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Abstract

Elemental abundances in the solar corona are known to be different from those
observed in the solar photosphere. The ratio of coronal to photospheric abun-
dance shows a dependence on the first ionisation potential (FIP) of the element.
We estimate FIP bias from direct measurements of elemental abundances from
soft X-ray spectra using data from multiple space missions covering a range
of solar activity levels. This comprehensive analysis shows clear evidence for a
decrease in FIP bias around maximum intensity of the X-ray flare with coronal
abundances briefly tending to photospheric values and a slow recovery as the
flare decays. The departure from coronal abundances are larger for the low FIP
elements Ca, Fe and Si than for S which have a mid FIP value. These changes
in the degree of fractionation might provide inputs to model wave propagation
through the chromosphere during flares.
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1. Introduction

The abundance of elements in the solar photosphere is well established from
many decades of systematic observations of the Sun using a variety of techniques
and this has resulted in high confidence photospheric abundance values. How-
ever, abundance studies in the solar corona and coronae of other stars, have not
kept pace compared to photospheric studies. Though it is widely believed that
there exists a steady flow of photospheric material into the corona, possibly chan-
nelled by structures associated with magnetic field configurations, the coronal
abundance shows distinct deviations from photospheric values. For the solar case,
studies show enhanced abundance of elements with low first ionisation potential
(FIP) over photospheric values, often categorized as a FIP bias (ratio of low
FIP element coronal abundances to corresponding photospheric values). Stellar
coronae also exhibit this effect (Drake, Laming, and Widing, 1997; Laming and
Drake, 1999; Garcia-Alvarez et al., 2004) as well as the inverse termed as inverse-
FIP (IFIP) effect (see Laming, 2015, for a review). Studies in the past such as
those by Feldman (1992), Fludra and Schmelz (1999), Phillips et al. (2003),
Feldman and Laming (2006), Sylwester et al. (2010), Sylwester et al. (2012),
Schmelz et al. (2012), Narendranath et al. (2014), Dennis et al. (2015) and
Moore et al. (2018) to name a few, suggest that this deviation or FIP bias is not
the same for all elements. The range of reported values in the past, also suggests
that FIP bias values may be nominally stable but possibly vary with solar cycle
phase (Brooks et al., 2017) and spatial location on the Sun.

The first result on the spectroscopic measurements of FIP bias variability
during the evolution of a flare was provided by Sylwester, Lemen, and Mewe
(1984). Ca abundances measured by the Rentgenovsky Spektrometr s Izognutymi
Kristalami (RESIK) Bragg Crystal spectrometer were observed to increase as
the flux in the narrow band continuum increased and showed a hysteresis during
the decay of the flare. Flare to flare differences in Ca abundance were pre-
sented in further detail by Sylwester et al. (1998). Warren (2014) measured the
Fe abundances (from irradiance measurements) using the Extreme Variability
Experiment (EVE) on board the Solar Dynamics Observatory (SDO) at the
peak of strong flares (X and M) showing that the plasma has photospheric
compositions. Measurements from the Flat Crystal Spectrometer (FCS) of the
Soft X-rays Polychromator on board the Solar Maximum Mission (SMM) showed
large variations in abundances even within non-flaring active regions and bright
points of the quiescent Sun (Saba and Strong, 1994).

Recent studies are providing evidence that suggest the key role of local mag-
netic fields in generating the observed FIP bias. A detailed study of an active
region by Baker et al. (2015) reports a decrease in FIP bias (abundances close to
photospheric) that is linked to small scale evolution of the underlying magnetic
field. FIP bias in emerging flux regions in a coronal hole were studied by Baker
et al. (2018) and it was shown that the changes were related to the magnetic
topology of the regions. Baker et al. (2019) observed IFIP patches at the foot
points during two confined flares in an active region and Baker et al. (2020)
reported similar observations in a highly complex active region with multiple
strong flares. Over solar cycle time scales, Brooks et al. (2017) showed a strong
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correlation of Ne coronal to photospheric abundance ratios, to the phases of the
solar cycle. Pipin and Tomozov (2018) further extended this to stars and have
shown that the FIP bias variations are likely related to the large scale coronal
magnetic field and activity level of the toroidal magnetic field. Such variations
could also occur at shorter time scales and smaller spatial scales. Laming (2017)
presented scenarios where the dependence of the variations in FIP bias is linked
to the origin and propagation sites of Alfvén waves.

Variations in coronal abundances in stellar flares have also been observed
in quiescent coronae which are IFIP biased showing photospheric composition
during those flares (Nordon, R. and Behar, E., 2008; Laming and Hwang, 2009;
Sasaki et al., 2020).

In this work, we provide clear evidence for FIP bias variation during the
evolution of flares at short time scales (minutes to seconds). While our flare
averaged abundance values are within the range reported earlier, this work
systematically probes the variation of FIP bias of Si, S, Ca, and Fe, during
the course of individual flares as well as their variations across flare classes.

2. Observations

Soft X ray spectroscopy of the solar corona is a useful diagnostic to remotely
study the plasma composition and its changes over time. Crystal-based X-ray
spectrometers have derived abundances using (line plus continuum) measure-
ments in narrow spectral bands with high resolution and centered about the
line of interest. Ideally, X-ray spectra below 8 keV need to be measured si-
multaneously with the continuum to clearly derive plasma temperature and
accurate estimates of X-ray line flux. Non-imaging broad band solar soft X-
ray spectrometers have been flown as supporting instruments in many planetary
missions since a knowledge of the rapidly evolving solar X-ray spectra is required
to convert planetary X ray flux to elemental abundances. We used data from
three missions with similar spectrometers (Si-PIN diodes) to derive elemental
abundances of the corona during a range of solar activity levels.

2.1. SMART-1 XSM

The X-ray Solar Monitor (XSM) on the Small Missions for Advanced Research
in Technology-1 (SMART-1) (Huovelin et al., 2002) is a single pixel, non imaging
Si-PIN detector with a 105° full field of view such that the full disk of the Sun
is observed at nearly all times. The solar data from this mission spans from 03
March 2004 to 30 August 2006 which includes the Earth escape phase and lunar
orbit phase when the solar activity was low. The useful operational energy range
was =~ 2 keV to 20 keV with some exceptions where the lower energy threshold
comes down to 1.8 keV (Si abundances were derived only for such cases). We
have used spectral data of nine long duration flares for this work which fall in
the B-C class.
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2.2. Chandrayaan-1 XSM

The X-ray Solar Monitor on Chandrayaan-1 is similar to the SMART-1 XSM
except for a reduction in the aperture size to accommodate a wider dynamic
range in the expected counts. This instrument measured the X-ray spectrum in
the range of approximately 1.8 - 20 keV from several X-ray flares during the nine
month mission life from 28 November 2008 to 29 August 2009 and the results
were presented in Narendranath et al. (2014). Narendranath et al. (2014). Here
we have used a C1 flare from XSM to look at the variation in FIP bias during
the latter.

2.3. MESSENGER- SAX

The Solar X ray Assembly (SAX) onboard the Mercury Surface, Space Environ-
ment, Geochemistry and Ranging (MESSENGER) satellite (around Mercury)
observed the Sun in X-rays during the period from 2004 to 2014. The observa-
tions at the distance of Mercury began in 2007. We have chosen 33 flares in the
B-M class for this work which have a clean rise and decay profile. The spectral
resolution of SAX is 600 eV at 5.9 keV with which the X-ray emission lines of
Si, S and Ca are not well resolved. However as shown by Dennis et al. (2015),
in the 1.6 to 4 keV region dominated by line emission, good fits do provide a
measure of the elemental abundances.

3. Analysis

The XSMs measure solar spectra with a time resolution of 16 s while SAX
spectra have typically 300 s binning. Since a range of activity levels are covered,
we used different integration times, suitably adjusted for the strength of flares.
The integrated flux (photons/cm?/s) in the 2 - 10 keV band multiplied by the
integration time is taken as a measure of the strength of the flare for inter-
flare comparison. SAX has a flat spectral resolution of 600 eV across its energy
range while energy dependent resolution is incorporated for the XSMs. On board
radioactive sources help in the calibration of XSMs and response matrices with
temperature dependent corrections for each data set are generated.

The spectral analysis was carried out with the Object Spectral Executive
(OSPEX) package which comes as part of the standard solarsoft package (SSW)
Freeland and Handy (1998). The spectra were fitted with a thermal model (sin-
gle temperature) calculated from CHIANTI (version 8.0.2) Dere et al. (1997)
(vth_abund in OSPEX) which consists of a continuum and multiple emission
lines. For larger flares, we added a non-thermal component to fit the continuum
(thick2 in OSPEX). Sample spectral fits from SMART-1 XSM, Chandrayaan-
1 XSM and MESSENGER-SAX are shown in figure 1. All three instruments
are Si-PIN detectors that do not have any significant continuum background.
In the absence of X-ray events, the background appears only as a peak at the
lower channels. This is not the same for all detectors and varies with the leakage
current. We have taken intervals where the leakage current is less than 10 pA for
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Table 1. Data source instruments .

Instrument Energy range Spectral Time Obs.period
Resolution Resolution
SMART-1-XSM 1.8 to 20 keV 280 eV 16 s 3/03/04 to 30/08/06
Chandrayaan-1-XSM 1.8 to 20 keV 220 eV 16 s 28/11/08 to 29/08/09
MESSENGER-SAX 1.6 to 9.5 keV 600 eV 300 s 2007 to 2014

all three detectors which ensures a more stable performance. The X-ray emission
measured is for the whole solar disc. We subtracted the pre-flare spectrum to
ensure that the derived abundances are indeed of the flare plasma. Elemental
abundances were derived in the usual logarithmic ratio with respect to hydrogen
(Aciem = log(Nejem/Ng + 12.0). The FIP bias values were derived with respect
to the photospheric abundances as given in Asplund et al. (2009). Error bars
are uncertainties arising from propagation of errors of fit parameters, while
expressing it as a ratio to photospheric values (or FIP bias). The Fe line is
excited only at higher plasma temperatures and is weak when temperatures are
lower as in smaller flares.
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Figure 1. Representative spectral fits to flare spectrum from (a) SMART-1 XSM (26 June
2004) (b) Chandrayaan-1 XSM (5 July 2009) (c) MESSENGER SAX (2 January 2014). The red
line indicates the best fit model (single temperature plasma varying the abundances) and the
black line shows the data. Emission lines from elements are marked at expected line energies.
Vertical blue dotted lines indicate the energy range used for fitting the model to the spectrum.
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4. FIP Bias

FIP bias has been reported in the solar corona for several decades now. We
have measured the abundances of low FIP elements Si, Ca and Fe, the mid-FIP
element S and the high-FIP element Ar during 43 flares using full disk integrated
spectra. Individual flares which are isolated events that dominate the soft X-ray
emission over the entire solar disk, are analysed in detail.

Figures 2, 3, and 4 show the evolution of FIP bias values for each of the four
low FIP elements as a function of time along with integrated light curves in the
2 - 10 keV range for three independent flares. Ar abundances derived have higher
uncertainties in comparison to the low FIP elements and hence are not shown
here. The FIP bias value of low FIP elements systematically decreases as the
flare intensity rises to a maximum and the bias value shows clear and consistent
evidence for recovery as the flare decays. For example, in Figure 2d, Fe FIP bias
decreases from around 4 to 1.4 and recovers to 4 after the flare. Si in Figure 3a
decreases to 1 from a preflare value of about 5. Ca FIP bias varies between 5 -
1 and does not show clear higher pre-flare values.

The FIP bias of S varies from 2.5 during pre- and post-flares to 1 during
the flare phase. These variations are significantly beyond the error bars within
the observation interval but are less when compared to other elements. This
behavior of FIP bias during a flare is independently shown by each of the low-
FIP elements detected in the multiple spectra. However, recovery to pre-flare
values is not clearly visible in complex flaring events. For example, in Figure 4
where this could arise due to sustained outburst lasting more than an hour with
multiple re-connection events.

For flares with sharply defined peaks, the minimum of the FIP bias appears
to precede the peak as shown in Figure 5. Additionally, there is a difference
observed in the rate of recovery to coronal values.

We also studied FIP bias variations using the full set of 43 flares (Table 2).
Data during the whole interval of a flare are summed and analysed, to derive the
mean FIP bias for each flare. A dotted line is drawn at FIP bias value equal to 1
which is when coronal abundances equal photospheric values. The general trend
for all elements of lower FIP bias for stronger flares (Figure 6), is consistent
with the speculation in Katsuda et al. (2020) that more intense flares show
larger departures of FIP values from nominal. Katsuda et al. (2020) used albedo
signal from Earth’s atmosphere during four giant solar flares measured using
the X-ray imaging spectrometer on Suzaku. Unlike our work, during the Suzaku
observations, the flare spectrum was not continuously monitored to derive the
rapidly changing FIP bias values with time, probably due to spacecraft con-
straints. Instead, bias values were compared from successive orbits with a large
time gap of nearly 90 minutes to arrive at their conclusion. Our cumulative
data for 43 flares show this trend most clearly for Fe, followed by Si. S is
the least fractionated. The trend is not very evident for Ca even though the
detailed analysis of individual flares, shows changes consistent with other low-
FIP elements. This could arise from the fact that the data points in Figure 6
represent mean FIP bias for the observed flare duration. In addition, Figure 6
shows that Ca has a greater tendency for a quick recovery to pre-flare FIP bias
values as the flare crosses its peak.
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There are a few instances of FIP bias falling below photospheric values.
Katsuda et al. (2020) also reports IFIP values for S and Si during the decay
phase. We suggest that in the future this can be investigated in detail using a

larger sample of flares and flare classes.
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Figure 3. Variation of FIP bias values during a B9 flare on 1 May 2004.(a) Si (b) S (c) Ca
and (d) Fe. The light curve of the flare in the 2-10 keV energy range is plotted in blue.
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Figure 5. FIP bias variation for the flares on (a) 6 January 2014 ( data in Figure 3) (b) 1
May 2004 (data in figure 4) for Ca, Fe, Si and S . The light curve in the 2-10 keV energy range
is plotted in blue. The recovery rates are observed to be different.

5. Discussion

The coronal FIP bias, first reported by Pottasch (1963) and consistently reported
in subsequent years by numerous authors is studied during flares using UV and
X-ray spectroscopic techniques, through direct sampling in slow and fast solar
wind and during observations of solar energetic events (SEP) in Earth’s vicinity.
The degree of enhancement reported in these studies shows a large range.
Explanations for this long standing puzzle of enhancement of low FIP ele-
mental abundance in the solar corona have been attempted by many authors.
Currently, the FIP effect is understood as arising from fractionation in the
chromosphere and subsequent acceleration of these ions in a force-free field into
the corona. Theoretical frameworks are described in Hénoux (1998), Laming
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Figure 6. FIP bias variations across flares as a function of the strength of the flare (integrated
flux in the 2-10 keV multiplied by the integration time). The spectra during the whole interval
of the flare are summed and analysed for 43 flares. The trend suggests a lower FIP bias (and
lesser fractionation) for higher intensity flares. A dotted blue line is drawn at FIP bias value=1
which is when coronal abundances are equal to photospheric ones.

(2004), Laming (2009), Laming (2012), Laming (2015). Laming (2004) suggested
a ponderomotive force arising from wave refraction in an inhomogenous plasma.
In a magnetic plasma, waves with frequencies much lower than the ion cyclotron
frequency are refracted to regions of high wave energy density taking along the
ions producing the FIP effect.

Laming (2017) studied the dependence of fractionation of elements on the
origin and propagation of Alfven waves through the chromosphere. The model
reproduces the observed fractionations in both open and closed field regions.
Laming et al. (2019) applied the model to investigate scenarios in source regions
of SEPs and the solar wind.

The results from our study here shows the time dependent variation of FIP
bias during the evolution of flares.

Soft X-ray emission in solar flares is dominant from the closed loops that are
filled with hot plasma. One of the ways to understand the systematic reduction
in FIP bias during the rising phase of a flare is the following. Assuming that a
reconnection process leads to a flare, the pre-flare magnetic field configuration
rapidly changes and new channels for upward flow may emerge. Plasma from
the upper photosphere fills the coronal loops which are observed in X rays.
The fractionation is brought about in the chromosphere by the action of the
ponderomotive force. The possible scenarios and parameter dependence of such a
model for variations in the degree of fractionation (as observed here) is described
in Laming (2017). When the upward flow speeds of the plasma is high, it would
pass through the chromosphere too quickly to get fractionated. During flares it
is likely that the subtle variations in the FIP bias as observed here is indicative
of the variations in heating and chromospheric evaporation.
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After flare maximum, the field configuration in the lower corona recovers to
form new closed shapes in loops that lead to reduced flow rates and higher
fractionation.

Though Laming (2017) model is more suitable for quiet Sun conditions, the
FIP bias decrease during a flare observed in this work can be attributed to the
presence of an open field configuration during a reconnection process in active
regions.

6. Summary

The evolution of absolute elemental abundances of Si, S, Ca, and Fe in the
flare plasma has been determined from soft X-ray spectroscopy. We show that
during flare peaks, the abundance of low FIP elements significantly reduces to
photospheric values. Short time-scale variations in the abundance values ob-
served in flares provide a framework to model the wave propagation and plasma
heating during disturbed solar conditions. Future measurements extending down
to 0.5 keV with high resolution spectrometers along with chromospheric velocity
variation and magnetic field measurements during the evolution of a flare would
provide valuable additional information to further constrain the model.
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