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A B S T R A C T   

Biomass is a key variable for crop monitoring and for assessing carbon stocks and bioenergy potential. This study 
aimed to develop an allometric model for predicting the dry leaf biomass of sisal, an agave plant with crassu-
lacean acid metabolism grown for fibre production in the tropics and subtropics and whose biomass can be 
utilised as a feedstock to produce biogas through anaerobic digestion. The allometric model was used to estimate 
leaf biomass and productivity across different stand ages in a sisal plantation in semi-arid region in south-east 
Kenya (annual rainfall 611 mm and temperature 24.9 ◦C). Based on a sample of 38 leaves, the best predictor 
for biomass was leaf maximum width and plant height used as a combined variable in a log-log regression model 
(cross-validated R2 

= 0.96 and root-mean-square error = 7.69 g). The mean productivity in nine 26- to 36- 
month-old plots was 11.1 Mg ha− 1 yr− 1, which could potentially yield approximately 3000 m3 CH4 ha− 1 yr− 1. 
The leaf biomass in 55 field plots (400 m2 in area) ranged from 2.7 to 42.7 Mg ha− 1, with mean at 13.5 Mg ha− 1, 
which equals to 6.3 Mg C ha− 1. The yielded allometric equations can be utilised for predicting the leaf biomass of 
sisal in similar agro-ecological zones. The estimates on plantation biomass can be used in assessing the role of 
sisal plantations as a regional carbon storage. In addition, the results provide reference on the productivity of 
agave and crassulacean acid metabolism in semi-arid regions of East Africa, where such reports are few.   

1. Introduction 

Sisal is a common name for the plant Agave sisalana and other vari-
eties of Agave spp. (agave) grown in the tropics and subtropics for sisal 
fibre (or “sisal hemp”) [1,2]. The largest producers of sisal are Brazil, 
Tanzania, Kenya, Madagascar, China, Haiti, and Mexico, where it is 
mostly cultivated in large commercial plantations [3]. Globally, the 
production was at its highest in the 1960s, until the introduction of 
synthetic fibres halved its demand. Recently, however, the demand for 
environmentally friendly natural fibres has seen a renewed increase [1, 
4]. In 1998–2018 the global annual production of sisal was 320 000 Mg 
on average, of which Kenya, the third largest producer, accounted for 
23 000 Mg [3]. 

In Kenya, as well as in neighbouring Tanzania, the second largest 
producer of sisal, the economy is heavily reliant on agriculture, which 
provides most of the exports and employs majority of the workforce [5]. 
Sisal was introduced to East Africa in the early 20th century and 

although its production followed the decrease in demand after the 
1960s, it remains an important cash crop for the area [5,6]. The global 
interest in environmentally friendly materials and the recent ban on 
plastic bags in Kenya indicate also a favourable future for both domestic 
and global demand [6,7]. The production processes, however, have 
mainly stayed the same since the crop was introduced to the area, and 
the opportunities to improve e.g. energy efficiency and residue uti-
lisation have been acknowledged [5,8]. 

The main product from sisal is natural fibre extracted from its leaves 
and used globally in fibre industry [7]. Potentially, the plant could also 
be used in pharmaceutical and chemical industries [1,9]. The use of sisal 
and other agaves as a source of bioenergy has also gained attention 
recently, due the global need for sustainable and decentralised energy 
sources [10–13]. Furthermore, the good productivity and drought 
tolerance adaptions (such as crassulacean acid metabolism [CAM or 
CAM photosynthesis]) of agave species mean they can produce high 
yields in arid and semiarid environments [14]. This could create 

* Corresponding author. 
E-mail address: ilja.vuorinne@helsinki.fi (I. Vuorinne).  

Contents lists available at ScienceDirect 

Biomass and Bioenergy 

journal homepage: www.elsevier.com/locate/biombioe 

https://doi.org/10.1016/j.biombioe.2021.106294 
Received 23 June 2021; Received in revised form 20 October 2021; Accepted 31 October 2021   

mailto:ilja.vuorinne@helsinki.fi
www.sciencedirect.com/science/journal/09619534
https://www.elsevier.com/locate/biombioe
https://doi.org/10.1016/j.biombioe.2021.106294
https://doi.org/10.1016/j.biombioe.2021.106294
https://doi.org/10.1016/j.biombioe.2021.106294
http://crossmark.crossref.org/dialog/?doi=10.1016/j.biombioe.2021.106294&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Biomass and Bioenergy 155 (2021) 106294

2

opportunities to grow agaves for bioenergy production in marginal lands 
categorised unsuitable for agriculture and thus without competition 
from food production, but there is a lack of field studies in diverse 
geographical settings [15]. Due to their tolerance to heat and drought, 
some have also suggested that agaves and other CAM plants could help 
agriculture in semi-arid regions to adapt to warming and drying con-
ditions [16,17] caused by climate change [18]. 

Reports on the biomass productivity of sisal are scarce, as such re-
ports usually account only for the fibre yields [19]. The reported 
biomass productivities of other agaves range from 3.5 to 40 Mg ha− 1 

yr− 1, depending on the species and growing conditions [14,19–23]. 
Such yields are comparable to many bioenergy and food crops that use 
C3 or C4 photosynthesis [24], whereas CAM plants require 5- to 10-fold 
less water to produce the same amount of dry biomass [12,13,25]. The 
amount of ethanol produced from one Mg of dry agave biomass is up to 
170 L [26,27]. Leaf residue from sisal fibre production has also been 
used as a feedstock to produce biogas through anaerobic digestion, with 
a yield of 0.3 m3 CH4/kg organic material [28,29]. With annual fibre 
production of 290 000 Mg globally (2009–2019 average) [3], there is a 
mostly unexploited potential in the sisal industry to utilize even the 
waste products of fibre production for bioenergy production, since the 
useable fibre comprises only approximately one third of the dry leaf 
biomass [5,30]. 

At present, no research has presented methods to non-destructively 
quantify the biomass of sisal. In agriculture, aboveground biomass 
(AGB) is a central parameter for monitoring crop growth and yield, and 
for estimating bioenergy potential and carbon stocks [28–31]. At the 
field level, allometric models that predict the mass of a plant from other 
dimensions, for instance diameter and height, are a convenient 
non-destructive method to predict biomass [35,36]. These dimensional 
relationships can be utilised for biomass prediction, since due to the 
similarity in individual ontogenetic development, the proportions be-
tween plant structure and mass are similar for certain plants growing 
under same conditions. These relationships can be determined by 
modelling biomass as a response variable and one or several plant di-
mensions as explanatory variables [37]. While the standard approach 
has been linear regression, non-linear methods have also been tested. 
Widely used predictors in allometric equations for both tropical and 
boreal trees are stem diameter and height [35,36,38], and for herbs and 
shrubs, stem and foliage diameter [39,40]. Allometric models based on 
stem diameter and length have also been developed for food and energy 
crops, such as soybean and perennial grasses [34,41]. The comparison of 
the established allometric equations have shown that accurate pre-
dictions require models that are specific to species or plant functional 
type [40,42]. Once the allometric relationships are formulated into 
equations, they provide a practical tool for predicting biomass [34]. On 
the whole, allometry advances our understanding of plant growth and 
structure and how plants allocate resources in response to environ-
mental factors [43]. 

In this study, the allometric relationships of sisal leaves were 
examined in a semi-arid region in Kenya with the following objectives: 
(1) to formulate allometric models for predicting sisal leaf biomass, (2) 
to utilize the best model by assessing the biomass at different growing 
stages across a sisal plantation, and (3) to assess annual sisal biomass 
productivity. To clarify the role of sisal plantations in the regional 
aboveground carbon storage, the sisal biomass estimates were also 
compared to those of other land use and land cover types in the area. 

2. Material and methods 

2.1. Study area 

The study was conducted next to the town of Mwatate at the 8850-ha 
Teita Sisal Estate (3◦30′ S, 38◦24′ E, 750-900 m.a.s.l), in Taita-Taveta 
County in the Coast Province of Kenya (Fig. 1). The Estate is one of 
the largest sisal plantations in the world and it is largest in Africa [6]. 

The climate in the area is semi-arid. Two rainy seasons occur in 
March-June and October–December [44]. The long-term annual mean 
precipitation is 611 mm and temperature is 24.9 ◦C. Typical vegetation 
in the nearby lowland areas consists of bushlands, grasslands, thickets 
and riverine forests [45–47]. Farming is mostly small-scale, favouring 
seasonal crops such as maize, beans and cassava. Soil type (Ferralsols) is 
characterized by deep, acidic, dark red, sandy clay soil [46]. 

2.2. Description of sisal and its cultivation 

Sisal is a perennial succulent with a lifespan of around 15 years [2]. 
Its morphology, like other agaves, is characterised by a rosette of leaves 
that forms around its stem [2,23]. New leaves unfold from a central 
spike in the middle of the rosette until the flowering stage begins. Sisal 
fibre is decorticated from the leaves, which also contain most of the 
plant’s biomass (approximately 85% of agave AGB is in the leaves) [22, 
48]. The composition of the leaf is approximately 87.25% moisture, 4% 
fibre, and 8.75% other dry matter [49]. The carbon (C) content of leaf 
dry matter is generally 47% [50]. Leaf harvest begins at the age of 2–4 
years when the oldest leaves, lowermost in the rosette, are cut manually. 
Leaves are harvested regularly up to approximately 15 years, when the 
plant grows a long flower stalk that is also harvested and can be used as a 
construction material [2]. The remaining plant is a leftover stump (also 
referred to as sisal ball), which consists of a stem, fragments of leaf 
bases, and the base of a flower stalk. The stump is traditionally used as a 

Fig. 1. Map of the study area in Taita Taveta, Kenya, with the leaf sampling 
sites and biomass assessment plots. European Space Agency’s Sentinel-2 true 
color satellite image from 16 April 2019 as a basemap. (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web 
version of this article.) 
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manure by burning and ploughing it when the field is prepared for a new 
rotation [5]. 

The two sisal cultivars primarily cultivated at the plantation are 
Agave sisalana ‘Hildana’ and Agave ‘Hybrid 11648’ (E. Mrombo, personal 
communication, 19 June 2019). The plant population density at the 
estate is 4995 plants per hectare. Plants are propagated vegetatively 
from bulbils or rhizomes of mature plants. The rhizomes are planted 
directly in the field, whereas the bulbils are kept in nurseries and sub-
sequently planted in the field. Before planting, the fields are cleared and 
ploughed and around 40 t ha− 1 of sisal waste (residue from the fibre 
production) is applied as a fertiliser. The crop is then planted in double 
rows, with a 3.75 m spacing between double rows, 0.7 m between single 
rows and 0.9 m between the plants. All the fields are rainfed and the 
management for subsequent years includes clearing of rhizomes and 
bushes and weed control with herbicides and mowing. Grazing (mainly 
cattle and goats) is also practiced all over the estate and occasionally 
wildlife such as elephants, giraffes, monkeys and zebras roam into the 
fields. The management is more intense in the younger fields and the 
older fields receive less attention and have a varying amount of weeds 
and bushes growing among sisal. 

2.3. Leaf sampling 

A sample of 38 leaves was harvested in August 2019 for development 
of allometric models for predicting leaf biomass a (Fig. 2A.). A sample of 
30–50 individuals is a recommended minimum for species specific 
models for trees [38,40] and have been used for crops [34], which was 
used as a guidance to determine the sample size. Furthermore, stratified 
sampling is a recommended approach to increase the precision of 
modelling and to explore the variability in a study area [38]. Therefore, 
different aged field blocks were chosen for sampling to observe the 
whole range of plant sizes (Fig. 1). The fields were chosen based on 
satellite image data and prior knowledge of the planting year. The 
proximity of roads were avoided and the leaves were sampled from 
subjectively chosen representative plants in the selected field blocks. 
The heights of the plants were measured from topsoil to the central 
spike. All leaves were harvested from different plants approximately 
from the same position in the mid-canopy. The sample included sisal 
cultivars Agave sisalana ‘Hildana’ (n = 8) and Agave ‘Hybrid 11648’ (n =
30). The amounts represent roughly the prevalence of theses cultivars at 

the plantation. 
The measuring and drying of the leaves was done in a laboratory at 

the Taita Taveta University, Kenya. Some of the leaves were weighed 
immediately after they were cut and again at the laboratory to confirm 
that the leaves had not lost any weight via evaporation during transport. 
At the laboratory, all the leaves were cut along the narrowest width at 
the base to standardise the location of the cut before measurements. 
First, the leaves were weighed with a table scale (KERN PLE 4200-2 N, d 
= 0.01g) and measured for maximum width and length, both along the 
upper leaf surface. Then, to fit all samples into the oven (MEMMERT UF 
450 PLUS), the leaves were subsampled. Subsampling was performed by 
dividing each leaf into four parts of equal length and by taking 5-cm 
samples from the middle of these parts (Fig. 2B). These leaf bits 
constituted the subsamples that were placed on dishes, weighed and put 
into the oven at 70 ◦C. A few of the samples were then weighed once a 
day until after 72 h a constant weight was reached and all samples were 
then measured for dry weight. Then, the dry weight to fresh weight ratio 
was calculated for every subsample and used to calculate the dry 
weights of the whole leaves. 

2.4. Leaf modelling 

To formalise the relationship between leaf mass and the other di-
mensions linear regression was used. This is a suggested approach when 
the aim of the allometric modelling is prediction [37]. Nine models were 
fitted in RStudio integrated development environment (version 
1.2.5019) for R using the lm function and least squares method [51,52]. 
Dry leaf biomass (B, g) was used as a response variable and leaf length 
(L, cm), leaf maximum width (W, cm), and plant height (H, cm) were 
used as explanatory variables. Combining plant dimensions is commonly 
used in allometric modelling to enhance the prediction accuracy [38]. 
Hence, combined leaf variables (L×H, W2L, and W2H) were also tested 
as predictors. Models were fitted both without transformation and with 
natural log-transformation for the response and explanatory variables. 
Such procedure can render the modelled relationship linear and tweak 
the error structure of the model to meet the assumptions of linear 
regression [38]. This is common approach for allometric models, 
because they often have a multiplicative error structure. Accordingly, 
the models were fitted as 

B= βo + β1X + ε (1)  

and the log-log linear models as 

log(B)= βo + β1 log(X) + ε (2)  

where B is the response variable, X is the explanatory variable, βo is the 
intercept of the regression line, β1 is its slope, and ε is the error term. 

The assumptions of linear regression (linearity, homoskedasticity, 
independence, normality) were tested in RStudio using gvlma-package 
[53]. Gvlma is a package for validating all the four assumptions of a 
linear model at once [53]. In addition, the models were cross-validated 
by the leave-one-out method [54] and by calculating the root mean 
square error (RMSE) and coefficient of determination (R2) between the 
predictions and observations. In the leave-one-out cross validation, the 
model is trained with all the other observations expect one that is left 
aside to be used as a validation set. Then the process is repeated until all 
observations have been used for validation, which results in a prediction 
size equal to the sample size. RMSE was calculated as 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n
i=1(yi − ŷi)

n

√

(3)  

where y is the observed value, ŷ is the predicted value, and n is the 
number of observations. R2 was calculated as 

Fig. 2. (A) The sampled leaves before they were subsampled and dried. (B) 
Sub-sampling procedure for leaf drying. The four 5 cm subsamples were cut and 
dried in the oven to determine the dry weight. 
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R2 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑
(yi − ŷ)2

∑
(yi − y)2

√

(4)  

where y is the predicted value of y and y is the mean value of y. Before 
the RMSE and R2 were calculated for the log-log models, bias correction 
recommended by Baskerville [55] was used to transform the predicted 
values back original scale. This correction factor (CF) was calculated as 

CF = (SE/2)2 (5)  

where SE is the standard error of the regression. 

2.5. Assessing biomass and productivity for the field plots 

To assess the biomass at different stand ages, 55 field plots were 
measured in the study area between 22 and 29 August 2019. The field 
blocks were chosen subjectively all over the estate based on their age to 
observer the range of plant sizes (Fig. 1 and Fig. 3A–C). The 400 m2 

square-shaped plots were oriented with two opposite sides parallel to the 
crop rows, so that four double rows were inside the plot. Homogeneity 
inside the plot was preferred and proximity to roads was avoided when 
the plot locations were chosen. 

Inside the plot, the number of the plants in the two midmost double- 
rows was counted and multiplied by 2 to assess the total number of the 
plants. Then plant height, number of leaves, and leaf length and 
maximum width were measured from one subjectively determined 
representative plant in both of the midmost rows. Measurements were 
performed the same way as in the leaf sampling (chapter 2.3). To 
constitute representative plot-specific plant metrics, the measurements 
from the two plants were averaged. If a notable variance in plant sizes 
was visually observed, the plants were divided into two size-class cate-
gories, which were measured separately. If the plots had rhizomes 
growing on the ground they were also measured if they were greater 
than 50 cm. 

Plot biomass prediction was done in RStudio with the best per-
forming allometric model. First, the biomass of representative leaf was 
predicted using plot-specific plant metrics (H and W) (details of model 
selection given in 4.1 below). The biomass of the leaf was multiplied the 
number of leaves in the plant and by the number of the plants in the plot 
to assess the total leaf biomass. Carbon stored in the leaf biomass was 
calculated assuming 47% carbon content [50]. 

The biomass productivity was estimated based on the plots where 
harvesting had not yet begun and thus the plants were intact. Plots 
younger than 1 year were also excluded as the exact date of planting was 
not available, and hence, estimation of productivity was considered 
uncertain for a short period. The cultivar at the remaining plots (n = 9) 
was Agave ‘Hybrid 11648’ and the age ranged from 26 to 36 months. 
Productivity (Mg ha− 1 yr− 1) was assessed by annualising the predicted 
biomass at each of these plots. 

3. Results 

3.1. Leaf biomass and allometric models 

A summary of the observed leaf and plant variables is shown in 
Table 1. The fresh weight of the leaves ranged from 7.0 to 839.2 g, while 
the dry weight ranged from 0.9 to 159.0 g. Leaf length ranged from 12.5 
to 32.5 cm, maximum width 5.2–28.4 cm, and plant height 19–250 cm. 
The sample included plants aged <1–14 years. The water content of the 
leaves varied from 76% to 87% and showed a clear decreasing trend 
with plant age (Fig. 4). 

Visualisation of the leaf variables showed that the non-transformed 
metrics had a non-linear relation to dry biomass, all with non-constant 
variance (Fig. 5A–C). Log transformation of the variables rendered the 
relations linear and variances close to constant (Fig. 5D–I). 

All the tested models were significant (p < 0.001). Overall, the log- 
log models had better fit and validation metrics than the ones without 
transformations (Table 2). Furthermore, the log-log models with com-
bined predictors (models 7–9) performed better than the log-log models 
with a single dimension as predictor (models 4–6). The model fit was 
almost the same for all the log-log models, but the validation metrics 
revealed some differences in prediction accuracy. Based on these dif-
ferences, the best single dimension for predicting the mass was W 
(model 4), while the best combined predictor was W2H (model 9). In 
particular, the best model (model 9) was set apart from the rest by the 
validation metrics. The tests for the assumptions of linear model showed 
that the models with non-transformed variables (models 1–3) and one of 
the log-log models (model 6) violated at least one of the assumptions, 
whereas the assumptions were suitably met for all the other models. 

3.2. Field plot biomass and productivity 

Leaf biomass for the field plots was predicted using the best per-
forming model (model 9). Biomass ranged from 2.9 to 42.7 Mg ha− 1 

(mean 13.5 Mg ha− 1 (Table 3). Stand age and harvesting status primarily 
controlled the biomass (Fig. 6). However, biomass did not increase lin-
early with age. During the first years after planting, biomass increased 
rapidly and reached maximum in 3–4 years. At this age, periodic leaf 
harvesting begins, which decreases the biomass and keeps it stable for 
the remainder of the plant’s lifecycle. The observed productivities over 
26–36 months ranged from 9.0 to 14.3 Mg ha− 1 yr− 1 (mean productivity 
11.2 Mg ha− 1 yr− 1). At the time, the unharvested 26 to 36-year-old 
plants had 84 to 150 unfolded leaves and 5.1–9.5 kg of leaf biomass, 
while all the observed plants had 23 to 150 unfolded leaves and 0.1–9.5 
kg of leaf biomass. 

4. Discussion 

The relationships between plant structure and mass are an effective 
way to predict biomass once these relationships have been established 
[35,36]. The aim of this study was to build an allometric model for 
predicting the leaf biomass of sisal. We found that leaf length, maximum 
width, and plant height were all strongly related to biomass. A strong 

Fig. 3. (A) Less than one-year-old stand, where the leaves had not yet been harvested. (B) Three-year-old stand, where the leaves had not yet been harvested. (C) 13- 
year-old stand at the end of the flowering stage, where the leaves had been harvested several times. 
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linear log-log dependency was observed when the variables were com-
bined and log-transformed. These relationships, which were stable for 
the whole range of the observed plant sizes, can be expressed with 
exponential allometric equations that can accurately predict leaf 
biomass. Potentially, they can be applied also to predict chemical 
compounds, such as sugars, when the chemical composition of the 
leaves is known [9,48]. Similar relationships linking combined variables 
and biomass have been observed for e.g. tropical trees [35]. For crops, 
combined variables are not commonly used, but linear log-log re-
lationships between length and mass have been observed for soybean 
and tropical perennial grasses [34,41]. 

The best prediction accuracy was achieved when the plant height 
was combined with the maximum leaf width. Plant height was measured 
from ground to the central spike in the middle of the rosette, while leaf 
length was measured after the leaves had been cut along the narrowest 
width at the leaf base. This might have lead in minor inconsistencies, if 
the leaves were not cut at constant location along the leaf axis due to 
structural variation or difficulty of cutting leaves from the same posi-
tion. This could explain why the use of plant height resulted in slightly 
more accurate predictions. On the other hand, the differences among the 
best models were minimal and could also be explained by natural 
variation. Nonetheless, the result showed that the best accuracies could 
be achieved by combining plant height and leaf maximum width as a 
log-log model. Leaf length and width, or plant height and leaf length 
could also be used, but this appeared to lead to slightly lower prediction 
accuracy. Log-log models with width or length as a single predictor were 
also observed to be satisfactory. While the advantage of these models is 
simplicity as they use only one dimension as a predictor, some accuracy 
is lost compared with the combined predictors. 

The allometric models were formulated only for the leaves and to use 
these models to assess the total leaf biomass of a plant the leaves must be 
counted. Obviously, a model for the whole plant could be more practical 
and would also include stem biomass, which accounts for approximately 
15% of the aboveground biomass [56,57]. However, leaves are the part 
of the plant that is harvested, although the whole plant could be utilised 
as bioenergy [5]. Furthermore, allometric equations for a whole plant 
are generally developed and used for intact plants [57]. The 

development of such model would have been problematic in this study 
setting, because harvesting of leaves alters the structure of the plant (e.g. 
diameter). However, accounting only for the leaves omits some parts of 
plant, mainly the stem. When the leaves were cut, also a small part leaf 
base was omitted. These omitted plant part, the stem and the remaining 
bits of leaves, is known as sisal ball. The dry weight of a mature sisal ball 
is approximately 5.8 kg [5]. Thus, in a mature field this would add up to 
2.90 Mg/ha to the estimated biomass. Sisal balls are traditionally burned 
and used as manure when the field is prepared for the next rotation, but 
they could be used as a feedstock for bioenergy production. Future 
research should therefore be conducted to quantify their biomass and 
the biomass of the flower stalk. Furthermore, assessing the biomass of 
the root system would also be important from a soil carbon sequestration 
perspective [58,59]. 

The transferability of allometric models can be affected by growing 
conditions [43]. For crops, one such factor is management practices 
[60]. Leaf samples for the models had received roughly the same amount 
of fertilising (sisal waste), and therefore the impact of different fertil-
ising practices was not evaluated in this study. Regional transferability is 
also worth noting, as climatic variables such as rainfall can affect allo-
metric relationships [34]. On the other hand, Paul et al. [42] have 
argued in favour of models based on plant functional type and shown 
that they can be used instead of site-specific models to predict AGB 
across ecoregions. However, since sisal is grown in regions with varying 
climate and soil types [3] and regional transferability of the models 
should be investigated. 

There was large variation in the observed biomass at the field plots, 
but the mean value was most likely stable at the plantation level, 
considering the long lifecycle of sisal and assuming the production rate 
remains steady. AGB and C storage at the plantation are therefore close 
to shrubland (5.5 Mg ha− 1 woody AGB) and thicket (12.7 Mg ha− 1 

woody AGB) [45], which together constitute the so-called Acacia--
Commiphora bushland, that is considered closest to a natural vegetation 
type in nearby (lowland) areas [61]. The woody AGB and C in the annual 
croplands are also lower (4.9 Mg ha− 1). Another study from the area 
reported 9 Mg ha− 1 mean AGB for bushland, 5.8 Mg ha− 1 for cropland, 
and 1.8 Mg/ha for grassland [62]. Higher mean AGB than at the plan-
tation was found only from riverine forests (75.5 Mg ha− 1). Although 
these results revealed the C stored in the leaf biomass in a large-scale 
sisal plantation in Kenya, future research should quantify soil carbon 
sequestration [33] and plant carbon fluxes [46], for a comprehensive 
understanding of the carbon cycle at sisal plantations. So far only the soil 
CO₂ fluxes at a sisal plantation have been studied [6]. 

The observed biomass productivity of sisal was greater than previ-
ously observed for A. Lechuguilla (3.5 Mg ha− 1 yr− 1) growing in natural 
environment in Mexico [32]. For cultivated agaves, such as A. tequilana 
(24.9 Mg ha− 1 yr− 1) [56], A. mapisaga, and A. salmiana (40 Mg ha− 1 

yr− 1) [14], much higher productivities have been observed in Mexico. 
The observed productivity for another fibre yielding agave A. fourcroyde 
(Henequen) in Mexico is also slightly higher (16 Mg ha− 1 yr− 1) [23]. In a 
field trial as bioenergy feedstock in southern US, a similar productivity 
to that observed here was noted by Davis et al. [31] for A. americana 
(9.3 Mg ha− 1 yr− 1). These productivities were observed for whole 
plants, whereas here only the leaf productivity was assessed. Thus, based 
on the structural distribution of dry matter [56], the total productivity of 

Table 1 
Statistical summary of the measured leaves (n = 38). DW = dry weight, FW = fresh weight.   

Fresh weight (g) Dry weight (g) DW [% FW] Length (cm) Maximum width (cm) Plant height (cm) Plant age (years) 

Minimum 7.0 0.9 12 12.5 2.5 19.0 <1 
1st. Quantile 111.7 21.5 15 57.2 7.7 84.4 2 
Median 272.3 53.8 17 81.2 9.9 140.0 8 
Mean 330.8 56.3 17 79.2 9.6 139.1 7 
3rd. Quantile 503.9 89.5 19 105.8 11.6 189.3 13 
Maximum 839.2 159.0 24 132.5 13.9 250.0 14  

Fig. 4. The relationship of plant age and leaf water content.  
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the observed stands is likely to be approximately 15% higher. On the 
other hand, some of the stands were grown from bulbils that were kept 
in a nursery before planting, which may have resulted in overestimation 
of productivity. 

Biomass productivities of trees and shrubs in a rehabilitated area in 
central Kenya measured over a 5-year period by Rosenschein et al. [63] 
provide a reference for native and introduced woody plants in a similar 
semi-arid environment. In Kenya, woody biomass provides most of the 
energy consumption for rural households [64]. The average productivity 
of the standing biomass (1.8 Mg ha− 1 yr− 1) and the productivities of 
most of the tree and shrub species were lower than what was observed 
for sisal. The greatest productivities observed for introduced Prosopis 
spp. (11.5 Mg ha− 1 yr− 1, with assumed spacing of 1000 trees per ha) 
were the same as the mean productivity observed for sisal. Similar 

Fig. 5. The relationship between dry leaf biomass and leaf and plant dimensions. B = biomass (g). W = leaf maximum width (cm). L = leaf length (cm). H = plant 
height (cm). 

Table 2 
Allometric models for predicting sisal leaf biomass and validation metrics for 
these models.    

Coefficients  Cross-validation metrics 

id Model c a R2 RMSE MAE R2 

1 B = c + a W − 62.26 ±
9.78 

12.46 ±
0.99 

0.81 19.19 14.60 0.78 

2 B = c + a L − 41.56 ±
7.42 

1.23 ±
0.09 

0.84 17.09 12.21 0.82 

3 B = c + a H − 22.25 ±
5.73 

0.58 ±
0.04 

0.86 16.07 12.05 0.84 

4 log(B) = c + a 
log(W) 

− 2.96 ±
0.20 

2.99 ±
0.09 

0.96 12.74 9.29 0.90 

5 log(B) = c + a 
log(L) 

− 6.24 ±
0.32 

2.30 ±
0.07 

0.96 13.31 8.79 0.89 

6 log(B) = c + a 
log(H) 

− 5.12 ±
0.28 

1.84 ±
0.05 

0.96 17.18 10.83 0.84 

7 log(B) = c + a 
log(L*H) 

− 5.74 ±
0.24 

1.03 ±
0.03 

0.98 11.51 8.01 0.92 

8 log(B) = c + a 
log(W2L) 

− 4.37 ±
0.19 

0.92 ±
0.02 

0.98 11.49 8.70 0.92 

9 log(B) = c + a 
log(W2H) 

− 4.11 ±
0.13 

0.84 ±
0.14 

0.99 7.38 5.27 0.97 

B = biomass (g). W = leaf maximum width (cm). L = leaf length (cm). H = plant 
height (cm). R2 = coefficient of determination. RMSE = root mean squared error 
(g). MAE = mean absolute error (g). 

Table 3 
Summary of the field plots. Stand age, number of leaves per plant, dry leaf 
biomass (B), leaf carbon (C), productivity, and their estimates.   

Min. 1st. 
Quantile 

Median Mean 3rd. 
Quantile 

Max. 

Stand age (years) >1 3 7 7.5 13 17 
B (Mg ha− 1) 2.9 6.5 10.5 13.5 18.5 42.7 
C (Mg ha− 1) 1.4 3.1 4.9 6.3 8.7 20 
B per plant (kg) 0.6 1.8 3.0 3.5 4.8 9.5 
Leaves per plant 26 51 64 70 84 150 
Productivity (Mg 

ha− 1 yr− 1) 
9.0 10.6 11.3 11.2 11.9 14.2  
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productivities have also been reported in Kenya for certain introduced 
shrub species (Leucaena leucocephala and Senna siame) [65]. Currently, 
there are not many CAM productivity reports from East Africa, but high 
productivities (7.5–24.5 Mg ha− 1 yr− 1) were recently reported for two 
CAM plants, Opuntia ficus-indica and Euphorbia tirucalli, in a field trial for 
bioenergy production in Kenya [66]. At the same planting density, the 
productivity of these plants was comparable to sisal. However, when the 
density was substantially increased, the productivity also exceeded what 
was observed here. 

Borland et al. [17] have proposed that CAM plants such as agaves 
should be considered for bioenergy production in the Global South as a 
means of stimulating sustainable economic growth. Their advantage is 
high water use efficiency, which allows them to be cultivated in mar-
ginal lands to avoid competition with food production [67]. Based on 
earlier studies on biofuel production from agaves [26] the estimated leaf 
biomass productivity for sisal would yield 1920 L of ethanol ha− 1 yr− 1 if 
all the leaves are harvested at once (plus additional yield from other 
plant parts). This corresponds to 3024 m3 CH4 ha− 1 yr− 1 through 
anaerobic digestion (assuming 90% of the plant material is organic) 
[28]. These estimates show the bioenergy potential of sisal if the plant is 
used for energy production only. Therefore, they are not directly 
translatable into energy potential in the current sisal fibre industry since 
the productivity does not equal to yield due to the periodic leaf har-
vesting and because some of the plant material is extracted for fibre 
production. There are, however, earlier assessments of the energy po-
tential of sisal residues in Tanzania [5]. Although a lifecycle assessment 
by Broeren et al. [4] has shown that the energy use and greenhouse gas 
emissions from sisal fibre production are 75%–95% lower than from 
glass fibre production, the methane emissions from the residue disposal 
is a weak link in the sustainability of sisal fibre manufacturing. Pro-
ducing biogas from the residues of existing sisal plantations would not 
cause land use to change and could also reduce the use of less sustainable 
energy sources [4]. Due to the fluctuating demand for sisal fibre [3], 
there are also abandoned plantations that could potentially be utilised 
for bioenergy production, which could reduce the pressure on natural 
ecosystems. For example, in Kenya, where fuelwood supplies most of the 
energy consumption in rural areas, the demand for energy is a driver of 
deforestation and land degradation [45,64]. However, to assess the 
potential of cultivating agaves and other CAM plants for bioenergy 
production in Kenya, system-level analyses are needed [68]. In addition 
to productivity, such analyses account for viability, economic conse-
quences, and environmental impacts of agricultural production. 

5. Conclusions 

Sisal leaf biomass has a strong log-log linear relation to the other leaf 
and plant dimensions. Hence, the allometric equations described here 

can be used to predict the leaf biomass of sisal in similar agro-ecological 
zones to estimate productivity, carbon stocks and bioenergy potential. In 
this study, it was estimated that the mean carbon stock of leaf biomass at 
a large scale sisal plantation (6.3 C Mg ha-1) was close to aboveground 
carbon stock of thicket and bushland, which are the natural land cover 
types in the semi-arid study region in Kenya. The estimated productivity 
of sisal leaves (11.2 Mg ha− 1 yr− 1) could potentially yield approximately 
3000 m3 CH4 ha− 1 yr− 1 if used for biogas production. Further study is 
required on the allometry of the other plant parts, and on the impact of 
abiotic factors and management practices on the leaf allometry. 
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