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Abstract
1.	 Understanding how biological communities respond to environmental changes is 

a key challenge in ecology and ecosystem management. The apparent decline of 
insect populations necessitates more biomonitoring but the time-consuming sort-
ing and expert-based identification of taxa pose strong limitations on how many 
insect samples can be processed. In turn, this affects the scale of efforts to map 
and monitor invertebrate diversity altogether. Given recent advances in computer 
vision, we propose to enhance the standard human expert-based identification 
approach involving manual sorting and identification with an automatic image-
based technology.

2.	 We describe a robot-enabled image-based identification machine, which can au-
tomate the process of invertebrate sample sorting, specimen identification and 
biomass estimation. We use the imaging device to generate a comprehensive 
image database of terrestrial arthropod species which is then used to test clas-
sification accuracy, that is, how well the species identity of a specimen can be 
predicted from images taken by the machine. We also test sensitivity of the clas-
sification accuracy to the camera settings (aperture and exposure time) to move 
forward with the best possible image quality. We use state-of-the-art Resnet-50 
and InceptionV3 convolutional neural networks for the classification task.

3.	 The results for the initial dataset are very promising as we achieved an average 
classification accuracy of 0.980. While classification accuracy is high for most 
species, it is lower for species represented by less than 50 specimens. We found 
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1  | INTRODUC TION

The uncertanties around the state of global insect populations are 
largely due to data gaps and more efficient methods for quantify-
ing abundance and identifying invertebrates are urgently needed 
(Seibold et  al.,  2019; Wagner,  2019). Commonly used passive 
traps, such as Malaise traps, produce samples, which are time- 
consuming to process. For this reason, samples are sometimes only 
weighed—as was the case in the study, which triggered the global 
attention around insect declines (Hallmann et al., 2017). In other 
studies, specimens are lumped into larger taxonomic groups (Høye 
& Forchhammer,  2008; Rich, Gough, & Boelman,  2013; Timms, 
Bowden, Summerville, & Buddle,  2012) or only specific taxa are 
identified (Hansen et al., 2016; Loboda, Savage, Buddle, Schmidt, 
& Høye, 2018). While such traps help standardize efforts across 
sampling events and are often preferred in long-term monitoring, 
the time and expertise needed to process (sort, identify, count and 
potentially weigh) samples of insects and other invertebrates from 
passive traps remains a key bottleneck in entomological research. 
In light of the apparent global decline of many invertebrate taxa 
and the Linnean biodiversity shortfall (i.e. only a small fraction of 
all species on Earth are described; Hortal et al., 2015), more effi-
cient ways of processing invertebrate samples are in high demand. 
Such methods should ideally (a) not destroy specimens, which 
could be new to the study area or even new to science, (b) count 
the abundance of individual species and (c) estimate the biomass 
of such samples.

Reliable identification of species is pivotal but due to its inherent 
slowness and high costs, traditional expert identification has caused 
bottlenecks in the bioassessment process. As the demand for bio-
logical monitoring grows, and the number of taxonomic experts de-
clines (Gaston & O'Neill, 2004), there is a need for alternatives to the 
manual processing and identification of monitoring samples (Borja & 
Elliott, 2013; Nygård et al., 2016). Genetic approaches are gaining pop-
ularity (Aylagas, Borja, Irigoien, & Rodríguez-Ezpeleta, 2016; Dunker 
et  al.,  2016; Elbrecht, Vamos, Meissner, Aroviita, & Leese,  2017; 
Kermarrec et  al.,  2014; Keskin,  2014; Raupach et  al.,  2010; 
Zimmermann, Glockner, Jahn, Enke, & Gemeinholzer, 2015). For cases 
in which only a few thousand specimens need to be identified to spe-
cies, novel methods are considerably lowering the cost per barcode 

(Srivathsan et  al.,  2018, 2019). However these approaches become 
too labour extensive in cases where large numbers of specimens need 
to be identified. Metabarcoding techniques such as, for example, 
Illumina paired-end sequencing of libraries generated with universal 
primer pairs work well but are only cheaper if the number of samples 
produced is sufficiently large (Aylagas, Borja, Muxika, & Rodríguez-
Ezpeleta, 2018; Elbrecht et al., 2017). For small samples, metabarcod-
ing is equally, or even more expensive as traditional taxonomy. The 
main caveat of metabarcoding is that no reliable abundance or bio-
mass data can be obtained so far. Instead, machine learning methods 
could be used to semi-automate the task of manual species identifi-
cation and specimen biomass estimation. Machine learning methods 
can also be used for pre-sorting samples to reduce barcoding efforts.

Several computer-based identification systems for biological 
monitoring have been proposed and tested in the last two decades. 
While Potamis (2014) classified birds based on sound and Qian, 
HongBin, Zhen, and XiangBo (2011) used acoustic signals to identify 
bark beetles, most computer-based identification systems use mor-
phological features and image data for species prediction. Schröder, 
Drescher, Steinhage, and Kastenholz (1995), Weeks, Gauld, Gaston, 
and O'Neill (1997), Liu, Shen, Zhang, and Yang (2008), LeQuing and 
Zhen (2012), Perre et al. (2016) and Feng, Bhanu, and Heraty (2016) 
classified bees, butterflies, fruit flies and wasps based on wing fea-
tures. In aquatic research, automatic or semi-automatic systems have 
been developed to identify algae (e.g. Santhi, Pradeepa, Subashini, & 
Kalaiselvi, 2013), zooplankton (e.g. Bochinski et al., 2018; Dai, Wang, 
Zheng, Ju, & Qiao, 2016) and benthic macroinvertebrates (e.g. Ärje 
et al., submitted; Raitoharju & Meissner, 2019). Recently, deep learn-
ing methods such as convolutional neural networks (CNNs) have 
been found to provide the best classification results for general 
image data (Deng et al., 2009; He, Zhang, Ren, & Sun, 2016) as well 
as for invertebrates (e.g. Ärje et al., submitted; Ding & Taylor, 2016; 
Raitoharju et  al.,  2019; Valan, Makonyi, Maki, Vondráček, & 
Ronquist,  2019; Xia, Chen, Wang, Zhang, & Xie,  2018). In recent 
years, iNaturalist, a citizen-science application and community for 
recoding and sharing nature observations, has accumulated a nota-
ble database of taxa images for training state-of-the-art CNNs (Van 
Horn et al., 2018). However, such field photos will not provide the 
same accuracy as can be achieved in the laboratory under controlled 
light conditions.

significant positive relationships between mean area of specimens derived from 
images and their dry weight for three species of Diptera.

4.	 The system is general and can easily be used for other groups of invertebrates as 
well. As such, our results pave the way for generating more data on spatial and 
temporal variation in invertebrate abundance, diversity and biomass.

K E Y W O R D S

biodiversity, classification, convolutional neural network, deep learning, insects, machine 
learning, spiders
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Classification based on single 2D images can suffer from vari-
ations in the viewing angle causing certain morphological traits to 
remain concealed. To overcome those limitations, Zhang, Gao, and 
Caelli  (2010) have proposed a method for structuring 3D insect 
models from 2D images. Raitoharju et al. (2018) have presented an 
imaging system producing multiple images from two different angles 
for benthic macroinvertebrates. Using this latter imaging device and 
deep CNNs, Ärje et al. (submitted) have achieved classification accu-
racy within the range of taxonomic experts.

Our aim for this work was (a) to create a reproducible imag-
ing system, (b) test the importance of different camera settings, 
(c) evaluate overall classification accuracy and (d) test the possi-
bility of deriving biomass straight from geometrical features in 
images. To reach these objectives, we rebuilt the imaging system 
presented in Raitoharju et al.  (2018) using industry components 
to make it completely reproducible. It has been made light proof 
to prevent extraneous light from affecting the images. We also 
developed a flushing mechanism to pass specimens through the 
imaging device. This is a critical improvement for automation as 
explained below.

For classification, we used Resnet-50 (He et  al.,  2016) and 
InceptionV3 (Szegedy, Canhoucke, Ioffe, Shlens, & Wojna,  2016) 
CNNs. We tested different camera settings (exposure time and ap-
erture) to find the optimal settings for species identification, and we 
explored the necessary number of images per specimen to achieve 
high classification accuracy. Finally, for a subset of species, we tested 
if the area of a specimen derived directly from images taken by the 
device could serve as a proxy for biomass of the specimen.

2  | MATERIAL S AND METHODS

2.1 | The BIODISCOVER machine

To facilitate the automation of specimen identification, biomass es-
timation and sorting of invertebrate specimens, we improved the 
prototype imaging system developed for automatic identication of 
benthic macroinvertebrates (Raitoharju et al., 2018). We named the 

new device BIODISCOVER machine, as an acronym for BIOlogical 
specimens Described, Identified, Sorted, Counted and Observed 
using Vision-Enabled Robotics. The system comprises an aluminium 
case with two Basler ACA1920-155UC cameras and LD75 lenses 
with xo.15 to xo.35 magnification and five aperture settings (maxi-
mum aperture ratio of 1:3.8). The cameras are placed at a 90° angle 
to each other in two corners of the case and in the other corners 
there are a high-power LED light (ODSX30-WHI Prox Light, which 
enables a maximum frame rate of 100 frames per second with an 
exposure time of 1,000 μs) and a rectangular cuvette made of opti-
cal glass and filled with ethanol. The inside of the case is depicted in 
Figure 1a. The case is rubber-sealed and has a lid to minimize extra-
neous light, shadows and other disturbances. The lid has an opening 
for the cuvette with a funnel for dropping specimens into the liquid. 
Figure  1b shows the new refill system, which pumps ethanol into 
the cuvette.

The multiview imaging component is connected to a computer 
with an integrated software, which controls all parts of the machine. 
The program uses calibration images to detect objects differing from 
the background and triggers the light and cameras to take images as 
the specimen sinks in ethanol until it disappears from the assigned 
view point of the cameras. The program detects the specimen and 
crops the images to be 496 pixels wide (defined by the width of the 
cuvette) and 496 pixels high while keeping the specimen at the cen-
ter of the image with regards to the height. If a specimen exceeds the 
height of 496 pixels, the resulting images will be higher. The images 
are stored onto the computer as PNG files.

The BIODISCOVER machine enables imaging multiple speci-
mens before the cuvette needs to be emptied and refilled. This is 
accommodated by a small area at the bottom of the cuvette, where 
the specimens are outside of the field of view of the cameras. Once 
a sample containing multiple specimens is imaged, the software 
triggers the opening of a sliding plate, which acts as a valve and 
flushes the specimens into a container below the imaging device 
case. Several containers placed in a rack can be controlled by the 
software based on input from the classification algorithm used to 
identify species. This enables a sorting of specimens into predefined 
classes based on size or taxonomy. In this way, the system can, for 

F I G U R E  1   The BIODISCOVER 
machine for imaging invertebrates with 
(a) depicting the inside of the case and 
(b) showing the new refill system which 
pumps ethanol into the cuvette used for 
imaging

(a)

(b)
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instance, separate large and small specimens for further molecular 
study, separate insect orders, or separate common and rare species. 
The system is described in Figure 2. After the specimens have been 
flushed into the container for archiving, the pump in Figure  1b is 
used to refill the cuvette with ethanol.

2.2 | Classification experiments

Prior to large-scale imaging of reference collections of specimens 
of known identity, it is important to test the camera settings. As 
we plan to use the BIODISCOVER machine to create a large image 
database covering both terrestrial and aquatic invertebrates, it is im-
portant to optimize the different settings of the device to ensure the 
best possible image quality of the database with regard to classifica-
tion accuracy. For this purpose, we imaged a pilot dataset with nine 

different combinations of camera settings. To study the importance 
of lighting, we explored the effect of varying exposure time values 
of (1,000, 1,500, 2,000 μs) and to study the effect of the depth of 
field, we explored the effect of varying aperture values (1:3.8, 1:8, 
1:16). Using the nine different combinations of camera settings, 
we imaged a dataset of nine terrestrial arthropod species, which 
were collected at Narsarsuaq, South Greenland and identified by 
morphology using Böcher, Kristensen, Pape, and Vilhelmsen (2015): 
Bembidion grapii, Byrrhus fasciatus, Coccinella transversoguttata, 
Otiorhynchus arcticus, O. nodosus, Patrobus septentrionus, Quedius 
fellmanni, Xysticus deichmanni and X. durus (see Figure 3a). For the 
pilot data, we wanted to include both species that have clear visual 
differences and should be easily indentifiable and species from the 
same genera that have similar morphological features and are more 
difficult to tell apart.

The resulting nine datasets include the same specimens but the 
number of images varies depending on the camera settings since 
longer exposure time decreases the frame rate. Figure  3b shows 
the example images of the same C. transversoguttata specimen from 
each of the nine camera setting combinations. A few of the speci-
mens were damaged during the imaging. Therefore to have compa-
rable results, we removed any specimens that were not present in 
all nine datasets. In addition, we performed a crude, initial check for 
outliers by calculating the mean of blue, green and red pixel values 
per species and making a list of all specimens that had mean pixel 
values further than three standard deviations from the species aver-
age. We then manually checked the images of those listed specimens 
and removed images with only air bubbles or severed limbs. After 
this initial check, the number of images per specimen in the final 
data ranged from 1 to 376 (with 15 cases where a specimen had only  
1 image). Table 1 gives the details on the final data.

We split the data into training (70%), validation (10%) and test 
(20%) observations. As difficult specimens can introduce variation to 
the results, we performed the tests on 10 different random data di-
visions. If a specimen was selected for training, all the images of that 
specimen were used for training. To keep the results comparable be-
tween the different camera settings, we used the exact same train-
ing specimens for all camera settings. Correspondingly, the exact 

F I G U R E  2   The flush through system of the BIODISCOVER 
machine. (1) A funnel helps filling the cuvette with ethanol without 
airbubbles. (2) As the specimen floats in ethanol, two cameras 
capture images of it from two angles, (3) a valve is opened to flush 
the specimen through to (4) a container for further archiving

F I G U R E  3   (a) The nine species 
included in the image dataset. From top 
left: Bembidion grapii, Byrrhus fasciatus, 
Coccinella transversoguttata, Otiorhynchus 
arcticus, O. nodosus, Patrobus septentrionus, 
Quedius fellmanni, Xysticus deichmanni  
and X. durus. (b) Example images of a  
C. transversoguttata specimen with 
different camera settings. The exposure 
setting goes from top to bottom [1,000, 
1,500, 2,000] and the aperture from left 
to right [3.8, 8, 16]

(a) (b)



926  |    Methods in Ecology and Evolu
on ÄRJE et al.

same validation and testing specimens were used for each camera 
setting combination. The number of images, exposure and aperture 
differed for the camera setting combinations, but the specimens re-
mained the same, that is, if a difficult, atypical specimen of a certain 
species was selected for testing that same specimen was used for 
testing all the camera setting combinations, making the identifica-
tion task equally difficult for all the settings.

To examine whether the BIODISCOVER machine benefits from 
having two cameras shooting from different angles, we performed 
a test where, for each specimen, we counted the numbers of im-
ages captured by each of the cameras. To compare the two camera 
angles, we selected an equal amount of images from both cameras. 
For each specimen, we checked which camera had captured less im-
ages and randomly sampled the same amount of images from the 
other camera as well. Finally, we randomly sampled the exact same 
amount of images for each specimen, this time including images from 
both cameras. Thus, we obtained three datasets, each with the same 
total amount of images. To account for variation in a single data split, 
we ran the test again on 10 data divisions into training, validation 
and test observations.

For the classification task, we tested two widely used deep CNN 
architectures, namely Resnet-50 (He et al., 2016) and InceptionV3 
(Szegedy et al., 2016), both pretrained with the Imagenet database 
(Deng et al., 2009). For each data division, we used the training ob-
servations to fine-tune the weights of the pre-trained CNN. To feed 
the images to the network, we scaled them all to 128  ×  128 pix-
els. This caused slight distortion to specimens taller than 496 pix-
els but the majority of the images (86%) are square-shaped and 
thus remained undistorted. We used batch normalization, a batch 
size of 128 and a decaying learning rate (0.001, 0.0001, 0.00001, 
0.000001), training the network for 50 epochs with each learning 
rate. The validation images were used to select optimal weights for 
the network by comparing the validation accuracy after each epoch. 
Finally, the test observations were used to compute the final classi-
fication accuracy.

As we used multiple images per observation, we used a decision 
rule to determine the final species of the observation based on the 
predictions for all the images. The simplest option was to use major-
ity vote, that is, the species that was predicted most often among the 
images of the specimen was chosen as the final prediction. The clas-
sification accuracy is reported as proportion of correctly predicted 
specimens based on the majority vote rule.

The BIODISCOVER machine derives geometric features from 
each image taken of each individual. These features include the area 
of the specimen in the image, which can be used for biomass predic-
tion. For this purpose, we imaged three species of Diptera with the 
optimal camera settings and measured dry weight for a subset of this 
data (n = 65). The species included in this dataset were Dolichopus 
groenlandicus (n = 25, nimg = 1,788), D. plumipes (n = 20, nimg = 1,646) 
and Tachina ampliforceps (n = 20, nimg = 547). The area was calculated 
from images as average per specimen. After imaging, each specimen 
was dried at 70°C for 48 hr and weighed on a scale to the nearest 
0.0001  g to quantify dry weight. For biomass prediction, we per-
formed a logarithmic transformation on the data and fitted a linear 
mixed model to examine the relationship between the average area 
and dry weight, using the species as a random factor. However, the 
model assumptions could not be met with the data; hence, we fitted 
separate generalized linear models for each species.

3  | RESULTS

Our first objective was to find optimal camera settings for the imaging 
device for species identification. The average classification accuracy 
across 10 test sets is presented in Figure 4 (and Table 3, Appendix S1). 
Based on the results for our pilot data, the optimal camera settings for 
both CNN were exposure = 2,000 μs and aperture = 1:8. InceptionV3 
network produced the highest classification accuracy with these cam-
era settings. For this network, the best camera settings also yielded 
the second lowest standard deviation. The differences between the 

TA B L E  1   Image data details stating the number of images in each dataset imaged with different camera setting (exposure = [1,000, 
1,500, 2,000] and aperture = [1:3.8, 1:8, 1:16]). The number of specimens is the same for all datasets

Species #Specimens

#Images

1,000
1:3.8

1,000
1:8

1,000
1:16

1,500
1:3.8

1,500
1:8

1,500
1:16

2,000
1:3.8

2,000
1:8

2,000
1:16

Bembidion grapii 17 2,274 2,554 2,619 1,677 1,625 1,741 1,268 1,270 1,266

Byrrhus fasciatus 52 4,344 4,778 5,157 3,222 3,402 3,054 2,371 2,262 2,278

Coccinella 
transversoguttata

57 5,705 5,607 5,770 3,958 3,962 4,183 2,776 2,770 2,748

Otiorhynchus arcticus 50 3,197 3,318 3,488 2,556 2,220 2,225 1,898 1,614 1,700

Otiorhynchus nodosus 139 9,166 10,010 9,864 6,818 6,524 6,571 4,796 4,563 4,690

Patrobus septentrionus 108 11,056 11,583 11,738 8,383 8,311 8,028 6,004 5,808 6,148

Quedius fellmanni 42 5,749 6,438 6,363 4,577 4,461 4,393 3,708 3,270 3,318

Xysticus deichmanni 25 2,434 2,709 2,611 1,800 1,890 1,802 1,680 1,363 1,364

Xysticus durus 43 3,997 4,113 4,043 3,036 2,922 2,841 2,212 2,119 2,110
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settings were small but we observed that decreasing aperture to 
1:16 decreased the classification accuracy. For higher exposure, an 
initial decrease in aperture enhanced the results while decreasing 
aperture to 1:16 led to decreased classification accuracy. For expo-
sure = 1,000 μs, even increasing aperture to 8 decreased classification 
accuracy. The optimal camera settings are intuitive as they provide 
sharp images while having as much light as possible.

In addition to the majority vote decision rule, we also calculated 
classification accuracy using the weighted sum rule (Raitoharju & 
Meissner,  2019). The results were similar but led to slightly lower 
overall accuracy (Table 4, Appendix S1).

To test whether the BIODISCOVER machine benefits from hav-
ing two cameras shooting from different angles, we performed a test 
on the data imaged with the optimal camera settings. The classifi-
cation accuracy was higher when using images from both cameras 
(Table 5, Appendix S1). In addition, for Resnet-50, the standard de-
viation was lower meaning there is less variation in the classification 
accuracy due to choice of test specimens. The classification accura-
cies in this test are slightly lower than in Table 3 as for this particular 
test we are using less images per specimen (approximately 50%).

Once we optimized the camera settings, we re-trained the 
InceptionV3 network with the data including also the three Diptera 
species. The average classification accuracy over 10 test sets was 
0.980. The information of individual classification decisions is 

shown in a confusion matrix with the true species on the rows and 
the predicted species on the columns. Table 2 displays the normal-
ized average confusion matrix over the 10 random data splits for 
InceptionV3 CNN with the optimal camera settings. As for individual 
species, B. grapii was the hardest to identify. Some of the specimens 
were misclassified as P. septentrionus and Q. fellmanni. In addition, 
Otiorhyncus arcticus and O. nodosus were often confused, as well as 
X. deichmanni and X. durus. Other common classification errors were 
misclassifying B. fasciatus as O. nodosus and misclassifying X. durus as 
B. grapii. The species that performed poorly compared to the others 
were species with the lowest number of images in the data. The ac-
curacy could be improved by collecting more data on these species 
or using data augmentation techniques.

When considering automated biomonitoring, one key factor is 
the time it takes to automatically identify the taxonomic identity 
of a specimen. In taxa identification scenarios, optimizing the time 
used for testing is more important than optimizing the time used for 
training. The training time for the network using the optimal camera 
settings was 13 hr and 55 min (see Table 6, Appendix S1, for other 
camera settings). However, training of the network needs to be done 
only once. The number of images per specimen affects the total time 
of identification as each image needs a prediction. To optimize the 
number of images per specimen, we tested how this affects the clas-
sification accuracy. As the specimens had varying number of images, 

F I G U R E  4   Average test classification 
accuracies ± standard deviation for 
different camera setting combinations for 
(a) Resnet-50 network and (b) InceptionV3 
network

TA B L E  2   Normalized average confusion matrix over 10 random data splits for data imaged with exposure = 2,000 μs and aperture = 1:8, 
classified with InceptionV3 network. The rows of the table represent the true species while the columns represent the predicted species and 
the cells give the average percentage over the 10 test data. The species-wise classification accuracy is marked in bold

Be_gr By_fa Co_tr Do_gr Do_pl Ot_ar Ot_no Pa_se Qu_fel Ta_am Xy_de Xy_du

Be_gr 0.756 0 0 0 0 0 0 0.122 0.122 0 0 0

By_fa 0 0.992 0 0 0 0 0.008 0 0 0 0 0

Co_tr 0 0 1.0 0 0 0 0 0 0 0 0 0

Do_gr 0 0 0 1.0 0 0 0 0 0 0 0 0

Do_pl 0 0 0 0.015 0.985 0 0 0 0 0 0 0

Ot_ar 0 0 0 0 0 0.910 0.090 0 0 0 0 0

Ot_no 0 0.004 0 0 0 0.019 0.977 0 0 0 0 0

Pa_se 0 0 0 0 0 0.004 0.004 0.991 0 0 0 0

Qu_fel 0 0 0.010 0 0.010 0 0 0 0.980 0 0 0

Ta_am 0 0 0 0.005 0 0 0 0.010 0 0.985 0 0

Xy_de 0 0 0 0 0 0 0 0 0 0 0.941 0.059

Xy_du 0.029 0 0 0 0 0 0 0 0.010 0 0.029 0.933
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we tested with the maximum number of images per specimen, Nmax. 
If a specimen had less images, we used all of them. If a specimen had 
more images, we randomly sampled Nmax of them. Again, we ran this 
test on the 10 data splits imaged with the optimal camera settings. 
The results are shown in Figure 5. The average number of images per 
specimen is 47 so while some specimens had over 100 images, the 
test accuracy stabilized at approximately 50 images. The same accu-
racy of approximately 96% could already be achieved with 20 images 
per specimen but lower numbers of images increased the variation 
in the classification accuracy. While increasing the maximum number 
of images per specimen does increase the time for taxa predictions, 
testing time is not an issue. Even with a maximum 100 images per 
specimen, the time taken to predict taxa for the entire beetle and 
spider test data of 110 specimens with a total 5,300 images was on 
average 40 s. However, fixing the maximum number of images per 
specimen would mean less images for the BIODISCOVER device to 
record and store onto the computer, enabling faster imaging process 
and saving computational resources.

Figure  6 shows the results of the biomass prediction. The 
logarithm-transformed average area was found to be statistically 
significant predictor of dry weight for all three Diptera species (see 
Table 7 in Appendix S1). However, considering the R-squares of the 
different models, the average area is a good predictor only for the larg-
est species, T. ampliforceps (r2 = 0.758). For the two small Dolichopus 
species, relationships were weaker.

4  | DISCUSSION

We have presented an image-based identification system (i.e. the 
BIODISCOVER machine) for insects and other invertebrates as an 
alternative to manual identification. We demonstrated a very high 
classification accuracy on a test set of images of 249 specimens of 
known identity belonging to one of 12 insect and spider species. We 
were also able to show that biomass of individual specimens could 
be predicted straight from information in the images. Together, our 
results pave the way for future non-destructive, automatic, image-
based identification and biomass estimation of bulk invertebrate 
samples.

We imaged specimens of seven beetle, two spider and three fly 
species with the BIODISCOVER machine with different values for 
exposure time and aperture settings and found that the best clas-
sification accuracy was obtained with an exposure time 2,000 μs 
and an aperture 1:8. With these settings, we obtained a high test 
classification accuracy of 98.0%, demonstrating the great potential 
of the BIODISCOVER machine for the use in species identification. 
In Ärje et al. (submitted), for example, taxonomic experts achieved 
an accuracy of 93.9% with a dataset of 39 taxonomic groups ana-
lyzing physical specimens, not images. Compared to human experts 
or genetic methods, a key challenge for the machine learning ap-
proach is to identify species which are not already known to the 
reference database. While this is an area of active research, it cur-
rently imposes a strong demand for comprehensive reference data-
bases of species of known identity. While such databases are being 

F I G U R E  5   Classification accuracy of the test specimens plotted 
against the maximum number of images per specimen. The solid 
line shows the average over 10 data divisions and the light blue area 
represents the average ± standard deviation

F I G U R E  6   Generalized linear models for biomass of Dolichopus groenlandicus, D. plumipes and Tachina ampliforceps with average area 
predicting dry weight
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constructed, classification can be carried out at a higher taxonomic 
level. While adding more species to the data will increase the dif-
ficulty of the classification task (Ärje et al., submitted) as well as 
the training time, data augmentation and adding more specimens 
of each species can be used to improve the results for rare species 
(Raitoharju et al., 2016; Sohrab & Raitoharju, submitted). Possibly 
data augmentation techniques can be also developed for predict-
ing the species for fragmented specimens often found in samples. 
If the fragment is small compared to the original specimen, it will 
likely be difficult to assign to a specific class, but most likely the 
confidence value will be low for all classes, which will allow the user 
to recognize it is a fragment. The same would go for other organic 
or inorganic debris.

Regarding training time, Imagenet (Deng et al., 2009) includes a 
total 21,841 subcategories with over 500 images per subcategory. 
Training time of deep learning models on such big datasets is long.1 
Recent research in parallel computing (Goyal et al.,  2017) has 
shown that distributed synchronous Stochastic Gradient Descent 
may be the way to overcome this issue. To estimate testing time, we 
must consider the entire process involving entering the metadata 
related to the sample into the software, moving each individual 
specimen to the cuvette and predicting the species. The imaging is 
done as soon as the specimen reaches the bottom of the cuvette 
and the trained algorithm can run on the same computer, which 
runs the imaging software. The classification task with the current 
database takes <1 s per specimen and if specimens from a sample 
can be placed together in the same vial after processing, the whole 
process can be done in about 10  min for a sample of 100 
specimens.

We tested predicting biomass from images on a subset of three 
fly species. We explored a joined mixed model for all species but 
the small data restricted our final analysis to three species-wise 
generalized linear models. The average area of the specimen was 
a good predictor for dry weight for the largest species, T. ampli-
forceps, but the two smaller species would require more data for 
better results. For instance, by weighing more species of different 
sizes, it would be possible to quantify the uncertainty associated 
with using general relationships between area and dry weight con-
structed from multiple, related species (e.g. species belonging to 
the same family). The BIODISCOVER machine can easily be used 
with any animal small enough to fit into the cuvette. Since the im-
aging device comprises standard industry components with a total 
cost of approximately €5,000, we have made it possible to build 
more copies of the BIODISCOVER machine. The flow-through and 
refill systems facilitate easy archiving of samples. Furthermore, 
the BIODISCOVER machine also saves metadata from the images, 
for example, geometric features that can be used in automatic bio-
mass predictions.

The imaging device is one of three components for automatic 
image-based species identification. We are currently working 
on implementing (a) a computer-vision-enabled robotic arm to 

automatically detect insects from a bulk sample in a tray, choose 
among different tools to move individual specimens to the imaging 
device and (b) a sorting rack to place specimens in the preferred 
container after imaging based on, for example, taxonomic identity, 
size or rarity. With these additions, the BIODISCOVER machine 
offers high-throughput, non-destructive taxonomic identification, 
size/biomass estimation, counting and further morphological data, 
while keeping the specimens intact. Given that the robotic arm is 
standard industry equipment, we are on the verge of producing 
a truly automated species identification system for invertebrates, 
both aquatic and terrestrial.
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