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Abstract
Objective.The objective of this work is to develop a 4D (3D+T) statistical anatomical atlas of the
electrical properties of the upper part of the humanhead for cerebral electrophysiology and
bioimpedance applications.Approach.The atlas was constructed based on 3Dmagnetic resonance
images (MRI) of 107 human individuals and comprises the electrical properties of themain internal
structures and can be adjusted for specific electrical frequencies. T1w+T2wMRI images were used to
segment themain structures of the headwhile angiographyMRIwas used to segment themain
arteries. The proposed atlas also comprises a time-varyingmodel of arterial brain circulation, based on
the solution of theNavier–Stokes equation in themain arteries and their vascular territories.Main
results.High-resolution,multi-frequency and time-varying anatomical atlases of resistivity, con-
ductivity and relative permittivity were created and evaluated using a forward problem solver for EIT.
The atlaswas successfully used to simulate electrical impedance tomographymeasurements indicating
the necessity of signal-to-noise between 100 and 125 dB to identify vascular changes due to the cardiac
cycle, corroborating previous studies. The source code of the atlas and solver are freely available to
download. Significance.Volume conductor problems in cerebral electrophysiology and bioimpedance
do not have analytical solutions for nontrivial geometries and require a 3Dmodel of the head and its
electrical properties for solving the associated PDEs numerically. Ideally, themodel should bemade
with patient-specific information. In clinical practice, this is not always the case and an average head
model is often used. Also, the electrical properties of the tissuesmight not be completely knowndue to
natural variability. Anatomical atlases are important tools for in silico studies on cerebral circulation
and electrophysiology that require statistically consistent data, e.g.machine learning, sensitivity
analyses, and as a benchmark to test inverse problem solvers.

1. Introduction

Electrophysiology is the branch of physiology that investigates the electrical properties of biological tissues. The
analysis is based on electricalmeasurements, voltages, or electric currents, generated by the tissue or in response
to external electric stimuli.

One special group is clinical neurophysiology, where the bioelectrical activity is recorded to assess central
and peripheral nervous systems. Electroencephalography (EEG) is an importantmonitoring and diagnostic
method in this speciality to record brain electrical activity that can be used to diagnose thalamocortical rhythms,
such as assessing seizure disorders, epilepsy, sleep disorders, coma, schizophrenia, Parkinson disease, and brain
death (Michel and Brunet 2019, Jatoi andKamel 2017).

Electroencephalographymeasures voltage variations usingmultiple electrodes typically placed along the
scalp of the patient. Themeasured voltages are the result of ionic currents inside the brain, therefore they are
caused by spontaneous electrical activity.
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In the case of epilepsy diagnostics, EEG is employed to determine the type, location, and extension of the
lesion causing seizures. This is a challenging task since it depends onmeasurements taken on the surface of the
scalp to infer the internal source of the disorder, a process called source reconstruction (Hallez et al 2007, Grech
et al 2008).

Bioimpedance analysis is another group ofmethods used to assess the electrical properties of biological
tissues.Measurements aremade in response to external stimuli, such asmeasuring voltages caused by external
current sources attached to the surface of the body or vice-versa.

Electrical impedance tomography (EIT) is amedical image technique inwhich electricalmeasurements on
the surface of the body are used to create an image of conductivity distribution (or admittivity, the complex-
valued equivalent)within the body. The image can then be associatedwith the physiological conditions of the
patient. EIT has been used successfully inmany areas, such as in lung applications tomonitor acute respiratory
distress syndrome, obstructive lung diseases or perioperative patients (Martins et al 2019), monitoring
mechanical ventilation, heart activity (Frerichs et al 2016), cardiac function and detecting cancerous tissues
(Adler and Boyle 2019). It is also being investigated tomonitor brain activity and to distinguish between
ischemic and hemorrhagic stroke (Adler and Boyle 2019).

Many electrophysiology applications require solving a nonlinear ill-posed inverse problem associatedwith
the volume conductor. Reliable and stable solutions depend on prior information about the geometry and
electrical properties of the tissues and knowledge aboutmeasurement uncertainty. In the case of source
reconstruction, prior information about the electrical properties of the tissues is required for composing the
forward volume conductionmodel needed in the process. Small errors in the electrical properties inside the head
can obfuscate the effects of deep brain activity. In the case of EIT, anatomical and electrical prior information is
also required to restrict the solution search space.

In addition, the brain is not a static structure. Theflowof blood varies periodically during each cardiac cycle
(Wagshul et al 2011). Intracranial pulsatility has been evaluated usingmagnetic resonance imaging (Vikner et al
2019,Holmgren et al 2019), or transcranial Doppler sonography (Kneihsl et al 2020), and tissue pulsatility
imaging (Kucewicz et al 2008,Desmidt et al 2018).

Blood flow centre-line velocity and artery radius influence the electrical impedance of blood in that artery
(Gaw et al 2008, Shen et al 2016, 2018). Thismakes it promising to use electrical conductivitymeasurements,
such as in EIT or impedance cardiography, in haemodynamicmonitoring using surface electrodes on the skin.
In fact, there have been several works recently aiming tomonitor blood flow and/or pressure waveforms using
them, e.g. common carotid arteries (Zhang et al 2020), aortic artery (Badeli et al 2020), pulmonary artery (Braun
et al 2018), radial artery (Pesti et al 2019), and cerebral arteries (Beraldo andMoura 2020). There are works about
impedance cardiography to determine stroke volume (Bernstein 2010), electrical bioimpedance sensing to
determine the central aortic pressure curves (Min et al 2019), and pulmonary artery pressure estimation using
EIT (Proença et al 2020). There is an increasing interest in brainmonitoring using electricalmeasurements, such
as tomonitor ventricular volume (Wembers et al 2019), rheoencephalography to assess cerebral blood flow
(Bodo et al 2018,Meghdadi et al 2019), brain perfusion of rats (Dowrick et al 2016, Song et al 2018), and stroke
identification (Goren et al 2018, Agnelli et al 2020, Candiani and Santacesaria 2020, Candiani et al 2019).

Volume conductor problems in electrophysiology and bioimpedance do not have analytical solutions for
nontrivial geometries and rely on numericalmethods, e.g.finite elementmethod (FEM) to discretize the head in
small elements and solve the associated PDEs. Ideally, the FEMmodel should be built with patient-specific
information, taken fromMRI orCT scans to capture precisely the geometry of the head, its internal structures,
and electrode positions. Unfortunately, in clinical practice, this is not the case. Often, an oversimplified
geometry is employed for all patients due to the lack of computational tools and time.

The effects ofmismodelling have been investigated before. EEG source localization errors increase
substantially when individual-specific headmodels are not at disposal (Acar andMakeig 2013). The authors also
show that errors in the conductivity of the skull cause large estimate errors. The latter is especially challenging
because the electrical properties of the skull are highly heterogeneous and have large variability inter-individual.
Cerebrospinal fluid (CSF) has a big impact on the results due to its high conductivity that forms a conductive
layer surrounding the brain effectively shielding the interior (Vorwerk et al 2014, Cho et al 2015). Also, the
authors show that distinguishingwhite and greymatters also impact the head volume conductormodel.

The objective of this work is to develop a statistical anatomical atlas of electrical properties of the upper part
of the humanhead for electrophysiology and bioimpedance applications. The atlas is constructed based onMRI
images of human individuals and comprises the electrical properties of themain structures for
electrophysiology. The proposed atlas also comprises a time-varyingmodel of the brain circulation, based on the
solution of theNavier–Stokes equation for blood flow in themain arteries (Melis et al 2017,Melis 2018). The
atlas can be used to generate synthetic data statistically consistent with the population to compose learning sets
formachine learningmethods, for sensitivity analyses, and as a benchmark to test algorithms. The atlas can also
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be used as statistical prior information for inverse problems in electrophysiology. Anatomy-based priors are
found in the literature, such as for thorax applications (Martins et al 2019, Kaipio and Somersalo 2005).

2. Anatomical atlas description and construction

The anatomical atlas is composed of a static componentAswith the electrical properties of themain tissues
found in the upper part of the human head and a dynamic componentAd(t) to account for blood perfusion
dynamics in the human head. The two components of the atlas are consideredGaussian and independent,
therefore thefinal statistics of the atlasA is composed by

G~A N x , , 1s s s( ¯ ) ( )

G~A t N x t t, , 2d d d( ) ( ¯ ( ) ( )) ( )

G G~ + +A t N x x t t, . 3s d s d( ) ( ( ) ( )) ( )

The two components of the atlas are presented in details in the following subsections.

2.1. Static component
The static component of the atlas distinguishes fivemain compartments of importance for electrophysiology of
the humanhead: greymatter (GM), whitematter (WM), cerebrospinal fluid (CSF), bones (BO) and other soft
tissues (OT). Figure 1 depicts the general procedure to calculate the static component of the anatomical atlas.

3DMagnetic Resonance (MR) images of 107 healthy human individuals,made available by theCASILab at
theUniversity ofNorthCarolina at ChapelHill, were used to build the atlas (Bullitt et al 2005). TheMR images
were obtained in a three-tesla equipmentwith a resolution of 1× 1× 1mm.An equal number ofmale and
female individuals were used, with an average age of 43± 15 years old. The dataset contains T1w andT2wMR
images of each patient and are both used to improve skull segmentation (Nielsen et al 2018) as described below.

The symmetric image normalization (SyN)methodwas applied to the images to diminish differences due to
misalignment, aspect ratio, and sizes between the heads (Avants et al 2008). For this purpose, the advanced
normalization tools was used, under theNeuroimaging in Python Pipelines and Interfaces (Nipype) framework
(Gorgolewski et al 2011). Detailed information regarding the normalization can be found in Avants et al
(2008, 2009).

Each of the 214 (2× 107) images was transformed aiming tomaximize its similarity with a reference image.
The reference image is theMNI ICBM1523, a nonlinear symmetric atlas with 1× 1× 1 mmresolution
(Grabner et al 2006, Fonov et al 2009). The reference image is presented infigure 2.Using an average head
geometry as reference avoids having to choose one of the images in the dataset as reference, eliminating the
possibility of choosing as a reference an individual with any abnormal geometric feature. Each transformation is

Figure 1.Main steps necessary to compute the static component of the anatomical atlas. Each image is normalized to a reference
image, segmented into themain compartments. Each segment is assignedwith the corresponding electrical property and,finally, the
statistics of the atlas can be estimated.

3
Available at http://nist.mni.mcgill.ca/?p=858
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performed in two stages, first a rigid transformation to roughly align the geometries, followed by an affine
transformation.

The normalization process assumes the heads have similar shapes and proportions. Therefore, the atlas
represents a headwith size and proportions similar to the reference head used for the normalization. If
necessary, the resulting atlas can be transformed to accommodate other geometries, for examplewhen the
geometry of the head of the patient is available or if an average headmodel is preferred. This procedure will be
described in section 3.3.

After the spatial normalization, the imageswere segmented into six classes: background,WM,GM,CSF, BO,
andOT. The statistical parametricmapping (SPM)was used to segment the images (Frackowiak et al 2004).

Compact bones produce very lowMR signals, causing difficulties for skull segmentation. A recent study by
Nielsen et al (2018) presents an analysis on the performance of bone segmentation using various toolboxes
commonly employed to segment the human head against CT-based skull segmentation. The authors show that
SPMoutperforms othermethods in the studywhen themulti-channel (T1w+T2w) strategy is employed. The
inclusion of T2w increases the contrast between scalp, compact bone andCSF and greatly reduces the presence
of outliers with bad segmentation, substantially reducing the variance across subjects. This combination also
increases the contrast between soft tissues (Misaki et al 2014). The authors also describe that SPM’smulti-
channel segmentation (T1w+T2w) inaccuracies compared toCT segmentationmanifestmainly as false
positives around the air cavities and false negatives around the vertebrae. For the proposed atlas, segmentation
errors between bone and air is not an issue due to their high resistivities while the vertebrae region is out of the
scope of the atlas proposed in this work.

We employed SPM’smulti-channel segmentation (T1w+T2w) following the guidelines fromNielsen et al
(2018). Themethod is composed of a preprocessing stepwhere T1w andT2w images are coregistered
maximizingmutual information, followed by circular optimization of three components: (i)modelling of the
intensities of the images using aGaussianmixturemodel; (ii)normalization of tissue probabilitymaps of the five
parts of the headwith the images; and (iii) a biasfield correction. Further details about the implementation can
be found inAshburner and Friston (2005). At the end of this phase, each voxel of the images is assigned to the
label with the highest probability.

Three additional steps were also performed to improve segmentation. (i)Any segmentation holes inside the
headwere filledwith the nearest tissue in the image. This procedure was applied to all 2D slices in the three
anatomical planes of each image, (ii) small segmentation artefacts outside the humanheadwere removed by
isolating the largest connected group in the image using a six-connected neighbourhood strategy. (iii) Four
iterations ofmorphological opening operation to the binarymask of the head to smooth the external surface of
the head.

2.1.1. Electrical properties of the segments
Each voxel of the segmented imageswas assigned to the electrical property of the corresponding tissue before
computing the statistics of the atlas. Tissuesweremodelled as isotropic, even though it is known that some
tissues are anisotropic. The electrical properties depend on the type, physiological conditions and frequency in
consideration (Gabriel et al 1996, 1996a).

Given the angular frequency of the electrical signalω= 2πf , the complex relative permittivity ŵ ( ) of a
tissue can bemodelled as the sumof fourCole–Cole dispersion terms (Gabriel et al 1996b)

åw
wt

s
w

= +
D

+
+

a¥
=

-
 



j j1
, 4

n

n

n1

4

1
0

0
n

ˆ ( )
( )

( )

where ò0 is the permittivity of free space and all the other parameters depend on the tissue (Gabriel et al 1996b,
Andreuccetti et al 1997). The conductivityσ and permittivity ò of the tissue can be obtained from ŵ ( )

Figure 2. Slices of the reference imageMNI ICBM152.
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s w w w= -  Im , 50( ) ( ˆ ( )) ( )

w w=  Re . 60( ) ( ˆ ( )) ( )

Biological tissues are naturally inhomogeneous, due to their complexmacroscopic andmicroscopic
structure, function and physiological condition. To account for this, the uncertainty level of the estimates from
the above equationswas set to±20% following reported results inGabriel et al (1996a).

The Electrical properties of BOweremodelled as the average between cortical and cancellous bones, while
OTwasmodelled asmuscle tissue.

2.1.2. Atlas statistics computation
Let Î u NV be a vector representing a 3D image of the human head after normalization and segmentation,
whereNV is the number of voxels, excluding those representing the background around the head. Let the image
be segmented intoNTnonintersecting regions (tissues), each onewith associated characteristic function
c Î t

NV , for t= 1, 2,L ,NT. Also, let pt be the electrical property of each tissue under consideration. The
property can be real (e.g. resistivity or conductivity) or complex-valued (e.g. impeditivity or admitivity).We can
write the 3D image of this property Î x NV (or real with the same dimension) as

å c= =
=

x Xpp , 7
t

N

t t
1

T

( )

where Î p NT is a vector composed by the electrical properties of the tissues and Î ´X N NV T is amatrix where
each column is a characteristic function.

Assume images fromNI individuals are used to build the atlas. Formally this number should be very large to
represent the statistics of the population. In practice, this number is limited by the size of the dataset. To reduce
this limitation each individual will be consideredNS times, each timewith a different value for p, following the
statistics of the tissues. This implies that theNI individuals represent the general shape of the head of the
populationwhile allowing the electrical properties of the tissues to bemore diverse. In addition, we assume the
same number of samplesNSper individual,making them equally probable.

Using these hypotheses the average and covariance of the population can be estimated efficiently. For the
covariancematrixΓ in special, the formulation allows the computation in factorized formΓ= KKT, reducing
storage requirements and simplifying algorithms that depend on factorizations ofΓ.

Samples of the ith individual can be composed by sampling the properties of the tissues ps and applying (7)

= =x X p s N, for 1, 2, , , 8s i i s S, ( )

where the samples ps can be generated fromdatafittedmodels ormeasurements. In this work, the electrical
properties of the tissues are consideredGaussianwith average resulting from themodel (4) and standard
deviation of 20%of the average, following reported results (Gabriel et al 1996a).

Let xs,i represent a sample of the ith individual. The average over all individuals can be estimatedwith

åå å å å= = =
= = = = =

x X p Xx
N N N N N

p
1 1 1 1

, 9
S I i

N

s

N

s i
I i

N

i
S s

N

s
I i

N

i
1 1

,
1 1 1

I S I S I

¯ ¯ ( )

where, again,NS isfixed and represent the number of samples with the same head geometryXi and p̄ is the
average electrical properties of the tissues.

The covariancematrix can be computed using the usual sample estimator

ååG =
-

- -
= =

x x
N N

x x
1

1
, 10

I S i

N

s

N

s i s i
1 1

, ,
H

I S

( ¯)( ¯) ( )

where G Î ´N NV V andMHdenotes conjugate transpose ofM. For real valued p, the conjugate transpose is the
transposeMH=MT

Adding -x xi i( ¯ ¯ ) to both terms between parenthesis and rearranging the terms,

ååG =
-

- + - - + -
= =

x x
N N

x x x x x x
1

1
, 11
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where = å = xx Ni s
N

s i S1 ,
S¯ is the average of the ith individual. Proceedingwith the products,

å a a a aG =
-
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1
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Finally, taking the limitNS→∞
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DefiningD = -x x xi i¯ ¯ ¯ and observing the linear relation (7)we can rewrite this last expression as

å åG G= + D D =
= =

X X W W
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where Î ´ +Wi
N N 1V T( ) and G Î ´p

N NT T is the covariancematrix of the electrical properties of the tissues.
Furthermore, the expression can be simplified to

G = =W W
W

W
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where Î ´ +K N N N1V T I[( ) ]. Note that both the average (9) and the covariance (20) estimates do not require
explicit sampling procedure presented in (8).

In case of complex-valued p, the pseudo-covariance G Î ´N NV V˜ can be computed in a similar way

G = KK . 21T˜ ( )

The atlas in this work is assumedGaussian, therefore x̄ andΓ (and G̃ for complex-valued p) completely
specify its probability density function.

2.2.Dynamic component
Flow in the cranial cavity is pulsatile, following the cardiac cycle. Arterial blood flows inwaves, forcing part of the
venous blood andCSF tomove, following theMonro-Kellie hypothesis (Wagshul et al 2011). Venous blood is
drained to the jugular veins via cerebral sinuses, while CSFmoves in the subarachnoid space and leaves/returns
to the cavity via the foramenmagnum to balance intracranial pressure waves during the cardiac cycle (Greitz et al
1992, Sakka et al 2011). Recently, pulsatility was also observed in small cortical veins (Driver et al 2020), and
studies in rats show that the flow inmicrovessels is quasi-steady laminar flow, followingHagen–Poiseuille law
expected in lowReynolds andWomersley numbers (Seki et al 2006).

Arterial blood enters the cranial cavity through its base via two pairs of arteries, the (right/left) vertebral and
internal carotid arteries. After entering, these arteries form the circle ofWillis, a circulatory anastomosis
responsible for providing backup routes for cerebral blood supply (Bradac 2017, Chandra et al 2017). From the
circle ofWillis fourmain pairs of arteries branch out, the (right/left) anterior,middle, posterior cerebral, and
superior cerebellar arteries.

The dynamic component of the atlas comprises the circulation in themain cerebral arteries. The procedure
follows the samemain steps presented in section 2.1with a fewmodifications. (i)Magnetic Resonance
Angiography (MRA) images of 109 healthy human individuals were used (Bullitt et al 2005). The imageswere
obtained in a three tesla equipment with a resolution of 0.5× 0.5× 0.8mm.An equal number ofmale and
female individuals were used, with an average age of 43± 14 years old. (ii) Segmentationwas performed first by
applying a total variationfilter to the images followed by a threshold segmentation. Only the lumen of the vessels
with contrast agent were segmented. (iii)Electrical property assignment follows the procedure described in the
following subsection.

2.2.1. Electrical properties of the segments
The influence of blood flow centre-line velocity and vessel radius over the electrical impedance of blood is
modelled and included in the atlas (Gaw et al 2008, Shen et al 2016, 2018).

We simulated blood flow in themain arteries of the brain using the openBF solver (Melis et al 2017,
Melis 2018), a 1Dblood flow solver based onmonotonic upstream-centered scheme for conservation laws
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(MUSCL)finite-volume numerical scheme. The solver assumes the blood is an incompressible Newtonian fluid,
flowing through narrow and long circular vessels with linear compliant walls. TheNavier–Stokes equations are
reduced to 1Dby imposing axisymmetry, linearized and solved for pulsatile flows using thefinite difference
method.Detailed description can be found inMelis (2017).

Brain circulation simulation encompasses the superior aortic system, from the ascending aorta to themain
arteries providing blood to the brain. The arteries considered in the simulation can be seen infigure 3.

Bloodwas assumedNewtonianwith density ρ= 1050 kg m−3 and dynamic viscosityμ= 4.5× 10−3 Pa s.
The geometry andmechanical properties of the vessels are presented in table 1, based onAlastruey et al (2007)
and complementedwith data collected byDodo et al (2020), Fomkina et al (2016), Schmitter et al (2013). The
terminal vessels were coupledwith 3-elementWindkesselmodels tomimic the perfusion of downstream vessels
and avoid numerical oscillations. Heartflowoutput in one cardiac cycle was set to

p
t

t= <
Q t

Q
t

tsin

0 otherwise

, 22M
⎧
⎨
⎩

⎛
⎝

⎞
⎠( ) ( )

whereQM= 485 ml s−1 is peak flow rate, τ= 0.3 s and the cardiac cycle period is 1 s, following (Alastruey et al
2007).

Lasting one cardiac cycle, the simulated pulsatile bloodflowof each vesselmust be converted to the electrical
property of interest. Visser’smodel, a nonlinear function that relates blood resistivity changes to the average
blood velocity in a cylindrical vessel, can be used for this purpose (Visser 1989, 1992,Hoetink et al 2004)

r
r
D

= - - -H
v

R
0.45 1 exp 0.26 , 23

0

0.39

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

¯ ( )ℓ

whereΔρℓ is the longitudinal resistivity change to the reference (still blood) resistivity ρ0,H is the hematocrit
(volume percentage of red blood cells in the blood), v̄ is the average cross-sectional velocity andR is the radius of
the vessel. Visser’smodel presents a similar expression for the conductivity, however no expressionwas derived
for other electrical properties.Wewill hypothesize the conductivity expression can be applied to the permittivity
of blood.

Visser’smodel applies to blood flowing in a rigid vessel and in a defined orientation.Measurements taken
from impedance cardiography studies in humans showed relative variationsΔρℓ/ρ0 smaller (15%maximum)
than predicted fromVisser’smodel in the same conditions (25%maximum), 60% reduction (Raaijmakers et al
1996). The difference can be explained by the fact that the vessels are not straight and have different orientations.
To accommodate this discrepancy, changes in blood resistivity were scaled to 60%ofVisser’smodel (23), as
reported in the literature.

For each time step, the electrical property of the blood in eachmain artery is calculated usingVisser’smodel
and used to compute the statistics of the atlas at that time instant.

Figure 3. Superior aortic system considered in the simulations. The names of the vessels are presented in table 1.
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The volume occupied by themain arteries is small compared to the volume of the brain, however its area of
influence is considerable. Each artery is responsible for providing blood to specific areas of the brain, known as
brain arterial vascular territories (Kim et al 2019). Sixmain supratentorial vascular territories weremodelled,
(right/left)MCA,ACA, and PCA, also the (right/left) superior cerebellar artery. Themain brain territories can
be seen infigure 4. In addition to these, the (right/left) external carotid territories were also included due to the
proximity to the electrodes that can impactmeasurements. The dynamicmodel does not consider collateral
circulation other than the redundancy coming from the circle ofWillis.

Blood supply inside each territory is assumed to be proportional to thewaveformof the associatedmain
artery. To the best of our knowledge, there are notmany studies on electrical property variations of brain tissues
along the cardiac cycle. Themajority of the studies focus on electrical property changes in response to sensorial
ormotor activity or epilepsy events (Newell et al 2002, Tidswell et al 2001, Towers et al 2000,Holder et al 1996).
The net electrical property change is caused by a dynamic balance between the amount of blood, extracellular

Figure 4.Main cerebral vascular territories. Acronyms: anterior cerebral artery (ACA), middle cerebral artery (MCA), posterior
cerebral artery (PCA), superior cerebellar artery (SCA).

Table 1.Geometrical andmechanical properties of the arteries. Based onAlastruey et al (2007) and
complementedwith data collected byDodo et al (2020), Fomkina et al (2016), Schmitter et al (2013).ℓ: length,
r0: Proximal lumen radius,E: Young’smodulus,RT: Terminal resistance, andCT: Terminal capacitance.

# Arterya ℓ r0 E RT CT

(mm) (mm) (kPa) (109 Pa s m−3) (10−10m3 Pa−1)

01 Ascending aorta 40 12.00 400 — —-

02 Aortic arch I 20 11.20 400 — —-

03 Brachiocephalic 34 6.20 400 — —-

04 Aortic arch II 39 10.70 400 — —-

05 LCCA 208 2.50 400 — —-

06 RCCA 177 2.50 400 — —-

07 R Subclavian 34 4.23 400 — —-

08 Thoracic aorta 156 9.99 400 0.18 38.7

09 L Subclavian 34 4.23 400 — —-

10/13 ECA 177 1.50 800 5.43 1.27

11/12 ICA I 177 2.00 800 — —-

14/17 Vertebral 148 1.36 800 — —-

15/16 Brachial 422 4.03 400 2.68 2.58

18/21 ICA II 5 2.00 1600 — —-

19/20 PCoA 15 0.73 1600 — —-

22 Basilar I 25 1.62 1600 — —-

23/24 MCA 119 1.43 1600 5.97 1.16

25/26 ACA I 12 1.17 1600 — —-

27/28 PCA I 5 1.07 1600 — —-

29/30 ACA II 103 1.20 1600 8.48 0.82

31 ACoA 3 0.74 1600 — —-

32/33 PCA II 86 1.05 1600 11.08 0.62

34 Basilar II 1 1.62 1600 — —-

35 Basilar III 3 1.62 1600 — —-

36/37 SCA 86 0.65 1600 25.0 0.62

a Acronyms:Anterior cerebral artery (ACA), Anterior communicating artery (ACoA), Common carotid artery

(CCA), External carotid artery (ECA), Internal carotid artery (ICA),Middle cerebral artery (MCA), Posterior
cerebral artery (PCA), Posterior communicating artery (PCoA), Superior cerebellar artery (SCA).
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fluids, and cell swelling in a given location and at a given time instant. In this study, the dynamic component of
this variation is set to 0.5%of themain artery of the territory (Tidswell et al 2001).

2.2.2. Atlas statistics computation
Based on the segmentation of the vessels, explained in section 2.2, and the location of the vascular territories,
presented infigure 4, it is possible to define two characteristic functions per territory, themain vessels in a given
territoryc Î m

NV and its area of influencec Î m
c NV (the complement within the vascular territory).

LetNM be the number of vascular territories.We canwrite a 3D image of the electrical property of the
dynamic component Î x t NT( ) as

å c c= +
=

x t p t p t , 24
m

N

m B m m B
c

m
c

1
, ,

M

( ) ( ) ( ) ( )

where pm,B(t) and p tm B
c

, ( ) are the electrical properties of blood in the respective segments. The effect of blood in
the complements p tm B

c
, ( ) ismodelled as a percentage of pm,B(t)

å åc c ca= + = a
= =

x t p t p t , 25
m

N

m B m m m
c

m

N

m B m
1

,
1

, ,

M M

( ) ( )( ) ( ) ( )

whereαm� 0 adjusts the effect. The vectorχα,m represents the influence region of each vascular territory and
can be used to compose images as in (7). The statistics of the dynamic component is computed following the
same procedure presented in section 2.1.2with themodified characteristic functionχα,m.

Figure 5. Static atlas computations. (a)Processing steps of two representative individuals of the dataset. The first two row shows T1w
andT2w images after normalization and the third row the result SPM’smulti-channel segmentation (T1w+T2w). GM: red,WM:
blue, CSF: green, BO:white, andOT: grey. (b)Average of the characteristic functionsχt for each tissue.
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3. Results

3.1. Static component of the atlas
Figure 5(a) shows two representative individuals in the segmentation steps to compute the static component of
the atlas. Thefirst two rows present T1w andT2w images after normalization and the third row show the
segmented tissues using SPM’smulti-channel segmentation (T1w+T2w). Figure 5(b) shows the average over the
characteristic functions of all individuals and for each segmented tissue. A voxel with a value equal to 1.0
indicates it was classified as the same tissue across all subjects.

The static component of the atlas at 1 kHz is presented infigure 6. Thefigure shows transversal slices of the
average (figure 6(a)) and standard deviation (figure 6(b)). It is possible to see high resistivity regions in the
forehead, caused by the thick bone and the frontal sinus, in the zygomatic bones and the petrous part of the
temporal bone in the base of the skull.

Figure 7 shows slices of the atlas built in terms of conductivity, resistivity, and relative permittivity in
different frequencies. Thefigure shows that the average resistivity and permittivity decrease with increases in
frequencywhile conductivity increases. Although the average process tends to eliminate small features of the

Figure 6.Transversal slices of the static component of the atlas (resistivity) at 1 kHz. (a) average; (b) standard deviation.
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images, it is still possible to see small and thin structures inside the brain, like the longitudinal fissure, third and
fourth ventricles and central canal.

3.2.Dynamic component
The dynamic component of the atlas was computed following the procedure described in section 2.2.
Transversal slices of the average at 1 kHz are presented infigure 8. Themain vessels that compose the circle of
Willis in the base of the cranial cavity, the dense arterial vascularization in the insular cortex, and the superior
sagittal sinus are visible.

Figure 9 presents thewaveforms obtained from theNavier–Stokes solver simulating one cardiac cycle (60
bpm), with hematocritH= 0.5. From left to right, the figure presents flow rate, average cross-sectional velocity,
static pressure and resistivity changes to still blood followingVisser’smodel (23). Peak velocity occurs
approximately 0.25 s after the beginning of the cardiac cycle. Resistivity changes lie within−17%and−21% to
still blood, indicating the resistivity in these vessels differs considerably from the electrical properties of still
blood.

Figure 7. Statistics of the atlas in different frequencies. (a)Average; (b) standard deviation.
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3.3. Effects of the cardiac cycle on surfacemeasurements for electrical impedance tomography
As one example of application, the atlas was employed to simulate EIT surface electrodemeasurements at 1 kHz
during one cardiac cycle (60 bpm) using the FEM to solve the complete electrodemodel for EIT (Cheney et al
1999,Holder 2005). This type of in silico study is important to investigate the possibility ofmonitoring blood
perfusion anomalies in patients.

A segmented head image of an average young adult4 was selected to create the geometry (Hammond et al
2017,Hou et al 2017, Song et al 2013). This geometry is not among those used to create the atlas, avoiding
statistical biases. The boundary surfaces of the segments were extracted and cleaned to remove artefacts.

A FEMmeshwas created usingGmsh software (Geuzaine andRemacle 2009). Themesh, presented in
figure 10(a), is composed of 2.06million linear tetrahedral elements, split into six segments and 32 electrodes
with diameter of 15 mmwere placed in two parallel planeswith 20 mmof separation. Electrode numbers can be
seen in thefigure.

The atlas was projected into the FEMmesh using the SyN (Avants et al 2008). Themethod requires two 3D
binary images with the characteristic functions of the same volume, one in the atlas reference system and one in

Figure 8.Transversal slices of the average image of the segmented vessels filledwith still blood at 1 kHz. Small valuesweremasked in
grey to emphasize the structure of themain vessels.

Figure 9.Waveforms of themain arteries over one cardiac cycle. From left to right: flow rate, average cross-sectional velocity, static
pressure and resistivity changes.

4
https://pedeheadmod.net/pediatric-head-atlases/
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the FEMmesh reference system. The volumes used for the normalization comprise the soft tissues inside the
cranial cavity (CC=GM+WM+CSF).

For the atlas, the characteristic function of the cranial cavityχCC is found by taking the average of the sumof
the characteristic functions of these tissues over all individuals that compose the atlas, followed by thresholding
at 75%

c c cc = + +E , 26WM GM CSF¯ { } ( )

c c
=


i j k

i j k
, ,

1 if , , 0.75

0 otherwise
, 27CC

⎧
⎨⎩

( ) ¯ ( ) ( )

where (i, j, k) is the coordinates of each voxel. For the FEMmesh, a 3D image can be created from the segmented
internal structures of themesh, seen infigure 10(b), by defining a 3D grid of points that encloses the head and
checking if each voxel belongs to the cranial cavity segment CC.

The affine transformation resulting from the normalizationwas applied to all voxels of the atlas, projecting
them into the FEMmesh reference system. Finally, the values of the atlas were interpolated into the centroids of
the tetrahedron. The projection can be seen infigure 10(b).

EITmeasurement simulationwas performed by imposing sinusoidal bipolar current injection of 1 mA at
1 kHz and computing the electrode voltagemeasurements. Current pattern follows a skip-8 scheme to allow
diametral current injection (two planes with 16 electrodes each) (Silva et al 2017). This choicemitigates the
electrical shunting effect of the skull that causes themajority of the current toflow along the scalp only if the pair
of injecting electrodes are too close. The simulatedmeasurements are presented infigure 11 in four time instants
along the cardiac cycle.

Figure 11(a) presents themeasurements at t= 0s, used as referencemeasurement v0. Figure 11(b) shows
relative differencesΔv(t), in dB, betweenmeasurements in three other time instants v(t) and the reference v0,
defined as

D =
-

v
v v

v
t

t
20 log , 2810

0

0
⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( ) ( )

where the division is computed element-wise. Figure 11(c) is a plot of the same differences for the first 32
measurements and show that the largest differences aremeasured at t= 0.25 s, time instantwhenwe have peak
velocities, as presented before infigure 9. Figure 11(d) presents histograms of the differencesΔv(t). In the same

Figure 10. Finite elementmesh used to simulate EITmeasurements. (a) Internal structure and electrode locations; (b) slices of the
projected atlas into the FEMmesh.
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histograms, the vertical lines represent the percentiles 10%, 50% (median), and 90% together with their numeric
values (p10, p50, and p90).

4.Discussion

Conductor volume problems in electroencephalography and electrical bioimpedance cerebralmonitoring
require a 3Dmodel of the head and its electrical properties for solving the associated PDEs numerically. Inmany
situations, a 3Dmodel of the head of the patient is not available or an average headmodel is preferred. Even in
cases when themodel is available viaMRI orCT images, the electrical properties of the tissuesmight not be
completely knowndue to natural variability. This work presents a novel 4D (3D+T) statistical anatomical atlas
of the electrical properties of the humanhead for electrophysiology applications created fromMRI images of 107
subjects.

Satisfactory skull segmentationwas achieved by employing SPM’smulti-channelMRI (T1w+T2w)
segmentation (Nielsen et al 2018). For the atlas, T1w andT2wMRI images were used to segment the tissues. This
choice resulted in good segmentation for the purpose of the atlas and reduced the number of artefacts compared
with segmentation based only onT1 images, especially near the anterior part of the frontal bone. The relatively
large number of subjects, 107 in total, also helps tomitigate the effects of eventual segmentation artefacts in the
final statistics.

The atlas was built for an average head shape and can be normalized to specific geometries. This process was
exemplifiedwith one EIT application. The normalization step optimized the alignment of the cranial cavity,
volume comprisingGM+WM+CSF segments. In our experiments, this choice produces a bettermatch
between the atlas and the FEMmesh.However, this choice can cause small artefacts in the external surface of the
mesh due to the small thickness of the scalp and its proximity to the skull. These artefacts can be seen in
figure 10(b)where the resistivity of the scalp near the top of the cranial vault is affected by the skull.

Figure 11. Simulated electrodemeasurements. (a)Referencemeasurements v0; (b) relative differencesΔv(t); (c)first 32 relative
differencesΔv(t); (d) histograms of the differencesΔv(t).
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The electrical properties of biological tissues are frequency dependent. The atlas can be built for different
frequencies as exemplified infigure 7. Thisflexibility expands the applicability of the atlas, such as in
multifrequency EIT (Horesh 2006,Malone et al 2014).

Cerebral circulationwas alsomodelled and added to the atlas. The atlas is capable of simulating the pulsatile
bloodflow in themain cerebral arteries and vascular territories and their effects on electricalmeasurements. As
one example of application, the atlas was employed in an in silico study to investigate the possibility of
monitoring blood perfusion using EIT. Among other objectives, this type of study is important to provide
information onmeasurement sensitivity necessary to detect perfusion anomalies and serve as a guide for future
EIT equipment developments for these applications. Figure 11(d) predicts that EIT equipment need a signal-to-
noise ratio between 100 and 125 dB to identify changes due to the cardiac cycle. This is in good agreementwith a
previous study (Towers et al 2000) on clamped carotid arteries.

Conductor volume inverse problems are sensitive tomodelling errors. The skull encloses the brain, and its
proximity to the surface and high resistivity imposes a strong barrier to electric current. In EIT, the skull causes
themajority of the current toflow along the scalp and not penetrate the skull cavity. This shielding causes drop in
sensitivity inside the the skull cavity. The high SNR ratio requirement obtained from the simulation is a direct
consequence of the intense shielding effect of the skull. In EEG, the skull causes difficulties tomeasure brain
activity due to the insulating effect and results in substantial errors in source localization problems. These
difficulties reinforce the necessity of accurate geometricmodels of the skull and accurate priors of the skull for
inverse problems in electrophysiology.

The statistical nature of the atlas also allows quantifying its uncertainty. Figure 6 shows that the regionswith
the largest standard variations are located along the boundary of the bones. This can be explained by the fact that
small anatomical differences between the skulls of the individuals cause large resistivity variations due to the
difference between the resistivity of bones and other tissues around them.

The proposed atlas has some limitations. It is known that ageing increases the stiffness of the vessels, however
the atlas does not include ageing effects on the stiffness of thewalls of the arteries. Nevertheless, the atlas can be
adjusted by setting Young’smodulus of the vessels accordingly with the age of the population. Except for the
redundancy caused by the circle ofWillis, collateral brain circulationwas notmodelled either caused by
preexisting vascular redundancy or neovascularization. The venous side of the circulationwas notmodelled.
Although only fivemain tissues were segmented, themethod can be readily extended to accommodatemore
tissues. All tissues weremodelled as isotropic, even though it is known that some tissues are anisotropic.
Extending the atlas to anisotropic tissue is possible but increases the complexity substantially. Also, the scalpwas
modelled as a uniform tissue, however it is amulti-layer tissue, composed of skin, connective tissue, epicranial
aponeurosis, andmuscles that have different electrical properties. Due to its proximity to the electrodes, scalp
mismodellings can impact EIT recovered images. Finally, the dynamic effect of blood circulation in each
territory wasmodelled as proportional to the velocity of the blood in themain vessel. This approximation does
not take into consideration variations in the volume of blood in a given region, for examplewhen the brain
responds to external stimuli. The current limitations of the atlas act asmotivation for future research topics.
These challenging limitationwill be the focus of futureworks to further improve the anatomical atlas.

The atlas was developed in Python 3, and the source code is available at https://github.com/fsmMLK/
openSAHEor archived at https://doi.org/10.5281/zenodo.5567086. The source code contains also the EIT
forward problem solver andmeshes used in this work. The atlases created in this work are also available
precomputed at https://doi.org/10.5281/zenodo.5559624. Github repository contains a detailed description of
thefiles, installation, and usage.

5. Conclusion

Wepresented a novel anatomical atlas of the electrical properties of the humanhead. To the best of our
knowledge, the presentmodel is the firstmodel capable of simulating cerebral circulation and its effects on
electricalmeasurements. Despite the limitations, the atlas brings important implications to cerebral
electrophysiology studies. This novelty has the potential to become an important tool for in silico studies on
cerebral circulation and electrophysiology, such as electricalmeasurement sensitivity to vascular pathologic
conditions like stroke classification andmonitoring, arterial vasospasms, and arteriovenousmalformation. The
atlas can also be used as statistical prior information for inverse problems in EEG and EIT and to create training
sets formachine learning algorithms.
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