
Code Reviews, Software Inspections,
and Code Walkthroughs:

Systematic Mapping Study of Research Topics

Ilenia Fronza1, Arto Hellas2, Petri Ihantola2, and Tommi Mikkonen2

1Free University of Bozen-Bolzano, Bozen-Bolzano, Italy
2University of Helsinki, Helsinki, Finland

ilenia.fronza@unibz.it, arto.hellas@helsinki.fi,

petri.ihantola@helsinki.fi, tommi.mikkonen@helsinki.fi

Abstract. Code reviews have been used to improve code quality since
the 1970s. Most practitioners in the field of software have some experi-
ence with respect to the technique. In this mapping study we illustrate
what kinds of research questions are addressed in code review literature.
The following themes emerged from analysis of 75 original articles: 1) de-
scription or comparison of different code review practices, 2) behavior of
reviewers (e.g., eye tracking studies), 3) communication and teamwork,
4) outcomes of code reviews (e.g., what kinds of problems are identified),
5) how properties of code to be reviewed affect reviewing, and 6) rea-
sons for conducting code reviews. About half of the studies have been
conducted with students and novices. The numbers of industry papers
has significantly increased when compared to the previous reviews in the
field.
Keywords. Code reviews, software inspections, code walkthroughs, map-
ping study.

1 Introduction

Software engineering has evolved significantly during the last decades. Code
review (sometimes called as peer review) is one of the few activities surviving
this evolution. Different forms of peer reviewing have been around since the
1970s [1], and practically every software engineer is familiar with the techniques,
at least to some extent. Based on the previous literature, the driving force to do
code reviews include finding defects, improving code quality, finding alternative
solutions, transferring knowledge and improving teams awareness [2].

Code review, or manual inspection of software quality in general are widely
studied topics, but systematic literature studies in the field are still rare. Brykczyn-
ski [3] conducted a literature review on checklist based quality assurance of
software artifacts (i.e., requirements, design, code, testing, documentation, and
process). Authors point out, that although some checks should be automated,
all the listed phases of software development are likely to benefit from manual
(possibly computer assisted) inspection. More recently, Ebad [4] did a system-
atic literature review to compare multiple manual inspection approaches and



conclude that ”the most effective reading techniques in requirements, design,
and coding phases are perspective-based reading, usage-based reading, and tool-
assisted reading, respectively”. Authors also concluded that most research seems
to be based on data collected from academic, instead of industrial context.

In addition to being scarce, previous literature studies on code reviews have
focused on topics that are quite specific. We argue that software engineering
community would benefit from a broader understanding of themes covered in
the code review literature. Therefore, the main objective of this study is to
shed light on which themes can be identified in the research of code reviews.
The exact research questions answered here is ”what’s the focus of the existing
empirical articles on code reviews, software inspections, and code walkthroughs”.
In the rest of this article, we use the term code review to refer different review
approaches (e.g., code reviews, software inspections, and code walkthroughs) We
will answer our research question by conducting a systematic mapping study.

The goal of this mapping study, following the guidelines in [5], is to provide
an overview of empirical research on code reviews, and identify the quantity and
type of research, and results available within it. The results of this study can
identify areas suitable for conducting systematic literature reviews [6], and areas
where a primary study is more appropriate.

The rest of this paper is structured as follows. Section 2 gives an overview
to our data collection. Section 3 presents our results. Section 4 provides an
extended discussion regarding our findings and lists directions for future work.
Section 5 describes limitations of this research. Finally, towards the end of the
paper, Section 6 draws some conclusions.

2 Data Collection

2.1 Search for Primary Studies

The first phase of the study consisted of identifying primary studies from sci-
entific databases. Search queries were defined to retrieve the initial selection of
works to be filtered and screened later on. The search was carried out in the
following digital libraries: IEEE (http://ieeexplore.ieee.org/Xplore/home.jsp),
ACM (http://dl.acm.org/), and Scopus (https://www.scopus.com/).

The format of queries differs between platforms. Table 1 shows how queries
were defined in each library. The actual search was conducted in June 2018; the
Results-column in Table 1 indicates the number of hits in each platform.

In total, the queries produced a combined total of 1426 articles. This initial
set of articles was then examined to remove duplicate articles. A total of 281 ar-
ticles were removed automatically based on duplicate DOIs, leaving 1145 articles
for further analysis.

2.2 Screening of Papers for Inclusion and Exclusion

The 1145 articles were screened based on their titles and abstracts. The applica-
tion of inclusion and exclusion criteria to titles and abstracts was conducted by



Table 1. Executed queries for each digital library.

Database Search Results

IEEE METADATA ONLY: (((“code review”) OR “code inspec-
tion”) OR “code walkthrough”)

297

ACM acmdlTitle:(“code review” “code inspection” “code
walkthrough”) OR recordAbstract:(“code review”
“code inspection” “code walkthrough”) OR key-
words.author.keyword:(“code review” “code inspection”
“code walkthrough”)

267

Scopus (TITLE-ABS-KEY(“code review”) OR TITLE-ABS-
KEY(“code inspection”) OR TITLE-ABS-KEY(“code
walkthrough”)) AND (LIMIT-TO (DOCTYPE, “cp”) OR
LIMIT-TO (DOCTYPE, “ar”) OR LIMIT-TO (DOC-
TYPE, “re”)) AND (LIMIT-TO (SUBJAREA, “COMP”)
OR LIMIT-TO (SUBJAREA, “ENGI”)) AND (LIMIT-TO
(LANGUAGE, “English”))

862

Total 1426

four researchers working in parallel. We were inclusive taking a paper to full-text
reading when in doubt. The following criteria state when a study was excluded:

– Studies presenting tools that are not specifically about code reviews (e.g.,
tools for clone detection, tools for static code analysis).

– Studies not presented in English.

– Studies presenting summaries of conferences/editorials.

– Studies not accessible in full-text.

– Books and gray literature.

– Studies that are replications of other studies.

This exclusion phase led to removal of 622 articles.

2.3 Selecting Empirical Studies in the Software Engineering Field

After the initial screening and exclusion of non-relevant articles, 523 articles
remained. These articles were then further inspected, including only articles that
were from the field of software engineering, and provided empirical results related
to code reviews. More precisely, the following inclusion criteria was applied: 1)
Studies are in the field of software engineering, and 2) Studies present empirical
results on code reviews (e.g. qualitative or quantitative data on code reviews).
Opinion pieces without any data or where the focus was on something else than
code reviews were excluded. This led to a final data set of 75 articles.

Most of the articles in our final data set have been published in conference
proceedings (61%). 32% of the publications were journal articles and the remain-
ing 7% were published in magazines and workshops.



3 Qualitative content analysis of research questions

For all the papers, we extracted excerpts describing the objectives, hypothesis
and explicit research questions of the work. Some of the papers did not have any
research questions and in some cases even the objectives were loosely defined. In
these cases, we extracted excerpts from the conclusions that illustrated outcomes
of the work. As the last option, if we failed to find illustrative excerpts, the main
contributions of a paper we defined by our own words. In addition, for every
paper, we extracted the context of code reviews (e.g. academic, industry, or open
source software development). Some papers had multiple contexts, in which case
all were recorded.

Next, we carried out a qualitative content analysis of research questions to
identify themes of the research. First, one of the authors went through all the
excerpts, and created a list of potential categories. At this phase, some of the
excerpts were augmented by reading the original publication. Next, themes were
discussed with an another author who also read the excerpts. This resulted in
some themes to be merged and some new themes to be created. Finally, when all
the papers were classified to potentially multiple categories, the categorization
was finalized jointly by all the authors.

The final categories and the number of articles assigned to each category
are the following. The list of papers in each category divided by the context
is provided in Table 2; in our study, an article could be mapped to multiple
categories.

Review methods This category is related to description, combination and
comparison of different code review practices. Some of the studies are de-
scriptive and focus on explaining (new) code review methods and best prac-
tices, as in [7]: ”Building on the existing literature, here we add insights
from a recent large-scale study of Microsoft developers code review practices
to summarize the challenges that code-change authors and reviewers face,
suggest best code-reviewing practices, and discuss tradeoffs that practition-
ers should consider.” Some papers in the category focus on (quantitative)
comparison review methods as illustrate in the following excerpt of research
hypothesis [8]: ”There is significant difference in the number defects found
by those subjects performing ad-hoc inspection and those performing sys-
tematic inspection of object oriented code”. (33 papers)

Human behaviour Papers in this category focus on Individual differences be-
tween reviewers (e.g., ”how effective developers are at conducting code re-
views and the degree of variation among them” [9] and behaviour of indi-
vidual reviewer, e.g., by using eye-tracking [10, 11]. The category is often
linked to the previous category of describing new review method and re-
search questions such as ”Do developers who are shown information that
could potentially help avoid the introduction of bugs behave differently than
without that information” [12] (15 papers)

Teamwork Papers in this category focus on communication, team configura-
tions and teamwork. Examples of research questions in this category are



”Does the number of involved teams influence the effectiveness of distributed
code review” [13] and ”what do reviewers discuss in test code reviews” [14]
In many cases, the role of teamwork was implicit while research questions
were more broadly defined. (14 papers)

Outcome of code reviews Papers in this category focus on effect of code re-
views, for example, which kinds of errors are found or how many of the errors
can be found. The category is closely linked to review methods category. Ex-
amples of research questions in category include ”What is the impact of
continuous code reviews and inspections on code quality, What are the most
common bugs among the code written by sophomores? What are the most
common code smells identified within the code written by sophomores?” [15]
(14 papers)

Role of code to be reviewed Papers in this category focus on the relation of
reviews and code to be reviewed. How properties of code to be reviewed affect
reviewing is more specific when compared to other categories, but it was still
clearly emerging from the data. Excepts illustrating this category include
”Does the number lines of code to be reviewed influence the effectiveness of
distributed code review?” [13] and ”What factors can influence how long it
takes for a patch to be reviewed?” [16] (5 papers)

Reasons for conducting code reviews Papers in this category address ex-
plicitly the reasons or motivations for conducting code reviews, with research
questions like ”What are the motivations for code review at Google [...] How
do Google developers perceive code review?” [17] (4 papers)

Table 2. Topical classification of papers. (*) Some papers use data from more than
one context, for instance when comparing industry with academia.

Category n Context∗ Papers

Review methods 33 industry (14), open source (3),
academia (15), unclear (1),
government (1), simulated re-
view (1)

[1, 7, 8, 14,17–45]

Human behaviour 15 industry (5), open source (3),
academia (8)

[9–12,46–56]

Teamwork 14 industry (9), open source (2),
academia (3)

[7, 13, 14, 16, 24, 35,
57–64]

Outcome of code reviews 14 industry (5), open source (7),
academia (2)

[15,43,49,65–75]

Role of code to be reviewed 5 industry (1), open source (4) [13,14,16,76,77]

Reasons for conducting code
reviews

4 industry (2), academia (1), not
defined (1)

[17,78–80]

While reviews are considered somewhat classical technique, we identified only
few studies published prior to mid-1990s. Publication year of the studies are
illustrated in Figure 1.



1 1 1 1 1 2 1 3 1 2 1

1 2 1 1

1 1 1 1 2 2 4 1 1

1 1 1 1

1 4 2 1 2 1 1 1 1 1 1 3 1 1 3 1 4 4

2 2 2 1 1 2 1 1 2

1 1 1 5 2 2 2 3 2 2 3 2 1 4 1 1 4 1 6 3 9 6 8 5All

Reasons for conducting code reviews

Role of code to be reviewed

Outcome of code reviews

Teamwork

Human behavior

Review methods

1980 1990 2000 2010 2020

Fig. 1. The number of publication per year for each category (a single paper can be
classified into multiple categories) and the total number of publications identified each
year.

4 Discussion

The largest category of research topics identified in this mapping study, with
38% of papers related to it is description, combination and comparison of differ-
ent code review practices. The category overlaps heavily with other categories,
however. For example, description of a new code review approach is often re-
lated to analysis of how people behave when applying the new methods, and
quantifying the results of code reviews.

Indeed, the second largest groups in our analysis are “Communication, team
configurations and teamwork”, “ Effect of code reviews (e.g., which kinds of
errors are found)”, and “Individual differences and behavior of reviewers”. Each
of these themes to related to ca. 16% of all the papers.

Although we were able to identify many studies that either compare (effec-
tiveness of) code review techniques or identify benefits of code review, there
are only few studies that compare effectiveness of code reviews to other quality
assurance techniques (e.g., [75]). We would like to see more studies that com-
pare code reviews directly to alternative or complementary methods, such as
test driven development or pair programming.

Three different contexts are common when considering reviews that con-
tain empirical results – open source, industry, and education. Sometimes, they
(partially) overlap or complement each other in the studies (hence the small
mismatch in numbers per category and total in Table 2). In our study, ca. half
of the studies have been conducted with students and novices. This is a signifi-
cant improvement to earlier review by Ebad [4], where only four percent of the
research was conducted in the industry context.

We are somewhat surprised by the fact that there are very few old articles
with empirical evidence, although code reviews is considered a classic topic.
Furthermore, these initial papers were really placing the focus on the essentials
of code reviews as a quality assurance and bug-fixing instrument. Based on our
study, mid-1990s seem to mark the point when there was increasing empirical
interest in reviews in general, and only after 2010 there are several papers that



empirically study reviews. Granted, the increasing interest in reviews has also
meant that the research is more versatile, addressing various topics revolving
around reviews but not necessarily studying their effectiveness as a mechanism
for quality assurance.

Finally, we did not consider the evolution of the term code review in this
study; however it is clear that the meaning of the term has evolved significantly.
For example, in 1980s, the term software review meant software inspection where
the quality of a software module was inspected following a certain process [81],
whereas today software review more often refers to the acceptance decision for
inclusion of a contribution in an open source project [82]. Understanding this
evolution is a topic for future work.

5 Limitations and Threats to Validity

There are multiple biases related to the selection of primary research. Retro-
spectively, the biggest selection choice we made in the paper was to exclude tool
papers, where empirical evidence was focused on evaluating the tool. It is likely
that in the process we also eliminated some data that also acts as evidence re-
garding code reviews more generally as well. By inspecting many of the tools
papers as well, we came to a conclusion that in general they are not comparable
to papers that are solely dedicated to code reviews. However, studying the tool
perspective remains an possible direction for future work.

Another dimension we deliberately excluded in this study is the use of code
reviews in education. Such studies take a very different stand to code reviews,
and while they would have contributed to versatility of the mapping study in
general, based on reading many of them, they might have resulted in a category
of their own in the classification. Hence, we feel that they deserve a paper of
their own. Publications that used educational context, but did not focus on how
to teach code reviews were included, however.

The general limitations associated with any mapping study also apply to our
work, including in particular bias in selection of the reviewed papers and inaccu-
racy in data extraction. Since we mainly relied on search engines to retrieve the
primary studies, the search engines may have influenced the completeness of the
identified studies. The extraction process may have also resulted in inaccuracies,
even though the reviewers practiced extraction jointly. Quality assessment of
studies in systematic reviews still remains a major problem [83].

6 Conclusions

Code inspections are a classic approach to quality assurance. Despite frequent
use of the method in industry, there are only few systematic literature studies
of the field. In this systematic mapping study we have illustrated what kinds of
research themes can be identified in the code review literature.

The following themes emerged from analysis of 75 original articles: 1) de-
scription or comparison of different code review practices, 2) human behavior



and differences between individual reviewers 3) communication and teamwork,
4) outcomes of code reviews, 5) how properties of code to be reviewed affect
reviewing, and 6) reasons for conducting code reviews.

While many of the papers identified in this survey address effectiveness of
code reviews, comparisons between code review to other approaches aiming to
improve software quality are uncommon. Moreover, much of the knowledge is
at least partially outdated due to the changes in software development and de-
ployment methodologies. In contrast, softer issues, such as team behavior and
participants roles in code review, have been gaining traction in research, resulting
in various studies of code reviews from the socio-technical dimension.

While we acknowledge the importance of the socio-technical dimension, we
believe that there is a need for further primary studies from purely technical
point of view, taking code reviews as a quality assurance technique back into
focus.

References

1. Myers, G.J.: A controlled experiment in program testing and code walk-
throughs/inspections. Communications of the ACM 21(9) (1978) 760–768

2. Bacchelli, A., Bird, C.: Expectations, outcomes, and challenges of modern code re-
view. In: Proceedings of the 2013 international conference on software engineering,
IEEE Press (2013) 712–721

3. Brykczynski, B.: A survey of software inspection checklists. ACM SIGSOFT
Software Engineering Notes 24(1) (1999) 82

4. Ebad, S.: Inspection reading techniques applied to software artifacts-a systematic
review. Computer Systems Science and Engineering 32(3) (2017) 213–226

5. Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M.: Systematic mapping studies in
software engineering. In: Proc. of the 12th Int. Conf. on Evaluation and Assessment
in Software Engineering. EASE’08, BCS Learning & Development (2008) 68–77

6. Kitchenham, B.A., Charters, S.: Guidelines for performing systematic literature
reviews in software engineering. Tech. Report EBSE-2007-01, Keele Univ. (2007)

7. Greiler, M., Bird, C., Storey, M.A., MacLeod, L., Czerwonka, J.: Code reviewing
in the trenches: Understanding challenges, best practices and tool needs. (2016)

8. Dunsmore, A., Roper, M., Wood, M.: Systematic object-oriented inspectionan
empirical study. In: Proc. of the 23rd Int. Conf. on Softw. Eng., IEEE (2001)
135–144

9. Edmundson, A., Holtkamp, B., Rivera, E., Finifter, M., Mettler, A., Wagner, D.:
An empirical study on the effectiveness of security code review. In: International
Symposium on Engineering Secure Software and Systems, Springer (2013) 197–212

10. Begel, A., Vrzakova, H.: Eye movements in code review. In: Proc. of the Workshop
on Eye Movements in Programming, ACM (2018) 5

11. Uwano, H., Nakamura, M., Monden, A., Matsumoto, K.i.: Analyzing individual
performance of source code review using reviewers’ eye movement. In: Proc. of the
2006 symposium on Eye tracking research & applications, ACM (2006) 133–140

12. Foss, S.L., Murphy, G.C.: Do developers respond to code stability warnings? In:
Proc. of the 25th Annual Int. Conf. on Computer Science and Software Engineering,
IBM Corp. (2015) 162–170



13. dos Santos, E.W., Nunes, I.: Investigating the effectiveness of peer code review in
distributed software development. In: Proc. of the 31st Brazilian Symposium on
Software Engineering, ACM (2017) 84–93

14. Spadini, D., Aniche, M., Storey, M.A., Bruntink, M., Bacchelli, A.: When testing
meets code review: why and how developers review tests. In: 2018 IEEE/ACM
40th Int. Conf. on Softw. Eng. (ICSE), IEEE (2018) 677–687

15. Sripada, S.K., Reddy, Y.R.: Code comprehension activities in undergraduate soft-
ware engineering course-a case study. In: 2015 24th Australasian Software Engi-
neering Conference, IEEE (2015) 68–77

16. Baysal, O., Kononenko, O., Holmes, R., Godfrey, M.W.: The influence of non-
technical factors on code review. In: 2013 20th Working Conference on Reverse
Engineering (WCRE), IEEE (2013) 122–131

17. Sadowski, C., Söderberg, E., Church, L., Sipko, M., Bacchelli, A.: Modern code
review: a case study at google. In: Proc. of the 40th Int. Conf. on Softw. Eng.:
Software Engineering in Practice, ACM (2018) 181–190

18. Fracz, W., Dajda, J.: Experimental validation of source code reviews on mobile
devices. In: Int. Conf. on Computational Science and Its Applications, Springer
(2017) 533–547

19. Baum, T., Leßmann, H., Schneider, K.: The choice of code review process: A survey
on the state of the practice. In: Int. Conf. on Product-Focused Software Process
Improvement, Springer (2017) 111–127

20. Ferreira, A.L., Machado, R.J., Silva, J.G., Batista, R.F., Costa, L., Paulk, M.C.:
An approach to improving software inspections performance. In: 2010 IEEE Int.
Conf. on Software Maintenance, IEEE (2010) 1–8

21. Vassallo, C., Panichella, S., Palomba, F., Proksch, S., Zaidman, A., Gall, H.C.:
Context is king: The developer perspective on the usage of static analysis tools.
In: IEEE 25th Int. Conf. on Softw. Analysis, Evol. and Reengineering (SANER),
IEEE (2018) 38–49

22. Höst, M., Johansson, C.: Evaluation of code review methods through interviews
and experimentation. J. Syst. Softw. 52(2-3) (2000) 113–120

23. Kamsties, E., Lott, C.M.: An empirical evaluation of three defect-detection tech-
niques. In Schäfer, W., Botella, P., eds.: Software Engineering — ESEC ’95, Berlin,
Heidelberg, Springer Berlin Heidelberg (1995) 362–383

24. Müller, M.M.: Are reviews an alternative to pair programming? Empir. Softw.
Eng. 9(4) (2004) 335–351

25. Khandelwal, S., Sripada, S.K., Reddy, Y.R.: Impact of gamification on code review
process: An experimental study. In: Proc. of the 10th Innovations in Software
Engineering Conference, ACM (2017) 122–126

26. Hatton, L.: Testing the value of checklists in code inspections. IEEE software
25(4) (2008) 82–88

27. Belli, F., Crisan, R.: Empirical performance analysis of computer-supported code-
reviews. In: Proceedings The Eighth International Symposium on Software Relia-
bility Engineering, IEEE (1997) 245–255

28. El Emam, K., Laitenberger, O.: Evaluating capture-recapture models with two
inspectors. IEEE Trans. Softw. Eng. 27(9) (2001) 851–864

29. Hirao, T., Ihara, A., Matsumoto, K.i.: Pilot study of collective decision-making
in the code review process. In: Proc. of the 25th Annual Int. Conf. on Computer
Science and Software Engineering, IBM Corp. (2015) 248–251

30. Olorisade, B.K., Vegas, S., Juristo, N.: Determining the effectiveness of three
software evaluation techniques through informal aggregation. Information and
software technology 55(9) (2013) 1590–1601



31. Runeson, P., Stefik, A., Andrews, A., Gronblom, S., Porres, I., Siebert, S.: A
comparative analysis of three replicated experiments comparing inspection and
unit testing. In: 2011 Second International Workshop on Replication in Empirical
Software Engineering Research, IEEE (2011) 35–42

32. De Vreede, G.J., Koneri, P.G., Dean, D.L., Fruhling, A.L., Wolcott, P.: A col-
laborative software code inspection: the design and evaluation of a repeatable col-
laboration process in the field. International Journal of Cooperative Information
Systems 15(02) (2006) 205–228

33. Hémeury, B.: Report on the vera experiment. In: Int. Conf. on Reliable Software
Technologies, Springer (1999) 103–113

34. Kelly, D., Shepard, T.: Qualitative observations from software code inspection
experiments. In: Proc. of the 2002 conference of the Centre for Advanced Studies
on Collaborative research, IBM Press (2002) 5

35. Porter, A.A., Siy, H.P., Toman, C.A., Votta, L.G.: An experiment to assess the
cost-benefits of code inspections in large scale software development. IEEE Trans.
Softw. Eng. 23(6) (1997) 329–346

36. Wang, Y.Q., Qi, Z.Y., Zhang, L.J., Song, M.J.: Research and practice on education
of SQA at source code level. Int. J. of Eng. Education 27(1) (2011) 70

37. Panko, R.R.: Applying code inspection to spreadsheet testing. Journal of Man-
agement Information Systems 16(2) (1999) 159–176

38. Koneri, P.G., de Vreede, G.J., Dean, D.L., Fruhling, A.L., Wolcott, P.: The design
and field evaluation of a repeatable collaborative software code inspection process.
In: Int. Conf. on Collaboration and Technology, Springer (2005) 325–340

39. Cristia, M., Frydman, C.: Formal and semi-formal verification of a web voting
system. International Journal of Web Information Systems 11(2) (2015) 183–204

40. da Silva Neto, A.V., Vismari, L.F., Gimenes, R.A.V., Sesso, D.B., de Almeida,
J.R., Cugnasca, P.S., Camargo, J.B.: A practical analytical approach to increase
confidence in pld-based systems safety analysis. IEEE Systems J. (99) (2017) 1–12

41. Wood, M., Roper, M., Brooks, A., Miller, J.: Comparing and combining soft-
ware defect detection techniques: a replicated empirical study. In: Software Engi-
neeringESEC/FSE’97. Springer (1997) 262–277

42. Wilkerson, J.W., Nunamaker, J.F., Mercer, R.: Comparing the defect reduction
benefits of code inspection and test-driven development. IEEE Trans. Softw. Eng.
38(3) (2011) 547–560

43. Morales, R., McIntosh, S., Khomh, F.: Do code review practices impact design
quality? a case study of the qt, vtk, and itk projects. In: IEEE 22nd Int. Conf. on
Softw. Analysis, Evol., and Reengineering (SANER), IEEE (2015) 171–180

44. Oliveira, R., Estácio, B., Garcia, A., Marczak, S., Prikladnicki, R., Kalinowski, M.,
Lucena, C.: Identifying code smells with collaborative practices: A controlled ex-
periment. In: 2016 X Brazilian Symposium on Software Components, Architectures
and Reuse (SBCARS), IEEE (2016) 61–70

45. Swamidurai, R., Dennis, B., Kannan, U.: Investigating the impact of peer code
review and pair programming on test-driven development. In: IEEE SOUTH-
EASTCON 2014, IEEE (2014) 1–5

46. Bisant, D.B., Lyle, J.R.: A two-person inspection method to improve programming
productivity. IEEE Trans. Softw. Eng. (10) (1989) 1294–1304

47. McMeekin, D.A., von Konsky, B.R., Chang, E., Cooper, D.J.: Measuring cognition
levels in collaborative processes for software engineering code inspections. In: Int.
Conf. on IT Revolutions, Springer (2008) 32–43



48. McMeekin, D.A., von Konsky, B.R., Chang, E., Cooper, D.J.: Checklist based
reading’s influence on a developer’s understanding. In: 19th Australian Conference
on Software Engineering (aswec 2008), IEEE (2008) 489–496

49. McIntosh, S., Kamei, Y., Adams, B., Hassan, A.E.: An empirical study of the
impact of modern code review practices on software quality. Empir. Softw. Eng.
21(5) (2016) 2146–2189

50. St̊alhane, T., Awan, T.H.: Improving the software inspection process. In: European
Conference on Software Process Improvement, Springer (2005) 163–174

51. Dunsmore, A., Roper, M., Wood, M.: The role of comprehension in software in-
spection. J. Syst. Softw. 52(2-3) (2000) 121–129

52. Da Cunha, A.D., Greathead, D.: Does personality matter?: an analysis of code-
review ability. Communications of the ACM 50(5) (2007) 109–112

53. Thongtanunam, P., McIntosh, S., Hassan, A.E., Iida, H.: Investigating code review
practices in defective files: An empirical study of the qt system. In: Proc. of the
12th Working Conference on Mining Software Repositories, IEEE (2015) 168–179

54. Kononenko, O., Baysal, O., Guerrouj, L., Cao, Y., Godfrey, M.W.: Investigating
code review quality: Do people and participation matter? In: 2015 IEEE Int. Conf.
on software maintenance and evolution (ICSME), IEEE (2015) 111–120

55. de Mello, R.M., Oliveira, R.F., Garcia, A.F.: On the influence of human factors
for identifying code smells: a multi-trial empirical study. In: 2017 ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement
(ESEM), IEEE (2017) 68–77

56. Murakami, Y., Tsunoda, M., Uwano, H.: Wap: Does reviewer age affect code
review performance? In: 2017 IEEE 28th International Symposium on Software
Reliability Engineering (ISSRE), IEEE (2017) 164–169

57. Seaman, C.B., Basili, V.R.: An empirical study of communication in code inspec-
tions. In: Proc. of the (19th) Int. Conf. on Softw. Eng., IEEE (1997) 96–106

58. Porter, A., Siy, H., Mockus, A., Votta, L.: Understanding the sources of variation
in software inspections. ACM Trans. Softw. Eng. Methodol. 7(1) (1998) 41–79

59. Müller, M.M.: Two controlled experiments concerning the comparison of pair
programming to peer review. J. Syst. Softw. 78(2) (2005) 166–179

60. Spohrer, K., Kude, T., Schmidt, C.T., Heinzl, A.: Knowledge creation in infor-
mation systems development teams: The role of pair programming and peer code
review. In: ECIS. (2013) 213

61. Miller, J., Yin, Z.: A cognitive-based mechanism for constructing software inspec-
tion teams. IEEE Trans. Softw. Eng. 30(11) (2004) 811–825

62. Sutherland, A., Venolia, G.: Can peer code reviews be exploited for later infor-
mation needs? In: 2009 31st Int. Conf. on Softw. Eng.-Companion Volume, IEEE
(2009) 259–262

63. Seaman, C.B., Basili, V.R.: Communication and organization: An empirical study
of discussion in inspection meetings. IEEE Trans. Softw. Eng. 24(7) (1998) 559–
572

64. Bosu, A., Carver, J.C., Bird, C., Orbeck, J., Chockley, C.: Process aspects and
social dynamics of contemporary code review: Insights from open source develop-
ment and industrial practice at microsoft. IEEE Trans. Softw. Eng. 43(1) (2016)
56–75

65. Panichella, S., Arnaoudova, V., Di Penta, M., Antoniol, G.: Would static analysis
tools help developers with code reviews? In: IEEE 22nd Int. Conf. on Softw.
Analysis, Evol., and Reengineering (SANER), IEEE (2015) 161–170



66. Thompson, C., Wagner, D.: A large-scale study of modern code review and security
in open source projects. In: Proc. of the 13th Int. Conf. on Predictive Models and
Data Analytics in Software Engineering, ACM (2017) 83–92

67. Lei, Q., He, Z., Fuqun, H., Bin, L.: Classification of air on-board software code
defects and investigations. Procedia Engineering 15 (2011) 3577–3583

68. Russell, G.W.: Experience with inspection in ultralarge-scale development. IEEE
software 8(1) (1991) 25–31

69. Siy, H., Votta, L.: Does the modern code inspection have value? In: Proc. of the
IEEE Int. Conf. on Softw- Maintenance (ICSM’01), IEEE (2001) 281

70. Bavota, G., Russo, B.: Four eyes are better than two: On the impact of code
reviews on software quality. In: 2015 IEEE Int. Conf. on Software Maintenance
and Evolution (ICSME), IEEE (2015) 81–90

71. Bosu, A., Carver, J.C.: Impact of peer code review on peer impression formation:
A survey. In: 2013 ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, IEEE (2013) 133–142

72. Beller, M., Bacchelli, A., Zaidman, A., Juergens, E.: Modern code reviews in
open-source projects: Which problems do they fix? In: Proc. of the 11th working
conference on mining software repositories, ACM (2014) 202–211

73. Bernhart, M., Grechenig, T.: On the understanding of programs with continuous
code reviews. In: 2013 21st Int. Conf. on Program Comprehension (ICPC), IEEE
(2013) 192–198

74. Mäntylä, M.V., Lassenius, C.: What types of defects are really discovered in code
reviews? IEEE Trans. Softw. Eng. 35(3) (2008) 430–448

75. Runeson, P., Stefik, A., Andrews, A.: Variation factors in the design and analysis
of replicated controlled experiments. Empir. Softw. Eng. 19(6) (2014) 1781–1808

76. Baysal, O., Kononenko, O., Holmes, R., Godfrey, M.W.: Investigating technical
and non-technical factors influencing modern code review. Empir. Softw. Eng.
21(3) (2016) 932–959

77. Nanthaamornphong, A., Chaisutanon, A.: Empirical evaluation of code smells
in open source projects: preliminary results. In: Proc. of the 1st International
Workshop on Software Refactoring, ACM (2016) 5–8

78. Perry, D.E., Porter, A., Wade, M.W., Votta, L.G., Perpich, J.: Reducing inspection
interval in large-scale software development. IEEE Trans. Softw. Eng. 28(7) (2002)
695–705

79. Jenkins, G.L., Ademoye, O.: Can individual code reviews improve solo program-
ming on an introductory course? Innovation in Teaching and Learning in Informa-
tion and Computer Sciences 11(1) (2012) 71–79

80. Baum, T., Liskin, O., Niklas, K., Schneider, K.: Factors influencing code review
processes in industry. In: Proc. of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, ACM (2016) 85–96

81. Ackerman, A.F., Buchwald, L.S., Lewski, F.H.: Software inspections: an effective
verification process. IEEE software 6(3) (1989) 31–36

82. Rigby, P., Cleary, B., Painchaud, F., Storey, M.A., German, D.: Contemporary
peer review in action: Lessons from open source development. IEEE software
29(6) (2012) 56–61

83. Kitchenham, B., Brereton, P.: A systematic review of systematic review process
research in software engineering. Inf. Softw. Technol. 55(12) (2013) 2049–2075


