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An Excess of Risk-Increasing Low-Frequency Variants
Can Be a Signal of Polygenic Inheritance
in Complex Diseases

Yingleong Chan,1,2,3 Elaine T. Lim,1,2,4 Niina Sandholm,5,6,7 Sophie R. Wang,1,2,3

Amy Jayne McKnight,8 Stephan Ripke,2,4 DIAGRAM Consortium, GENIE Consortium, GIANT
Consortium, IIBDGC Consortium, PGC Consortium, Mark J. Daly,1,2,4 Benjamin M. Neale,2,4

Rany M. Salem,1,2,3 and Joel N. Hirschhorn1,2,3,*

In most complex diseases, much of the heritability remains unaccounted for by common variants. It has been postulated that lower-

frequency variants contribute to the remaining heritability. Here, we describe a method to test for polygenic inheritance from lower-

frequency variants by using GWAS summary association statistics. We explored scenarios with many causal low-frequency variants

and showed that there is more power to detect risk variants than to detect protective variants, resulting in an increase in the ratio of

detected risk to protective variants (R/P ratio). Such an excess can also occur if risk variants are present and kept at lower frequencies

because of negative selection. The R/P ratio can be falsely elevated because of reasons unrelated to polygenic inheritance, such as uneven

sample sizes or asymmetric population stratification, so precautions to correct for these confounders are essential. We tested our method

on published GWAS results and observed a strong signal in some diseases (schizophrenia and type 2 diabetes) but not others. We also

explored the shared genetic component in overlapping phenotypes related to inflammatory bowel disease (Crohn disease [CD] and

ulcerative colitis [UC]) and diabetic nephropathy (macroalbuminuria and end-stage renal disease [ESRD]). Although the signal was still

present when both CD and UC were jointly analyzed, the signal was lost when macroalbuminuria and ESRD were jointly analyzed, sug-

gesting that these phenotypes should best be studied separately. Thus, our method may also help guide the design of future genetic

studies of various traits and diseases.
Introduction

Most common diseases involve a mix of both genetic and

environmental factors and do not follow simple patterns

of Mendelian inheritance. In such diseases, the genetic

component is usually polygenic: genetic variation in

many genes individually contribute a small or a moderate

component of disease risk.1 Genome-wide association

studies (GWASs) have identified numerous genomic loci

in which common variants (R5% frequency) are associ-

ated with complex diseases.2 Even in some of the largest

and most successful GWASs to date, much of the genetic

contribution to phenotype remains unexplained (some-

times called ‘‘missing heritability’’),3,4 suggesting that

lower-frequency variants, not well surveyed by GWASs,

may also contribute to the missing heritability. Indeed,

in some diseases such as autism spectrum disorders (ASD

[MIM 209850]), inherited rare (<1% frequency) and low-

frequency (<5% frequency) variants have been recently

shown to play an important role in the genetic architecture

of the disorder,5,6 suggesting that more loci with low-

frequency variants could be identified if appropriate addi-

tional studies were performed. In other diseases, there is

as yet little evidence of a substantial role for low-frequency
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variation, leaving open the question of whether studies of

low-frequency variation will be fruitful for those diseases.

The relative success of different approaches in identi-

fying more contributing loci will depend on what type

of variation accounts for the missing heritability. Low-

frequency variants might remain undetected because

they might not be well represented or well tagged by

markers on genotyping arrays and therefore would not

be well imputed.7 Along these lines, the statistical power

to detect low-frequency variants in GWASs is much lower

than that of common variants if their underlying effect

sizes are similar.8 Knowing whether low-frequency variants

contribute to the missing heritability of a disease is impor-

tant because approaches better suited to identify addi-

tional common variants differ from those aimed at identi-

fying rarer variants (genotyping arrays with common

variants compared to arrays with lower-frequency variants

or sequencing).

Methods for detecting a contribution from common

variants to the missing heritability have been described

previously. In a GWAS of schizophrenia (SCZ [MIM

181500]),9 Purcell and colleagues developed the concept

of a polygenic score by combining the effects of multiple

common variants that are modestly associated with
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schizophrenia. They showed that the score is predictive of

schizophrenia in an independent cohort, thus indicating

that there is a polygenic signal from many yet-to-be-

detected common variants in schizophrenia. Yang and

colleagues adopted a different approach by assessing the

narrow-sense heritability of human height with a linear-

model analysis by using hundreds of thousands of

common variants.10 They found that at least 45% of the

variance of height can be accounted for by common vari-

ants, indicating that there are many common variants

associated with height that have yet to be discovered.

Although both methods can be used to detect a signal of

polygenic inheritance from common variants in complex

diseases, these tests were not designed to specifically test

for low-frequency variants and also require individual-

level genotype data.

In this manuscript, we describe an approach that can

be applied directly to GWAS summary statistics to ascer-

tain the presence of polygenic inheritance from low-

frequency variants. We observed that, if low-frequency

variants contribute to disease susceptibility, there can

be an excess of associated risk variants compared to pro-

tective variants at a given significance level. Here, risk

variants are defined as variants for which the minor allele

is associated with increased risk of disease and protective

variants are defined as those for which the minor allele is

associated with decreased risk of disease. Under the null

model, there should be no excess of associated risk vari-

ants compared to protective variants. We calculated the

risk to protective ratio (R/P ratio) (the ratio of the number

of detected risk variants over the number of detected

protective variants) to test for such an excess of risk

variants. We explored various scenarios that could give

rise to an increase in the R/P ratio. First, we showed

empirically and analytically that when low-allele-

frequency variants contribute to polygenic inheritance

of a disease with low prevalence, there is an elevated

R/P ratio because of greater power to detect risk variants

than protective variants. Next, we showed through simu-

lations that under a scenario of polygenic inheritance

that includes negative selection, risk variants can have

lower average frequencies than protective variants, lead-

ing to an elevated R/P ratio within the lower-frequency

range. However, we also showed that such an elevated

R/P ratio can occur because of reasons unrelated to poly-

genic inheritance. First, we showed that an uneven sam-

ple size (a substantially larger control group than case

group) can produce an apparent increase in the R/P ratio

and therefore, where the sample size is not balanced

between the case and control groups, one should

compare the observed R/P ratio against that obtained

through simulations with the same sized groups of cases

and controls. Next, we showed that particular scenarios

of asymmetric population stratification can produce a

similar excess of low-frequency risk variants and recom-

mend that precautions for detecting and correcting for

such stratification should be performed before one can
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confidently interpret an excess of risk variants as being

a signal of polygenic inheritance.

We then applied our method to results from published

GWASs for several diseases, including schizophrenia,11

bipolar disorder (BIP [MIM 125480]),12 major depressive

disorder (MDD [MIM 608516]),13 type 2 diabetes (T2D

[MIM 125853]),14 and various classes of obesity (OB

[MIM 601665]).15 We observed strong signals of increased

risk variants in several of the diseases but little or no signal

in others, suggesting that efforts to discover low-frequency

and rare variants will be more fruitful for the diseases with

such a signal. We further used our method to test whether

apparently related phenotypes share low-frequency or rare

genetic contributors and hence should be analyzed

together or separately. By applying the method to pheno-

types related to diabetic nephropathy (DN [MIM

603933])16 and inflammatory bowel disease (IBD [MIM

266600]),17 we found that the polygenic signal was elimi-

nated when individuals with macroalbuminuria and

individuals with end-stage renal disease were analyzed

together, whereas we still observed a significant signal

when individuals with Crohn disease and ulcerative colitis

were analyzed together. Thus, our method has the poten-

tial to guide the strategy in searching for additional genetic

loci as well as in prioritizing the choice of phenotype for

future studies of rare genetic variation in polygenic traits

and diseases.
Material and Methods

Testing for an Excess of Risk Variants from GWAS

Summary Statistics
Calculating the R/P Ratio Statistic from Observed GWAS Summary

Statistics

The four input fields we used for R/P ratio calculations for each

SNP are as follows: an identifier (rsID), the minor allele frequency,

the association p value, and a field to determine the direction of

effect, i.e., either an odds-ratio (OR) or an effect size (b). The ORs

or bs were adjusted to reflect the effect of the minor allele by

inverting the ORs or changing the sign of the bs if they were

reported for the major allele. Each variant was assigned as risk if

the OR > 1 or b > 0 and protective if the OR < 1 or b < 0. Neutral

variants, i.e. OR ¼ 1 or b ¼ 0 were discarded from the analysis. We

removed SNPs not present in the HapMap CEU population (phase

2, release 28),18,19 not in the 1000 Genomes EUR population,20 or

withminor allele frequency less than 1%.We sorted the remaining

variants in order frommost significant to least and performed LD-

pruning by systematically going through the variants and

removing variants that have an r2 > 0.1 with any of the more

significantly associated variants. We used PLINK21 to calculate r2

correlations of variant pairs within a 1 megabase window from

379 EUR individuals of the 1000 Genomes. To measure the excess

of risk variants in the lower-frequency range, we separated the

low-frequency variants into three distinct bins, i.e., 1%–5%, 5%–

10%, and 10%–15%.We also included the 30%–50%bin as a nega-

tive control, where we should not observe any excess of risk

variants. For each bin, we counted the number of detected risk var-

iants and the number of detected protective variants that meet
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significance cutoffs of p < 0.001 and p < 0.01. We calculated the

R/P ratio as

R=P ratio ¼ No: of detected risk variants

No: of detected protective variants
:

Assessing the Significance of the Observed R/P Ratio

To assess the significance of an elevation in R/P ratio, we simulated

individuals with HAPGEN22 by using parameters from the

HapMap CEU population (phase 3, release 2) to obtain the null

distribution of the log2 R/P ratio statistic. We first simulated

100,000 individuals to form a pool of individuals that we could

subsequently sample from. Next, we randomly sampled the

same number of individuals in the case and control groups as

were used in the actual GWAS, performed the association test

with PLINK, with LD-pruning and R/P ratio calculations identical

to the procedure described above. We repeated this process 1,000

times to obtain accurate estimates of the sample mean (m) and

standard deviation (s) of the log2 R/P ratio under the null for

each of our frequency bins and p value cutoffs. We calculated

the significance of the observed log2 R/P ratio by performing a

one-tailed Z test to obtain the Z score and p value (p), i.e.,

Z score ¼ observed log2R=P ratio� m

s

p ¼
ZN

Zscore

Nðx;0;1Þdx:

We defined p < 0.01 as our significance threshold for calling a

significant excess of risk variants. We used the log2 R/P ratio as

our test statistic because the log2 R/P ratio is normally distributed

for all the frequency bins and p value cutoffs used (Figure S1 avail-

able online).
Calculating Noncentrality Parameter for Comparing

Power between Risk and Protective Variants
Power Calculation

The power of a variant is expressed by calculating the expected

noncentrality parameter (NCP) of the c2 distribution for the alter-

native distribution. The greater the NCP, the more power there is

to detect the effective variant. The algorithm for calculating NCP

is identical to the genetic power calculator8 for case-control

threshold-selected quantitative traits, assuming an additive model

of the QTL effect, i.e., the dominance to additive QTL effect

parameter is set to 0. The variance explained for a SNP with allele

frequency as p and effect size as b is b22p(1 � p). For risk variants,

we calculated the NCP (NCPrisk) for multiple values of effect sizes

(b), ranging from 0 to 0.5 with intervals of 0.01. Similarly, for pro-

tective variants, we calculated the NCP (NCPprotective) for multiple

values of b, ranging from 0 to�0.5 with intervals of 0.01. The rela-

tive difference in power between risk and protective variants is

measured by the NCP ratio. The NCP ratio is calculated as

NCP ratio ¼ NCPrisk

NCPprotective

:

Base Model

We define the base model as a set of parameters used for calcu-

lating NCP: 10,000 case subjects, 10,000 control subjects, and

effective and marker variant frequency set to 1%. The prevalence
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is set as 1%, i.e., the trait threshold’s lower and upper limit is

2.33 and 9, respectively, for case subjects and �9 and 2.33 for

control subjects. We have used 9 and �9 as surrogates for infinity

(þN and -N, respectively), but any sufficiently large number will

not change the conclusions of the downstream analyses. Com-

plete linkage disequilibrium (LD) between the causal variant and

marker variant is assumed, i.e., D0 ¼ 1.
Simulating R/P Ratios for Negative Selection
Obtaining Frequencies and Effect Sizes

If the variants that have an effect on the phenotype are under

negative selection, it can lead to scenarios where there are more

risk variants than protective variants to begin with, especially for

low-frequency variants. To illustrate this, we simulated neutral

variants and causal variants under negative selection by using

previously published models and parameters that result in an

allele spectrum similar to that observed in the European popula-

tion.23,24 We used the forward simulation package ForSim25 to

simulate coding sequence variation in the European population

in 1,000 genes. The average gene coding length was set as

1,500 bp. We used a mutation rate per site of 2 3 10�8 and a uni-

form locus-wide recombination rate of 2 Mb/cM. We modeled the

distribution of selection coefficients (s) for de novo missense

mutations by a gamma distribution.26 We used the conventional

4-parameter model of the history of the European population

with long-term constant size (N ¼ 8,100 for 45,000 generations)

followed by a bottleneck (N ¼ 2,000) and then by exponential

growth (1.5% increase per generation for 370 generations) to

achieve a final population size of approximately 500,000 individ-

uals.23,24 We obtained 823 nonneutral variants that have minor

allele frequencies R1% and assigned them as effective variants

and assuming that the allele under negative selection confers

risk, i.e., positive effect (Figure S2). By considering only additive

genetic effects, we assigned effect sizes as b ¼ st(1þ ε) as suggested

in Eyre-Walker.27 Here, b is the variant’s additive effect on the

quantitative trait, s is the absolute value of the variant’s selection

coefficient, ε is a normally distributed random noise parameter

that was set to having mean 0 and standard deviation 0.05, and

t is the degree of coupling between b and s and was set at 0.5 for

our analyses. The effect sizes are scaled so that these 823 variants

explain 60% of the phenotypic variance.

Obtaining Phenotypes and Calculating R/P Ratio for the Selection Model

We use the 100,000 HAPGEN-simulated individuals and selected

823 matched SNPs such that the frequency matches the variants

generated by ForSim. We then assigned these matched SNPs

with effect sizes determined earlier. We calculated the phenotypic

Z score for each of our 100,000 individuals in the same way that

we did previously,28 i.e., by calculating the weighted allele score

(WAS) and adding it to a randomly generated variable sampled

from a normal distribution of mean 0 and variance 0.4 such

that the total variance explained is 1. We then sampled 2,000

individuals with phenotypic Z scores > 1.645 (5% prevalence) as

case subjects and another 2,000 individuals with phenotypic

Z scores % 1.645 as control subjects. We used PLINK to perform

the association test on all the variants and calculated the R/P ratio

within the same frequency bins as well as p value cutoffs as

described above. This process was repeated 1,000 times to obtain

the distribution of the R/P ratio. For the control model, we

randomly sampled 2,000 individuals as case subjects and 2,000

individuals as control subjects and calculated the R/P ratio as

described above.
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Simulating R/P Ratios for Population Stratification
We use HAPGEN to simulate 4,000 distinct individuals from the

HapMap CEU population (phase 3, release 2) as well as another

4,000 distinct individuals from the HapMap TSI population (phase

3, release 2). For complete stratification, we randomly sampled

1,000 individuals from the CEU pool as control subjects and

1,000 individuals from the TSI pool as case subjects. We simulated

asymmetric mixtures of 1%, 5%, and 10% by randomly sampling

1,000 individuals from the CEU pool as control subjects and sam-

pling 10, 50, and 100 individuals from the TSI pool as case sub-

jects, respectively, and made up the remainder of the case group

from the CEU pool. We used PLINK to perform the association

test on all the variants and calculated the R/P ratio within the

same frequency bins as well as p value cutoffs as described above.

Each process was repeated 1,000 times to obtain the distribution of

the R/P ratio. All PCA analysis was performed with smartpca

from the EIGENSOFT 3.0 package.29 All meta-analysis of GWAS

summary statistics were performed with METAL.30 Inflation of

the GWAS test statistic because of population stratification was

assessed by genomic control inflation factor (lGC).
31
Calculating R/P Ratio from Published GWAS

Summary Statistics
Schizophrenia, Major Depressive Disorder, and Bipolar Disorder

GWAS summary statistics were provided from published results

of schizophrenia,11 bipolar disorder,12 and major depressive dis-

order.13 SNPs that failed imputation (INFO < 0.6) were discarded.

The sizes of the case and control groups used for simulating the

null distribution are as follows: schizophrenia (SCZ), 9,394 case

subjects and 12,462 control subjects; major depressive disorder

(MDD), 9,240 case subjects and 9,519 control subjects; and bipolar

disorder (BIP), 7,481 case subjects and 9,250 control subjects.

Type 2 Diabetes

GWAS summary statistics were provided from published results of

type 2 diabetes.14 SNPs that passed imputation for fewer than

15,000 individuals (Ncases < 15,000) were discarded. A total of

15,000 case subjects and 50,337 control subjects were used for

simulating the null distribution.

Obesity

GWAS summary statistics were provided from published results of

various classes of obesity.15 SNPs that passed imputation for fewer

than 50,000 individuals (Ncases < 50,000), 10,000 individuals

(Ncases < 10,000), 2,000 individuals (Ncases < 2,000), and 1,000

individuals (Ncases < 1,000) were discarded for the overweight

(BMI > 25), class 1 (BMI > 30), class 2 (BMI > 35), and class 3

(BMI > 40) data sets, respectively. The sizes of the case and control

groups used for simulating the null distribution are as follows:

overweight, 50,000 case subjects and 35,715 control subjects; class

1, 10,000 case subjects and 20,325 control subjects; class 2, 2,000

case subjects and 12,466 control subjects; and class 3, 1,000 case

subjects and 18,346 control subjects.

Inflammatory Bowel Disease

GWAS summary statistics were provided from published results of

Crohn disease (CD),32 ulcerative colitis (UC),33 and the combined

case cohort of both Crohn disease and ulcerative colitis

(CDþUC).17 SNPs that failed imputation (INFO < 0.6) were dis-

carded. The sizes of the case and control groups used for simu-

lating the null distribution are as follows: CD, 5,956 case subjects

and 14,927 control subjects; UC, 6,968 case subjects and 20,464

control subjects; and CDþUC, 12,882 case subjects and 21,770

control subjects.
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Diabetic Nephropathy

GWAS summary statistics were provided from published results of

phenotypes related to diabetic nephropathy16 that are macroalbu-

minuria (MACRO) and end-stage renal disease (ESRD). SNPs that

failed imputation in at least 1 cohort were discarded. The sizes of

the case and control groups used for simulating the null distribu-

tion are as follows: macroalbuminuria versus control (MACROctrl),

1,478 case subjects and 3,315 control subjects; end-stage renal

disease versus control (ESRDctrl), 1,399 case subjects and 3,315

control subjects; ESRD versus controls that include MACRO

(ESRDctrlþmacro), 1,399 case subjects and 5,253 control subjects;

and combined MACRO and ESRD versus control ([MACRO þ
ESRD]ctrl), 2,916 case subjects and 3,315 control subjects.
Results

We developed a method to detect and assess the signifi-

cance of an excess of risk variants, measured by the ratio

of risk variants to protective variants (R/P ratio) within a

series of frequency bins and p value cutoffs (see Material

and Methods). We proceeded to show that under an

assumption of polygenic inheritance from low-frequency

variants, there is more statistical power to detect risk vari-

ants than to detect protective variants, which can result

in an increased R/P ratio. We also showed that such an

excess can also occur if risk variants are kept at lower fre-

quencies because of negative selection. However, such an

excess can also occur because of reasons unrelated to a

contribution of rare variants to disease risk: uneven sample

sizes or asymmetric population stratification. Therefore,

steps have to be taken to account for these latter possibil-

ities before one can confidently interpret the excess of

risk variants as a true signal of polygenic inheritance.

Finally, we applied the method to GWAS summary statis-

tics from several published studies.
Significantly Higher Power to Detect Low-Frequency

Risk Variants of Moderate to Large Effect

The liability threshold model for disease34 has been shown

to be consistent with results from GWASs for multiple

diseases.35 This model assumes that there is an underlying

unmeasured trait related to disease risk and that individ-

uals are affected with disease only when the value of the

trait exceeds a particular threshold. Under such a model,

we discovered that the statistical power to detect risk

variants is higher than the power to detect protective

variants, even when they have the same effect size with

respect to the underlying unmeasured trait. For example,

we calculated power by using a predefined set of para-

meters defined as the ‘‘base model’’ (see Material and

Methods). From our calculations, we observed that as

effect size increases, there is significantly more power to

detect risk than protective variants as indicated by the

increase in the NCP ratio (Figure 1). This result shows

that for this scenario, where the number of risk and protec-

tive variants are equal and have similar absolute effect

sizes, the difference in power can create an excess of
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Figure 1. Comparing the Power to Detect Risk and Protective
Variants with the Same Underlying Effect Size
The plot shows the power as the noncentrality parameter (NCP)
for detecting minor alleles that confer risk (risk variants) and
minor alleles that confer protection (protective variants) with
varying absolute effect sizes (0 < b < 0.5 in standard deviation
units) via parameters from the base model (see Material and
Methods). It also shows the NCP ratio, which is the NCP of risk
variants divided by the NCP of protective variants with the same
absolute effect size (right vertical axis). The equivalent odds ratio
(OR) for the risk variants is also shown on the horizontal axis.
detected risk variants over protective variants, which can

result in an increased R/P ratio.

The Difference in Power Is Larger under Certain

Scenarios

We explored how the difference in power to detect risk and

protective variants would be affected when we varied the

parameters in themodel under which we calculated power.

First, we calculated power via the basemodel but varied the

minor allele frequency from 1% to 15%. The difference in

power for risk and protective variants decreases as the

variant frequency increases (Figure 2A). Second, we varied

the disease prevalence from 1% (trait Z score > 2.33) to

15% (trait Z score > 1.03). Here, the difference in power

decreases with increasing disease prevalence (Figure 2B),

and there is no difference in power at any effect size

when the disease prevalence is exactly 50%. Third, we

varied the linkage disequilibrium (LD) between the asso-

ciated variant and the causal variant from moderate LD

(D0 ¼ 0.5) to strong LD (D0 ¼ 0.8). Although there is a gen-

eral loss of power with decreasing LD, the difference in

power between risk and protective variants increases with

decreasing LD (Figure 2C). Along similar lines, when we

assumed that low-frequency causal variants are being

tagged by variants of higher frequencies (fixing the fre-

quency of the tagged variant at 5% and varying the fre-

quency of the causal variant from 4% to 1%), we also
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observed a greater difference in power as the causal variant

frequency decreased (Figure 2D). These results show that

the difference in power between risk and protective vari-

ants should be more obvious when testing variants within

the low-frequency range (<5% frequency), in polygenic

diseases with lower prevalence, and when the markers

being tested are proxies for lower-frequency causal vari-

ants. The driving force behind this result is that the case

group is ascertained from individuals with an extreme

distribution of liability scores whereas the control group

has a much broader distribution of liability scores. Conse-

quently, given equal sizes of the case and control groups,

the increase in minor allele count of a risk variant in the

case group is greater than the increase in minor allele

count of an equally strong protective variant in the control

group, leading to higher power for detecting the risk

variant (see Appendix A for derived formulae that confirm

the increase in power). Thus, if rare or low-frequency vari-

ants play a substantial role in certain diseases with poly-

genic architecture, these results predict that we could

observe an increased R/P ratio for low-frequency variants

in the GWAS summary statistics for these diseases.

Excess of Risk Variants Can Be Caused by Negative

Selection

Beyond the differences in power, an excess of risk

compared to protective variants can also occur if there is

negative selection against the disease, leading risk variants

to be kept at lower frequencies than protective variants. To

illustrate this scenario, we simulated negative selection

by coupling effects on evolutionary fitness and on a quan-

titative trait for a set of variants (frequencyR 1%) and then

assigning case-control status based on the trait values (see

Material andMethods). We observed an increase in the R/P

ratio for the frequency bins within 1% to 15% but not

for the 30% to 50% frequency bin (Figures 3A and S3).

These results show that under a model where rare variants

contribute to disease and are under negative selection, we

could also observe an increase in the R/P ratio for low-

frequency variants in the GWAS summary statistics for

these diseases.

Excess of Risk Variants Arise from Having More

Control than Case Subjects

The previous results show that polygenic inheritance from

lower-frequency variants can lead to an increase in the R/P

ratio but that such an increase can occur in other settings

as well. Under the null hypothesis, one would expect

that on average, the number of detected risk variants

would be equal to the number of detected protective vari-

ants, resulting in an expected R/P ratio of 1. However, in

our simulations, we observed that the expected R/P ratio

can deviate from 1 because of an imbalance between the

sizes of the case and control groups. Specifically, if there

are substantially more control than case subjects, a feature

present in some GWASs of dichotomous traits, it would

result in the increase of the expected R/P ratio (R/P
rican Journal of Human Genetics 94, 437–452, March 6, 2014 441



Figure 2. Effects of Varying Various
Parameters on the NCP Ratio
The plots show the difference in power for
detecting risk versus protective variants
through the NCP ratio under varying
parameters. Unless otherwise specified,
the parameters used for calculating NCP
are from the base model (see Material and
Methods).
(A) Minor allele frequency of the associ-
ated variant varying from 1% to 15%.
(B) Disease prevalence (threshold of liabil-
ity) varying from 1% to 15%.
(C) Linkage disequilibrium (LD) between
the causal variant and the marker variant
as a function of D0 (varying from 0.5
to 0.8).
(D) The marker variant frequency is set at
5% with the causal variant frequency
ranging from 1% to 4%.
ratio > 1). To illustrate this, we randomly simulated 1,000

case subjects and 3,000 control subjects (1k/3k) and

measured the distribution of the R/P ratio under a null

model of no association (see Material and Methods). We

observed that there is an increase in the R/P ratio distribu-

tion for 1k/3k for the low-frequency bins (Figures 3B and

S4). This increase is not seen with common variants

(30%–50% frequency bin), nor if the numbers of case

and control subjects are equal (Figures 3B and S4). Of

note, with larger sample sizes (10,000 case subjects and

30,000 control subjects; 10k/30k), we observed that the

increase in R/P ratio is substantially attenuated (Figures

3B and S4). These results show that an excess of control

subjects can increase the expected R/P ratio and should

be accounted for by comparing the observed R/P ratio

against those obtained through simulations under a null

model. These results also show that with sufficiently large

number of case subjects (e.g., >10,000), the increase in the

expected R/P ratio resulting from this imbalance will be

minimal.

Excess of Risk Variants Can Result from Asymmetric

Population Stratification

We also considered whether an excess of risk variants

could be seen in GWASs that are confounded by popula-

tion stratification. As a first test, we randomly simulated

1,000 individuals of either northern European ancestry

(CEU, based on allele frequencies in the CEU HapMap
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sample) or southern European

ancestry (TSI, based on allele fre-

quencies in the TSI HapMap sample).

In one experiment, we simulated

1,000 CEU individuals as control

subjects and 1,000 TSI individuals as

case subjects (see Material and

Methods), and as a stratification-free

experiment, we simulated 1,000

CEU control subjects and 1,000 CEU
case subjects. The simulated TSI and CEU populations

show the expected differences in principal component

analysis (Figure S5). We found that although there was a

large excess of apparent associations for both risk and

protective variants, leading to enormous inflation of the

genomic control test statistic (lGC ~ 22.9), the resulting

R/P ratio did not deviate substantially from expectations

under the null (Figures 3C and S6). Therefore, even

extreme scenarios with the usual forms of population

stratification should not cause substantial deviations of

the R/P ratio.

However, we reasoned that a special case of asymmetric

population stratification could potentially cause the R/P

ratio to depart from expectations under the null. Specif-

ically, if there were a mixture of different populations in

only the case group and not in the control group, or vice

versa, it could lead to an increase or decrease of the R/P

ratio. To test this, we randomly simulated a series ofmodels

where the control group is homogenous (CEU) but the case

group is a mixture of CEU and TSI individuals (see Material

and Methods). At a 1% mixture in the case group (lGC ~

1.01), we did not observe any significant excess of risk

variants, but at 5% mixture (lGC ~ 1.06), we observed an

excess of risk variants within the low-frequency ranges

(Figures 3D and S7). This excess is even larger with a 10%

mixture (lGC ~ 1.24) (Figures 3D and S7). Variants within

the common frequency range do not show an excess of

risk variants (Figures 3D and S7). These results show that



Figure 3. The Distribution of the R/P
Ratio from Simulating Variants under
Various Scenarios
The figure shows the distribution of the
log2 R/P ratio for the 1%–5% and 30%–
50% frequency bins from simulating vari-
ants under various scenarios. The p value
cutoff for each of the bins is 0.01.
(A) Simulating variants under negative
selection. The selection model (red) uses
the 823 effective variants whereas the
control (black) model assumes that no
variants affect the phenotype.
(B) Simulating larger size of control than
case group. The 1k/3k (red) model simu-
lates the null distribution of the log2 R/P
ratio for 1,000 case subjects and 3,000
control subjects. The 10k/30k (orange)
model simulates the null distribution of
the log2 R/P ratio for 10,000 case subjects
and 30,000 control subjects. The control
(black) model simulates the null distribu-
tion of the log2 R/P ratio for 1,000 case sub-
jects and 1,000 control subjects.
(C) Simulating population stratification.
The stratification model (red): case group
simulated from TSI population and control
group simulated from the CEU population.
The control model (black): both case and
control groups simulated from the CEU
population.
(D) Simulating asymmetric population
stratification. The models for asymmetric
population stratification are as follows.
Mixed 10%, 5%, and 1% indicate that
10%, 5%, and 1% of the case group is simu-
lated from TSI individuals, respectively,
and the rest of the individuals used are
simulated from CEU individuals. The con-
trol model is comprised of case subjects
simulated only from CEU individuals, i.e.,
without any population stratification.
(E) Simulating asymmetric population
stratification after meta-analysis with
nonstratified data. The model ‘‘mixed
10%’’ and ‘‘meta analyzed’’ refers to
asymmetric population stratification of
10% mixture of TSI individuals of the
case subjects before and after being meta-
analyzed with four other data sets without
such stratification, respectively. The con-
trol model indicates no asymmetric popu-
lation stratification.
such asymmetric population stratification can increase

the R/P ratio, with only moderate increases in the genomic

control statistics. As a corollary, if the mixture were to exist

in the control group but not in the case group, we would

expect the R/P ratio to decrease.

Finally, we meta-analyzed the results from the asymmet-

rically stratified GWASs with results from nonstratified

GWASs (see Material and Methods) to determine the effect

on the R/P ratio if only a subset of the studies had asym-

metric population stratification. We found that the in-

crease in the R/P ratio is attenuated after meta-analysis

(Figures 3E and S8). These results indicate that whereas

asymmetric population stratification can give rise to an
The Ame
excess of risk variants, combining such results with non-

stratified results can reduce the magnitude of the signal.

Because this particular type of stratification is unlikely to

be present in most of the cohorts prior to meta-analysis,

it may be useful to examine the summary statistics

of each study individually to determine whether the

increased R/P ratio is derived from a subset of studies in

the GWAS meta-analysis. Ideally, if an increased R/P

ratio is observed, principal component analysis or other

methods should also be applied to the primary data to

search for outliers present exclusively in the case group

to further rule out asymmetric population stratification

as a cause of an increased R/P ratio.
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Table 1. Schizophrenia, Major Depressive Disorder, and Bipolar Disorder

Freq (%)
p Value
Cutoff

SCZ MDD BIP

O(R/P) E(R/P) p O(R/P) E(R/P) p O(R/P) E(R/P) p

1–5 0.001 1.864 1.127 0.0298 1.210 1.058 0.269 0.884 1.110 0.748

0.01 1.623 1.032 2.42 3 10�7* 1.169 1.006 0.048 0.953 1.028 0.778

5–10 0.001 1.348 1.057 0.1279 0.933 1.039 0.623 1.038 1.077 0.509

0.01 1.230 1.019 0.0111 0.914 1.005 0.865 0.973 1.013 0.678

10–15 0.001 1.050 1.082 0.4926 1.348 1.035 0.126 1.038 1.055 0.473

0.01 1.054 1.019 0.3335 1.193 1.005 0.027 1.046 1.015 0.349

30–50 0.001 1.063 1.022 0.3736 1.098 1.003 0.264 1.122 1.039 0.291

0.01 1.001 1.003 0.5010 0.944 1.001 0.836 1.070 1.009 0.165

The observed and expected R/P ratios and p values obtained from analyzing GWAS summary statistics of psychiatric disorders: schizophrenia (SCZ), major depres-
sive disorder (MDD), and bipolar disorder (BIP). O(R/P) refers to the observed R/P ratio and E(R/P) refers to the expected R/P ratio obtained through simulations. p
refers to the p value obtained from a one-tailed Z test (*p < 0.01).
Using the R/P Ratio in Actual GWAS Results to Search

for Signals of Low-Frequency Variants Contributing to

Disease Risk

Schizophrenia, Major Depressive Disorder, and Bipolar Disorder

We applied our method to data from several psychiatric

disorders: schizophrenia,11 bipolar disorder,12 and major

depressive disorder.13 We observed a significant increase

in the R/P ratio only for schizophrenia in the 1%–5%

frequency bin, at a cutoff of p < 0.01 (p ¼ 2.42 3 10�7)

(Table 1). We did not observe any significant differences

in the other frequency bins nor for any of the other psy-

chiatric disorders (Table 1). These results are indicative of

polygenic inheritance from low-frequency variants in

schizophrenia but do not provide similar support for a

role of low-frequency variants in major depressive disorder

or bipolar disorder.

Type 2 Diabetes

Next, we applied our method to GWAS results of type 2

diabetes.14 The R/P ratio for type 2 diabetes was signifi-
Table 2. Type 2 Diabetes

Freq (%)
p Value
Cutoff

T2D

O(R/P) E(R/P) p

1–5 0.001 3.833 1.205 5.89 3 10�6*

0.01 2.009 1.069 3.08 3 10�15*

5–10 0.001 1.636 1.131 0.043

0.01 1.439 1.051 2.28 3 10�5*

10–15 0.001 1.660 1.081 0.031

0.01 1.400 1.033 8.36 3 10�4*

30–50 0.001 1.041 1.038 0.459

0.01 1.035 1.008 0.308

The observed and expected R/P ratios and p values obtained from analyzing
GWAS summary statistics of type 2 diabetes (T2D). O(R/P) refers to the
observed R/P ratio and E(R/P) refers to the expected R/P ratio obtained
through simulations. p refers to the p value obtained from a one-tailed Z test
(*p < 0.01).
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cantly increased in the low-frequency bins (Table 2). The

most significant difference was observed in the 1%–5%

bin with cutoff of p < 0.01 (p ¼ 3.08 3 10�15). We also

observed a significant excess of risk variants in the 10%–

15% bin (p< 0.01, p¼ 2.283 10�5). Because the difference

in power between risk and protective variants becomes

minimal as the variant frequency increases, this observed

excess of risk variants is more probably due to negative

selection on diabetes risk alleles, tagging of low-frequency

variants by the more common SNPs in this frequency

range, and/or possibly asymmetric population stratifi-

cation. Nonetheless, these results are indicative of poly-

genic inheritance from low-frequency variants in type

2 diabetes.

Obesity

We also applied our method to GWAS results for various

classes of obesity:15 overweight (BMI > 25), class 1

(BMI > 30), class 2 (BMI > 35), and class 3 (BMI > 40).

The control group used for each class of obesity were indi-

viduals with BMI < 25. We observed a significant increase

in the 1%–5% frequency bin with a cutoff of p < 0.01 for

only the class 1 data set (p ¼ 8.8 3 10�6) (Table 3). Also,

although we generally observed a gradual increase in the

R/P ratio with increasing BMI definitions of obesity, which

could be consistent with a role of lower-frequency variants,

the increase in R/P ratio could also be explained by having

a larger control than case group. We did not observe any

significant excess of risk variants for the low-frequency

bins in the class 2 or class 3 data sets, probably because

of the severely reduced sample sizes for the more extreme

BMI definitions of obesity.
Testing whether Related Phenotypes Are Likely to

Share Low-Frequency Causal Variants

To increase the power of GWASs, some studies have

pooled apparently related phenotypes into a single case

group.16,17 We applied our method to measure the R/P

ratio on published GWAS results of these related
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Table 3. Obesity

Freq (%)
p Value
Cutoff

Overweight Class 1 Class 2 Class 3

O(R/P) E(R/P) p O(R/P) E(R/P) p O(R/P) E(R/P) p O(R/P) E(R/P) p

1–5 0.001 1.188 0.997 0.228 0.917 1.164 0.758 2.462 2.410 0.410 3.700 3.454 0.354

0.01 1.120 0.986 0.078 1.536 1.050 8.8 3 10�6* 1.533 1.376 0.114 1.814 1.617 0.111

5–10 0.001 1.026 0.998 0.408 1.139 1.098 0.393 0.697 1.640 0.999 1.857 2.067 0.607

0.01 1.023 0.991 0.328 0.937 1.023 0.838 1.108 1.222 0.871 1.227 1.346 0.845

10–15 0.001 0.784 0.999 0.826 0.971 1.087 0.610 1.276 1.567 0.713 1.385 1.766 0.779

0.01 1.109 1.003 0.113 1.013 1.028 0.544 1.066 1.208 0.883 1.269 1.267 0.479

30–50 0.001 1.121 0.991 0.194 1.059 1.020 0.380 0.949 1.094 0.763 1.019 1.112 0.696

0.01 1.022 0.999 0.340 1.045 1.004 0.225 0.985 1.035 0.816 0.955 1.044 0.946

The observed and expected R/P ratios and p values obtained from analyzing GWAS summary statistics of clinical classes of obesity: overweight (BMI > 25), class 1
(BMI > 30), class 2 (BMI > 35), and class 3 (BMI > 40). O(R/P) refers to the observed R/P ratio and E(R/P) refers to the expected R/P ratio obtained through
simulations. p refers to the p value obtained from a one-tailed Z test (*p < 0.01).
phenotypes. We reasoned that our method could also be

used to test whether pooling related phenotypes would

increase power to detect low-frequency variants, using

only the GWAS summary statistics. We applied our

method to GWAS results from two different pairs of related

phenotypes, one pair for inflammatory bowel disease and

one pair for diabetic nephropathy.

Inflammatory Bowel Disease

The two major types of inflammatory bowel disease are

Crohn disease (CD) and ulcerative colitis (UC).36We exam-

ined the R/P ratio in GWAS results for Crohn disease,32

ulcerative colitis,33 and the combined case cohort of both

Crohn disease and ulcerative colitis.17 We observed signif-

icant increases in the R/P ratio for both Crohn disease and

ulcerative colitis within the low-frequency bins (Table 4).

The most significant increases were found in the 1%–5%

bin with cutoff of p < 0.01 (CD, p ¼ 1.55 3 10�10; UC,

p ¼ 2.25 3 10�9), consistent with a polygenic role of

low-frequency variants in both diseases. However, when

Crohn disease and ulcerative colitis were combined as a

single case group (CD þ UC), the increase in R/P ratio is

less significant than in the individual GWAS results

(Table 4). These results suggest that there are some low-

frequency genetic contributors to Crohn disease and ulcer-

ative colitis that are not shared by both diseases. However,

because the signal is still present (albeit attenuated) when

both diseases were studied together, it also suggests that

the two diseases do share some overlapping low-frequency

genetic contributors, although the attenuated signal could

reflect persistence of two separate individual signals that

are diluted after combination of the two sets of cases.

Diabetic Nephropathy

We performed a similar analysis on two phenotypes used

to characterize diabetic nephropathy:18 macroalbuminuria

(MACRO) and end-stage renal disease (ESRD). Unlike in-

flammatory bowel disease, MACRO and ESRD are not

necessarily distinct; MACRO is a milder form of diabetic

nephropathy and some of the individuals thus affected
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progress to develop ESRD. The control group used for

that study were diabetic individuals that did not develop

nephropathy. We analyzed the GWAS results performed

for individuals with macroalbuminuria versus control

subjects (MACROctrl), individuals with end-stage renal

disease versus control subjects (ESRDctrl), individuals

with end-stage renal disease versus control subjects

that also include individuals with macroalbuminuria

(ESRDctrlþmacro), and a combined case cohort that includes

both individuals with macroalbuminuria and end-stage

renal disease versus control subjects ([MACROþ ESRD]ctrl).

For the analyses of MACROctrl and of ESRDctrl, we observed

significant increases to the R/P ratio in the 1%–5% bin

with cutoff of p < 0.01 (MACROctrl, p ¼ 0.001; ESRDctrl,

p ¼ 6.4 3 10�5) (Table 5). For the ESRDctrlþmacro analysis,

where individuals with macroalbuminuria are included

within the control group, there is an even larger increase

of the R/P ratio (ESRDctrlþmacro, p ¼ 9 3 10�11) (Table 5).

However, when MACROctrl and ESRDctrl were combined

into a single case group ([MACRO þ ESRD]ctrl), none of

the frequency bins showed significant increases in the

R/P ratio (Table 5). These results suggest that although

there are low-frequency contributors to both macro-

albuminuria and end-stage renal disease, these contribu-

tors do not substantially overlap. There is no detectable

increase in the R/P ratio when both phenotypes are com-

bined, unlike our observations for inflammatory bowel

disease. Thus, these results indicate that studies of low-

frequency variation for diabetic nephropathy would be

more fruitful if MACRO and ESRD are tested separately.
Discussion

We have shown that our method for measuring the R/P

ratio can be used as a test for the presence of multiple

low-frequency or rare genetic contributors to disease risk.

This method can be applied to GWAS summary statistics,
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Table 4. Inflammatory Bowel Disease: Crohn Disease and Ulcerative Colitis

Freq (%)
p Value
Cutoff

CD UC CDþUC

O(R/P) E(R/P) p O(R/P) E(R/P) p O(R/P) E(R/P) p

1–5 0.001 2.545 1.347 0.017 1.958 1.358 0.075 1.385 1.159 0.222

0.01 1.994 1.111 1.55 3 10�10* 1.866 1.106 2.25 3 10�9* 1.457 1.048 1.6 3 10�4*

5–10 0.001 1.148 1.162 0.477 1.490 1.192 0.153 1.099 1.107 0.463

0.01 1.314 1.069 1.4 3 10�3* 1.460 1.066 8.59 3 10�5* 1.239 1.027 0.012

10–15 0.001 1.200 1.181 0.424 1.279 1.186 0.337 1.583 1.076 0.059

0.01 1.043 1.059 0.551 1.213 1.066 0.075 1.104 1.026 0.205

30–50 0.001 0.925 1.035 0.743 1.163 1.037 0.217 1.036 1.026 0.445

0.01 1.052 1.018 0.266 1.004 1.009 0.524 1.043 1.005 0.251

The observed and expected R/P ratios and p values obtained from analyzing GWAS summary statistics of inflammatory bowel diseases: Crohn disease (CD),
ulcerative colitis (UC), and the combined CD and UC as a single case group (CDþUC). O(R/P) refers to the observed R/P ratio and E(R/P) refers to the expected
R/P ratio obtained through simulations. p refers to the p value obtained from a one-tailed Z test (*p < 0.01).
even if there are few or no genome-wide significant asso-

ciations. We analyzed results from multiple published

GWASs and found significant signals in some but not all

diseases. These results support the hypothesis that the

diseases where the R/P ratio is increased have a polygenic

contribution from as-yet-undetected low-frequency or

rare variants.

Some existing methods for detecting polygenic inheri-

tance9,10,37 use variants that achieve nominal significance

in GWASs to determine whether they are informative as

predictors of phenotype. Because our method assesses

the direction of effect of these variants against the null

model, our method represents a rather different, indepen-

dent approach for assessing polygenic inheritance of low-

frequency variants. Furthermore, our method does not

require having identified associated loci or the availability

of individual level data. For example, in schizophrenia, it

has been shown that a substantial proportion of schizo-

phrenia disease risk is the result of variants with fre-

quency >1%.38 Our finding suggests that some disease

risk is accounted for by variants within the low-frequency

range (frequency < 5%). In a recent exome-sequencing

study of 2,536 schizophrenia cases and 2,543 controls,39

Purcell and colleagues showed a polygenic burden of

rare disruptive mutations, which is consistent with our

observation. Similarly, for type 2 diabetes, our results

suggest the presence of low-frequency or rare variants

contributing to disease risk, even though most of the var-

iants known to be associated with disease risk are com-

mon (frequency R 5%).14

We also showed that negative selection under polygenic

inheritance can increase the R/P ratio for low-frequency

variants, because risk variants would be kept at lower

frequencies while the protective variants could drift

to higher frequencies. Indeed, in a previous study,40

Park and colleagues showed that across most qualitative

traits, minor alleles conferred risk more often than pro-

tection, which they concluded to be evidence for purifying
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selection. Although this can be the case for some diseases,

we showed that this increase in the R/P ratio can also arise

because there is more power to detect risk variants than to

detect protective variants. Furthermore, we have estab-

lished that if there are substantially more control than

case subjects, a feature present inmany GWASs, this imbal-

ance can distort the null distribution such that there would

appear to be more risk than protective variants. However,

this imbalance can be accounted for through simulations,

as we have demonstrated.

Our method also provides a simple and early way of

assessing the utility of different phenotype definitions for

genetic studies of low-frequency variation simply from

GWAS summary statistics. Our results for inflammatory

bowel disease are consistent with the idea that Crohn dis-

ease and ulcerative colitis have some overlapping genetic

contributors. Indeed, a previous study exploring the effect

of common Crohn disease variants on ulcerative colitis

identified significant overlaps between the two diseases,

but also loci specific to Crohn disease.41 For diabetic

nephropathy, where there are few established loci from

which to draw conclusions, we observed signals for both

macroalbuminuria and particularly for end-stage renal dis-

ease when analyzed separately, but no significant signal

when both diseases were combined as a single case group.

This suggests that macroalbuminuria and end-stage renal

disease are distinct in their genetic architecture and would

be more productive if they were to be studied separately.

Interestingly, the same GWAS on diabetic nephropathy

discovered a single genome-wide significant locus only

when end-stage renal disease was treated separately from

macroalbuminuria,16 consistent with our observation.

Finally, asymmetric population stratification between

the case and control groups can lead to both false-positive

associations (as evidenced by an increased genomic con-

trol inflation factor)42 and also an increase in the R/P

ratio. Thus, although our observations of higher-than-

expected R/P ratios in some of the published GWAS data
, 2014



Table 5. Diabetic Nephropathy: Macroalbuminuria and End-Stage Renal Disease

Freq (%)
p Value
Cutoff

MACROctrl ESRDctrl ESRDctrlþmacro [MACRO þ ESRD]ctrl

O(R/P) E(R/P) p O(R/P) E(R/P) p O(R/P) E(R/P) p O(R/P) E(R/P) p

1–5 0.001 2.000 1.655 0.205 1.944 1.706 0.283 2.667 2.008 0.146 1.087 1.133 0.504

0.01 1.560 1.198 1.4 3 10�3* 1.705 1.207 6.4 3 10�5* 2.270 1.285 9 3 10�11* 1.026 1.042 0.550

5–10 0.001 1.563 1.359 0.253 1.278 1.404 0.585 1.533 1.584 0.496 0.875 1.071 0.754

0.01 1.200 1.116 0.175 1.240 1.143 0.147 1.552 1.187 2.9 3 10�4* 1.045 1.017 0.352

10–15 0.001 0.893 1.275 0.892 1.343 1.304 0.403 1.462 1.397 0.380 0.912 1.038 0.640

0.01 1.208 1.104 0.150 1.190 1.128 0.258 1.310 1.160 0.078 1.053 1.009 0.290

30–50 0.001 1.122 1.066 0.343 1.198 1.051 0.197 0.968 1.076 0.719 1.037 1.001 0.382

0.01 0.990 1.023 0.690 1.152 1.014 0.017 1.038 1.032 0.449 0.981 1.003 0.652

The observed and expected R/P ratios and p values obtained from analyzing GWAS summary statistics of diabetic nephropathy: macroalbuminuria (MACROctrls),
end-stage renal disease (ESRDctrls), ESRD versus controls that include MACRO (ESRDctrlsþmacro), and the combined MACRO and ESRD as a single case group
([MACRO þ ESRD]ctrls). O(R/P) refers to the observed R/P ratio and E(R/P) refers to the expected R/P ratio obtained through simulations. p refers to the p value
obtained from a one-tailed Z-test (*p < 0.01).
sets are suggestive of a role of low-frequency variants, we

cannot completely rule out that some of these signals

could be in part explained by asymmetric population strat-

ification. Of note, none of the R/P ratios showed a deficit of

risk variants (which would be expected under somemodels

of asymmetric population stratification), suggesting that

asymmetric population stratification is not widespread.

Furthermore, these GWASs have used methods to detect

and correct for population stratification.

In conclusion, our method can be used to screen for

polygenic inheritance from low-frequency or rare variants

in diseases where GWASs have been performed. Our

method can also be extended to other summary statistics,

e.g., studies from sequencing or exome-chip genotyping,

to assess low-frequency variants that were directly geno-

typed rather than imputed. This method can serve as a

simple approach to guide researchers in prioritizing strate-

gies in searching for as-yet-unexplained heritability for

specific diseases. For example, in a study of epilepsy,43

Heinzen and colleagues failed to identify any rare variants

of large effect through exome sequencing; analysis of

GWAS data for epilepsy can in theory help guide decisions

about embarking on additional studies of low-frequency or

rare variants with larger sample sizes. Although a lack of a

signal from our method does not rule out a role for low-fre-

quency variants and may reflect a combination of small

sample sizes and a set of effect sizes and frequencies that

do not significantly alter the R/P ratio, a positive signal

can provide greater confidence about the likelihood that

low-frequency or rare variants contribute to disease risk.
Appendix A

Calculating NCP from Various Given Parameters

We define the following parameters required to calculate

the noncentrality parameter (NCP) as a function of effect
The Ame
size of minor allele (b), minor allele frequency (p), liability

threshold (t), number of case individuals (Nd), and

number of control individuals (Nc). We denote the minor

allele (effect allele) as a1 and the major allele (noneffect

allele) as a2. As such, the liability distribution of a1 is N(x,

m1, s
2) and the liability distribution of a2 is N(x, m2, s

2)

such that N(x, m,s2) is the probability density function of

a normal distribution with mean m and variance s2.

The mean liabilities for a1 and a2 are as follows:

Mean liability for a1 ¼ m1 ¼ b� bp ¼ bq

Mean liability for a2 ¼ m2 ¼ �bp

where q is the major allele frequency such that p þ q ¼ 1.

The variance remaining s2 is:

Variance remaining ¼ s2 ¼ 1� b2pq:

Next, we calculate a series of conditional probabilities

as follows:

Pðcase j a1Þ ¼
ZN
t

N
�
x;m1;s

2
�
dx

Pðcase j a2Þ ¼
ZN
t

N
�
x;m2;s

2
�
dx

Pðcontrol j a1Þ ¼
Z t

�N

N
�
x;m1;s

2
�
dx

Pðcontrol j a2Þ ¼
Z t

�N

N
�
x;m2;s

2
�
dx:

With these conditional probabilities, we proceed to

calculate the expected allele frequencies of both the
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minor allele and major allele in both case subjects and

control subjects by using Bayes’ theorem. These are calcu-

lated as:

Pd1 ¼ Pða1 j caseÞ ¼ Pðcase j a1ÞpZ N

t

Nðx;0;1Þdx

Pd2 ¼ Pða2 j caseÞ ¼ 1� Pd1

Pc1 ¼ Pða1 j controlÞ ¼ Pðcontrol j a1ÞpZ t

�N

Nðx;0;1Þdx

Pc2 ¼ Pða2 j controlÞ ¼ 1� Pc1:

We then calculate the NCP by the c2 statistic from a 2

by 2 contingency table for the expectation of the

observed number of a1 and a2 in both the case and control

groups.
Case Control Total

a1 2 Nd Pd1 2 Nc Pc1 2 A

a2 2 Nd (1- Pd1) 2 Nc (1- Pc1) 2 B

Total 2 Nd 2 Nc 2 T
where

A ¼ Nd Pd1 þNc Pc1

B ¼ Ndð1� Pd1Þ þNcð1� Pc1Þ

T ¼ Aþ B ¼ Nd þNc:

The expected number for each cell is the row total times

the column total divided by the grand total.

Thus, the NCP is calculated as:

NCP ¼
X

Each cell

ðObserved � ExpectedÞ2
Expected

NCP ¼

�
2Nd Pd1 � 4ANd

2T

�2

4ANd

2T

þ

�
2NcPc1 � 4ANc

2T

�2

4ANc

2T

þ

�
2NdPd2 � 4BNd

2T

�2

4BNd

2T

þ

�
2NcPc2 � 4BNc

2T

�2

4BNc

2T

NCP ¼ 2TNdP
2
d1

A
þ 2ANd

T
� 4NdPd1 þ 2TNcP

2
c1

A
þ 2ANc

T

�4NcPc1 þ 2TNdð1� Pd1Þ2
B

þ 2BNd

T
� 4Ndð1� Pd1Þ

þ2TNcð1� Pc1Þ2
B

þ 2BNc

T
� 4Ncð1� Pc1Þ
448 The American Journal of Human Genetics 94, 437–452, March 6
2TNdP
2
d1 2TNcP

2
c1 2TNdð1� Pd1Þ2
NCP ¼
A

þ
A

þ
B

þ 2TNcð1� Pc1Þ2
B

� 2T :

After some algebra and simplification,

NCP ¼ 2T

AB
NdNcðPd1 � Pc1Þ2:

Therefore,

NCP ¼ 2NdNcðPd1 � Pc1Þ2
�

Nd þNc

ðNdPd1 þNcPc1ÞðNdPd2 þNcPc2Þ
�
:

We verified that these formulae were correct by comparing

to simulated results.
Determining NCP Ratio between Risk and Protective

Variants with the Same Magnitude of Effect

We formulated the various probabilities between risk and

protective variants. Assuming b to be positive, the risk

variant would have the following probabilities:

Pd1 ¼
p

Z N

t

N
�
x; bq;s2

�
dxZ N

t

Nðx;0;1Þdx

Pc1 ¼
p

Z t

�N

N
�
x; bq;s2

�
dxZ t

�N

Nðx;0; 1Þdx

and the protective variant with the same magnitude of

effect would have the following probabilities:

Pd1 ¼
p

Z N

t

N
�
x;�bq;s2

�
dxZ N

t

Nðx;0;1Þdx

Pc1 ¼
p

Z t

�N

N
�
x;�bq;s2

�
dxZ t

�N

Nðx;0;1Þdx
:

Assuming that there are equal number of case and

control subjects (N1 ¼ N2), then

NCP a

0
BBB@
Z N

t

N
�
x; bq;s2

�
dxZ N

t

Nðx;0;1Þdx
�

Z t

�N

N
�
x; bq;s2

�
dxZ t

�N

Nðx;0;1Þdx

1
CCCA

2

:

The ratio between risk and protective variants with the

similar magnitude of b is therefore
, 2014



NCP ratio ¼

0
BBB@
Z N

t

N
�
x; bq;s2

�
dxZ N

t

Nðx;0;1Þdx
�

Z t

�N

N
�
x; bq;s2

�
dxZ t

�N

Nðx;0;1Þdx

1
CCCA

2

0
BBB@
Z N

t

N
�
x;�bq;s2

�
dxZ N

t

Nðx;0;1Þdx
�

Z t

�N

N
�
x;�bq;s2

�
dxZ t

�N

Nðx;0;1Þdx

1
CCCA

2
;

We can transform the distributions such that

NCP ratio ¼

s

0
BB@
Z N

t�bq
s

Nðz;0; 1ÞdzZ N

t

Nðx;0; 1Þdx
�

Z t�bq
s

�N

Nðz; 0;1ÞdzZ t

�N

Nðx;0; 1Þdx

1
CCA

2

s

0
BB@
Z N

tþbq
s

Nðy; 0;1ÞdyZ N

t

Nðx;0;1Þdx
�

Z tþbq
s

�N

Nðy;0;1ÞdyZ t

�N

Nðx;0; 1Þdx

1
CCA

2
;

where z ¼ ðx� bqÞ=s, y ¼ ðxþ bqÞ=s, and dx ¼ sdz ¼ sdy.
Then,
NCP ratio ¼

0
BBB@
Z t

t�bq
s

Nðz;0;1Þdzþ
Z N

t

Nðz; 0;1ÞdzZ N

t

Nðx;0;1Þdx
�

Z t

�N

Nðz;0;1Þdz�
Z t

t�bq
s

Nðz;0;1ÞdzZ t

�N

Nðx;0;1Þdx

1
CCCA

2

0
BB@
Z N

t

Nðy;0;1Þdy�
Z tþbq

s

t

Nðy;0;1ÞdyZ N

t

Nðx;0; 1Þdx
�

Z t

�N

Nðy; 0;1Þdyþ
Z tþbq

s

t

Nðy;0;1ÞdyZ t

�N

Nðx;0; 1Þdx

1
CCA

2

NCP ratio ¼

0
BBB@1þ

Z t

t�bq
s

Nðz; 0;1ÞdzZ N

t

Nðx;0;1Þdx
�

0
BBB@1�

Z t

t�bq
s

Nðz;0;1ÞdzZ t

�N

Nðx;0;1Þdx

1
CCCA
1
CCCA

2

0
BB@1�

Z tþbq
s

t

Nðy;0;1ÞdyZ N

t

Nðx;0;1Þdx
�

0
BB@1þ

Z tþbq
s

t

Nðy;0;1ÞdyZ t

�N

Nðx;0;1Þdx

1
CCA
1
CCA

2

0Z t Z t
12
NCP ratio ¼

BBB@
t�bq
s

Nðz;0;1ÞdzZ N

t

Nðx;0; 1Þdx
þ

t�bq
s

Nðz;0; 1ÞdzZ t

�N

Nðx; 0;1Þdx

CCCA

ð�12Þ

0
BB@
Z tþbq

s

t

Nðy;0;1ÞdyZ N

t

Nðx;0;1Þdx
þ

Z tþbq
s

t

Nðy;0;1ÞdyZ t

�N

Nðx;0;1Þdx

1
CCA

2

The Ame
0 12
NCP ratio ¼
@R t

t�bq
s
Nðz;0;1ÞdzA

 Z tþbq
s

t

Nðy; 0;1Þdy
!2

When prevalence is 50% (t¼0),

Z0
�bq
s

Nðz;0;1Þdz ¼
Zþbq

s

0

Nðy;0; 1Þdy:

and therefore

NCP ratio ¼ 1:

This shows that when prevalence is 50% (t ¼ 0) and

there are equal sample numbers in the case and control

groups (N1 ¼ N2), the NCP between risk and protective

variants with identical magnitudes of effect (b) would be

the same regardless of any other parameters.

For the case where t > 0, if

Z t

t�bq
s

Nðz;0;1Þdz�
Ztþbq

s

t

Nðy;0;1Þdy > 0;
then the NCP for risk variants will be greater than the

NCP for protective variants and the NCP ratio will be

greater than 1. When t > bq, this will be true because

the normal distribution is monotonic decreasing above

z ¼ 0 (y ¼ 0).

To extend this to the more general case of t > 0, we first

examine the individual components,
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Z t

t�bq
s

Nðz;0;1Þdz ¼
Z t

�N

Nðz;0;1Þdz�
Zt�bq

s

�N

Nðz;0;1Þdz

¼ 1

2

�
1þ eft

�
tffiffiffi
2

p
��

� 1

2

�
1þ eft

�
t� bq

s
ffiffiffi
2

p
��

¼ 1

2

�
eft

�
tffiffiffi
2

p
�
� eft

�
t� bq

s
ffiffiffi
2

p
��

where eft is the error function. Similarly,

Ztþbq
s

t

Nðy;0;1Þdy ¼
Ztþbq

s

�N

Nðy;0;1Þdy�
Z t

�N

Nðy;0; 1Þdy

¼ 1

2

�
1þ eft

�
tþ bq

s
ffiffiffi
2

p
��

� 1

2

�
1þ eft

�
tffiffiffi
2

p
��

¼ 1

2

�
eft

�
tþ bq

s
ffiffiffi
2

p
�
� eft

�
tffiffiffi
2

p
��

:

Therefore,

Z t

t�bq
s

Nðz;0;1Þdz�
Ztþbq

s

t

Nðy;0;1Þdy

¼1

2

�
eft

�
tffiffiffi
2

p
�
�eft

�
t� bq

s
ffiffiffi
2

p
��
� 1

2

�
eft

�
tþ bq

s
ffiffiffi
2

p
�
�eft

�
tffiffiffi
2

p
��

¼ eft

�
tffiffiffi
2

p
�
� 1

2
eft

�
t� bq

s
ffiffiffi
2

p
�
� 1

2
eft

�
tþ bq

s
ffiffiffi
2

p
�
:

Taking the first two terms of the Taylor-series expansion

of the error function and approximating s to 1 (s z 1),

eft

�
tffiffiffi
2

p
�
� 1

2
eft

�
t� bq

s
ffiffiffi
2

p
�
� 1

2
eft

�
tþ bq

s
ffiffiffi
2

p
�

y
2ffiffiffiffi
p

p
�

tffiffiffi
2

p � t3

6
ffiffiffi
2

p
�
� 1

2

�
2ffiffiffiffi
p

p
� 

t� bqffiffiffi
2

p � ðt� bqÞ3
6
ffiffiffi
2

p
!

� 1

2

�
2ffiffiffiffi
p

p
� 

tþ bqffiffiffi
2

p � ðtþ bqÞ3
6
ffiffiffi
2

p
!

 
3 3
¼ 1ffiffiffiffi
p

p 12t

6
ffiffiffi
2

p � 2t

6
ffiffiffi
2

p � 6t� 6bq

6
ffiffiffi
2

p þ ðt� bqÞ
6
ffiffiffi
2

p

�6tþ 6bq

6
ffiffiffi
2

p þ ðtþ bqÞ3
6
ffiffiffi
2

p
!

 !

¼ 1ffiffiffiffi

p
p �2t3 þ ðt� bqÞ3 þ ðtþ bqÞ3

6
ffiffiffi
2

p

¼ 1ffiffiffiffi
p

p
 
�2t3 þ t3 � 3t2bqþ 3tðbqÞ2 � ð
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tðbqÞ2

!

¼ ffiffiffiffi

p
p ffiffiffi

2
p :

As such, if t > 0,
1ffiffiffiffi
p

p
 
tðbqÞ2ffiffiffi

2
p

!
> 0:

Therefore, if t > 0,
Z t

t�bq
s

Nðz;0;1Þdz >
Ztþbq

s

t

Nðy; 0;1Þdy

NCP ratio > 1:

Therefore, for diseases with low prevalence (t > 0), there is

more power to detect risk variants compared with the pro-

tective variant.
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