by climbing fibers and IO cell axon collaterals, respectively. In such 
pattern, spatially defined subsets of PCs project to specific DCN microdomains which, in turn, 
convey the information to a circumscribed IO area which supply innervation to both same PCs 
and DCN subregions (Trott and Armstrong, 1987a; Trott and Armstrong, 1987b; Voogd and 
Glickstein, 1998). These discrete olivo-cortico-nuclear domains, known as microzones 
(Oscarsson, 1979) are, thus, believed to constitute the cerebellar functional units for 
information processing (Apps and Garwicz, 2005; Sugihara et al., 2001; Voogd and Glickstein, 
1998). 

Further evidence corroborating the modular organization of the cerebellum derives from 
molecular and physiological analyses outlining the existence of an alternated striped pattern 
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of PCs and DCN neurons sharing same physiological properties and protein expression profile, 
highly congruent with the modular distribution of incoming and outgoing cerebellar 
projections. Among such differentially expressed markers, Aldolase C (ZebrinII) shows a 
characteristic parasagittal pattern, made of positive cell stripes interspersed with bands of 
immunonegative neurons (Apps and Hawkes, 2009; Hawkes and Leclerc, 1987; Sugihara and 
Shinoda, 2004; Sugihara et al., 2009; Voogd, 2014; Voogd and Ruigrok, 2004; Zhou et al., 
2014)..  

Moreover, recent tracing experiments (Pijpers et al., 2006), revealed an exact spatial 
correlation between MFs and CFs in the cerebellar cortex of rats, where the convergence of 
MF and CF potentials onto a single somatotopic map, evoked by stimulating either peripheral 
nerves or somatosensory areas of the cerebral cortex, had already been documented (Brown 
and Bower, 2001; Provini et al., 1968). In particular, despite an extensive and bilateral 
branching (Odeh et al., 2005; Scheibel, 1977; Wu et al., 1999), single MF terminals have been 
shown to exclusively contact GC clusters subjacent to PC microzones sharing the same 
ZebrinII expression profile and physiological characteristics (Pijpers et al., 2006).  

Though most of the investigations leading to the identification of the somatotopic organization 
of the cerebellum has been conducted in mammals, a spatial segregation in specific cerebellar 
regions of both main cerebellar inputs and cortico-nuclear projections has been described in 
many vertebrates studied so far, independently of cerebellar complexity (Bangma, 1983; 
Bangma and ten Donkelaar, 1984; Bangma et al., 1984; Iwaniuk et al., 2007; Matsui et al., 
2014; Pose-Méndez et al., 2014). In this respect, a distinctive zonal pattern of cerebellar 
afferents and cortico-nuclear projections has been described in reptiles, including squamates 
(Bangma and ten Donkelaar, 1982; Bangma and ten Donkelaar, 1984; Bangma et al., 1983; 
Künzle, 1983a; Künzle, 1985b), suggesting the involvement of different zones in mediating 
motor functions related to particular body districts (Larsell, 1926). 

2.2.4 CEREBELLUM AND MOTOR CONTROL 
Motor behavior, the full repertoire of movements an organism can perform, has a crucial 
ethological relevance as it represents the ultimate form an animal interacts with the 
surrounding environment. The contribution of the cerebellum is fundamental for motor 
behavior control both within the context of single body part movements as well as of whole-
body locomotion. Moreover, the cerebellum is also central in the acquisition and refinement 
of new motor tasks.  

Initial indications about the potential involvement of the cerebellum in motor processes 
derived in large part from clinical observations of patients with cerebellar damage and from 
ablation studies in laboratory animals (Botterell and Fulton, 1938a; Botterell and Fulton, 
1938b; Dow, 1938; Holmes, 1917). Such studies, confirmed by more recent investigations, 
showed the recurrence of motor dysfunctions both in patients and treated animals, and 
highlighted the correlation between cerebellar damage localization and specific motor 
impairments, thus corroborating the hypothesis of cerebellar functional compartmentation 
(Holmes, 1917; Ye et al., 2010). Together with severe balance, posture and oculomotor deficits, 
cerebellar lesions have been shown to cause a wide range of motor symptoms including the 
fragmentation of complex motor sequences in series of small steps (decomposition of 
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movements), a tendency to under/overshoot targets (dysmetria), the incapability to perform 
alternating movements (dysdiadochokinesis) and the oscillation of a limb preceding or 
following a purposeful movement (intention tremor), collectively referred to as cerebellar 
ataxia (Trouillas et al., 1997).  

However, despite a considerable expansion of studies on cerebellar functions in these last 
decades, the mechanisms through which the cerebellum exerts its role in movement control, 
refinement, and learning are only partially understood. Considering its homogeneous, crystal-
like cytoarchitecture, the extensive connectivity with upper and lower sensorimotor centers, 
and PC firing patterns upon motor task execution, the cerebellum has been suggested to be 
crucial in the acquisition and storage of movement-related sensorimotor representations, 
required to estimate the consequences of motor acts (Blakemore et al., 2001; Ebner and 
Pasalar, 2008; Gilbert and Thach, 1977; Ito, 2006; Ramnani, 2006; Wolpert et al., 1998). In 
such context, the cerebellum is thought to work as a comparator, capable to adequately 
remodulate the descending motor system outputs in response to detected mismatches 
between the ongoing performance and the intended movement (Brooks and Thach, 2011; 
Glickstein and Doron, 2008). Moreover, the capability to induce long-term modifications of 
central motor commands in response to deviations from planned movement execution, 
contributes in narrowing the range of prediction error in subsequent motor acts and is 
considered to be at the base of the role of the cerebellum in motor learning (Kawato, 1999; 
Miall et al., 1993). 

 DEVELOPMENT OF THE CEREBELLUM 

The cerebellum is among the latest CNS structure to develop and shows an extended 
morphogenesis. In mammals, the vertebrate group displaying the highest level of cerebellar 
complexity, cerebellogenesis protracts over a long time, from early embryonic stages until 
early postnatal life (Larsell, 1948; Phemister and Young, 1968; ten Donkelaar et al., 2003). 
Owing to its conserved architecture and connectivity and to the relative simplicity of its 
laminar organization, the cerebellum has been an attractive and powerful model to investigate 
the cellular and molecular processes underlying vertebrate brain development and evolution. 

The cerebellum is derived from two paired structures (alar plates) in the dorsal part of the 
rhombomere 1, the anterior-most portion of the hindbrain (Zervas et al., 2005) but, as recently 
shown in birds and mammals it receives contributions also from rhombomere 1 basal plate 
and isthmic subregions (Martinez et al., 2013; Watson et al., 2017). Thus, in the early phases 
of its morphogenesis the cerebellum develops as a bilateral structure. As cerebellogenesis 
proceeds, the alar plates converge and fuse along the midsagittal plane, giving rise to the 
unpaired cerebellar primordium laying above the 4th ventricle. The cerebellar primordium is 
a thin, plate-like sheet of neural tissue connected anteriorly to the dorsal midbrain and 
laterally to the hindbrain. Its posterior margin, known as the upper rhombic lip (URL; Miale 
and Sidman, 1961), is, instead, in continuation with a non-neural structure, the thin roof plate 
(RP) which covers the 4th ventricle.  

 After the territorial specification and the formation of the primordium, cerebellar 
histogenesis strongly relies on the crucial activity of two germinative regions, the ventricular 
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zone (VZ) and the URL. These two highly proliferative districts, in fact, will give rise to all the 
cell types residing in the mature cerebellum (Englund, 2006; Fink, 2006; Hoshino, 2006; 
Hoshino et al., 2005; MacHold and Fishell, 2005; Wang et al., 2005). In addition, cerebellar 
integrity also depends on the interaction between the cells derived from these two germinative 
epithelia as well as on signals originating in adjacent  non-neural tissues (Carletti et al., 2008; 
Chizhikov et al., 2006; Corrales et al., 2006; Krizhanovsky and Ben-Arie, 2006; Miyata et al., 
1997; Tong et al., 2015; Wechsler-Reya and Scott, 1999). Cerebellar morphogenesis and 
cortical lamination are, thus, the result of an intense and fine-tuned communication between 
different developing structures and cells, mediated by secreted factors.  

As with cortical organization, internal and external connectivity, and functions, also the 
morphogenetic and molecular processes at the base of cerebellar development have been quite 
conservative during vertebrate evolution. Nonetheless, along with minor variations in 
germinative compartments extension and precursor migration in some anamniotes, 
significant changes have occurred in birds and mammals at the level of GC generation (Butts 
et al., 2014a; Iulianella et al., 2019). Such a fine combination of conservation and variation in 
cerebellar developmental processes across groups is likely the key to interpret the apparent 
dualism between the remarkable morphological heterogeneity the cerebellum exhibits and its 
shared cytoarchitecture, connectivity and functions in vertebrates (Fig. 4). 

2.3.1 THE VENTRICULAR ZONE 

PCs, DCN GABAergic neurons and cortical inhibitory interneurons are produced in the VZ of 
the cerebellum. In mammals, the timing of generation of VZ-derived cells has been thoroughly 
characterized by lineage tracing analyses (Miale and Sidman, 1961; Morales and Hatten, 2006; 
Sotelo, 2004). The first cell types to emerge from the VZ are the GABAergic DCN nucleo-
olivary projection neurons and nuclear interneurons followed by PCs and, finally, by cortical 
inhibitory interneurons (Carletti and Rossi, 2008; Leto et al., 2006). A fundamental role in 
inducing a GABAergic fate to VZ-derived cells is played the bHLH pancreas transcription 
factor 1 (Ptf1; Hoshino, 2006). In absence of Ptf1, mouse cerebellar GABAergic precursor 
acquire a granule cell-like phenotype (Pascual et al., 2007) and deletions causing PTF1 
truncation have been linked to pancreatic and cerebellar agenesis in humans (Sellick et al., 
2004). In contrast to the well-established role of Ptf1 in committing VZ progenitors towards 
an inhibitory fate, the molecular mechanisms underlying the sequential differentiation of the 
various GABAergic cell subtypes are only partially resolved. However, evidences exist about 
the presence in the VZ of different progenitor subsets, each expressing a particular 
combination of transcription factors, and responsible for the generation of particular neuron 
phenotypes (Maricich and Herrup, 1999; Morales and Hatten, 2006). In particular, studies in 
mouse transgenic lines, demonstrated that the GABAergic component of DCNi derives from 
progenitors expressing the transcription factors iroquois homeobox (IRX3), myeloid ecotropic 
viral integration site 1 and 2 (Meis1/2) and the LIM homeodomain proteins LHX2/9, while 
GoCs, BCs and SCs emerge from a common progenitor pool characterized by the expression 
of the paired homeobox 2 (Pax2) gene (Maricich and Herrup, 1999; Weisheit et al., 2006). In 
a similar fashion, PC progenitors feature high expression levels of other members of the LIM 
homeobox protein family, LHX1/5 (Morales and Hatten, 2006). Moreover, PCs also feature 
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the expression of the retinoic acid receptor-related orphan receptor alpha (Rora), a thyroid 
hormone-regulated transcription factor necessary for PC maturation, survival, and lifelong 
morpho-functional integrity (Chen et al., 2013; Dussault et al., 1998; Gold et al., 2003; Gold 
et al., 2007; Hamilton et al., 1996; Sidman et al., 1962; Takeo et al., 2015).  

 

 

Figure 4 Different strategies of granule cell generation and morphological diversity of 
the adult cerebellum across vertebrates. (A) Schematic representation of a 
generalized vertebrate embryo head and brain in lateral view. (B) Dorsal view of the 
embryonic brain region shown in the blue dashed rectangle in (A). (C) State of the 
knowledge prior to this thesis work regarding the mechanisms underlying cerebellar 
morphological diversification across vertebrates. GC, granule cell; GCP, granule cell 
precursor; EGL, external granular layer; URL, upper rhombic lip. 
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The pivotal role of this gene in the morphogenetic program of the cerebellum clearly emerged 
from knockout mouse phenotypic characterization which highlighted severe derangements 
involving multiple aspects of cerebellar structure and organization (Dussault et al., 1998; 
Sidman et al., 1962). 

In addition to their temporal and molecular segregation, the different precursor subtypes 
generated in the VZ epithelium undertake divergent migratory routes to reach their 
destination in the mature cerebellum. DCN neuron precursors leave the VZ and form a 
compact cluster located below the pial surface (PS) in the anterior region of the developing 
cerebellum, populating the so called nuclear transitory zone, whereas GABAergic interneuron 
precursors disperse diffusely throughout the cerebellar parenchyma. PC precursors, on the 
other hand, follow a radial migration towards the pial surface and aggregate in multilayered 
clusters, the PC clusters (PCCs), spanning the entire rostro-caudal cerebellar extent, before 
acquiring their peculiar monolayer arrangement along the outer edge of the IGL.  

Though reports in non-mammalian vertebrates give only a fractured picture on the evolution 
of VZ dynamics, evidence coming from lineage tracing studies and mutant line analyses in 
zebrafish as well as marker expression profiling in chondrichthyans and amphibians, suggest 
that the molecular, spatial and temporal processes occurring in this germinative epithelium 
are well-conserved between anamniote and amniote cerebella despite their structural 
differences (Bae et al., 2009; Gona, 1972; Uray et al., 1998; Kani et al., 2010; Kaslin et al., 
2013; Nimura et al., 2019; Rodríguez-Moldes et al., 2008).  

2.3.2 THE UPPER RHOMBIC LIP AND GC GENERATION 

The URL is the proliferative epithelium which gives rise to the glutamatergic cell population 
of both the cerebellar cortex and DCNs (Alder et al., 1996; Fink, 2006; MacHold and Fishell, 
2005; Wang et al., 2005). It is located at the interface between the posterior rim of the 
metencephalic alar plates and the non-neural complex formed by the 4th ventricle choroid 
plexus (CP) and RP. Like in the VZ, the generation of the different cell types produced by the 
URL follows a well-defined temporal, spatial and molecular pattern with precursors of DCN 
projection neurons, glutamatergic interneurons and GCs emerging in sequential order 
(Carletti and Rossi, 2008; Englund, 2006; Fink, 2006; Sekerková et al., 2004).  

The master regulator of the proliferative activity of the URL is the bHLH transcription factor 
Atoh1, related to the product of the atonal gene of Drosophila melanogaster (Akazawa et al., 
1995; Ben-Arie et al., 1997; MacHold and Fishell, 2005). Atoh1 is, indeed, essential in 
promoting and supporting the germinative activity of the URL and its deletion in mouse 
mutants causes severe impairments during cerebellar development, leading to the formation 
of an agranular, unfoliated cerebellum, displaying also defects in PC spatial arrangement 
(Ben-Arie et al., 1997). The Atoh1 molecular signature of the URL connotes as a constant in 
vertebrates as even in lampreys, which only possess a rudimentary, unlayered cerebellum, 
Atoh1 expression marks dorsal metencephalic regions homologous to the gnathostome URL 
(Butts et al., 2014b; Chaplin et al., 2010; Green et al., 2014; Kani et al., 2010; Sugahara et al., 
2016; Sugahara et al., 2017).  
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URL cell dynamics, including Atoh1 transcription initiation, cell proliferation, GC 
differentiation and survival, are regulated by instructive signals originating from neighboring  
non-neural signaling centers, the 4th ventricle CP and RP, mediated by secreted morphogens 
(Broom et al., 2012; Chizhikov et al., 2006; Krizhanovsky and Ben-Arie, 2006; Rook et al., 
2020; Yamamoto et al., 1996). Among the diffusible factors produced by the 4th ventricle CP 
and RP are members of the bone morphogenetic protein (BMP) family, which are crucial 
regulators in CNS patterning and development. Tissue and cell culture assays and in vivo 
experiments (Alder et al., 1996; Alder et al., 1999; Krizhanovsky and Ben-Arie, 2006; Lee et 
al., 1998; Rook et al., 2020; Salero and Hatten, 2007; Su et al., 2006) indicate BMP7, BMP4, 
BMP6 and the growth/differentiation factor 7 (GDF7) as fundamental factors in modulating 
URL morphogenetic program. Moreover, canonical BMP signaling through mothers against 
decapentaplegic homolog (SMAD) proteins has been documented both in the URL and in 
tangentially migrating GCPs (Fernandes et al., 2012; Owa et al., 2018; Rook et al., 2020), and 
the phenotypic analysis of Smad1/5-deficient embryos and adult mouse mutants highlighted 
anomalies in URL development as well as a reduction in GCP production, accompanied by PC 
spatial disorganization (Tong and Kwan, 2013). 

Several developmental comparative studies have outlined GC generation and migration 
dynamics as key processes in determining cerebellar morphological traits and complexity 
(Fig. 4; Butts et al., 2014a; Butts et al., 2014b; Chaplin et al., 2010; Hibi et al., 2017; 
Rodríguez-Moldes et al., 2008). In fact, although both the territorial domain and early steps 
in GC developmental program are conserved at least within gnathostomes, heterogeneity 
exists in GCP/GC cellular dynamics and migration (Hibi et al., 2017). In particular, mammal, 
bird and metamorphic frog URL-generated GCPs undertake a tangential, subpial migration 
and colonize the entire cerebellar PS giving rise to a transitory, multilayered domain, the 
external granular layer (EGL), before switching, upon differentiation to GC, to a radial, glia-
guided, migration towards the ventricular surface to form the IGL (Altman, 1972; Gona, 1972; 
Husmann et al., 1992; Lin et al., 2001). In addition, the avian and mammalian EGL features a 
unique transit amplification phase, leading to the exponential increase of the GCP population, 
a crucial step for the formation of the foliated cerebellar architectures these vertebrates exhibit 
(Ben-Arie et al., 1997; Lewis et al., 2004; Lorenz et al., 2011). On the other hand, fishes (both 
chondrichthyans and teleosts) display a persistent proliferative activity of the midline URL, a 
domain spanning the entire rostro-caudal extent of the cerebellar primordium which, in birds 
and mammals, instead, disappears in concomitance to alar plate fusion (Louvi, 2003; Sgaier 
et al., 2005). The cerebellar midline, which in teleosts comprises in its anterior-most portion 
the presumptive valvulus domain, is a significant source of GCPs in these animals. Its axial 
elongation during early cerebellogenesis, together with its maintenance till adulthood as a 
GCP stem cell niche in zebrafish, and likely in sharks, is thought to play a key role in the 
ultimate morphology and, in some cases, extreme development of the cerebellum in some 
fishes (Kaslin et al., 2009; Kaslin et al., 2013). Moreover, the lack of migration of GCPs away 
from the midline URL in sharks causes their peculiar arrangement of GCs which, rather than 
forming a continuous layer, are clustered in two paramedian columns, known as eminentiae 
granularis, extending along the antero-posterior cerebellar axis (Chaplin et al., 2010).  

These comparative developmental analyses suggest that the additional proliferative step 
occurring in the EGL—a transient, Atoh1-positive progenitor domain spanning the entire 
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cerebellar pial surface—is an exclusive feature of bird and mammal cerebellogenesis, likely 
aiming to maximize GC production in a short developmental time window (Butts et al., 2014b; 
Chaplin et al., 2010; Iulianella et al., 2019; Pose-Méndez et al., 2016; Rodríguez-Moldes et al., 
2008). In contrast, the presence of stem progenitor niches in teleosts and probably in 
chondrichthyans, allows some members of these groups to attain extremely complex 
cerebellar morphologies through a lifelong process of GC production (Butts et al., 2014a; 
Candal et al., 2005; Chaplin et al., 2010; Kaslin et al., 2013; Rodríguez-Moldes et al., 2008; 
Zupanc et al., 2005).  

Surprisingly, no reports exist on cerebellar development in non-avian reptiles such as 
squamates (lizards and snakes) which occupy a major branch of the amniote tree and show a 
remarkable diversification in both cerebellar shape and organization (Aspden et al., 2015; 
Larsell, 1926), thus representing a key model to elucidate the evolutionary origin and 
development of the amniote cerebellum. 

2.3.3 CEREBELLAR CELL INTERACTION AND CORTICAL 
LAMINATION 

The generation of cerebellar cell types and their migration are only the initial steps of 
cerebellar morphogenesis. Rather than just being the product of cell proliferation and 
migration, the final morphology and crystal-like internal structure of the cerebellum is, 
indeed, the culmination of a temporally coordinated series of dynamic interactions between 
different cell types, mediated by diffusible signals. In particular, an active molecular crosstalk 
between GCPs in the EGL, maturing PCs and radially migrating GCs is fundamental for the 
cerebellum to achieve a correct size, degree of foliation and cortical layering (Fig. 5; Corrales 
et al., 2006; Dahmane and Ruiz, 1999; Miyata et al., 1997; Wechsler-Reya and Scott, 1999). 

Among signaling molecules, a pivotal role in maintaining EGL GCPs in an undifferentiated 
state and promoting their exponential amplification is played by the mitogenic factor Sonic 
hedgehog (SHH), secreted by PCs (Corrales et al., 2006; Dahmane and Ruiz, 1999; Wechsler-
Reya and Scott, 1999). The relevance of Shh pathway activation in GCPs has been thoroughly 
assessed and elegantly documented in a series of experiments involving conditional mouse 
mutants and highlighting a positive correlation between Shh signaling intensity and the 
degree and complexity of cerebellar foliation pattern (Corrales et al., 2004; Corrales et al., 
2006). Results from such analyses showed that Shh deletion causes the formation of a thinner 
and less persistent EGL, associated with a small and unfoliated cerebellum in adult mutant 
mice while its upregulation results in the enlargement of cerebellar folia and in a thicker IGL 
(Corrales et al., 2004; Corrales et al., 2006). Consistent with the absence of a proliferative 
EGL in anamniotes, SHH has not been detected in zebrafish and sharks PCs, further connoting 
the appearance of this transient, secondary germinative domain as an evolutionary hallmark 
of avian and mammalian cerebellogenesis (Butts et al., 2014c; Butts et al., 2014a; Chaplin et 
al., 2010; Iulianella et al., 2019). 

An active interaction between GCPs, migrating GCs and PCs is also required for a proper 
lamination of the cerebellar cortex. In this case, the release of a large glycoprotein, Reelin 
(RELN), in the extracellular matrix by both GCPs in the EGL and by radially migrating GCs, 
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triggers a series of cytoskeletal rearrangements in PCs, leading to the dispersion of the PCCs 
and culminating with the formation of a monolayered and uniform PCL.  

 

Figure 5 Cellular and molecular events during cerebellogenesis in birds and mammals. 
(A) Schematic representation of a generalized vertebrate embryo head and brain in 
lateral view. (B) Schematic mid-sagittal section of the brain region shown in the blue 
dashed rectangle in (A). (C) Generation, migratory routes and molecular interactions 
of developing cell types define cerebellar foliation extent and cortical lamination. EGL, 
external granular layer; GC, granule cell; GCP, granule cell precursor; IGL, internal 
granular layer; PC, Purkinje cell; PCL, Purkinje cell layer; URL, upper rhombic lip.  
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The Reln pathway integrity is crucial for the development of several brain districts, and its 
activation is fundamental for a correct layering of both cerebellar and cerebral cortex, and 
hippocampus (Förster et al., 2006; Jossin, 2020).  

Moreover, RELN functions extend beyond embryogenesis and early postnatal life as recent 
studies pointed out the important contribution of this glycoprotein in facilitating synaptic 
plasticity and in modulating memory, learning and neurotransmitter secretion in adult 
cerebral cortex and hippocampus (Beffert et al., 2005; Hellwig et al., 2011; Herz and Chen, 
2006; Weeber et al., 2002). Dysfunction at any level of the Reln pathway causes comparable 
cortical and structural alterations in both telencephalon and cerebellum, and severe locomotor 
deficits in mammals and zebrafish (D’Arcangelo et al., 1995; Gallagher et al., 1998; Nimura et 
al., 2019; Niu et al., 2004; Sheldon et al., 1997; Trommsdorff et al., 1999; Ware et al., 1997). 
The phenotype of Reln knockout mice, known as reeler, is indeed characterized by an 
hypoplastic and agranular cerebellum, featuring a conspicuous cortical disorganization and 
heterotopic PCs. In particular, PCs are found amassed in large clusters in the white matter or 
within the IGL (Goffinet et al., 1984), likely due to an altered migration. As a consequence of 
such abnormalities mice, as well as humans, affected by mutations in the Reln gene display 
typical symptoms of cerebellar dysfunction like gait ataxia and hypotonia (Chang et al., 2007; 
Falconer, 1951; Hong et al., 2000).  

Despite a thorough investigation of the molecular cascade triggered by this glycoprotein has 
led, in the last decades, to the identification of both RELN receptors and Reln pathway effector 
molecules, the mechanisms underlying its effect on neuronal migration, and specifically on 
PC spatial rearrangements, are only partially resolved (D’Arcangelo, 2014; Jossin, 2020; Lee 
and D’Arcangelo, 2016). RELN binds to the extracellular domain of two transmembrane 
receptors, the very-low density lipoprotein receptor (VLDLR) and the low density lipoprotein 
receptor-related protein 8, apolipoprotein e receptor (APOER2), localized on target-cell 
membrane, and promotes the phosphorylation of the disabled-1 protein (DAB1) by Src family 
tyrosine kinases, Src and Fyn (Arnaud et al., 2003; Bock and Herz, 2003; D’Arcangelo et al., 
1999; Hiesberger et al., 1999; Howell et al., 1999). The phosphorylated form of DAB1 (P-DAB1) 
is capable to physically interact with several partners and form molecular complexes which, 
either directly or through the activation of distinct downstream effectors, mediate several 
aspects of RELN-dependent neuronal migration in various brain regions (Bock et al., 2003; 
Chai et al., 2009; Franco et al., 2011; Hashimoto-Torii et al., 2008; Jakob et al., 2017; Jossin 
and Cooper, 2011).  

Different models, mostly deriving from analyses on developing neocortex, have been proposed 
to explain the effects of RELN on neuronal migration. It has been suggested that RELN might 
act as an attractant, inducing responsive cells to move following a gradient of increasing RELN 
concentration (Gilmore and Herrup, 2000), or that it might impart an arrest signal promoting 
the detachment of migrating neurons from radial glia processes (“detach and stop signal”; 
Jossin, 2004; Pinto-Lord et al., 1982; Sanada et al., 2004). Furthermore, the recent 
identification of a modality of locomotion alternative to the glia-guided one—the somal 
translocation mode, characterizing the late phase of neocortical neuron migration—has led to 
the formulation of the so called “detach and go signal” model. In this model, in parallel with 
triggering the detachment from the glia scaffold, RELN would provide target cells with an 
instructive signal to switch from the glia-guided locomotion to the somal translocation mode 
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(Borrell et al., 2006; Cooper, 2008; Franco et al., 2011; Nadarajah et al., 2001; Olson et al., 
2006; Sekine et al., 2011). 

Consistent with both glia-detachment signal models, neocortical neurons with impaired Reln 
pathway fail to disconnect from radial glia fibers while wild-type cells disengage from them 
during late migration phase (Dulabon et al., 2000; Pinto-Lord et al., 1982; Sanada et al., 
2004). Importantly, these findings corroborate previous observations conducted in the 
developing reeler cerebellum (Yuasa et al., 1991; Yuasa et al., 1993; Yuasa et al., 1996) 
outlining the presence of tight attachments between radial glia fibers and PCs amassed in 
heterotopic clusters, and suggest that RELN signaling may regulate through similar 
mechanisms both cerebral and cerebellar cortex lamination. 

 THE SQUAMATE BRAIN AND CEREBELLUM 

Squamates occupy a key phylogenetic position among vertebrates and, with more than 10.000 
recognized species widely distributed across the world, represent a major segment of the 
amniote tree. They populate a broad spectrum of habitats and display an extraordinary level 
of morphological diversification, associated with unique ecological and behavioral features, 
including a vast repertoire of locomotor strategies (Da Silva et al., 2018; Gagliano et al., 2020; 
Irschick and Garland T., 2001; ten Donkelaar and Bangma, 1992).  

This heterogeneity, encompassing multiple aspects of squamate ecobiology, provides an 
exceptionally fertile ground to investigate key biological and evolutionary processes. In order 
to have a broad view on such a wide and varied diversity, this thesis analyzes data derived from 
the brains of 40 squamate species adult individuals. Furthermore, embryonic series from a 
lizard (Pogona vitticeps) and a snake (Boaedon fuliginosus), two species with comparable 
gestation periods and well-established breeding conditions, have been used to characterize 
squamate cerebellar morphogenesis.  

2.4.1 OVERVIEW OF THE SQUAMATE BRAIN 

The large ecomorphological heterogeneity of squamates has a deep impact on squamate outer 
appearance—the most evident the limb loss or reduction and body elongation in snakes and 
some lizard species—but it also involves substantial changes in brain areas devoted to 
environmental stimuli processing and sensorimotor integration (Allemand et al., 2017; 
Eymann et al., 2019; G. Senn, 1969; Hoops et al., 2017; LaDage et al., 2009; Larsell, 1926; 
Senn and Northcutt, 1973). Compared to amphibians, reptiles—including squamates—display 
larger brains relative to body weight (Platel, 1979). Such an increase is mostly linked to the 
relevant expansion of 3 brain regions, the telencephalon, the optic tectum and the cerebellum 
(Nieuwenhuys et al., 1998; for a detailed description of the squamate cerebellum, please, see 
next chapter). Within this general trend, nonetheless, substantial differences exist among 
squamates in terms of the degree of development of specific brain subdivisions, particularly 
those involved in sensory processing, reflecting the multifaceted ecological and behavioral 
repertoire characterizing this group of reptiles. The tectum mesencephali, which receives the 
majority of optic nerve fibers, is particularly developed in diurnal lizards while burrowing 
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species, generally featuring reduced eyes, show poorly expanded tectal hemispheres. In a 
similar fashion, both the main and accessory olfactory bulbs and tracts of squamate species 
especially relying on odorants or chemical cues to perform essential biological activities, like 
prey catching and mating, are markedly enlarged (Bellairs, 1969; Gabe and St. Girons, 1976; 
Halpern, 1992; Martinez-Garcia et al., 1991).  

A feature of the squamate brain, shared with other reptiles (including birds), is a discrete 
telencephalic structure, the DVR, which protrudes, almost obliterating it, in the lateral 
ventricle (Northcutt, 1981). The DVR can be divided into an anterior and a posterior part. The 
anterior DVR is formed by 3 longitudinal regions, each targeted by specific ascending sensory 
projections (somatosensory, acoustic, visual and gustatory; Guirado et al., 2000; Manger et 
al., 2002; Nieuwenhuys et al., 1998; Pritz et al., 1992), while the posterior DVR connections 
show similarities with those of the amygdalar complex of mammals (Nieuwenhuys et al., 
1998). In squamates, the posterior DVR is characterized by a distinctive formation, 
particularly developed in snakes, known as the nucleus sphericus, extensively targeted by 
accessory olfactory bulb efferents (Halpern, 1976; Lanuza and Halpern, 1997; Lohman and 
Smeets, 1993; Martinez-Garcia et al., 1991).  The DVR, however, is not the sole pallial 
derivative present in squamate telencephalon. Together with mammals, in fact, non-avian 
reptiles are the only vertebrate group to feature a multilaminar cortex. The squamate cerebral 
cortex is formed by 3 layers that can be distinguished by variations in neuronal density. The 
outermost and innermost layers are relatively cell-sparse while the intermediate lamina 
contains an almost uninterrupted and densely packed layer of neurons. Such a tripartite 
pattern spans the entire extent of the dorsal telencephalon and characterizes the different 
cortical subdivisions that follow one another along the medio-lateral plane: medial, dorsal, 
and lateral. Most of the research on the reptilian cortex has largely focused on the 
identification of putative structural and functional homologies with the mammalian 
counterpart, and some studies (Baird Day et al., 1999; Calisi et al., 2017; LaDage et al., 2009; 
Roth et al., 2006) have correlated variations in the relative size of the medial cortex, which is 
involved in navigational tasks and suggested to be a putative homolog of the avian and 
mammalian hippocampus (Bruce and Butler, 1984; Butler and Hodos, 2005; Striedter, 2015), 
with habitat complexity and prey capture strategy, further highlighting, thus, the tight 
relationships between ecology, behavior and squamate brain structure. 

2.4.2 THE SQUAMATE CEREBELLUM 

Among the major brain subdivisions showing relevant modifications in squamates, the 
cerebellum exhibits a high degree of morphological and cytoarchitectural variation (Aspden 
et al., 2015; Hoops et al., 2017; Larsell, 1926; ten Donkelaar and Bangma, 1992).  

Most of the anatomical data obtained on the cerebellum of lizards derives from studies on 
quadrupedal species and describes it as a single, leaf-shaped, folium of neural tissue lying 
above the 4th ventricle, curved towards the anterior part of the brain and overarching the 
tectal hemispheres (Fig. 6A bottom; Larsell, 1926; Nieuwenhuys, 1967; Nieuwenhuys et al., 
1998). The cerebellar cortex of quadrupedal lizards shows the trilaminar organization typical 
of most vertebrates with a PCL constituted by PCs orderly distributed, though often in multiple 
rows rather than in a monolayer, along the outer contour of the IGL (Fig. 6C). Compared to 
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the relatively canonical morphology and cytoarchitecture of the lizard cerebellum, the snake 
counterpart shows important peculiarities. It exhibits an opposite tilting respect to lizards and 
lies almost completely embedded in the 4th ventricle. It is relatively small, poorly developed 
along the medio-lateral axis and displays a trapezoidal shape tapering towards the caudal end 
of the brain (Fig. 6A top). Moreover, it is characterized by a completely scattered PC 
topological distribution (Fig. 6B; Aspden et al., 2015; Larsell, 1926). 

 

 

Figure 6 Morphological and cortical diversity of the squamate cerebellum. (A) volume 
rendering and whole-brain segmentation of iodine-stained adult heads of P. regius 
(top) and P.vitticeps (bottom), highlighting the cerebellum structure (red color). High 
magnifications of 3D-rendered cerebella (left column) are shown in lateral (top row) 
and pial (bottom row). Dashed lines and letters mark the sectioning planes relative 
to the immunostaining experiments in panels (B,C). (B,C) Immunodetection of 
Purkinje cells with CALB1 marker (red staining), on sagittal sections of P. regius (B) 
and P. vitticeps (C) juvenile cerebellum. Cell nuclei are counterstained with DAPI 
(blue staining). Crossed white arrows point toward rostral (R), caudal (C), dorsal (D), 
and ventral (V) directions. IGL, internal granular layer; PS, pial surface; VS, 
ventricular surface. Scale bars: 500 µm (A), 100 µm (B,C). 
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However, due to taxon-specific or limited sampling, the few studies on squamate cerebellum, 
likely reveal only a small fraction of the entire gamut of both cerebellar morphologies and 
cortical layouts in this order of reptiles. Indeed, the only anatomical study featuring the 
analysis of a legless and a limb-reduced lizard species (Larsell, 1926) highlighted the existence 
of additional morphological variants besides the highly divergent cerebellar shapes of 
quadrupedal lizards and snakes. The morphological comparison between the quadrupedal 
lizard and the limbless or limb-reduced species suggests that the squamate cerebellum could 
be somatotopically organized, with the lateral parts involved in the control of limbs and the 
medial cerebellar region involved, instead, in the control of the axial musculature. In such 
landscape, the reduction of the lateral extent of the snake cerebellum, but also of the legless 
and limb-reduced lizards, could reflect the absence or the pronounced reduction of the limbs 
in these species and, by extension, differences in their locomotor modalities (Larsell, 1926). 
Moreover, tracing studies on the distribution of the corticonuclear projections in a lizard 
(Varanus exanthematicus) and a snake (Python regius) indicate that squamate PCs are 
organized in three distinct zones—medial, intermediate and lateral—each with its own specific 
projection site (Bangma, 1983; Bangma and ten Donkelaar, 1984). In particular, PCs in the 
lateral part of the medial zone and most of those in the lateral zone project to different regions 
of the vestibular nucleus whereas PCs located in the medial part of the medial zone and those 
in the dorsolateral intermediate zone target the medial and lateral deep cerebellar nucleus, 
respectively (Bangma, 1983; Bangma and ten Donkelaar, 1984). Furthermore, analyses of the 
course and distribution of fibers from the DCNi in V. exanthematicus and P.regius point out 
that a large fraction of the lateral DCN efferents in the lizard, but only sparse fibers in the 
snake, extensively terminates in the red nucleus while part of the medial DCN projections 
targets the brainstem reticular formation in both species (Bangma, 1983; Bangma et al., 1984). 
These two nuclei govern, via their spinal projection, the rubro- and reticulospinal tracts, the 
distal muscles employed for limb and finger movements and the axial and proximal 
musculature, respectively (Davidson and Buford, 2004; Davidson et al., 2007; Drew et al., 
2004; Lawrence and Kuypers, 1968; Mewes and Cheney, 1991; Prentice and Drew, 2001). 
These observations, in parallel with the absence of a rubrospinal tracts in boid snakes (ten 
Donkelaar, 1976a; ten Donkelaar, 1976b; ten Donkelaar and Bangma, 1983; ten Donkelaar et 
al., 1983), support the hypothesis of the subdivision of the squamate cerebellum in two main 
functional areas, nonetheless, the restricted number of species tested and the exclusively 
qualitative nature of the studies conducted do not provide sufficient evidence for a 
generalization of such findings and hypothesis.  

In addition to morphological features, variability exists also in squamate cerebellar 
cytoarchitecture. In fact, while lizards comply to the canonical, ordered PC spatial distribution 
observed in most vertebrates, several reports highlighted a scattered PC organization in 
snakes (Aspden et al., 2015; Larsell, 1926; ten Donkelaar and Bangma, 1992). However, due 
to the limited number of studies, whether such alternative PC layouts are a distinctive trait of 
snakes and lizards, is yet to be clarified.  

Moreover, the lack of any developmental data on the cerebellum of squamates has hindered 
the possibility to assess if the different spatial layout observed in snakes and lizards are 
developmentally generated through different morphogenetic programs and to elucidate the 
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evolutionary origin of key developmental innovations, so far observed only in birds and 
mammals, like the formation of a proliferative EGL and the secretion of SHH by PCs. 
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3 AIMS OF THE STUDY 

Owing to their phylogenetic position, to their vast repertoire of morphological and behavioral 
traits, and to the relative simplicity of their brain architecture, squamates represent a suitable 
model to expand the current knowledge on the basic developmental features of the amniote 
brain as well as on the contribution of ecological and behavioral specializations on vertebrate 
brain evolution. Nonetheless, the potential offered by squamates in such contexts has been 
largely unexplored. Moreover, the influence of environmental and behavioral features on the 
vertebrate brain have traditionally focused on variations in whole-brain or major brain 
subdivision morphology or size, while the possibility of potential changes in multiple and 
deeper aspects of brain biological organization has remained largely untested. In this thesis 
work I took advantage of squamate diversity to investigate the effects of a distinctive 
behavioral trait, locomotor behavior, on the evolution of the brain and in particular of the 
cerebellum, a brain subdivision playing a relevant role in motor control. I adopted a 
multidisciplinary integrative approach, including the developmental characterization of the 
cerebellum in 2 squamate species, to explore the following aspects:  

 

• Is locomotor behavior associated with multiple brain or cerebellar structure 
variations in squamates? 

• What are the developmental mechanisms potentially responsible for cerebellar 
phenotypic diversification across squamates? 

• Does squamate cerebellar morphogenesis feature developmental hallmarks displayed 
by other amniotes? 
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4 MATERIALS AND METHODS 

The lizard and snake species and a summary of the methodologies used in this thesis work are 
listed in Tables 1 and 2, respectively. Sources of detailed descriptions of methods can be found 
in the original publications included at the end of this thesis. The primary antibodies employed 
in IHC experiments and the ISH probes are listed in Table 3 and 4, respectively. 

All experiments performed for this thesis work involving animals were conducted in full 
compliance of the Finnish national guidelines and approved by the Finnish National Board of 
Animal Experimentation. 

 

Table1. Species used in this thesis work 

Species Families Locomotor modes Study 

Ablepharus kitaibelii Scincidae Limbless or limb-reduced facultative burrower I 

Acontias meleagris Scincidae Limbless burrower I 

Agama agama Agamidae Quadrupedal terrestrial I 

Amphisbaena scutigerum Amphisbaenidae Limbless burrower I 

Anguis fragilis Anguidae Limbless or limb-reduced facultative burrower I 

Anolis carolinensis Dactyloidae Quadrupedal arboreal I 

Bachia flavescens Gymnophthalmidae Limbless or limb-reduced facultative burrower I 

Basiliscus vittatus Corytophanidae Quadrupedal facultative bipedal/aerial I 

Blanus cinereus Blanidae Limbless burrower I 

Bradypodion pumilum Chamaeleonidae Quadrupedal arboreal I 

Chalcides chalcides Scincidae Limbless or limb-reduced facultative burrower I 

Chalcides sepsoides Scincidae Limbless or limb-reduced facultative burrower I 

Trioceros jacksonii Chamaeleonidae Quadrupedal arboreal I 

Dasia olivacea Scincidae Quadrupedal arboreal I 

Draco volans Agamidae Quadrupedal facultative bipedal/aerial I 

Eublepharis macularius Eublepharidae Quadrupedal terrestrial I 

Gekko gecko Gekkonidae Quadrupedal arboreal I 

Hemiergis quadrilineata Scincidae Limbless or limb-reduced facultative burrower I 

Lepidothyris fernandi Scincidae Quadrupedal terrestrial I 

Lygodactylus picturatus Gekkonidae Quadrupedal arboreal I 

Melanoseps loveridgei Scincidae Limbless burrower I 

Ophiodes fragilis Anguidae Limbless or limb-reduced facultative burrower I 

Phelsuma grandis Gekkonidae Quadrupedal arboreal I 

Plestiodon marginatus Scincidae Quadrupedal terrestrial I 

Pogona vitticeps Agamidae Quadrupedal terrestrial I, II 

Pseudopus apodus Anguidae Limbless multi-habitat lateral undulation I 

Rieppeleon brevicaudatus Chamaeleonidae Quadrupedal arboreal I 
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Takydromus sexlineatus Lacertidae Quadrupedal arboreal I 

Teratoscincus scincus Gekkonidae Quadrupedal terrestrial I 

Tropidurus torquatus Tropiduridae Quadrupedal facultative bipedal/aerial I 

Boaedon fuliginosus Lamprophiidae Limbless multi-habitat lateral undulation I, II 

Cerastes cerastes Viperidae Limbless multi-habitat other movements I 

Chrysopelea ornata Colubridae Limbless multi-habitat lateral undulation I 

Dasypeltis gansi Colubridae Limbless multi-habitat other movements I 

Dendrelaphis pictus Colubridae Limbless multi-habitat other movements I 

Epicrates cenchria Boidae Limbless multi-habitat other movements I 

Eryx colubrinus Boidae Limbless or limb-reduced facultative burrower I 

Eryx jaculus Boidae Limbless or limb-reduced facultative burrower I 

Hydrophis platurus Elapidae Limbless multi-habitat lateral undulation I 

Pantherophis guttatus Colubridae Limbless multi-habitat lateral undulation I 

Python regius Pythonidae Limbless multi-habitat other movements I 

Xerotyphlops vermicularis Typhlopidae Limbless burrower I 

 

Table2. Methods used in this thesis work 

Method Study 
µCT-scan of iodine-stained samples I, II 

Manual segmentation and 3D brain model reconstruction I, II 

Volumetric measurements of 3D-reconstructed brain models I, II 

Landmarking I 

3D Geometric morphometrics I 

Brain tissue clearing using CUBIC protocol I 

Whole-mount IHC I 

Lightsheet fluorescence microscopy and imaging I 

Nissl staining II 

IHC on paraffin sections I, II 

ISH on paraffin sections I, II 

Microscopy  I, II 

 

Table3. Primary antibodies used in this thesis work 

Antibody RRID or catalog number Study 
CALB1 AB_10000340 I, II 

GFAP LS-C357895 II 

LHX1 AB_2135639 II 

PCNA AB_314691 II 

PH3 AB_304763 II 

P-DAB1 orb156526 II 

P-SMAD 1/5/9 AB_2493181 II 
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SHH AB_2285962 II 

ZIC 1/2/3 LS-C118695 II 

 

Table4. riboprobes used in this thesis work 

Probe Species Sequence length (bp) Study 
Bmp4 P. vitticeps 670 II 

Bmp7 P. vitticeps 584 II 

Atoh1 P. vitticeps 966 II 

Rora P. vitticeps 942 II 

Vldlr P. vitticeps 830 II 

Reln P. vitticeps 1237 II 

Dab1 P. vitticeps 848 II 

Bmp4 B. fulignosus 785 II 

Bmp7 B. fulignosus 784 II 

Atoh1 B. fulignosus 623 II 

Rora B. fulignosus 907 II 

Reln B. fulignosus 927 II 

Dab1 B. fulignosus 612 II 
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5 RESULTS AND DISCUSSION 

 LOCOMOTOR MODE IMPACTS MULTIPLE LEVELS 
OF CEREBELLAR BIOLOGICAL ORGANIZATION IN 
SQUAMATES (I-II) 

5.1.1 LOCOMOTOR MODE DEFINES SQUAMATE CEREBELLAR 
SHAPE AND SIZE (I) 

Squamates display extremely diversified ecological and behavioral characteristics which are 
well reflected by their body plan and locomotor adaptations. The full range of squamate 
locomotor specializations, however, goes beyond the obvious physical constraints that either 
limblessness or different degrees of limb reduction dictate in snakes or in some lizard families. 
The wide gamut of squamate locomotor behavior is, indeed, influenced by multiple habitat 
features such as environmental settings, temperature, incline and substrate composition and 
is associated with specific limb and body kinematics, distinct skin-muscle relationships and 
with the coordinated activity of particular muscle groups which, in some cases, are exclusively 
present in species adopting similar locomotion (Carothers, 1986; Gans, 1962; Gans, 1973; 
Gray, 1946; Irschick and Jayne, 1998; Jayne, 2020; Jayne et al., 2015; Kerfoot, 1970; Mosauer, 
1932; Savidge et al., 2021). In such adaptive context, the development of a high level of neuro-
muscular integration, coordination and control, likely occurred to satisfy the functional 
demands associated with specialized ecological behaviors (Gans, 1973).  

In order to assess the potential effects of locomotor adaptations on squamate brain size and 
shape I generated 3D brain models from a representative panel of 40 squamates, categorized 
in 7 different locomotor groups (see Table1, Materials and methods), by manual 
segmentation of head volumes obtained by µCT scans of iodine-stained specimens (Study I). 
This allowed to qualitatively appreciate the wide array of single brain subdivision 
morphologies and reciprocal spatial relationships, to quantitatively compare the whole-brain 
and its subdivision’s shape using three-dimensional geometric morphometrics and to perform 
a volumetric analysis on specific brain subdivisions. 

Besides confirming qualitative observations about lizard and snake brain gross organization 
from past neuroanatomical studies, the visual inspection of the 3D models revealed a wider 
and complex repertoire of squamate brain morphological traits. Both the dimension of the 
dataset, including 29 lizard and 11 snake species, sampled in all major squamate lineages, and 
the detailed representation of brain shape in the manually segmented 3D reconstructions 
allowed the appreciation of additional variations in squamate brain anatomy, aside from the 
previously described morphologies of some snake and lizard species. Especially, in addition to 
a certain degree of brain morphological heterogeneity among snakes and quadrupedal lizards, 
indeed, both limbless and limb-reduced lizards displayed transitional characteristics ranging 
from a snake-like pattern exhibited by burrowers to a brain organization approximating that 
of quadrupedal lizards in facultative burrowers (Fig. 7; Study I). Furthermore, among the 
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major brain subdivisions, the cerebellum showed the highest level of diversification both in its 
size and shape across the individuals in the dataset.  

 

 

Figure 7 Whole-brain morphological variations in squamates adopting different 
locomotor behaviors. Volume rendering of iodine-stained adult squamate heads 
(left column) and corresponding 3D brain models (right column). Brain models are 
shown in dorsal (top) and lateral (bottom) views. The locomotor specialization 
relative to each species is indicated between parentheses. Scale bars: 1mm. 
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Snakes show a small, trapezoidal cerebellum, poorly developed along the medio-lateral axis 
and tapering towards its posterior end whereas quadrupedal lizard cerebella are leaf-shaped 
and laterally expanded (Fig. 6A). Moreover, quadrupedal lizard and snake cerebella are tilted 
in opposite directions, with the former extending dorsally to overstep the optic tectum and the 
latter almost completely embedded in the 4th ventricle. The cerebellum of limbless and limb 
reduced burrowers and facultative burrowers appears smaller than the other locomotor group 
counterparts, and shows variation in its tilting and both medio-lateral and dorsal extent.  

To ascertain potentially significant correlations between different locomotor modes and both 
whole-brain and single brain subdivision shape I digitized 61 landmarks, clustered in groups 
delineating the 3d morphology of the 5 brain subdivisions, on the 3D brain models. In 
addition, the segmentation of the cerebellum as a separate unit from the rest of the brain 
allowed me to individually landmark this brain subdivision and improve its shape 
representation with 5 supplementary landmarks at the interface between the optic tectum and 
the cerebellum, a region inaccessible on whole-brain models. Except for the cerebellum, the 
principal component analysis (PCA) conducted on Procrustes coordinates for the whole-brain 
and for any of its major subdivisions, highlighted a similar distribution pattern, with snakes 
and lizards generally segregating at extreme positions in the morphospace, and showed no 
obvious correlation with locomotor modes. The cerebellar shape variation in the 
morphospace, instead, suggested a potential influence of locomotion on the morphological 
traits of this brain subdivision. Indeed, limbless burrowers, with their thin and almost 
triangular cerebellum, clustered in correspondence of PC1 negative values while individuals 
belonging to the different multi-habitat locomotor categories occupied negative PC2 regions. 
Furthermore, facultative burrowers, showing mixed cerebellar morphologies, almost equally 
distributed in both PC2 negative and PC1 positive quadrants while all quadrupedal species, 
with few exceptions, populated the positive part of both PC1 and PC2 axis. Importantly, the 
indication about putative relationships between locomotor specialization and cerebellar 
morphology obtained from the shape distribution analysis were validated by phylogenetic 
comparative methods and statistical tests, which revealed a significant variation in cerebellar 
morphology between limbless burrowers and all other locomotor groups (phylogenetic 
ANOVA, p-values ranging from 0.0004 to 0.0216), and between any limbless or limb- reduced 
and quadrupedal locomotor category (phylogenetic ANOVA p-values ranging from 0.0001 to 
0.0147).  

Because several ecological factors have been shown to play a relevant role also in defining the 
relative size of brain regions in most vertebrates (Allemand et al., 2017; Barks et al., 2015; 
Bennett and Harvey, 1985; Day et al., 2005; Hoops et al., 2017; Liao et al., 2015; Manzano et 
al., 2017; Montgomery et al., 2012; Symonds et al., 2014; Taylor et al., 1995; Vincze et al., 2015; 
Yao et al., 2021; Yopak et al., 2007), the results obtained from the quantitative analysis of the 
cerebellar shape lead me to perform volumetric measurements of the cerebellum to explore 
also the possible influence of locomotor specializations on the size of this brain subdivision 
(Study I). This comparative analysis revealed a marked divergence in cerebellar size across 
the various locomotor categories and a tendency for the cerebellum to occupy a relatively 
larger brain volume from limbless and limb reduced burrowers to quadrupedal lizards. In 
particular, limbless burrowers, possessing a thin and barely visible cerebellum, showed a 
statistically significant smaller cerebellum-to-whole-brain volume ratio when compared to all 
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other locomotor categories (phylogenetic ANOVA; p-values <0.05). Consistent with our 
findings in squamates, multiple studies on different vertebrate groups linked ecological and 
behavioral strategies to significant changes in cerebellar size. Indeed, specialized beak 
manipulative skills in crows and woodpeckers or refined limb control in squirrels and 
primates have been associated with larger cerebella (Sultan and Glickstein, 2007). Moreover, 
the cerebellum of both gorillas and frogs engaging the complex three-dimensional 
environment of tree branches, which demands a high degree of postural and forelimb motor 
control, is expanded compared to that of closely related terrestrial species (Barks et al., 2015; 
Manzano et al., 2017). 

Altogether the results obtained from both the morphometric and volumetric analyses indicate 
that locomotor mode strongly defines cerebellar structure in squamates and suggest that 
important transitions in vertebrate motor behavior are tightly interconnected with relevant 
modifications in cerebellar shape and size, in addition to more obvious changes in body parts 
mechanistically involved in motor performance like limbs and axial skeleton. In addition, 
despite volumetric analyses have been the most widely used tool to assess the potential effects 
of ecological/behavioral variables on brain organization, these findings point out that also 
morphological modifications of neuroanatomical structures highly contribute to vertebrate 
brain evolution. Moreover, the evidences emerged from the geometric morphometric analysis 
underscore a mosaic pattern in squamate brain subdivision evolution with respect to 
locomotor modalities and suggest that vertebrate species sharing similar behaviors may 
feature common neuromorphological traits, either in addition or in alternative to the single 
brain subdivision size patterns (cerebrotypes) identified in mammals and other vertebrate 
lineages (Clark et al., 2001). 

5.1.2 VARIATIONS IN GCP GENERATION IN A QUADRUPEDAL 
LIZARD AND A SNAKE (II) 

One of the crucial processes in determining the size and morphology of the different tissues of 
an organism, including the brain, is the proliferative activity of certain regions, generally 
located inside or in close vicinity to the developing tissue, during embryogenesis. Brain 
development and its final architecture strongly relies on neuronal proliferation, 
differentiation and migration, and alterations of the subtle balance between these phases 
during CNS development can dramatically impact brain morphology, cytoarchitecture, 
function and evolution (Cheung et al., 2007). For instance, the appearance of secondary 
proliferative zones, like the subventricular zone in the telencephalon of mammals and the 
transit-amplifying cerebellar EGL—present also in birds, is considered to be at the base of the 
marked expansion of these brain districts in these groups, when compared to other vertebrates 
(Abdel-Mannan et al., 2008; Butts et al., 2011; Butts et al., 2014a; Cheung et al., 2007; Lui et 
al., 2011; Martínez-Cerdeño et al., 2006).  

Owing to the relevance of proliferation patterns in defining the size of specific brain 
subdivisions and in order to gain insights on the potential mechanisms underlying squamate 
cerebellar diversity, I, then, characterized the embryonic germinative profile of the cerebellum 
in two squamate species displaying a pronounced difference in both the morphology and 
relative size of this brain subdivision, the quadrupedal bearded dragon lizard (Pogona 
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vitticeps) and the African house snake (Boaedon fuliginosus). Both the lizard and the snake 
are oviparous animals featuring a similar developmental time window and, despite early 
neurogenetic events have already occurred at oviposition in both species, cerebellar 
morphogenesis has yet to start. To follow the proliferative potential of the cerebellar 
germinative zones in both species I collected P. vitticeps and B. fuliginosus embryos at regular 
intervals spanning the entire post-ovipositional period (60 days) and performed a series of 
immunohistochemistry and in situ hybridization experiments (Study II). I paid particular 
attention to URL and GCP dynamics which have particular relevance in determining 
cerebellar size and shape both in anamniotes and amniotes (Fig. 4; Butts et al., 2011; Butts et 
al., 2014a; Butts et al., 2014c; Iulianella et al., 2019).  

Immunohistochemical staining with an antibody against the proliferative cell antigen (PCNA) 
and the specific GCP/GC marker, zinc finger of the cerebellum (ZIC1/2/3; Aruga et al., 1998), 
showed clear differences in the germinative profile of the cerebellum in the two species. In the 
lizard, starting from 25 days post oviposition (dpo), double-stained cells are detected both in 
the URL and in GCPs forming a multilayered structure (Fig. 8A) which, spanning the entire 
rostro-caudal extent of the cerebellar pial surface, resembles the mammalian and avian EGL. 
These two domains, despite reducing in thickness in parallel to GCP differentiation and to a 
progressive accumulation of GCs in the presumptive IGL, remain site of sustained labeling for 
the entire embryogenesis. Furthermore, PCNA-positive cells are still present along the pial 
surface at 15 days post hatching (dph; Fig. 8B).  

In B. fuliginosus, consistent with a relative advanced development of snake embryos at 
oviposition (Boback et al., 2012; Ollonen et al., 2018), ZIC/PCNA-positive cells are detected 
at 15 dpo (Fig. 8C), earlier than in P. vitticeps, both in the URL and along the pial surface but, 
in contrast to the lizard, these domains rapidly thin out and no PCNA-positive cell is found by 
40 dpo. So, despite sharing similar features with the bearded dragon, the proliferative pattern 
of GCPs in the snake is much shorter.  

Given the observed spatiotemporal changes in PCNA expression in the two squamate models, 
I investigated the molecular mechanisms potentially responsible for such divergent pattern. 
URL activation and maintenance have been shown to rely on secreted factors released by non-
neural structures adjacent to the cerebellar primordium, including the 4th ventricle CP and 
RP (Chizhikov et al., 2006; Krizhanovsky and Ben-Arie, 2006; Liu and Joyner, 2001; Wurst 
et al., 2001; Yamamoto et al., 1996). In particular, BMP ligands secreted by these non-neural 
tissues are important in maintaining URL cells and GCPs, that tangentially migrate along the 
cerebellar pial surface, in an undifferentiated state (Chizhikov et al., 2006; Krizhanovsky and 
Ben-Arie, 2006; Qin et al., 2006; Rook et al., 2020; Tong et al., 2015). Moreover, both cell and 
tissue culture experiments as well as in vivo observations thoroughly assessed the potential of 
BMP family members like BMP4, BMP7 and GDF7 to mediate GCP proliferation and 
specification (Alder et al., 1996; Krizhanovsky and Ben-Arie, 2006; Lee et al., 1998; Salero and 
Hatten, 2007; Su et al., 2006). Finally, activation of the Bmp canonical pathway through 
phosphorylated forms of SMAD effectors has been documented in both mammalian URL and 
EGL (Fernandes et al., 2012; Owa et al., 2018; Rook et al., 2020), and SMAD1/5 have been 
shown to be critical factors in cerebellar development and cortical lamination (Tong and 
Kwan, 2013).  
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Figure 8 URL and GCP dynamics in P. vitticeps and B. fuliginosus. (A) Double IHC with 
PCNA (green staining) and ZIC1/2/3 (red staining) on a sagittal section of a 30 dpo 
P. vitticeps embryonic cerebellum. (B) IHC with PCNA (green staining) on a sagittal 
section of a P. vitticeps hatchling (15dph) cerebellum. (C) Double IHC with PCNA 
(green staining) and ZIC1/2/3 (red staining) on a sagittal section of a 15 dpo B. 
fuliginosus embryonic cerebellum. Cell nuclei are counterstained with DAPI (blue 
staining). Crossed white arrows point toward rostral (R), caudal (C), dorsal (D), and 
ventral (V) directions. IGL, internal granular layer; PS, pial surface; URL, upper 
rhombic lip; VS, ventricular surface. Scale bars: 100 µm. 

I, then, analyzed both BMP ligand expression and canonical Bmp pathway activation to 
highlight variations in their spatiotemporal pattern that could explain the different PCNA 
labelling profile observed in the bearded dragon and African house snake.  
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In both animals, Bmp4 and Bmp7 start to be expressed in the 4th ventricle CP in coincidence 
with URL activation, however, while Bmp7 transcripts are still abundant in the lizard at 
40dpo, BMP ligand mRNAs are rapidly downregulated in the snake, and virtually absent soon 
after 30 dpo. In addition, IHC experiments with an antibody against the active 
(phosphorylated) forms of Bmp signaling effector molecules (P-SMAD1/5/9) outlined an 
activation pattern of the Bmp canonical pathway which temporally overlapped with the Bmp 
transcripts expression in the CP of the two species.  

Such data indicate a tight link between BMP secretion by non-neural structures bordering the 
cerebellum and both GCP generation and spatiotemporal dynamics in P. vitticeps and B. 
fuliginosus. However, while lizard expression profile and both activation timing and domains 
parallel those described in other amniotes, a shortened expression of Bmp genes in the CP, 
likely results in a precocious decline of URL proliferative potential, and consequently to the 
disappearance of the PCNA-positive domains, in the snake.  

Altogether, this comparative analysis, conducted in two models featuring highly divergent 
locomotor modes, revealed important differences in crucial molecular and cellular events 
during cerebellar morphogenesis, suggesting that the variation in cerebellar size and shape, 
observed in squamates adopting different locomotor strategies, could derive, at least partially, 
from temporal modifications of the GCP proliferation pattern. In such context, modifications 
in the timing/duration of inductive signals from non-neural tissues adjacent to the 
cerebellum, could fine tune the number of GCPs exiting the URL, and ultimately allow the 
cerebellum to attain a specific size, possibly in synergy with factors secreted by other 
developing cerebellar cell types. Unfortunately, the difficulty in obtaining embryonic series of 
lizards and/or snakes exhibiting locomotor modes other than quadrupedal locomotion or 
lateral undulation, and the impossibility, due to yet-to-overcome technical limitations, to 
perform in vivo functional experiments in squamates, prevented me to fully validate such 
hypothesis.  

 PC SPATIAL LAYOUT CORRELATES WITH 
LOCOMOTOR BEHAVIOR AND IS SET DURING 
DEVELOPMENT (I-II)   

5.2.1 DIVERGENT PC SPATIAL LAYOUT AND GENE EXPRESSION 
PATTERN IN THE CEREBELLUM OF SQUAMATES (I) 

Several studies and descriptions of squamate cerebellar cortex highlighted substantial 
differences in PC spatial organization across species, ranging from the almost continuous and 
well-ordered distribution in quadrupedal lizards to the disorganized layout displayed by 
snakes (Aspden et al., 2015; Hoops et al., 2018; Larsell, 1926; ten Donkelaar and Bangma, 
1992; Wylie et al., 2017). However, the overall number of species collectively analyzed in these 
studies, corresponding to a particularly small fraction of the squamate lineages, likely provides 
only a limited view of the full spectrum of squamate PC layouts and prevents the identification 
of putative links between alterations of cerebellar cortex cytoarchitecture and different 
ecological and behavioral factors, which have been shown to deeply influence several 
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neuroanatomical features of this brain subdivision (Corfield et al., 2016; Hall et al., 2013; 
Iwaniuk et al., 2006; Iwaniuk et al., 2007; Larsell, 1926; Wylie et al., 2017). 

With the aim to identify and characterize possible alternative PC topological patterns than 
those already described in lizards and snakes I performed a series of immunohistochemical 
stainings both on the whole cerebellum and on paraffin brain sections of different squamate 
species (Study I). To deeply explore the extremes of the 3D PC spatial configuration range 
observed in squamates I carried out 3D immunostainings using an antibody against the PC 
specific marker calbindin-1 (CALB1) and light-sheet fluorescence microscopy on cleared whole 
cerebella of P. vitticeps and B. fuliginosus individuals. The results of this imaging experiments 
allowed me to fully visualize the highly divergent PCL in these species and to appreciate 
putative differences not only in PC soma distribution but also in the course and arborization 
of PC dendrites. Unfortunately, due to species-specific variation in antibody penetration I 
could not expand and quantify these observations in a large panel of squamate species and 
had to limit the analysis only to PC soma distribution using IHC on paraffin sections. The 
qualitative inspection of the immunostainings, conducted on 13 species belonging to different 
squamate families, revealed the existence of a large spectrum of PC arrangements both in 
snakes and in lizards (Fig. 9). In particular, the sandboa Eryx colubrinus (Fig. 9B), displays 
a relatively organized PC spatial layout with cell somata, though forming 1-3 rows, precisely 
following the outer contour of the IGL in striking contrast with other snakes showing different 
degree of PC scattering in the ML. In addition, the PCs of Pseudopus apodus (Fig. 9C), a 
legless lizard, approximate those of snakes in their organization, following no obvious 
distribution pattern. In light of these observations, I quantified the scattering of individual 
PCs and tested the existence of potential correlations between specific PC topological 
distribution patterns and locomotor behaviors adopted by squamates. I followed the same 
locomotor categorization used in the morphological and volumetric assays and the results 
from post hoc pairwise comparisons, performed after a significant Kruskal-Wallis test (p-
value <0.0001), delineated a scenario consistent with that depicted by the morphometric 
analysis. The results, in fact, highlighted a strong correlation between locomotor 
specialization and PC spatial organization, revealing the existence of 4 significantly different 
PC topological patterns (Fig. 9): ordered monolayer (group I), ordered multilayer (II), 
scattered multilayer (III) and totally scattered (IV). In particular, quadrupedal lizards which 
all grouped in a single cluster, displayed the most ordered PC distribution followed, in order 
of increasing PC scattering, by burrowers, multi-habitat lateral undulation and multi-habitat 
other movements groups. Interestingly, the significant segregation exhibited by locomotor 
groups including snakes and lizards (II, burrowers and facultative burrowers vs III, multi-
habitat lateral undulation) suggests that variations in PC spatial layout exists in both snake 
and lizard species and correlate with locomotor adaptations in a phylogenetic-independent 
fashion.  

The functional correlates of the different distribution of PCs in squamates are unknown and 
PC heterotopia in the ML is often associated with neurodegenerative disorders, generally 
leading to PC degeneration and death, characterized by severe locomotor impairments in 
humans (Borghesani et al., 2000; Bottini et al., 2012; Kuo et al., 2011; Louis et al., 2018; 
Pascual-Castroviejo et al., 2003). Lying outside this context of pathological conditions, the 
variations in squamate PC spatial organization could be, instead, an additional factor through 
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which the cerebellum could differentially modulate specific types of limb/body coordination 
in lizards and snakes adopting alternative locomotor strategies.  

 

 

Figure 9 Heterogeneity of PC spatial distribution in squamates. IHC with CALB1 (red 
staining) on sagittal sections of the cerebellar cortex in selected species 
representative of the 4 distribution patterns observed: Pogona vitticeps (A, Group I), 
Eryx colubrinus (B, Group II), Pseudopus apodus (C, Group III), Dasypeltis gansi (D, 
Group IV). Insets show high magnifications of PC spatial organization. Cell nuclei are 
counterstained with DAPI (blue staining). IGL, internal granular layer; ML, molecular 
layer; PS, pial surface; VS, ventricular surface. In all sections caudal is to the left and 
dorsal to the top. Scale bars: 100 μm. 

In such respect, data from the comparative transcriptomic analysis of the whole cerebellum, 
conducted in parallel to the morphometric and histological study, on a panel of 10 squamate 
species belonging to different locomotor groups (Study I), are suggestive of an association 
between different PC spatial layouts and divergent expression of genes involved in PC 
electrophysiological and metabolic properties. The hierarchical clustering on pairwise 
correlation of 630 orthologous cerebellar genes, by grouping species according to the 
similarity in their gene expression patterns, revealed a significant influence of locomotion on 
cerebellar gene expression patterns. The different species analyzed, indeed, clustered in the 
generated dendrogram according to their locomotor mode rather than to their phylogenetic 
relationships, indicating that differential gene expression, in addition to cerebellar 
morphology, size and PC distribution, might reflect the alternative locomotor patterns 
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featured by squamates. Importantly, the analysis of the gene cluster composed by transcripts 
with highly divergent expression profiles among the different locomotor groups, pointed out 
the presence of several genes exclusively expressed in PCs, including some with a relevant role 
in their electrophysiological properties and likely influencing their functions, such as the 
metabotropic glutamate receptor1 (mGluR1) and Hamartin (Tsc1) gene. The mGluR1 gene 
product is a receptor essential for long-term depression of synaptic transmission at PC-PF 
synapses, a fundamental substrate for motor learning in the cerebellum (Ichise, 2000; Ito, 
2001; Ito and Karachot, 1989; Ito et al., 2014), while mutations in Tsc1 result in the tuberous 
sclerosis complex, a syndrome characterized by cerebellar pathology associated with increased 
autism spectrum disorder symptomatology in humans (Ertan et al., 2010). Moreover, the 
characterization of both homozygous and heterozygous mouse mutants for Tsc1 highlighted 
alterations in PC firing rates, which are key determinants of DCNi activity and deeply influence 
the downstream motor-related neuronal networks (Gutmann et al., 2000). In addition, other 
genes involved in PC physiology and metabolism and associated with motor performance like 
striatin (Strn; Bartoli et al., 1999; Benoist et al., 2006), a scaffolding protein mediating 
signaling and trafficking at PC dendritic spines, and spatacsin (Spt11; Branchu et al., 2017; 
Varga et al., 2015), a protein modulating lipid turnover, also exhibited a differential expression 
profile among the different locomotor groups. These results, thus, suggest that the alternative 
PC layouts in squamates might correlate with different PC functional properties, mediated by 
expression levels modulation of genes influencing PC electrophysiology, morphology, and 
metabolic processes.  

In the future, detailed 3D microscopic analyses coupled with electrophysiological assays, 
together with a finer characterization of PC expression profiles on a larger number of species, 
might help clarify the potential structural and functional correlates of the observed 
heterogeneity in squamate PC distribution. 

5.2.2 DEVELOPMENTAL GROUNDS OF PC SPATIAL LAYOUTS IN 
SQUAMATES (I-II) 

To explore the possible origins of the highly diverse PC organization exhibited by squamates I 
investigated, in a lizard and a snake, the embryonic cellular and molecular events shown to be 
crucial for a proper cortical lamination during cerebellar morphogenesis in other vertebrate 
groups. I characterized PC development with a particular focus on the molecular interactions 
and temporal dynamics involving PC migration and GC generation and differentiation. I 
conducted a developmental comparative study from early post-ovipositional embryonic stages 
to early postnatal period in the bearded dragon and in the African house snake, two squamate 
species which clustered in highly divergent groups (ordered monolayer and scattered 
multilayer, respectively) in the analysis of PC topology.  

To track PC generation and development, I performed IHC experiments in both species using 
an antibody against LHX1 (Zhao et al., 2007), a transcription factor selectively expressed by 
PC, together with the proliferation marker PCNA. As already noticed for GCPs production in 
the URL, proliferation in the VZ starts at earlier stages in the snake compared to the lizard 
(12dpo and 15dpo, respectively) and the first PCs labelled by LHX1 are detected few days later 
in both species. After being produced, PCs leave the VZ in a radially oriented migration, likely 
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sliding along radial glia fibers, as documented in other vertebrates (Yuasa et al., 1991; Yuasa 
et al., 1996), and move towards the cerebellar PS. As development proceeds, PC distribute in 
sigmoidal-shaped multi-layered clusters (PCCs), in both models, occupying an intermediate 
position along the cerebellar ventricular-pial axis and spanning the entire rostro-caudal 
cerebellar extent (Fig. 10). Despite PCC formation occurs in advance in the snake compared 
to the lizard (25dpo vs 30dpo), likely reflecting the earlier onset of PC production and 
migration in B. fuliginosus, the two model PC developmental program showed no particular 
difference till this stage. However, the analysis of the following phases of cerebellar 
morphogenesis highlighted a striking divergence of PC fate in the two species. In fact, while P. 
vitticeps PCs, progressively disperse form the PCC and gradually acquire the ordered 
arrangement along the outer contour of the IGL, during the last third of post-ovipositional 
gestation, snake PCs do not reposition and remain in a multilayered configuration throughout 
embryogenesis, and the subtle changes observed in their arrangement from 30 dpo are likely 
due to both cerebellar growth and circuitry refinement rather than to PC-autonomous 
dynamics. 

These results point out that similar events characterize the initial phases of PC development, 
including radial migration and PCC formation, in P. vitticeps and B. fuliginosus and that the 
peculiar PCL configuration observed in the adult snake derives from PCs failing to uniformly 
disperse from the multilayered clusters. Furthermore, they highlight a nearly precise 
simultaneity between PC spatial dynamics truncation and the previously characterized GCP 
layer disappearance from the pial cerebellar surface in B. fuliginosus, suggesting a potential 
link between the alternative PC layouts displayed by the two models and the temporally 
divergent GCP dynamics they feature.  

Such temporal coincidence, together with the pivotal and well-established role played by 
molecular interactions involving PCs, GCPs and migrating GCs in directing a proper cerebellar 
development, led me to verify the integrity, in both models, of the Reln signaling pathway, a 
crucial mediator of neuronal migration and both cerebral and cerebellar cortex lamination in 
mammals and other vertebrates (Caviness and Rakic, 1978; Costagli et al., 2002; D’Arcangelo 
et al., 1995; Jensen et al., 2002; Miyata et al., 1997; Nimura et al., 2019; Pesold et al., 1998; 
Rahimi-Balaei et al., 2018; Rodríguez-Moldes et al., 2008). I characterized the expression 
pattern of the main components of the Reln pathway by ISH and used an antibody against the 
phosphorylated form of DAB1 (P-DAB1), the main effector of RELN molecular cascade, in IHC 
assays, to assess its activation. In both P. vitticeps and B. fuliginosus, Reln transcripts are 
abundantly present throughout the developmental time window encompassing GC generation 
in the two models, both in GCPs located on the cerebellar pial surface and migrating GCs as 
well as in GC already settled in the progressively expanding IGL. Moreover, like in mammals, 
Reln expression is maintained also in juvenile squamate GCs. Owing to the similarities of Reln 
transcription pattern in the two models I, then, checked the existence of possible variations in 
the expression profile of Vldlr and of Dab1, the main Reln pathway receptor and effector 
involved in PC monolayer formation, respectively (Trommsdorff et al., 1999). In contrast to 
the asynchrony observed in other events of cerebellar morphogenesis between the snake and 
the lizard, largely due to the relative advanced development of snake embryos at oviposition, 
Vldlr and Dab1 transcription initiates in both model PCs at 40dpo, when PCCs have already 
formed in the two squamates. Consistently, DAB1 activation, detected with an antibody 
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against its phosphorylated form, temporally matches Vldlr and Dab1 transcriptional profile in 
P. vitticeps and B. fuliginosus, further confirming the molecular synchronization occurring 
between lizard and snake PCs at 40dpo. Importantly, and coherent with Reln expression, the 
active form of DAB1 is also found in juvenile squamate IGL. These data, highlighting the 
presence of all main components of the Reln pathway and their overlapping spatiotemporal 
expression and activation pattern in B. fuliginosus and P. vitticeps, extend the homologies 
observed in the early phases of PC developmental program in the two species, further 
suggesting that the alternative PC organization displayed by the lizard and the snake may 
derive from PC-non autonomous mechanisms. Moreover, the intact glial fiber organization in 
the snake cerebellum, assessed by immunodetection of the glial fibrillary acidic protein 
(GFAP), indicates that the peculiar B. fuliginosus PCL is not caused by alterations in the 
guidance system supporting PC migration. 

 

Figure 10 Purkinje cell cluster configuration in P. vitticeps 
and B. fuliginosus embryos. IHC with CALB1 (red staining) on 
sagittal sections of P. vitticeps (A) and B. fuliginosus (B) 
embryonic cerebella highlighting the similar configuration 
achieved by PCs at 40 and 25 dpo, respectively. Cell nuclei are 
counterstained with DAPI (blue staining). Insets show high 
magnifications of PC spatial organization. IGL, internal granular 
layer; PS, pial surface; URL, upper rhombic lip; VS, ventricular 
surface. In both sections caudal is to the left and dorsal to the 
top. Scale bars: 100 μm. 

Despite the synchronous activation of DAB1, the 3D extracellular environment and 
morphogenetic context experienced by PCs is radically different in P. vitticeps and B. 
fuliginosus at 40 dpo. In P. vitticeps, at this stage, the strong Reln expression detected in the 
several-cell-thick EGL and in a conspicuous number of GCs delaminating from it, likely 
providing a permissive extracellular milieu, allows PCC dispersal. Moreover, as development 
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progresses Reln expression gradually become exclusively expressed in lizard IGL GCs, in 
coincidence with the progressive reduction of GCPs on the pial surface. P. vitticeps PCs are, 
thus, exposed to a Reln expression gradient which varies over time, progressively shifting its 
concentration peak from the pial side during the PCC dispersal phase to the IGL at late 
developmental stages and postnatal life. In contrast, snake PCs are exclusively exposed to a 
fixed source of Reln, the IGL GCs, owing to the disappearance of the pial surface GCP layer 
prior to DAB1 activation. Furthermore, this divergence in Reln spatial distribution parallels 
the different level of maturation of the cerebellar cortex in the two models at the onset of DAB1 
activation. At 40 dpo, in fact, the layers of the cerebellar cortex are only barely delineated in 
P. vitticeps, whereas B. fuliginosus cerebellum displays almost a mature configuration, 
featuring an expanded ML hosting an entangled network of GC ascending and parallel fibers. 
The joint effect of these divergent molecular and spatial conditions experienced by PCs in the 
two models could, thus, be at the base of the radically diverse PCL phenotype in B. fuliginosus 
and P. vitticeps. Though RELN mechanism of action in PCC dispersion and PCL formation 
have not been fully elucidated, this hypothesis is in line with previous results highlighting the 
pivotal role of GC delaminating from the pial surface in promoting PC reorganization (Jensen 
et al., 2002; Miyata et al., 1997). Moreover, both in vitro and in vivo observations suggest a 
shift in RELN localization and concentration from GC somata, where RELN is abundant as 
GC differentiate and migrate through the PCC, to PF segments when GC settle in the IGL and 
the glycoprotein levels decrease (Miyata et al., 1996). This shift in RELN extracellular 
distribution and concentration could correlate with the transition from its role in promoting 
PC spatial rearrangements in early phases of cerebellar morphogenesis to a modulatory 
function in PC dendrite maturation at later stages (Miyata et al., 1996). At the onset of DAB1 
transcription and activation snake PCs, then, are likely exposed to a low RELN concentration 
which, accumulating on their dendrites, might be only capable of inducing limited responses 
in PC, insufficient to drive their somata relocation. In addition, snake PCC dispersal could also 
be prevented by the physical barrier constituted by the dense network of AGAs and PFs, likely 
present in the mature ML of B. fuliginosus upon DAB1 activation, when all GC have already 
settled in the IGL. Phenotypic analyses of human cerebellar tissue and the developmental 
characterization of mouse models for ataxia-telangiectasia (Borghesani et al., 2000; Bottini et 
al., 2012; Vinters et al., 1985), a systemic syndrome characterized by ectopic Purkinje cell in 
the ML, have suggested that the tight packing formed by PFs around improperly migrated PCs 
could preclude, by firmly anchoring them in place, PC somata compensatory spatial 
rearrangements at later stages. Moreover, embryonic graft experiments in rodents have 
further highlighted the relevance of a precise spatiotemporal patterning of GCs and PCs 
demonstrating the direct correlation between the ratio of donor-PC ectopically positioning in 
the host developing cerebellum and the degree of cortical maturation of this latter (Carletti et 
al., 2008; Sotelo and Alvarado-Mallart, 1986; Sotelo and Alvarado-Mallart, 1987a; Sotelo and 
Alvarado-Mallart, 1987b).   
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 SQUAMATES FEATURE THE BASE PLAN OF 
AMNIOTE CEREBELLOGENESIS (II) 

The analysis of GC developmental dynamics strongly suggested possible homologies between 
the layer of PCNA positive cells on the pial surface of both the snake and lizard cerebellum and 
the proliferative EGL featured by the avian and mammalian developing cerebella. The EGL is 
a transient, secondary germinative zone defined not only by its highly proliferative nature but 
also by other molecular features, including the sustained expression of the bHLH 
transcription factor Atoh1 (Akazawa et al., 1995; Ben-Arie et al., 1996; Ben-Arie et al., 1997), 
which is essential to preserve GCP identity and allow their transit amplification (Butts et al., 
2014b; Flora et al., 2010; Klisch et al., 2011). In addition, GCP amplification in the EGL 
requires the mitogenic factor SHH which, secreted by PCs, is crucial for the cerebellum to 
achieve a proper size and degree of foliation (Corrales et al., 2004; Corrales et al., 2006; 
Dahmane and Ruiz, 1999; Lewis et al., 2004; Wallace, 1999; Wechsler-Reya and Scott, 1999). 
To clarify whether such features are a distinctive trait of bird and mammal cerebellogenesis 
or represent a developmental blueprint common to all amniotes, I conducted a series of IHC 
and ISH experiments in different stage lizard and snake embryos with a set of specific markers 
(Study II).  

Immunohistochemical labelings using the antibody against the phosphorylated form of 
histone H3 (PH3), a universal mitotic marker, in combination with PCNA highlighted the 
occurrence of cell divisions in both P. vitticeps and B. fuliginosus embryos (Fig. 11A,C). In 
particular, dividing cells were detected in proximity of the URL and both in superficial and, as 
recently observed in birds (Hanzel et al., 2019), also more internal layers of the subpial stream 
of tangentially migrating GCPs in the two models. The direct comparison of the 
spatiotemporal evolution of the EGL, however, pointed out relevant difference in its 
proliferative potential in B. fuliginosus and P. vitticeps. In contrast to lizard embryos, which 
at 60 dpo, together with a 1-to-4-cell thick EGL, display mitotic GCPs located even far from 
the URL (Fig. 11B), snake embryos show a progressive and quick reduction of both EGL 
thickness and cell division number. At 30 dpo only few PH3-positive cells, exclusively found 
in vicinity of the snake embryo URL, are labeled and at 40 dpo no proliferative cells are 
detected (Fig. 11D). These results point out that squamate GC developmental program, like 
in avian and mammalian cerebellogenesis, features a transit amplification phase in a 
secondary germinative domain, aimed to expand the GCP pool. Moreover, they confirm and 
further detail the significant differences already observed between B. fuliginosus and P. 
vitticeps URL and GCP proliferation potential that could influence both the final size and 
cortical structure of the two squamate species.  

To further explore the potential homologies between squamate, mammalian and avian 
cerebellar morphogenesis at a deeper level, I checked the expression of the proneural gene 
Atoh1, a fundamental molecular prerequisite for GCP transit amplification in the EGL, and of 
the mitogenic protein SHH by PCs. ISH experiments revealed Atoh1 transcripts in the EGL of 
B. fuliginosus and P. vitticeps. At all stages tested bearded dragon embryos displayed an Atoh1 
spatiotemporal expression pattern overlapping with that of the proliferating URL and EGL, 
showing a sustained level of transcription, likely protracting till early postnatal life, as 
suggested by the proliferation marker analysis. Immunolabelings for SHH further confirmed 
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the existence of a common blueprint for cerebellar morphogenesis in amniotes, this protein 
being detected both in the lizard and snake PCs by 40 dpo (Fig. 11B,D) onwards, further 
suggesting, as already indicated by Reln pathway characterization, a synchronization of PC 
developmental program in the two models at this stage. The timing of SHH production, was 
confirmed by the expression pattern analysis of Rora, a thyroid hormone-regulated 
transcription factor directly modulating Shh, involved in PC dendritogenesis, survival and 
lifelong physiological integrity (Boukhtouche et al., 2010; Chen et al., 2013; Dussault et al., 
1998; Gold et al., 2003; Gold et al., 2007; Hamilton et al., 1996; Sidman et al., 1962; Takeo et 
al., 2015), which highlighted a perfect temporal match with SHH immunodetection.  

Altogether, these results clearly point out that squamate cerebellogenesis features hallmarks, 
like GCP transit amplification in the EGL and SHH secretion by PCs thought, so far, to be an 
exclusive trait of birds and mammals, outlining that such cellular and molecular processes 
represent developmental milestones shared by amniotes. In addition, they provide further 
indications on the critical importance the temporal coupling between the different cerebellar 
cell type development/maturation takes on in determining the cortical phenotype and final 
size of the cerebellum in lizards and snakes (Fig. 12).  

 

 

Figure 11 Squamates feature hallmarks of avian and mammalian cerebellogenesis. (A,C) 
Double IHC for PCNA (green staining) and PH3 (red staining) in the embryonic 
cerbellum of P. vitticeps (A) and B.fuliginosus (C) at 30 and 20 dpo, respectively. (B, 
D) Double IHC for PCNA (green staining) and SHH (red staining) in the embryonic 
cerbellum of P. vitticeps (B) and B.fuliginosus (D) at 40 dpo, in both species. Insets 
show high magnifications of mitotic GCPs in the EGL (A,C) and SHH-positive PCs 
(B,D) in both species. Cell nuclei are counterstained with DAPI (blue staining). CP, 
choroid plexus; EGL, external granular layer; IGL, internal granular layer; PS, pial 
surface; URL, upper rhombic lip; VS, ventricular surface. In all sections caudal is to 
the left and dorsal to the top. Scale bars: 100 μm. 

As already noted in the context of RELN cascade activation, and despite the synchronization 
of SHH expression in terms of dpo, the two model EGL state is completely different at 40 dpo. 
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In fact, when SHH begins to be produced and secreted by PCs, the EGL thickness ranges from 
three to five layers of cells in the lizard, while GCPs are virtually absent from B. fuliginosus 
pial surface at 40 dpo. In a similar way to RELN, then, SHH might exert differential and 
context dependent functions in the two models. In addition and independently from its role 
in GCP amplification, SHH maintains a niche of heterogeneous and functionally divergent 
cerebellar progenitor cells important for motor learning and cognition in mice prospective 
white matter (Fleming et al., 2013).  

 

 

Figure 12 Overview of cerebellar development in squamates. Schematic and chronological 
representation of the main molecular and cellular events at the origin of the divergent 
cortical lamination in P. vitticeps (top row) and B. fuliginosus (bottom row) 
cerebellum. The absence of major developmental processes is marked by a red 
cross. Purkinje cells are represented as empty circles. EGL, external granule layer; 
IGL, internal granule layer; URL, upper rhombic lip; CP, choroid plexus. 
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Moreover, both Shh and its pathway component detection in adult rodent PCs and other 
cerebellar cells (Corrales et al., 2004; Lewis et al., 2004; Traiffort et al., 1998; Traiffort et al., 
1999; Vaillant and Monard, 2009; Wallace, 1999) has been associated with a key role in 
synaptic plasticity, by controlling cerebellar astrocyte complex molecular signature and both 
glutamate and adenosine triphosphate (ATP) trafficking (Farmer et al., 2016; Okuda et al., 
2015). In the context of squamate cerebellogenesis, SHH could promote GCP expansion in the 
EGL till the acquisition, in early postnatal life, of a mature cortical organization in the lizard, 
before switching to a synaptic plasticity mediator role afterwards. Owing to the precocious 
EGL disappearance in the snake, accompanied by an advanced degree of cortical maturation 
already established at 40 dpo, SHH secretion by B. fuliginosus PCs could, instead, reflect the 
indispensable function played by this molecule in adult cerebellum physiological dynamics.  

The absence of a SHH-sustained GCP amplification phase in B. fuliginosus is likely, at least in 
part, linked to the relatively small cerebellar size achieved by the snake cerebellum compared 
to the lizard one. The analysis of mouse mutants, conditionally expressing different levels of 
SHH, have demonstrated a direct correlation between the amount of this secreted mitogen 
and the degree of cerebellar foliation (Corrales et al., 2006). In particular, the complete 
ablation of Shh from PCs causes a precocious termination of GCP amplification in the EGL, 
producing a severely reduced and unfoliated cerebellum, while increasingly complex 
cerebellar morphologies parallel rising levels of Shh pathway activation. Considering these 
experimental observations, the asynchrony between Shh pathway activation and EGL 
presence in B. fuliginosus developing cerebellum can be considered as functionally equivalent 
to Shh complete abrogation in mouse mutants. Indeed, the cerebellum of these knockout mice 
shows homologies with the snake one. Both are small, smooth and show no foliation, all 
characteristics linked to the absence of a SHH-driven GCP amplification phase in the EGL. P. 
vitticeps cerebellum, on the other hand, featuring a second transit-amplifying phase of GCPs 
promoted by PC-secreted SHH, achieves a larger size relative to the whole-brain and a more 
elaborated morphology compared to the snake. However, though being more complex than 
the snake counterpart, P. vitticeps cerebellum doesn’t even approach the sophisticated 
morphologies exhibited by mammals, suggesting that the smaller number of PCs residing in 
the lizard cerebellum, when compared to mouse (Bakalian et al., 1991; Bakalian et al., 1995; 
Frederic et al., 1992; Wetts and Herrup, 1982; Zanjani et al., 1992; Zanjani et al., 2004; and 
personal observations), can only provide low intensities of SHH signaling. As a whole, though 
additional data and functional assays are needed to validate the hypothesis of a SHH-mediated 
transition from the morphologically simple cerebellum of squamates to the more elaborated 
forms exhibited by birds and mammals, this comparative analysis provide new details on the 
possible mechanisms promoting cerebellar phenotypic evolution within squamates and across 
amniotes. 
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6 CONCLUDING REMARKS AND FUTURE 
PERSPECTIVES 

In this thesis work I first explored the potential relationships between a major evolutionary 
transition—locomotor behavior—and variations in brain organization in squamates, with a 
particular focus on the cerebellum. I also investigated the embryonic development of the 
cerebellum in a lizard and a snake species to expand the current knowledge on the 
mechanisms underlying the extreme phenotypic diversification of this brain subdivision 
across vertebrates and within squamates.  

One of the main goals of evolutionary biology is to understand the forces and processes leading 
to deviations from phenotypic regularities. Historically, studies on brain evolution have 
analyzed adult brain or major brain subdivision size variations in relation to behavioral and 
ecological niches (Jerison, 1973; Lefebvre and Sol, 2008; Lefebvre et al., 2002; Sayol et al., 
2016; Sol et al., 2005; Stephan et al., 1981; Striedter, 2005), while only few investigations have 
evaluated the influence of such factors on multiple aspects of brain biological organization. 
Phenotypic diversification is, in fact, a complex and multifaceted phenomenon and demands 
the integration of multiple experimental approaches to fully appreciate its nuances. 

The results of this thesis work pointed out significant correlations between squamate 
cerebellar size, morphology, cortical organization, gene expression patterns and specific 
locomotor behaviors in a phylogenetic independent fashion, unveiling that important 
behavioral transitions can influence not only whole-brain or brain subdivision size, but also a 
broad range of brain features in vertebrates. Furthermore, they revealed that squamates 
display features thought to be exclusive of bird and mammal cerebellogenesis and suggested 
that modifications in the timing and/or duration of specific events during cerebellar 
development could be responsible of the observed variations in both cerebellar size and 
cortical arrangement in squamates. 

However, additional work is needed to better clarify the role played by locomotor 
specializations on squamate brain evolution. Moreover, the hypothesized causal relationships 
between variations in the temporal expression pattern of specific factors as well as in the 
degree of cerebellar cortex maturation during development and the large phenotypic 
heterogeneity of squamate cerebella need to be thoroughly tested. 

The morphometric analysis showed a significant influence of locomotor mode on squamate 
cerebellar morphology. Owing to the spatial segregation of cerebellar corticonuclear and 
efferent projections in squamates, the neuroanatomical characterization of DCNi, red nucleus 
(in lizards only) and nuclei of the reticular formation, could be helpful to assess the impact of 
squamate locomotor specialization on the extended cerebellar network. Past descriptive 
studies highlighted a remarkable variability in the number and size of certain reticular nuclei 
in a restricted number of lizard and snake species (Newman and Cruce, 1982), suggesting 
potential relationships with their locomotor pattern, but the qualitative nature of these data 
precluded any experimental validation of this hypothesis. 
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In addition, a deeper characterization of PC morphological and electrophysiological properties 
in species adopting different locomotor strategies, could provide insights on the putative 
functional significance of the different PC layouts displayed by squamates and help refine the 
scope of the effects that relevant behavioral traits can have on brain evolution.  

The characterization of cerebellar morphogenesis in a snake and lizard model highlighted 
features so far considered evolutionary milestones of avian and mammalian cerebellogenesis, 
like the formation of a proliferative EGL and the secretion of SHH by PCs. Moreover, they 
suggest the relevance of GCP and PC spatiotemporal patterning and molecular interactions in 
determining cerebellar size and cortex configuration within squamates.  

Currently, one limitation posed by the use of non-canonical model organisms, like squamates, 
is the difficulty to perform in vivo embryo manipulations to validate functional hypothesis. 
Overcoming this experimental limitation is of crucial importance for evolutionary-
developmental studies owing to the key position squamates occupy in the vertebrate 
phylogenetic tree. In the context of this thesis research work, for instance, it would be of 
interest to modulate EGL persistence in snakes and lizards to generate cerebellar phenotypic 
variants displaying different levels of PC organization and relative size. The cerebellum is a 
relatively well-accessible brain area in squamate embryos and beads, soaked with factors to 
either upregulate (BMPs, SHH) or downregulate (dorsomorphin homolog 1 or cyclopamine, a 
BMP and SHH inhibitor, respectively) GCP production/amplification, could be implanted at 
different developmental stages to alter the EGL formation and persistence. Furthermore, 
precocious PC maturation could be induced by thyroid hormone administration in snake 
organotypic cerebellar slice cultures to reproduce a lizard-like developmental context and 
evaluate possible modifications in PC spatial distribution.  

In addition to ex vivo organ cultures and potential in ovo manipulations, the developmental 
characterization of the cerebellum of burrower and/or facultative burrower species could both 
corroborate the data obtained in this thesis work and provide further important insights on 
the mechanisms responsible for squamate cerebellar diversity.  
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