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Abstract 51 

Rapid urbanization and the global loss of biodiversity necessitate the development of a 52 

research agenda that addresses knowledge gaps in urban ecology that will inform policy, 53 

management, and conservation. To advance this goal, we present six topics to pursue in urban 54 

biodiversity research: (i) the socioeconomic and social-ecological drivers of biodiversity loss 55 

vs. gain of biodiversity, (ii) the response of biodiversity to technological change, (iii) 56 

biodiversity-ecosystem service relationships, (iv) urban areas as refugia for biodiversity, (v) 57 

spatiotemporal dynamics of species, community changes, and underlying processes, and (vi) 58 

ecological networks. We discuss overarching considerations and offer a set of questions to 59 

inspire and support urban biodiversity research. In parallel, we advocate for communication 60 

and collaboration across many fields and disciplines in order to build capacity for urban 61 

biodiversity research, education, and practice. Taken together we note that urban areas will 62 

play an important role in addressing the global extinction crisis. 63 

  64 

Keywords 65 

Biodiversity loss, Ecosystem services, Extinction crisis, Social-ecological systems, Urban 66 

conservation 67 

 68 

Biodiversity is declining worldwide, driven foremost by the intensification in land 69 

management and the transformation of natural areas for agriculture, production forestry, and 70 

settlements (IPBES 2019). Urban areas have doubled since 1992 (IPBES 2019), and in 71 

comparison to 2020 are projected to expand between 30% and 180% until 2100, depending 72 

on the scenario applied (Chen et al. 2020). Notably, though, urban growth is often located in 73 

regions of high biodiversity (Miller & Hobbs 2002, McDonald et al. 2008, Seto et al. 2012) 74 

and impacts ecosystems far beyond urban areas, through resource demands, pollution, and 75 
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climate impacts (McDonald et al. 2019). Therefore, biodiversity conservation in urban areas 76 

needs to be shaped in a way that supports global conservation efforts. 77 

 78 

Urbanization affects biodiversity at various inter- and intra-specific levels, from taxonomic 79 

(Beninde et al. 2015) and functional (Lososová et al. 2016, La Sorte et al. 2018) to 80 

phylogenetic (Ricotta et al. 2009, Sol et al. 2017), and genetic diversity (Miles et al. 2019) 81 

and to the composition of species communities and assemblages (see e.g., Williams et al. 82 

2015 for functional trait composition of urban floras). Relative to natural areas, urban areas 83 

often contain depleted ecological communities (Aronson et al. 2014, Sol et al. 2017, Fournier 84 

et al. 2020, but see Sattler et al. 2011) but for vascular plants support exceptionally high 85 

numbers of both native and non-native species, including a range of rare and threatened 86 

native species (Kowarik 2011, Ives et al. 2016, Planchuelo et al. 2020). Across taxa, 87 

urbanization filters regional biotas with differences among native and non-native species and 88 

species of different residence time, creating a novel arrangement of assemblages (e.g., 89 

Williams et al. 2009, Merckx and Van Dyck 2019). Since the early 2000s there has been a 90 

marked increase in evaluating how ecological (Kowarik 2011) and socioeconomic factors 91 

(Hope et al. 2003) drive urban biodiversity patterns in species abundance, richness, and 92 

distribution. However, much of this increase focused on local/regional description of patterns 93 

leading McDonnell and Hahs (2013) to call for a research agenda that identified generally 94 

valid relationships between urban environments and biodiversity, set local results into global 95 

context, integrated potential social predictors of biodiversity, reached mechanistic 96 

understanding of urban biodiversity, and translated practitioner questions into actionable 97 

science. Likewise, other urban ecology publications advocated for cross-region, multi-scale, 98 

and transdisciplinary studies that considered the complexity of urban environments (Niemelä 99 

2014, Pataki 2015, McPhearson et al. 2016, Barot et al. 2019). Since then, the number of 100 
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cross-region comparisons has increased (Aronson et al. 2014, Pataki 2015) and the focus of 101 

urban biodiversity research expanded to include urban evolutionary ecology and the rapid 102 

adaptation of species to urban settings (Marzluff 2012, Alberti 2015, Rivkin et al. 2019), how 103 

urban biodiversity influences ecosystem functions and underlying services that affect human 104 

wellbeing (Ziter 2016, Schwarz et al. 2017), and whether urban habitats are hotspots or 105 

ecological traps (or neither) for biodiversity (Noreika et al. 2015, Lepczyk et al. 2017). 106 

Beyond science, there has been an increase in public policies, programs, and science-policy 107 

discourse related to interactions of green infrastructure with human health and wellbeing, the 108 

development of livable urban areas, and the impacts of urbanization on biodiversity (Nilon et 109 

al. 2017, Barot et al. 2019). For instance, recent international agreements, such as the United 110 

Nations’ (2015) Sustainable Development Goals seek to help towns and cities develop plans 111 

to protect biodiversity. However, even with the rapid gain in urban biodiversity knowledge 112 

and its increased inclusion in policy and planning, biodiversity loss continues. There are gaps 113 

in our understanding critical to improving biodiversity conservation policies and management 114 

in urban areas that need to be filled to improve global biodiversity outcomes. 115 

To address these gaps, we identify six topics and three overarching considerations (Fig. 1) 116 

that capture trajectories of future urban biodiversity research. We then provide a set of 117 

emergent questions and examples on how to approach them (Box 1) that will be important to 118 

address if society is to accommodate biodiversity conservation within urban areas. Finally, 119 

we introduce local and international programs and highlight collaborative ways forward at the 120 

science-policy interface. Topics and overarching considerations were identified through an 121 

iterative process, similar to a Delphi approach, from mid-2018 to early-2020 amongst 122 

participants of a workshop held at Rutgers University, New Brunswick NJ, USA. Participants 123 

consisted of early-career and advanced researchers from Africa, the Americas, Australia, and 124 

Europe who represent a diversity of backgrounds, perspectives, and research foci. To select 125 
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questions, each participant submitted their key question. The full list of questions was then 126 

revised by the group until consensus was reached (more topics and related questions exist, 127 

such as urban evolutionary ecology, which however, we do not present because they have 128 

only recently seen a strong increase in studies. We have deliberately focused on the six topics 129 

we felt were most relevant to the widest range of urban biodiversity studies). The topics and 130 

questions are offered to inspire and support future efforts in urban biodiversity research and 131 

to strengthen the role urban areas play in maintaining global biodiversity. 132 

 133 

Future Topics in Urban Biodiversity Research 134 

1. Gain a better understanding of social-ecological and socioeconomic drivers of urban 135 

biodiversity 136 

A range of factors associated with people and our societies directly and indirectly influence 137 

urban biodiversity (McDonald et al. 2019). These factors include law (Mauerhofer and Essl 138 

2018), policy (Meyer 2006), socioeconomic inequality (Hope et al. 2003, Cilliers et al. 2012), 139 

civic action such as that related to public enthusiasm about insect pollinators (Hall and 140 

Martins 2020), recent and past management (Boone et al. 2009, Johnson et al. 2015), and 141 

how people’s individual activities and choices, such as recycling habits, pet ownership, yard 142 

management, or vehicle use affect ecosystems and human-nature relationships (Lepczyk et al. 143 

2004). Despite the meta-analysis of ecological and social factors driving urban biodiversity 144 

by Beninde et al. (2015) there is a need for greater clarity around which of these factors are 145 

more important for urban biodiversity and how their importance changes across spatial, 146 

temporal, or organization scales. For example, are the trends consistent between different 147 

levels of organization (e.g. individuals vs. species vs. communities) or different facets of 148 

biodiversity, such as rare vs. common, or native vs. non-native species; considerations of 149 

taxonomic vs. functional vs. phylogenetic representations; or even between habitats or along 150 
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environmental gradients. Effects of legal systems on biodiversity can be indirect (e.g., 151 

subsidies to support commuting can promote urban sprawl, resulting in habitat loss; Meyer 152 

2006), and laws for different goals (e.g., biodiversity conservation or climate change 153 

mitigation) are increasingly conflicting (Mauerhofer and Essl 2018). In order to inform policy 154 

and management, a thorough understanding of the factors that drive human behaviors that 155 

affect biodiversity in different places – e.g., in different regions, separate urban areas, or 156 

separate parts of an urban area – is needed. For example, the luxury effect (Hope et al. 2003) 157 

that has been identified in urban areas of the Global North does not necessarily hold in the 158 

Global South (Cilliers et al. 2012), or even Global North cities in the geographic South 159 

(Kendal et al. 2015). Identifying ways to promote behavioral change is critical for adjusting 160 

human actions to benefit urban biodiversity (Shwartz et al. 2014). For example, many 161 

property owners intentionally manage their yards for the benefit of wildlife (Lepczyk et al. 162 

2004), through such activities as cultivating native plant species in an effort to support 163 

pollinators (Garbuzov and Ratnieks 2014). Specifically, we need to answer the following 164 

questions: 165 

▪ Which factors modulate the strength of relationships between social-ecological, 166 

socioeconomic, and environmental drivers with biodiversity at different spatial 167 

scales? 168 

▪ What tools (e.g., cultural, economic, political) can affect behavior change in people 169 

that will reduce their ecological impacts and promote biodiversity? 170 

▪ Are laws and other protection mechanisms to support biodiversity adequate, enforced 171 

and effective (e.g., does management of urban protected areas support rare species)? 172 

▪ Does a biodiversity-conscious urban public influence global conservation efforts?  173 

▪ How do we operationalize our knowledge of social-ecological linkages into actions 174 

that promote biodiversity conservation in urban areas and beyond? 175 
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 176 

2. Identify the response of biodiversity to technological change 177 

New and existing forms of technology are being used within urban areas that are likely 178 

having unintended consequences on species and ecosystems. For instance, artificial lights, 179 

anthropogenic noise, new forms of transportation, and novel building materials have no 180 

natural analogues but are prevalent in urban areas (Gaston et al. 2015). Notably, both light 181 

and noise pollution are a growing focus of urban biodiversity research. In the case of lighting, 182 

changes from incandescent and fluorescent to light-emitting diodes (LED) have resulted in 183 

light that is both brighter and cheaper. Urban administrations have thus embarked on a trend 184 

towards building brighter and denser networks of streetlights (Hölker et al. 2010). But, 185 

artificial lighting has been demonstrated to cause changes in functional traits such as 186 

circadian and circannual rhythms (Dominoni et al. 2014, Robert et al. 2015), disrupt 187 

courtship behaviors and mating success in fireflies and moths (Van Geffen et al. 2014, 188 

Firebaugh and Haynes 2019), and led to shifts and declines in invertebrate and vertebrate 189 

diversity (Hale et al. 2015, Knop et al. 2017). Consequently, artificial lighting may have large 190 

effects across species and trophic levels. As such, important questions that need to be 191 

addressed are: 192 

▪ Whether and to what extent do changes to LED – in relation to other lights sources – 193 

contribute to decreasing biodiversity, altered behavior of organisms, and shifts in the 194 

taxonomic and functional composition of communities? 195 

▪ How does artificial lighting affect migratory species’ pathways? 196 

▪ How does artificial lighting interact with climate change to create larger trophic mis-197 

matches than expected with just climate change? 198 

 199 
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Anthropogenic noise arises from a variety of sources, including vehicles, planes, 200 

construction, tools, and human interactions. It impacts biodiversity through the behavioral 201 

traits of a range of taxa dependent on acoustic communication in a variety of ways, including 202 

habitat choice and mating, which has evolutionary implications (Parris et al. 2009, Nordt and 203 

Klenke 2013, Lampe et al. 2014). While urban transportation is moving towards more electric 204 

vehicles (Ortar and Ryghaug 2019), which may decrease noise, this may increase the number 205 

of vehicle-wildlife collisions as vehicle collisions are correlated with the human footprint on 206 

the landscape (Hill et al. 2019). Air traffic has received less urban biodiversity research 207 

attention than road or railway traffic, although its noise emissions and collisions can affect 208 

birds, bats, flying insects and even wind dispersed plant seeds. Unmanned aerial vehicles will 209 

increase the frequency of these interactions (Davy et al. 2017). Given these changes in noise 210 

and transportation it is important to connect transport planning and policy with urban 211 

biodiversity knowledge to decrease current and potential future threats. As such, the 212 

following questions are important to address: 213 

▪ How do technological advances, such as changes in vehicle types and related noise, 214 

select for novel adaptations in animal physiology and behavior, and what does this 215 

mean for population dynamics and species fitness? 216 

▪ What are the implications of noise-induced selection pressure on biodiversity and 217 

ecosystem functioning? 218 

▪ How are animals affected by new transport options (e.g., unmanned aerial vehicles) 219 

and which protection measures can be taken to mitigate negative effects? 220 

 221 

Another form of technological change is the shift in building materials and technologies that 222 

can lead to both problems and opportunities for urban biodiversity. For instance, glass 223 

façades are sources of collision for birds (Hager et al. 2017), and new insulating materials 224 
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hinder birds, bats, and insects from nesting within buildings. Gaps in walls and roofs can 225 

provide habitat for a range of plants and small animals (Yalcinalp and Meral 2017), but new 226 

walls are often made from different materials and are seamless, while roofs are made animal 227 

proof. In addition, new architectural fashions or building technologies might lead to novel 228 

challenges for biodiversity. Even green façades, roofs, and walls that can support a range of 229 

taxa (Filazzola et al. 2019) cannot fully substitute for the loss of habitat on the ground 230 

(Williams et al. 2014). Still, design solutions exist that better integrate buildings and species 231 

conservation, such as window decals and fenestration or well-connected ground-, façade- and 232 

roof vegetation that could decrease fragmentation (Apfelbeck et al. 2020). New building 233 

trends and materials require that architects, planners and practitioners work with ecologists to 234 

learn from action and to mitigate negative effects. Such negative effects can be reduced 235 

through answering the following questions: 236 

▪ Which materials provide the best synergies for construction suitability, longevity, and 237 

embodied energy that also minimize impacts to biodiversity? 238 

▪ How can buildings be designed to promote human health and wellbeing, 239 

sustainability, and biodiversity? 240 

▪ Which synergies or tradeoffs can arise from reconciling ecological and engineering 241 

solutions that aim to provide a suite of benefits for different types of built 242 

infrastructure? 243 

 244 

3. Better understand how urban biodiversity links to ecosystem services 245 

Urban development and climate change amplify health and wellbeing risks to the public such 246 

as heat waves, pollution, pest occurrence, and their interactions. As a result, the scientific and 247 

political interest in urban ecosystem services (Haase et al. 2014) is growing. Policies 248 

increasingly promote the enhancement of ecosystem service delivery in urban areas. For 249 
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example, a European Union report on “the multifunctionality of green infrastructure” 250 

emphasizes that the role of green infrastructure “in protecting biodiversity is highly 251 

dependent on its role in promoting ecosystem services and vice versa” (European 252 

Commission’s Directorate-General Environment 2012: 2). While a positive biodiversity-253 

ecosystem service relationship is often assumed (Schwarz et al. 2017), biodiversity can cause 254 

disservices as well (Lyytimäki and Sipilä 2009), and biodiversity-ecosystem service 255 

relationships can be positive, negative, or neutral (Ziter 2016, Schwarz et al. 2017). 256 

Moreover, taxonomic diversity has mainly been tested as an indicator of urban ecosystem 257 

services, but a more complete and nuanced understanding will only come from testing these 258 

relationships across different levels of biodiversity, such as different functional groups, rare 259 

vs. common or native vs. non-native species (Ziter 2016, Schwarz et al. 2017). Managing 260 

urban habitats for the delivery of ecosystem services will not automatically benefit 261 

biodiversity. On the contrary, it might impose an additional anthropogenic filter on top of the 262 

existing environmental, social-ecological, and socioeconomic filters that affect species in 263 

urban habitats (Aronson et al. 2016) – such as by cultivating non-native species for the sake 264 

of ecosystem service delivery, raising the risk of biological invasions. Similarly, benefits or 265 

impacts from the terrestrial realm may be offset by gains or repercussions in freshwater or 266 

aquatic environments (Bugnot et al. 2019). Understanding whether and how biodiversity 267 

supports ecosystem services better than single species is imperative for urban planning as 268 

well as for understanding how it may provide resilience to the impacts of climate change and 269 

other stressors that are deteriorating urban biodiversity (Kabisch et al. 2016). Moreover, we 270 

cannot assume that biodiversity-ecosystem service relationships are the same across urban 271 

areas, cultures, and regions. For example, poorer households tend to rely more on cultivating 272 

crop species in their gardens than households of higher economic status (Lubbe et al. 2010), 273 

thus promoting different species. This is particularly pronounced in cities of developing 274 
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nations (du Toit et al. 2018). We need to identify generalities and particularities, and 275 

communicate successes and failures across science, policy, and practice. In particular, it is 276 

important to address the following questions:  277 

▪ How do environmental, social-ecological, and socioeconomic factors affect 278 

biodiversity-ecosystem service relationships, and how do these compare between the 279 

Global North and the Global South? 280 

▪ What is the role of different types of biodiversity (habitat, taxonomic, genetic, and 281 

phylogenetic diversity) as well as inter- and intra-specific functional diversity, and of 282 

different groups of species (e.g., non-native and invasive, rare species, functional 283 

groups) in relation to ecosystem services? 284 

▪ Which synergies and tradeoffs among biodiversity and ecosystem services exist in 285 

urban environments (e.g., if in the light of climate change, cities increasingly 286 

cultivate non-native species, what implications will this have on biodiversity)? 287 

 288 

4. Identify how cities act as refugia for biodiversity 289 

Urban areas may serve as refugia for biodiversity, particularly when the surrounding non-290 

urban landscape is heavily altered by agriculture, forestry, and other human land uses 291 

(Baldock et al. 2015). In fact, urban areas have become refugia for an increasing number of 292 

animal species, from those that have shared human settlements for centuries such as rats, to 293 

foxes or coyotes that have migrated to settlements only within the past decades (Gloor et al. 294 

2001, Rashleigh et al. 2008). Urban areas can have positive impacts on regional biodiversity 295 

in five main ways. First, urban habitats can support populations that are threatened or 296 

extirpated from the regional landscape (Ives et al. 2016). For example, novel urban 297 

ecosystems such as wasteland sites support considerable numbers of rare plant and insect 298 

species (Kattwinkel et al. 2011, Kowarik & von der Lippe 2018). Second, the habitats and 299 
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activities supported by people may buffer populations during periods of stress. For example, 300 

supplemental bird feeding can contribute to increased diversity of birds in urban landscapes 301 

(Plummer et al. 2019). Third, species may be released from negative interspecific 302 

interactions, such as herbivory, predation, or parasitism, allowing populations of species to 303 

persist in the urban landscape that could not persist in the regional landscape (Murray et al. 304 

2019). These mechanisms might be similar to those driving biological invasions (e.g., enemy 305 

release hypothesis; see Jeschke (2014) for an overview). Fourth, populations adapted to urban 306 

environments may in part be precursors for adaptation to climate change, particularly to 307 

temperature increases (Ziska et al. 2003). Finally, nature in urban areas allows for 308 

opportunities to involve the public in biodiversity engagement and stewardship (Ramalho and 309 

Hobbs 2012). Open questions about cities as refugia for biodiversity include: 310 

▪ Under which circumstances can urban populations be sources for repopulating non-311 

urban areas? 312 

▪ How do species that migrate into and through urban areas affect existing urban 313 

biodiversity and ecosystem functioning? 314 

▪ How do we balance conserving urban biodiversity with human-wildlife conflicts?  315 

▪ To which extent are species living in urban areas or species used for urban green 316 

infrastructure able to adapt to climate change? 317 

▪ Are adaptations to urban environments precursors for adaptation to climate change or 318 

to habitat loss and fragmentation outside urban areas? 319 

 320 

5. Beyond static snapshots – identify spatiotemporal dynamics of species, community 321 

changes, and underlying processes 322 

Ramalho and Hobbs (2012) called for urban ecology to take the spatiotemporal dynamics of 323 

urban development into account. But few studies combine spatial and temporal patterns when 324 
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analyzing the response of biodiversity to urbanization. Most urban biodiversity research has 325 

been conducted either at small and detailed spatial scales or at a large spatial extent but with 326 

low resolution (i.e. large grain; Magle et al. 2019). What we need to resolve this tradeoff in 327 

grain size and extent is more spatially explicit data that compares different land use/cover 328 

types across multiple urban areas (e.g., Kalusová et al. 2019). Studies that utilize these 329 

approaches are becoming more common but for a range of questions, no general answer has 330 

been found, such as whether there are common trait responses to urbanization across regions 331 

(Williams et al. 2015), what limits the establishment of self-sustaining populations within 332 

urban areas (Kowarik & von der Lippe 2018), and how this differs among groups of species 333 

(taxa, native vs. non-native, rare vs. common, etc.). Combined with long term data as well as 334 

(global) socioeconomic data, spatially-explicit approaches will let us elucidate how and why 335 

species are distributed across urban areas and thus derive management measures at the local 336 

scale (e.g., green space management adapted to biodiversity needs) –where management 337 

usually happens. Ultimately, urban ecology faces the same issue as all of ecology in that we 338 

need long-term monitoring, observations, and experiments. While studies based on long-term 339 

observations exist (e.g., Chocholoušková & Pyšek 2003, Salinitro et al. 2019), these usually 340 

neither consider urban spatial heterogeneity nor differences among urban areas. Long-term 341 

spatiotemporal research will enable us to better disentangle shifts in trajectories, such as those 342 

that highlight the extinction crisis, compared to natural fluctuations within the system 343 

(Onuferko et al. 2018). This knowledge will ensure that we can more reliably predict future 344 

trends in urban biodiversity and determine where our response may be short term (e.g. a 345 

change in supplemental watering practices) and where a more concerted, coordinated and 346 

longer-term response may be required (e.g., banning the use of neonicotinoid pesticides in 347 

garden plants; Lentola et al. 2017). Unanswered questions on spatiotemporal urban 348 

biodiversity dynamics include: 349 
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▪ Can urban areas harbor self-sustaining populations of species of conservation 350 

concern and in which habitats or under which conditions is this possible? 351 

▪ What are the drivers and mechanisms shaping metapopulation and metacommunity 352 

dynamics across urban areas and beyond urban boundaries? 353 

▪ How do connections beyond urban boundaries – e.g., due to resource demand – affect 354 

biodiversity within an urban area? 355 

  356 

6. Gain an understanding of the effects of urbanization on multi-trophic interactions and 357 

ecological networks  358 

Ecological networks are being simplified and disrupted by various global change stressors 359 

(Heleno et al. 2020), with the consequences only partially understood, particularly in regards 360 

to urbanization effects on ecological networks (Moreira et al. 2019). Across broader 361 

landscapes undergoing anthropogenic change, both temporal (Renner and Zohner 2018) and 362 

spatial decoupling (Schweiger et al. 2008) of interacting species have been shown. This 363 

decoupling is driven by climate change that induces species migration; and by land use, 364 

which creates migration barriers (but to different extents across species). In urban 365 

environments, phenological shifts to both earlier and later dates occur (Wohlfahrt et al. 2019) 366 

and might result in temporal decoupling of species interactions and associated ecosystem 367 

services (Sherry et al. 2007). Fragmentation and the abundance of novel ecosystems 368 

(Kowarik 2011) that are characterized by novel combinations of abiotic factors and species 369 

assemblages (Heger et al. 2019) might further modify existing networks, while the large 370 

share of generalist species present in urban environments might stabilize networks 371 

(Schleuning et al. 2016). Importantly, urbanization can affect various multi-trophic 372 

interactions in markedly different ways. For example, in one experiment urbanization 373 

reduced top-down control of aphids by the larvae of syrphid flies, partly driven by urban 374 
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environmental conditions (Turrini et al. 2016). In contrast, while urbanization affected leaf 375 

chemical composition of English oak (Quercus robur L.), it was not related to decreases in 376 

leaf chewer damage (Moreira et al. 2019). These studies exemplify that an understanding of 377 

ecological networks is relevant for better determining both biodiversity-ecosystem function 378 

and biodiversity-ecosystem service relationships (Seibold et al. 2018). However, important 379 

questions remain, such as:  380 

▪ How do multiple urban drivers interact to affect ecological networks, and to what 381 

extent, at different spatial scales? 382 

▪ Do abrupt changes from diverse to simplified interaction networks occur in urban 383 

areas and under which conditions?  384 

▪ What are the effects of abrupt disruptions to the network? 385 

▪ How do urban-induced changes in ecological network complexity and diversity affect 386 

ecosystem functions and (dis-)services? 387 

▪ What interventions and actions enhance ecological network structure and diversity in 388 

urban areas? 389 

 390 

Overarching Considerations in Urban Biodiversity Research 391 

Broaden the geographic focus of urban biodiversity research 392 

The vast majority of urban biodiversity research to date has focused on urban areas in 393 

developed economies (McDonald et al. 2019). While we are not the first to say so, the bias 394 

remains. To truly understand how urbanization drives biodiversity and how we can design 395 

and manage for biodiverse urban areas, differences in historical legacies have to be addressed 396 

(Ramalho and Hobbs 2012), both within and between biogeographic realms. Special attention 397 

is required in regions where the most dramatic transformations associated with urbanization 398 

are expected to occur, particularly in Africa and Asia where most cities projected to become 399 
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megacities by 2030 are located (e.g., Lahore, Pakistan, and Luanda, Angola; UN DESA 400 

2016). Many of these megacities are situated in regions where biodiversity, poverty, and 401 

inequality intersect (Seto et al. 2012), and where detailed information about urbanization 402 

effects on social-ecological systems is scarce and underrepresented in the literature 403 

(Secretariat of the Convention on Biological Diversity 2012). Urban biodiversity patterns that 404 

hold for the Global North may not necessarily hold for the Global South (Silva et al. 2015). 405 

The interpolation of results from one part of the world to another or from large cities to small 406 

towns might not yield consistent or even appropriate outcomes (Duncan et al. 2011, Jung and 407 

Threlfall 2018). Also, the relevance of the topics that we present here will vary among 408 

regions – for example, the level and speed of technological change differs among countries 409 

and might take different trajectories in the future. Similarly, different ecosystem services will 410 

be prioritized in different urban areas. 411 

Urban biodiversity research is progressing in less well-studied regions of the world (e.g., Wu 412 

et al. 2014, Chamberlain et al. 2018, Ofori et al. 2018, Guenat et al. 2019), paving the way 413 

towards a more holistic understanding that is not dominated by particular patterns of urban 414 

development or socioeconomic systems. However, this progression requires urban 415 

biodiversity researchers from the Global North to actively redress geographic inequities in 416 

representation by proactively seeking out research from, and research opportunities in, these 417 

under-represented regions. 418 

 419 

Broaden the taxonomic focus of urban biodiversity research 420 

Another common problem in all biodiversity research is taxonomic bias. Within disciplines 421 

such as wildlife ecology, there is strong bias for birds and mammals (Christoffel and Lepczyk 422 

2012) and urban biodiversity research is similar (Marzluff 2016), with a focus on birds and 423 

vascular plants (Aronson et al. 2014). Other taxonomic groups are far less represented, 424 
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particularly invertebrates and microorganisms, making our understanding of how organisms 425 

respond to urbanization incomplete. While work on less represented taxa exists (e.g., Niemelä 426 

& Kotze 2009, Paap et al. 2017, Merckx et al. 2018), results are often published in 427 

specialized regional or taxonomic journals of which the broader scientific community is not 428 

aware. Furthermore, research on multiple taxa in urban systems is rare (but see Sattler et al. 429 

2010a,b, Concepción et al. 2016, Threlfall et al. 2017, Merckx et al. 2018). Finally, there is 430 

also a bias towards diurnal species and terrestrial or freshwater ecosystems, although a recent 431 

review highlights the potential for urban marine ecosystems to contribute to our 432 

understanding of urban biodiversity (Todd et al. 2019). Some unresolved questions on the 433 

geographic and taxonomic bias to be tackled by urban biodiversity researchers are: 434 

▪ How and why do spatial and temporal patterns of biodiversity differ within and 435 

among urban habitats and regions? 436 

▪ Do species of different taxa respond to urbanization in a similar way? 437 

▪ Do urban areas and their green infrastructure need to be designed differently across 438 

regions, countries, continents, and cultures to maintain and enhance biodiversity? 439 

 440 

Gain a mechanistic understanding of urban biodiversity 441 

There is a long-standing and repeated call for the need to move towards a more mechanistic 442 

understanding of how urban systems affect biodiversity (Shochat et al. 2006, McDonnell and 443 

Hahs 2013). While a range of drivers of urban biodiversity have been identified, in order to 444 

best manage and enhance biodiversity, we need to better understand the ecological processes 445 

that link drivers and responses. This call applies to all topics mentioned above, and although 446 

some progress has been made in this respect, urban biodiversity research is far from a 447 

comprehensive mechanistic understanding. 448 

 449 
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Great examples of mechanistic urban biodiversity research are investigations linking noise 450 

pollution to the abundance and traits of acoustically communicating species, where 451 

mechanisms can comprise shifts in behavioral traits such as temporal avoidance of traffic 452 

noise by birds (Nordt and Klenke 2013) or plastic or even genetically fixed adaptation 453 

(Lampe et al. 2014). Trait-based approaches are highly promising in the effort of gaining 454 

better mechanistic understanding (Lavorel and Garnier 2002), such as identifying functional 455 

groups of species that experience greater recruitment facilitation or limitation within urban 456 

environments (Piana et al. 2019). This will help explain how biodiversity responds to 457 

urbanization from individuals to populations to communities and ecological networks. 458 

Applying experiments in urban areas across the globe, as exemplified by GLUSEEN (Global 459 

Urban Soil Ecology and Education Network) for urban soil ecosystems (Pouyat et al. 2017) 460 

will help us identify mechanisms, find both generalities and particularities among taxa and 461 

regions, and yield synthetic understanding. The design of experiments needs to be extended 462 

beyond urban-rural gradients (McDonnell and Hahs 2008), as the complex mosaic of urban 463 

landscapes precludes “simple starting points and lines of argumentation to explain causal 464 

linkages between biological diversity and cities” (Werner and Zahner 2009, p. 56). Questions 465 

to be answered by mechanistic urban biodiversity research include: 466 

▪ How does the response of functional traits to specific urban site factors influence 467 

observed patterns of species presence, abundance, and biodiversity? 468 

▪ Are these responses observed across gradients of each site factor?  469 

▪ How do site factors interact in affecting biodiversity? 470 

▪ Is the functional response of species and communities to urbanization similar across 471 

regions, biomes, and taxa? 472 

 473 

Beyond a research agenda for urban biodiversity 474 
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Communication and collaboration across fields and disciplines are necessary to solve the 475 

questions and research needs raised here and to put results into practice. To do so, a range of 476 

promising avenues exists. First, city administrations and scientists have started recognizing 477 

the importance of putting people of different disciplines together to solve complex problems. 478 

Such city-based initiatives must happen at both local (Table 1) and global scales. Second, 479 

community/ citizen science has become increasingly popular. For example, eBird (Sullivan et 480 

al. 2014) has triggered urban bird biodiversity research (e.g., La Sorte et al. 2014, Clark 481 

2017), and BioBlitz (https://www.nationalgeographic.org/projects/bioblitz/) includes the City 482 

Nature Challenge specifically geared towards urban areas. Community/ citizen science efforts 483 

have the potential to increase public engagement with urban biodiversity and science more 484 

broadly (Bonney et al. 2016; Lepczyk et al. 2020). Similarly, urban biodiversity research and 485 

conservation can benefit from listening to community needs and aligning their goals with 486 

community values (Evans et al. 2005, Pandya 2012). Third, educational programs need to 487 

find a balance between providing a deep disciplinary understanding and integrating the 488 

teaching of ecology, landscape planning, public policy, and other relevant urban fields. Such 489 

programs can produce new generations of volunteers and professionals who will be 490 

knowledgeable about ecological issues and willing to build transdisciplinary partnerships, 491 

and thus be stronger in solving contemporary urban problems. Fourth, networks such as 492 

URBIO (Müller and Kamada 2011), the Society for Urban Ecology (www.society-urban-493 

ecology.org), UrBioNet (Aronson et al. 2016; http://urbionet.weebly.com/), and 494 

CitiesWithNature (https://cwn.iclei.org/) connect different actors with an interest in urban 495 

biodiversity and provide a platform for data sharing and collaboration. They have the 496 

potential to fill the gaps highlighted here and ensure that their output is widely 497 

communicated. Finally, manipulative experimental approaches will pave the way towards a 498 

mechanistic understanding of how urban systems affect biodiversity. In the case of urban 499 
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observational studies, much has been gained via comparative work across regions of the 500 

world such as the Globenet initiative (Niemelä and Kotze 2009). Recent promising 501 

experimental networks such as UWIN (Magle et al. 2019) or GLUE 502 

(www.globalurbanevolution.com/), that share a methodology in different urban areas across 503 

the globe, will identify generalities and yield synthetic understanding (Borer et al. 2014). 504 

 505 

In summary, research has greatly increased the understanding of urban biodiversity. By 506 

highlighting some of the remaining knowledge gaps, we offer a research agenda that we hope 507 

will inspire and support future urban biodiversity research. Through new ways of partnering 508 

across disciplines and fields, urban biodiversity research can both improve the science and 509 

raise the number of biodiversity-friendly actions transferrable to urban areas around the 510 

world. Doing this can minimize the anthropogenic impacts causing biodiversity loss. 511 
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 879 

Fig. 1. A pictogram illustrating the six topics and three overarching considerations we 880 

have identified for future urban biodiversity research. Topics include the need 1) to 881 

understand how social-ecological and socioeconomic drivers interact to influence urban 882 

biodiversity, 2) to identify biodiversity response to technological change (in the circle 883 

representing this topic, t, refers to time), 3) to better link biodiversity to ecosystem services in 884 

urban planning and design, 4) to understand whether urban areas act as refugia for 885 

biodiversity, 5) to identify spatiotemporal dynamics in biodiversity (in the circle, time and 886 

space are presented by shading and different buildings, respectively), and 6) to investigate 887 

ecological networks. Overarching considerations include the need to A) broaden the 888 

geographic and B) taxonomic focus of urban biodiversity research and to C) gain a 889 

mechanistic understanding of urban biodiversity (with symbols in the box representing a 890 

circle of question, study, analysis, and adaptation). 891 



38 
 
 

 892 



39 
 
 

 893 


