- 1 Carabid beetles of tropical dry forests display traits that cope with a harsh environment
- 2

3 Short title

- 4 TDF Carabid beetle trait distribution in a harsh environment
- 5
- 6 Authors
- 7 Gloria Maria Ariza^{1*}, Jorge Jácome², D. Johan Kotze³
- 8
- 9 Affiliations
- ¹ Departamento de Biología, Unidad de Ecología y Sistemática (UNESIS), Pontificia Universidad
- 11 Javeriana, Bogotá, Colombia. ORCID ID: https://orcid.org/0000-0002-6935-8022
- ² Departamento de Biología, Unidad de Ecología y Sistemática (UNESIS), Pontificia Universidad
- 13 Javeriana, Bogotá, Colombia. ORCID ID: https://orcid.org/0000-0003-0972-3056
- ³ Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research
- 15 Programme, University of Helsinki, Niemenkatu 73, 15140, Lahti, Finland. ORCID ID:
- 16 https://orcid.org/0000-0003-4211-4420
- 17
- 18 Acknowledgements
- 19 We thank Hector E. Esquivel for permission to use the Dendrology laboratory of the Universidad
- 20 del Tolima to measure the specimens collected. Comments from the editor and two reviewers
- 21 improved the quality of this contribution substantially.

22 Abstract

23

24 The tropical dry forest (TDF) ecosystem is characterized by strong seasonality exasperated 25 periodically by the El Niño/southern oscillation (ENSO). The environment produced by this event 26 could constrain the survival of small organisms, such as insects. Carabid beetles were collected in a 27 TDF in Armero, Colombia, during wet and dry seasons in both El Niño and non-El Niño periods. A 28 series of traits linked to desiccation resistance were measured to characterize their adaptation to the 29 TDF environment and to investigate changes experienced by carabid beetles during both episodes in 30 quantitative (assemblage) and qualitative (traits) parameters. We found no difference in the 31 presence of traits between El Niño and non-El Niño episodes, but carabid assemblages changed 32 significantly in composition and assemblage structure between these episodes. During both periods, 33 small-sized and nocturnal species dominated the assemblages, but in terms of number of 34 individuals, medium and large-sized, and visual hunter species dominated. Calosoma alternans and 35 Megacephala affinis were the most abundant species with high dispersal capacity. Carabid beetles 36 exhibited morphological traits well-adapted to drought experienced in TDF, including when it is 37 exasperated by ENSO. However, long-term studies can help to elucidate the real effects of ENSO 38 and to confirm the adaptation of carabid beetles to cope with this extreme environment.

39

40 Keywords

41 Drought, ENSO, ground beetles, insects, Neotropical, traits

44 The tropical dry forest (TDF) ecosystem is characterized by strong seasonal rainfall with four to six 45 dry months (Murphy and Lugo 1986), making the availability of moisture crucial to the survival of organisms (Maass and Burgos 2011). These natural fluctuations between wet and dry periods 46 47 throughout the year are exasperated by the El Niño/southern oscillation (ENSO). In South America, 48 ENSO is characterized by high temperatures and low precipitation (Poveda et al. 2000), as has 49 happened in 2015/2016, which was one of the strongest ENSO episodes on record of the 21th Century (Luo et al. 2018). ENSO can be critical for the maintenance of the TDF ecosystem, 50 51 considering its effects on plant and animal communities (Holmgren et al. 2001) species can face 52 local or global extinction if their populations do not have sufficient time to recover between ENSO 53 episodes (Charrete et al. 2006). For tropical insects, ENSO has shown strong community effects. 54 For example, Chrysomelidae beetles experienced a considerable loss of species during the event, 55 with partial population recovery after the dry period (Kishimoto-Yamada and Itioka 2008; 56 Kishimoto-Yamada et al. 2009). For butterflies, ENSO's effects can vary due to temporal migratory 57 responses to drought (Srygley et al. 2010, 2014). Evidence exists that Cantharidae decrease in 58 species richness due to this climatic event in TDF (Pérez and Zaragoza 2016). In general, it appears 59 that the responses of insects to ENSO are related to resources, which are indirectly affected by the weather (White 2008). 60

The configuration of insect bodies (high surface area/volume ratio) puts an additional constraint to the persistence and success of species in this environment (Schowalter 2006). As such, an insect's survival in ENSO-affected TDF landscapes will not only depend on their behavioural adaptations, but also their morphology (Cloudsley-Thompson 1975; Crawford 1981), and the effectiveness of those adaptations will contribute to the persistence of species (Chown et al. 2011). Species traits have become an important tool to predict the presence and persistence of species in

67 the environment (Keddy 1992; Cadotte et al. 2011; Kraft et al. 2015). Carabid beetles have a wide 68 range of traits linked to environment conditions (Homburg et al. 2014; Fountain-Jones et al. 2015), yet knowledge regarding this group's traits are lacking in the tropics. Changes in the environment, 69 70 as a result of disturbance, can play an important role in filtering traits in ground beetles (Shibuya et al. 2011; Pakeman and Stockan 2014; Piano et al. 2017; Magura and Lövei 2019; but see Kraft et al. 71 72 2015). ENSO is a recurring event in the TDF landscape (Caviedes 2001; Grove and Adamson 73 2018), and is likely to have had a strong filtering effect on insect communities (see Kotze and 74 Lawes 2007; Meir and Pennington 2011). If this is the case, species in this landscape are expected to display traits that cope with harsh conditions, but abundances may fluctuate substantially 75 76 between wet and dry periods, particularly so during ENSO events.

77 The aims of this study were to characterize the responses of TDF carabid beetles, in terms of 78 drought tolerance, by investigating changes in TDF carabid assemblages during a period of El Niño 79 (2015) and non-El Niño (2016) in both (1) quantitative assemblage parameters (number of species 80 and abundances) and (2) qualitative parameters (trait dominance). We hypothesise that carabid 81 species that are larger in size and with functional wings are well-adapted to drought episodes in the 82 TDF ecosystem. A larger beetle body has a lower surface area-to-volume ratio, conferring to 83 desiccation resistance (Hood and Tschinkel 1990; Chown et al. 1995; Le Lagadec et al. 1998), 84 while macroptery – a dominant trait in unstable habitats – facilitates an individual's escape from 85 unfavourable conditions (Darlington 1943; Venn 2016). On the other hand, smaller bodied beetles 86 can benefit from this environment for other reasons, including a broader selection of prey to satisfy 87 their energetic requirements and protection against predators (Blanckenhorn 2000; Chown and Klok 88 2003). As such, we expected small-sized carabid beetles of elongate or narrow form, fossorial legs 89 and/or nocturnal habits to be able to escape the risk of water loss (Forsythe 1987; Erwin 1979; 90 Bauer and Kredler 1993; Bauer et al. 1998) in the TDF landscape. These smaller species are also 91 expected to have a long metatrochanter to aid in mobility through confined habitats (Forsythe

92 1981). In terms of flight, even though macroptery is beneficial, flight is energetically expensive, 93 especially during periods of limited resources (Nelemans 1987). Finally, a relationship between 94 coloration and thermoregulation in carabids have been observed in the Palearctic zone, where a dark 95 dorsal surface is beneficial to gain heat (Schweiger and Beierkuhnlein 2016); as such, we expect 96 that most species in this hot landscape would have lightly coloured bodies. However, colour could 97 have a minor role in thermoregulation in TDF carabids but a prominent role in predation avoidance, 98 due to the prominence of predator avoidance behaviour in ground beetles, although it implies some 99 thermal cost (Schultz 1986; Hadley et al. 1988, 1992).

100 Quantitatively, we expect a decrease in carabid beetle species richness and abundance 101 during the El Niño episode in Colombia TDF, similar to what occurred in Ecuadorian Amazonian rain forests (Lucky et al. 2002). Drought produced by ENSO may stimulate a diapause and escape 102 103 response in some species to avoid desiccation and thus diminish their temporal occurrence (Dingle 104 1972; Lövei and Sunderland 1996; Venn 2016). We presume temperature and moisture act as clues 105 to start and end diapause during an ENSO episode (Cloudsley-Thompson 1975; Wolda and 106 Denlinger 1984; Tauber et al. 1998; Hodek 2003, 2012). This means that species richness and 107 abundance can decline drastically during drought events, but can also recover in relatively short 108 time scales when precipitation returns. However, we do not suspect drastic changes in trait 109 dominance between these two climatic states due to the strong adaptation to drought that organisms 110 show in TDF (Dirzo et al. 2011; Pizano and García 2014; Pulla et al. 2015).

- 111
- 112
- 113 2. Material and Methods
- 114

115 2.1 Study area

117 Ground beetles were surveyed in the dry forest biome in Armero (Tolima), Colombia (Fig. 1). 118 Average temperatures during the surveys were 45 °C and 35 °C for the El Niño dry and wet seasons respectively, while the non-El Niño dry and wet seasons were around 30 °C. Air humidity were 36 119 120 % (dry season) and 61 % (wet season) during the El Niño episode and around 70% during the non-El Niño period (see Supplementary information 1). Given the current fragmented status of tropical 121 122 dry forest and that the mostly dry forest of the Valley of Magdalena River in Colombia are 123 immersed in a mosaic of pastures and areas at different successional stages (Pizano et al. 2014, 124 2016), we characterised the beetle assemblage and their traits in the TDF landscape by sampling three dominant habitat types: five forest patches (see F1–5 in Fig. 1b), four early successional 125 126 patches (3-7 years of age, ES1–4) and three pastures (P1–3). The minimum distance between any of 127 the 12 sites was 240 m.

128

129 2.2 Carabid beetle sampling

130

Carabid beetles were collected during an El Niño (2015) and non-El Niño (2016) event. During 131 132 each period (El Niño and non- El Niño), beetles were collected in one month during the dry season (September) and one month during the wet season (October). Ten pitfall traps of 300 ml with water 133 134 plus a few drops of detergent were used at each site to collect the ground beetles. The traps were 135 installed 10 m apart along a transect of 100 m, and were operated continuously for three days per month. Each transect was at least 20 m from the edge of the site to minimize edge effects. Adult 136 carabid beetles were identified to genus level using Martínez (2005), and to species level using 137 138 Dejean (1829, 1831); Putzeys (1846, 1866); Reichardt (1967); Ball and Shpeley (2002, 2009); 139 Vitolo (2004); Will (2005) and Bruschi (2010). However, due to the scarcity of taxonomic keys for 140 the Neotropics, some of the identifications at species level should be confirmed. Voucher specimens 141 are deposited in the Entomological Museum of the Universidad del Tolima, Colombia (MENT-UT).

143 2.3 Trait measurements

145	Based on a literature review, a series of traits related to the adaptation to desiccation were measured
146	(Supplementary information 2). Information about the ecology and dispersal power (at genus level)
147	were obtained from Larochelle and Larivière (2003), Vitolo (2004), Martínez (2005) and Will
148	(2005). However, in an attempt to develop ecological information at species level, a set of traits
149	were measured from the specimens collected to deduce habit and microhabitat use: desiccation
150	resistance, daily activity time (nocturnal, diurnal), microhabitat use (burrowing habit and capacity
151	to shelter in confined habitats, fast runner, slow runner), and dispersal capacity (high, low) (Table
152	1). The specimens collected were mounted on an entomological pin, and photographed with a
153	Canon camera (PowerShot SX200 IS) through a stereomicroscope (Motic SMZ-168).
154	Measurements were taken with ImageJ 1.52k software (Schneider et al. 2012). Ten individuals per
155	species were used for measurements (means were used), unless fewer than 10 individuals were
156	collected, in which case all of the individuals were measured (see Supplementary information 3).
157	The ratio between traits that involves size and body length was used to compare between species.
158	For the capacity to shelter in confined spaces (microhabitat use), the ratio between prothorax width-
159	depth and abdomen width-depth was used. The range of measures to classify and characterize
160	certain attributes were from Forsythe (1981, 1987) and Bauer and Kredler (1993). Flight muscle
161	development was determined by comparing the flight muscles of specimens to the flight muscle
162	figures in Desender (2000).
1/0	

164 2.4 Data analyses

We used the χ2 test in Past 3.x (Hammer et al. 2001) to compare the distribution of each trait among
the El Niño and non-El Niño episodes.

168

169

170 3. Results

171

172 3.1 Carabid beetle trait characteristics in the tropical dry forest landscape

173

174 The traits of 15 species were measured (Supplementary information 3); Meotachys sp. was excluded 175 due to its small body size (2.2 mm). 73.3% of the species collected were classified as small (4-12 176 mm), and 26.6% as either medium or large (Table 2). The literature (see Trait measurements section 177 above) classified 80% of the collected species as nocturnal, 13.3% intermediate (both diurnal and 178 nocturnal activity) and for one species, daily activity period is unknown. However, the most 179 abundant species, *Calosoma alternans* and *Megacephala affinis*, were intermediate. All nocturnal 180 species had short antennae (ANT/BS = 0.28-0.47) except *Galerita* sp., whose antennae were longer 181 (ANT/BS = 0.62) (Supplementary information 4). Head width also did not show clear differences 182 between nocturnal and intermediate species, only two species had wide heads; Barysomus hoepfneri 183 (nocturnal, HW/BS = 0.29) and *M. affinis* (intermediate HW/BS = 0.27). On the contrary, eye surface area reflected behaviour presented in the literature, i.e., nocturnal species had small eyes 184 185 (CES/BS = 0.01-0.05) and intermediate species had large eyes (CES/BS = 0.08-0.13). Twenty percent of the species had fossorial forelegs (Aspidoglossa crenata, Clivina sp. and 186 187 *Camptodontus* sp.), and had a prothorax width/abdomen width and prothorax depth/abdomen depth ratio of almost 1 (Supplementary information 4). Two runner species Athrostictus paganus and 188 189 Enceladus gigas had the same body configurations. In terms of the fore- and hindleg total length, 190 differences between fossorial and runner species were also clear; these were shorter for fossorial

191	species (Fore-LTL/BS = $0.33-0.41$, Hind-LTL/BS = $0.40-0.57$): except for the runner species
192	Stolonis interceptus, which had shorter hindlegs and Apenes morio and E. gigas, which had shorter
193	forelegs. Most species had a long metatrochanter (73.3%; MTL/BS = $0.09-0.13$), but <i>M. affinis</i> was
194	the only species with a long and slender metafemora, long metatibiae and small metatrochanter.
195	Most species were macropterous (80%), however only 41% of these had developed flight
196	muscles. Apenes prasinus was brachypterous and E. gigas was apterous. None of the species
197	collected showed hindwing polymorphism. Also, 80% of the species were dark in body colour and
198	53% had dark legs. Apenes coriacea was unique with a lightly coloured body.
199	
200	3.2 Assemblage changes between El Niño and non-El Niño episodes
201	
202	3.2.1 Distribution of species
203	
204	Sixteen carabid beetle species (70 individuals) were collected; six species (17 individuals) during
205	the El Niño period, and 14 species (53 individuals) during the non-El Niño period (Table 3). During
206	the El Niño episode, the most abundantly collected species was C. alternans, but during the non-El
207	Niño episode, only one individual of this species was collected. During the non-El Niño period, the
208	most abundantly collected species was M. affinis, followed by E. gigas and Tetragonoderus sp.;
209	these two last mentioned species were not collected during the El Niño event. Despite the low
210	abundance of carabids, a marked change in assemblage composition and structure was observed.
211	There is a clear substitution in dominance and the disappearance of many species during the El
212	Niño period.
213	The wet season during both El Niño and non-El Niño periods had the highest number of
214	individuals (88% and 71% respectively). Only two species were collected during the dry season of
215	the El Niño period; Galerita sp. and M. affinis. During the non-El Niño period, similar numbers of

- species were collected during the dry (9 species) and wet (10 species) seasons. *Aspidoglossa crenata*, *B. hoepfnery*, *E. gigas*, *M. affinis* and *Tetragonoderus* sp. were present in both seasons.
- 219 3.2.2 Distribution of functional response traits

221 All measured traits and attributes were present in both episodes, except for light coloured bodies, 222 which was not present during the El Niño event. The ratios of attributes within each trait during 223 these two periods, and their significant differences are presented in Fig. 2. During both El Niño and 224 non-El Niño periods, small-sized species dominated the assemblages, but in terms of individuals, 225 medium and large-size dominated. In terms of daily activity period, most species collected were 226 nocturnal (which was also reflected in the traits associated with daily activity period; head width, 227 antennal length and compound eye surface area), while most individuals were intermediate 228 (reflected only in compound eye surface area). This applied to both El Niño and non-El Niño 229 periods. The runner/poor digger trait was dominant during both periods, with long fore- and hind 230 legs. Short metatrochanter was abundant in the non-El Niño period, so too were metallic body 231 colour and pale legs. High dispersal capacity, in terms of the proportion of individual collected, was 232 dominant during both periods.

233

234

235 4. Discussion

236

Despite the fact that ecological information on tropical carabid beetles is sparse, studies have shown
that there are direct relationships between traits and habits/lifestyles (Forsythe 1983, 1987, 1991;
Talarico et al. 2007). This was also confirmed in our study, which showed that the traits displayed
by carabids are reflective of this group being well-adapted to environmental change experienced in

241 TDF, including when it is exasperated by the El Niño/southern oscillation (ENSO). As predicted, 242 changes in the assemblage between El Niño and non-El Niño were more quantitative than qualitative. All traits and attributes (except light body colour) were present during both climatic 243 244 episodes and marked changes were perceived in the number of species and individuals, which recovered relatively fast after the climatic anomaly ended. Most of the carabid species collected 245 246 were small and nocturnal, although in terms of numbers of individuals collected, medium and large 247 sizes and intermediate activity trait attributes were most dominant, contrary to our expectation. It 248 appears that resource availability is a limiting factor for large-sized species during droughts, while 249 small-sized species persist in a low-resource environment and benefit from being nocturnal, thus 250 avoiding desiccation. Similarly, runner species was a dominant trait, but with a long metatrochanter that reduces the ability to run, yet aids in the species' ability to move through confined spaces or 251 252 litter. A long metatrochanter was also present in medium-sized and large species. Almost all species 253 were macropterous (80%), although only five species showed developed flight muscles, perhaps as 254 a consequence of limited resources (Nelemans 1987; Nelemans et al. 1989). Calosoma alternans 255 and *M. affinis* were the most abundant species with high dispersal capacity.

256

4.1 Quantitative carabid beetle changes between El Niño and non-El Niño periods

258

Quantitatively, TDF carabid beetles were affected by El Niño (ENSO), as has happened with other tropical beetle groups (Lucky et al. 2002; Kishimoto-Yamada and Itioka 2008; Kishimoto-Yamada et al. 2009; Pérez and Zaragoza 2016). The number of species and individuals decreased more than two fold during the El Niño period. However, carabids showed differential responses to drought, similarly to the Chrysomelidae in Borneo during the 1998 ENSO event (Kishimoto-Yamada et al. 2009). In Colombian TDF, 62% of the collected species were not present during the El Niño period, *C. alternans* was the only species showing a substantial decrease during the non-El Niño period, its

266	numerical decrease could be related to its life span (see Burgess 1911): its larvae were seen in high
267	numbers in pastures in October and November (Ariza 2016, pers. obs.), however long-term studies
268	can help to elucidate the life cycle of this species. On the contrary, M. affinis benefited considerably
269	from an improved environment during non-El Niño periods. This fast running and flight capable
270	species may be particularly vulnerable to desiccation during dry ENSO periods (Pearson and Vogler
271	2001). In general, the carabid beetle assemblage recovered quickly (within three months after El
272	Niño ended), which may be due to diapause as an adaptive mechanism to survive harsh conditions
273	(see Burgess 1911; Jeffords and Case 1987; Jacobs et al. 2011).
274	
275	4.2 Carabid beetle trait distribution in the tropical dry forest landscape
276	
277	Even though the carabid beetle assemblage in TDF was dominated by small species, more
278	individuals of medium and large sized species were collected; the two most abundant species C .
279	alternans (large) and M. affinis (medium) possibly benefitting from their lower volume-to-surface
280	area ratio, thus resisting desiccation during dry conditions (Hood and Tschinkel 1990; Chown et al.
281	1995; Le Lagadec et al. 1998). These species were observed walking during the day (Ariza 2016,
282	pers. obs.), but are considered to be active both during the day and night (intermediate activity)
283	(Larochelle and Larivière 2003; Vitolo 2004). Another medium-size species, Galerita sp. is
284	consider nocturnal (Larochelle and Larivière 2003), and is the only nocturnal species of TDF that
285	meets all the characteristic traits described as typical of this life-style: long antennae, small eyes and
286	a narrow head (Bauer and Kredler 1993). The rest of the nocturnal species (which are also small)
287	have short antennae, or at least shorter than Galerita sp. and M. affinis. However, antennal length
288	and head width differences between nocturnal and intermediate species groups were small, making
289	it difficult to characterize daily activity using these traits. Carabid beetles use three methods to
290	detect prey: visual, tactile and olfactory, or a combination of these; species that do not hunt visually,

291 use their antennae and palps (Wheater 1989). Antennae are an important sensory structure 292 (Chapman 1998; Ploomi et al. 2003), but it is unclear how prominent its role is in prey detection. On the contrary, eye surface area has distinct differences between nocturnal and diurnal active 293 294 species. Studies have shown that eyes are a better trait to reflect activity period (Bauer 1985; Talarico et al. 2007, 2011, 2018). For instance, C. alternans and M. affinis have large eyes, and 295 296 although they can hunt both during the day and night, they are probably better visual hunters. 297 Small-sized species in dry ecosystems risk desiccation (Schoener and Janzen 1968), yet 298 most species in TDF are small but at low abundance (27% of the total number of individuals). 299 Although a large size has physiological advantages, it also has disadvantages in terms of food 300 resources (high energetic requirements), and are more visible to predators (Blanckenhorn 2000). 301 Small insects resolve the challenge to conserve moisture through, amongst others, behavioural 302 adaptations, for instance by minimizing their exposure to harsh conditions (Chown and Klok 2003). 303 In TDF, those adaptations include nocturnal activity and a digger habit (Hadley 1974; Remmert 1981); all small carabid species captured are nocturnal, and although only three species are 304 305 burrowing specialists, all non-fossorial species have a long metatrochanter, which is related to the 306 ability to push the body into confined habitats and leaf litter, both to hunt and for shelter (Forsythe 307 1981, 1987). Burrowing species are characterized by fossorial legs and short fore- and hindlegs, 308 which help with entering the ground (Forsythe 1981). Additional to these morphological 309 adaptations, burrowing species like A. crenata, Clivina sp. and Camptodontus sp., and runner 310 species like A. *paganus* have similar proportions of the prothorax and hind body (width and depth) 311 that permit them to move in fissures and avoid friction and obstruction (Forsythe 1987). 312 Based on the traits measured, we can infer that all small species have low desiccation resistance, are olfactory/tactile hunters and good diggers or with good abilities to move in restricted 313

spaces, while medium and large sized species have higher desiccation resistance (Table 2). *Galerita*sp. is the only species from this last group with an olfactory/tactile hunter strategy. This species and

316	C. alternans have long metatrochanter, probably as a mechanisms to hunt in the litter layer or
317	shelter from predation (Forsythe 1991; Larochelle and Larivière 2003). Enceladus gigas was the
318	biggest and only apterous species, and although its metatrochanter does not aid in its ability to push
319	into narrow spaces, its pedunculate body facilitate movement through them (Forsythe 1987).
320	Finally, M. affinis could be consider a fast visual hunter, with large and slender legs, and a short
321	metatrochanter (Forsythe 1981). Both C. alternans and M. affinis are macropterous with flight
322	muscles developed, allowing these open-habitat species to escape predation (Forsythe 1987).
323	Additionally, the iridescent body colour of <i>M. affinis</i> and iridescent shades of <i>C. alternans</i> provides
324	additional protection against predators, which may get disorientated when these carabids fly
325	between sunny and shady areas (Seago et al. 2009).
326	
327	
328	5. Conclusions
329	
330	We showed that the ratios of attributes in carabid beetle response traits between the El Niño and
331	non-El Niño periods differed in the tropical dry forest ecosystem, yet trait occurrence was similar
332	between the two periods. Species were generally small in size, with nocturnal activities, while in
333	terms of abundance, medium and large sized beetles with intermediate daily activity dominated. It
334	appears that in this dry ecosystem, resource limitation is a greater challenge to the presence of
335	carabid beetles than desiccation risk. Carabid beetles possess a set of traits that show adaptation to
336	harsh conditions experience during El Niño in the TDF. Diapause could have a prominent role in
337	species present in the TDF. Yet, despite the importance of diapause to survive bad conditions,
338	insects experience mortality and other costs during diapause (Nelemans et al. 1989; Matsuo 2006).
339	Long term studies on the effects of ENSO linked with other anthropologic pressures can clarify the

340	real risks to carabid beetle communities during ENSO, especially given additional threats, such as
341	climate change.

343 Supplementary information

344

345 Additional information can be found online in the Supporting Information section

346 **Supplementary information 1** Air humidity and temperature measured in Armero, Colombia

during the dry and wet seasons of the non-El Niño and El Niño periods.

348 **Supplementary information 2** Functional response traits to desiccation resistance (and their

definitions) measured on carabid beetle species collected in Armero, Colombia, during El Niño and
 non-El Niño periods.

351 Supplementary information 3 Means (SD) of the functional response traits measured for carabid

beetle species collected in Armero, Colombia during El Niño and non-El Niño periods. All

353 measures are in mm. n = number of individuals measured. unk = unknown, i.e., the trait could not

- be measured. Abbreviations are explained in Supplementary information 2.
- Supplementary information 4 Mean (SD) functional response trait ratios for carabid beetle species
 collected in Armero, Colombia during El Niño and non-El Niño periods. All measures are in mm. n
 = number of individuals measured. unk = unknown, which means that the trait could not be
- 358 measured. Abbreviations are explained in Supplementary information 2.
- 359
- 360 Declarations
- 361
- 362 Funding: This research was partially supported by funding from the Universidad del Tolima

363 Conflict of interest: The authors declare that there are no conflicts of interest in conducting

364 research

- 365 Ethics approval: Not applicable
- 366 Consent to participate: Not applicable
- 367 Consent for publication: The first author declares that the two co-authors of this contribution are
- 368 aware of the fact and have agreed to being so named
- 369 Availability of data or material: The authors confirm that the data supporting the findings of this
- 370 study are available within the article (and/or) its supplementary materials
- 371 Code availability: Not applicable
- 372 Authors' contributions: GMA collected the data and performed laboratory activities. GMA and DJK
- 373 performed the analyses. All authors participated in the writing of the manuscript

374

- 375 References
- 376
- 377 Ball GE, Shpeley D (2002) The Neotropical subgenera and species of the pantropical genus
- 378 Anaulacus MacLeay (sensu novo) (Coleoptera: Carabidae: Masoreini): a taxonomic revision, with
- notes about way of life, evolution, and geographical history. T Am Entomol Soc 128:265–343.

380 https://www.jstor.org/stable/25078782

381

- 382 Ball GE, Shpeley D (2009) A taxonomic review of the genus Apenes Leconte (Coleoptera:
- 383 Carabidae: Lebiini) in the West Indies, with descriptions of new species and notes about
- classification and biogeography. Ann Carnegie Mus 78:79–191.
- 385 https://doi.org/10.2992/007.078.0201

387	Bauer T (1985) Different adaptation to visual hunting in three ground beetle species of the same
388	genus. J Insect Physiol 31:593-601. https://doi.org/10.1016/0022-1910(85)90057-5
389	
390	Bauer T, Desender K, Morwinsky T, Betz O (1998) Eye morphology reflects habitat demands in
391	three closely related ground beetle species (Coleoptera: Carabidae). J Zool 245:467-472.
392	https://doi.org/10.1111/j.1469-7998.1998.tb00121.x
393	
394	Bauer T, Kredler M (1993) Morphology of the compound eyes as an indicator of life-style in
395	carabid beetles. Can J Zool 71:799–810. https://doi.org/10.1139/z93-105
396	
397	Bernays EA, Minkenberg OPJM (1997) Insect herbivores: different reasons for being a generalist.
398	Ecology 78:1157–1169. https://doi.org/10.2307/2265866
399	
400	Blanckenhorn WU (2000) The evolution of body size: what keeps organisms small? Q Rev Biol
401	75:385–407. https://doi.org/10.1086/393620
402	
403	Bruschi S (2010) Key to the species of subgenus Castrida Motschulsky.
404	http://www.calosomas.com/Castrida/Castrida_keys.html. Accessed 17 September 2018
405	
406	Büchi L, Vuilleumier S (2014) Coexistence of specialist and generalist species is shaped by
407	dispersal and environmental factors. Amer Naturalist 183:612-624. https://doi.org/10.1086/675756
408	

409	Burgess AF (1911) Calosoma sycophanta: its life history, behaviour, and successful colonization in
410	New England. US Dept. of Agriculture, Bureau of Entomology, Washington.
411	https://doi.org/10.5962/bhl.title.65273
412	
413	Cadotte MW, Carscadden K, Mirotchnick N (2011) Beyond species: functional diversity and the
414	maintenance of ecological processes and services. J Appl Ecol 48:1079–1087.
415	https://doi.org/10.1111/j.1365-2664.2011.02048.x
416	
417	Caviedes CN (2001) El Niño in history storming through the ages. University Press of Florida,
418	Florida
419	
420	Chapman RF (1998) The insects structure and function. Cambridge University Press, NewYork
421	
422	Charrete NA, Cleary DFR, Mooers AØ (2006) Range-restricted, specialist bornean butterflies are
423	less likely to recover from ENSO-induced disturbance. Ecology 87:2330–2337.
424	https://www.jstor.org/stable/20069234
425	
426	Chown SL, Klok CJ (2003) Water-balance characteristics respond to changes in body size in
427	subantarctic Weevils. Physiol Biochem Zool 76:634–643. https://doi.org/10.1086/376919

429	Chown SL, Scholtz CH, Klok CJ, Joubert FJ, Coles KS (1995) Ecophysiology, range contraction
430	and survival of a geographically restricted African Dung beetle (Coleoptera: Scarabaeidae). Funct
431	Ecol 9:30-39. https://doi.org/10.2307/2390087
432	
433	Chown SL, Sørensen JG, Terblanche JS (2011) Water loss in insects: an environmental change
434	perspective. J Insect Physiol 57:1070–1084. https://doi.org/10.1016/j.jinsphys.2011.05.004
435	
436	Cloudsley-Thompson JL (1975) Adaptations of Arthropoda to arid environments. Annu Rev
437	Entomol 20:261–283. https://doi.org/10.1146/annurev.en.20.010175.001401
438	
439	Crawford CS (1981) Biology of desert invertebrates. Springer-Verlag, Berlin
440	
441	Darlington PJ (1943) Carabidae of mountains and islands: data on the evolution of isolated faunas,
442	and on atrophy of wings. Ecol Monogr 13:37-61. https://doi.org/10.2307/1943589
443	
444	Dejean PFMA (1829) Spécies génйral des Coléoptčres, de la collection de M. le Comte Dejean.
445	Crevot, Paris
446	
447	Dejean PFMA (1831) Spécies génйral des Coléoptčres, de la collection de M. le Comte Dejean.
448	Crevot, Paris
449	

450 Desender K (2000) Flight muscle development and dispersal in the life cycle of carabid beetles:

451 patterns and process. Bull Inst Roy Sci Nat Belgique 70:13–31

452

- 453 Dingle H (1972) Migration strategies of insects. Science 175:1327–1335.
- 454 https://doi.org/10.1126/science.175.4028.1327

455

456 Dirzo R, Young HS, Mooney HA, Ceballos G (2011) Seasonally dry tropical forests: ecology and
457 conservation. Island Press, Washington

458

459	Erwin TL	(1979)	Thoughts of	on the evo	lutionary	history of	f ground	beetles:	hypotheses	generated
-----	----------	--------	-------------	------------	-----------	------------	----------	----------	------------	-----------

460 from comparative faunal analyses of lowland forest sites in temperate and tropical regions. In:

- 461 Erwin TL, Ball GE, Whitehead DR, Halpern AL (eds) Carabid beetles their evolution, natural
- 462 History, and classification. Springer Netherlands, Dordrecht, pp 539–592

463

464 Forsythe TG (1981) Running and pushing in relationship to hind leg structure in some Carabidae
465 (Coleoptera). Coleopts Bull 35:353–378. https://www.jstor.org/stable/4007954

- 467 Forsythe TG (1983) Locomotion in ground beetles (Coleoptera carabidae): an interpretation of leg
 468 structure in functional terms. J Zool 200:493–507. https://doi.org/10.1111/j.1469-
- 469 7998.1983.tb02811.x
- 470

471	Forsythe TG (1987) The relationship between body form and habit in some Carabidae (Coleoptera).
472	J Zool 211:643-666. https://doi.org/10.1111/j.1469-7998.1987.tb04477.x
473	
474	Forsythe TG (1991) Feeding and locomotory functions in relation to body form in five species of
475	ground beetle (Coleoptera: Carabidae). J Zool 223:233-263. https://doi.org/10.1111/j.1469-
476	7998.1991.tb04763.x
477	
478	Fountain-Jones NM, Baker SC, Jordan GJ (2015) Moving beyond the guild concept: developing a
479	practical functional trait framework for terrestrial beetles. Ecol Entomol 40:1-13.
480	https://doi.org/10.1111/een.12158
481	
482	Grove R, Adamson G (2018) El Niño in World history. Palgrave Macmillan UK, London
483	Hadley NF (1974) Adaptational biology of desert Scorpions. J Arachnol 2:11-23
484	
485	Hadley NF, Savill A, Schultz TD (1992) Coloration and its thermal consequences in the New
486	Zealand tiger beetle Neocicindela perhispida. J Therm Biol 17:55-61. https://doi.org/10.1016/0306-
487	4565(92)90020-G
488	
489	Hadley NF, Schultz TD, Savill A (1988) Spectral reflectances of three tiger beetle subspecies
490	(Neocicindela perhispida): correlations with their habitat substrate. New Zeal J Zool 15:343–346.
491	https://doi.org/10.1080/03014223.1988.10422624
492	

- 493 Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for
- 494 education and data analysis. Palaeontol Electron 4:1–9

- 496 Hodek I (2003) Role of water and moisture in diapause development (A review). Eur J Entomol
- 497 100:223–232. https://doi.org/10.14411/eje.2003.037

498

- Hodek I (2012) Adult diapause in coleoptera. Psyche 249081:1–10.
- 500 https://doi.org/10.1155/2012/249081

501

Holmgren M, Scheffer M, Ezcurra E, Gutiérrez JR, Mohren GMJ (2001) El Niño effects on the
dynamics of terrestrial ecosystems. Trends Ecol Evol 16:89–94. https://doi.org/10.1016/S01695347(00)02052-8

505

- Homburg K, Homburg N, Schäfer F, Schuldt A, Assmann T (2014). Carabids.org a dynamic
 online database of ground beetle species traits (Coleoptera, Carabidae). Insect Conserv Divers
- 508 7:195–205. https://doi.org/10.1111/icad.12045

509

Hood WG, Tschinkel WR (1990) Desiccation resistance in arboreal and terrestrial ants. Physiol
Entomol 15:23–35. https://doi.org/10.1111/j.1365-3032.1990.tb00489.x

513	Jacobs JM, Colin Bergeron JA, Work TT, Spence JR (2011) Low intensity surface fire instigates
514	movement by adults of Calosoma frigidum (Coleoptera, Carabidae). ZooKeys 147:641-649.
515	https://doi.org/10.3897/zookeys.147.2084
516	
517	Jeffords M, Case L (1987) Effect of prey density on diurnal activity and ovarian development in
518	Calosoma calidum (Coleoptera: Carabidae): implications for biological control of the Gypsy moth,
519	Lymantria dispar (Lepidoptera: Lymantriidae) in the Midwest. Great Lakes Entomol 20:9
520	
521	Keddy PA (1992) Assembly and response rules: two goals for predictive community ecology. J Veg
522	Sci 3:157–164. https://doi.org/10.2307/3235676
523	
524	Kishimoto-Yamada K, Itioka T (2008) Consequences of a severe drought associated with an El
525	Niño-Southern Oscillation on a light-attracted leaf-beetle (Coleoptera, Chrysomelidae) assemblage
526	in Borneo. J Trop Ecol 24:229–233. https://doi.org/10.1017/S0266467408004811
527	
528	Kishimoto-Yamada K, Itioka T, Sakai S, Momose K, Nagamitsu T, Kaliang H, Meleng P, Chong L,
529	Karim AAH, Yamane S, Kato M, Reid CA, Nakashizuka T, Inoue T (2009) Population fluctuations
530	of light-attracted chrysomelid beetles in relation to supra-annual environmental changes in a
531	Bornean rainforest. Bull Entomol Res 99:217-227. https://doi.org/10.1017/S000748530800624X
532	

533	Koivula M.	, Punttila P.	Haila Y	Niemelä J ((1999)) Leaf litter a	nd the	small-scale	distribution	of
		,	, ,	,	(,					

carabid beetles (Coleoptera , Carabidae) in the boreal forest. Ecography 22:424–435.

535 https://doi.org/10.1111/j.1600-0587.1999.tb00579.x

536

	537	Kotze DJ.	Lawes MJ	(2007)) Viabilit	v of ecologic	al processes	s in small	Afromontane	forest	patche
--	-----	-----------	----------	--------	------------	---------------	--------------	------------	-------------	--------	--------

538 in South Africa. Austral Ecol 32:294–304. https://doi.org/10.1111/j.1442-9993.2007.01694.x

539

- 540 Kraft NJB, Adler PB, Godoy O, James EC, Fuller S, Levine JM (2015) Community assembly,
- 541 coexistence and the environmental filtering metaphor. Funct Ecol 29:592–599.
- 542 https://doi.org/10.1111/1365-2435.12345

543

- Le Lagadec MD, Chown SL, Scholtz CH (1998) Desiccation resistance and water balance in
- southern African keratin beetles (Coleoptera, Trogidae): the influence of body size and habitat. J
- 546 Comp Physiol B 168:112–122. https://doi.org/10.1007/s003600050127

547

Larochelle A, Larivière MC (2003) A natural history of the ground-beetles (Coleoptera: Carabidae)
of America north of Mexico. Pensoft Publishers, Bulgaria

550

- 551 Lövei GL, Sunderland KD (1996) Ecology and behavior of ground beetles (Coleoptera: Carabidae).
- 552 Annu Rev Entomol 41:231–256. https://doi.org/10.1146/annurev.en.41.010196.001311

554	Lucky A, Erwin TL, Witman JD (2002) Temporal and spatial diversity and distribution of arboreal
555	Carabidae (Coleoptera) in a Western Amazonian rain forest. Biotropica 34:376-386.
556	https://doi.org/10.1111/j.1744-7429.2002.tb00551.x
557	
558	Luo X, Keenan TF, Fisher JB, Jiménez-Muñoz JC, Chen JM, Jiang C, Ju W, Perakalapudi NV, Ryu
559	Y, Tadić JM (2018) The impact of the 2015/2016 El Niño on global photosynthesis using satellite
560	remote sensing. Philos Trans R Soc B 373:20170409. https://doi.org/10.1098/rstb.2017.0409
561	
562	Maass M, Burgos A (2011) Water dynamics at the ecosystem level in Seasonally dry tropical
563	forests. In: Dirzo R, Young HS, Mooney HA, Ceballos G (eds) Seasonally dry tropical forests:
564	ecology and conservation. Island Press, Washington, pp 141–156
565	
566	Magura T, Lövei GL (2019) Environmental filtering is the main assembly rule of ground beetles in
567	the forest and its edge but not in the adjacent grassland. Insect Sci 26:154–163.
568	https://doi.org/10.1111/1744-7917.12504
569	
570	Martínez C (2005) Introducción a los escarabajos Carabidae. Instituto de Investigación de Recursos
571	Biológicos Alexander von Humboldt, Bogotá
572	
573	Matsuo Y (2006) Cost of prolonged diapause and its relationship to body size in a seed predator.
574	Funct Ecol 20:300–306. https://doi.org/10.1111/j.1365-2435.2006.01097.x
575	

578	Press, Washington, pp 279–299
579	
580	Murphy PG, Lugo AE (1986) Ecology of Tropical dry forest. Annu Rev Ecol Evol Syst 17:67–88.
581	https://doi.org/10.1146/annurev.es.17.110186.000435
582	
583	Nelemans MNE (1987) Possibilities for flight in the carabid beetle Nebria brevicollis (F.). The
584	importance of food during larval growth. Oecologia 72:502-509.
585	https://doi.org/10.1007/BF00378974
586	
587	Nelemans MNE, Den Boer PJ, Spee A (1989) Recruitment and summer diapause in the dynamics of
588	a population of Nebria brevicollis (Coleoptera: Carabidae). Oikos 56:157-169.
589	https://doi.org/10.2307/3565331
590	
591	Pakeman RJ, Stockan JA (2014) Drivers of carabid functional diversity: abiotic environment, plant
592	functional traits, or plant functional diversity? Ecology 95:1213-1224. https://doi.org/10.1890/13-
593	1059.1
594	
595	Pearson DL, Vogler AP (2001) Tiger Beetles: the evolution, ecology, and diversity of the
596	cicindelids. Cornell University Press, United States of America
597	

Meir P, Pennington RT (2011) Climatic change and seasonally dry tropical forests. In: Dirzo R,

Young HS, Mooney HA (eds) Seasonally dry tropical forests: ecology and conservation. Island

576

577

598	Pérez Hernández XC, Zaragoza Ca	aballero S (2016) Tempora	l variation in the diversity of	•
070	Terez Hernandez Me, Zaragoza et	ubulleto D (2010) Tempore	a variation in the arversity of	

599 Cantharidae (Coleoptera), in seven assemblages in Tropical dry forest in Mexico. Trop Conserv Sci

600 9:439–464. https://doi.org/10.1177/194008291600900124

601

602 Piar	o E, De V	Wolf K,	Bona F,	Bonte D,	Bowler	DE,	Isaia M,	Lens L.	, Merckx T.	, Mertens D	, Van
----------	-----------	---------	---------	----------	--------	-----	----------	---------	-------------	-------------	-------

603 Kerckvoorde M, De Meester L, Hendrickx F (2017) Urbanization drives community shifts towards

thermophilic and dispersive species at local and landscape scales. Glob Change Biol 23:2554–2564.

605 https://doi.org/10.1111/gcb.13606

606

607 Pizano C, García H (2014) El Bosque seco tropical en Colombia. Instituto de Investigación de
608 Recursos Biológicos Alexander von Humboldt (IAvH), Bogotá

609

610 Pizano C, González-M R, González MF, Castro-Lima F, López R, Rodríguez N, Idárraga-Piedrahíta

611 Á, Vargas W, Vergara-Varela H, Castaño-Naranjo A, Devia W, Rojas A, Cuadros H, Toro JL

612 (2014) Las plantas de los bosques secos de Colombia. In: Pizano C, García H. (eds) El Bosque seco

613 tropical en Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt,

614 Bogotá, pp. 48–93

615

616 Pizano C, González-M R, López R, Jurado RD, Cuadros H, Castaño-Naranjo A, Rojas A, Pérez K,

617 Vergara-Varela H, Idárraga Á, Isaacs P, García H (2016) El Bosque seco tropical en Colombia:

618 distribución y estado de conservación. In: Gómez MF, Moreno LA, Andrade GI, Rueda C (eds)

619 Biodiversidad 2015: estado y tendencias de la biodiversidad continental de Colombia. Instituto

620 Alexander von Humboldt, Bogotá, pp ficha 202.

622	Ploomi A, Merivee E, Rahi M, Bresciani J, Ravn HP, Luik A, Sammelselg V (2003) Antennal
623	sensilla in ground beetles (Coleoptera, Carabidae). Agron Res 1:221-228.
624	
625	Poveda G, Graham NE, Epstein PR, Rojas W, Quiñones ML, Vélez ID, Martens WJM (2000)
626	Climate and ENSO variability associated with vector-borne diseases in Colombia. In: Diaz HF,
627	Markgraf V (eds) El Niño and the Southern oscillation: multiscale variability and global and
628	regional impacts. Cambridge University Press, Cambridge, pp 183–204
629	
630	Pulla S, Ramaswami G, Mondal N, Chitra-Tarak R, Suresh HS, Dattaraja HS, Vivek P,
631	Parthasarathy N, Ramesh BR, Sukumar R (2015) Assessing the resilience of global Seasonally dry
632	tropical forests. Int For Rev 17:91–113. https://doi.org/10.1505/146554815815834796
633	
634	Putzeys J (1846) Monographie des Clivina et genres voisins, précedée d'un tableau synoptique des
635	genres de la tribu des Scaritides. Mémoires de la Socíeté R. des Sciencies de Liege 2:521-663
636	
637	Putzeys J (1866) Révision génйrale des Clivinides. Annales de la Sociétй Entomologique de
638	Belgique 10:1–242
639	
640	Reichardt H (1967) A monographic revision of the american Galeritini (Coleoptera:Carabidae). Arq
641	Zool 15:1–176. https://doi.org/10.11606/issn.2176-7793.v15i1-2p1-176
642	

643	Remmert H (1981) Body size of terrestrial Arthropods and biomass of their populations in relation
644	to the abiotic parameters of their milieu. Oecologia 50:12-13. https://doi.org/10.1007/BF00378789
645	
646	Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of Image
647	Analysis. Nat Methods 9:671–675. https://doi.org/10.1038/nmeth.2089
648	
649	Schoener TW, Janzen DH (1968) Notes on environmental determinants of Tropical versus
650	Temperate insect size patterns. Am Nat 102:207–224. https://doi.org/10.1086/282538
651	
652	Schowalter TD (2006) Insect ecology - An ecosystem epproaach. Academic Press, San Diego
653	
654	Schultz TD (1986) Role of structural colors in predator avoidance by tiger beetles of the genus
655	Cicindela (Coleoptera: Cicindelidae). Bull Entomol Soc Am 32:142-146.
656	https://doi.org/10.1093/besa/32.3.142
657	
658	Schweiger AH, Beierkuhnlein C (2016) Size dependency in colour patterns of Western Palearctic
659	carabids. Ecography 39:846-857. https://doi.org/10.1111/ecog.01570
660	
661	Seago AE, Brady P, Vigneron JP, Schultz TD (2009) Gold bugs and beyond: a review of
662	iridescence and structural colour mechanisms in beetles (Coleoptera). J R Soc Interface 6:165-184.
663	https://doi.org/10.1098/rsif.2008.0354.focus

665	Shibuya S, Kubota K, Ohsawa M, Kikvidze Z (2011) Assembly rules for ground beetle
666	communities: what determines community structure, environmental factors or competition? Eur J
667	Entomol 108:453-459. https://doi.org/10.14411/eje.2011.058
668	
669	Srygley RB, Dudley R, Oliveira EG, Aizprúas R, Pelaez NZ, Riveros AJ (2010) El Niño and dry
670	season rainfall influence hostplant phenology and an annual butterfly migration from Neotropical
671	wet to dry forests. Glob Change Biol 1:936–945. https://doi.org/10.1111/j.1365-2486.2009.01986.x
672	
673	Srygley RB, Dudley R, Oliveira EG, Riveros AJ (2014) El Niño, host plant growth, and migratory
674	butterfly abundance in a changing climate. Biotropica 46:90–97. https://doi.org/10.1111/btp.12081
675	
676	Talarico F, Brandmayr P, Giglio A, Massolo A, Brandmayr TZ (2011) Morphometry of eyes,
677	antennae and wings in three species of Siagona (Coleoptera, Carabidae). ZooKeys 100:203-214.
678	https://doi.org/10.3897/zookeys.100.1528
679	
680	Talarico F, Cavaliere F, Mazzei A, Brandmayr P (2018) Morphometry and eye morphology of three
681	scaritine ground beetles relate to habitat demands and behavioural traits (Coleoptera, Carabidae,
682	Scaritinae). Zool Anz 277:190-196. https://doi.org/10.1016/j.jcz.2018.10.002
683	
684	Talarico F, Romeo M, Massolo A, Brandmayr P, Zetto T (2007) Morphometry and eye morphology
685	in three species of Carabus (Coleoptera: Carabidae) in relation to habitat demands. J Zool Syst Evol
686	Res 45:33–38. https://doi.org/10.1111/j.1439-0469.2006.00394.x

688	Tauber MJ, Tauber CA, Nyrop JP, Villani MG (1998) Moisture, a vital but neglected factor in the
689	seasonal ecology of insects: hypotheses and tests of mechanisms. Environ Entomol 27:523-530.
690	https://doi.org/10.1093/ee/27.3.523
691	
692	Venn S (2016) To fly or not to fly: Factors influencing the flight capacity of carabid beetles
693	(Coleoptera: Carabidae). Eur J Entomol 113:587-600. https://doi.org/10.14411/eje.2016.079
694	
695	Vitolo AL (2004) Guía para la identificación de los escarabajos tigre. Instituto de la Investigación
696	de Recursos Biológicos Alexander von Humboldt, Bogotá
697	
698	Wheater C (1989) Prey detection by some predatory Coleoptera (Carabidae and Staphylinidae). J
699	Zool 218:171–185. https://doi.org/10.1111/j.1469-7998.1989.tb02531.x
700	
701	White TCR (2008) The role of food, weather and climate in limiting the abundance of animals. Biol
702	Rev 83:227–248. https://doi.org/10.1111/j.1469-185X.2008.00041.x
703	
704	Will K W (2005) The Neotropical genera Oxycrepis Reiche and Stolonis Motschulsky: a taxonomic
705	review, key to the described species and description of new Stolonis species from Ecuador
706	(Coleoptera: Carabidae: Loxandrini). Zootaxa 17:1-17. https://doi.org/10.11646/zootaxa.1049.1.1
707	

- Wolda H, Denlinger DL (1984) Diapause in a large aggregation of a tropical beetle. Ecol Entomol
- 709 9:217–230. https://doi.org/10.1111/j.1365-2311.1984.tb00717.x

711 **Fig. 1** Geographic locations of study sites in Armero. a: The location of Armero in Colombia. b:

- 712 Armero. Abbreviations: F = forest; ES = early succession; P = pasture. Maps courtesy of DIVA-GIS
- 713 7.5 and Google Earth Image © 2020.

	El Niño					Non-El			
BS spp		s 10%	m 33%	l 17%		\$ 70%	m 15%	 15%	9.815, p = 0.007
BS ind	8 18%	m 18%	 64%		s 31%		m 58%	 11%	62.671, p < 0.001
AP spp	5	n 67%		 33%		n 83%		i 17%	7.837, p = 0.005
AP ind	п 24%		i 76%		n 33%		i 67%	1	2.039, p = 0.153
HW spp		nw 83%		wd 17%		NW 85%		wd 15%	0.038, p = 0.845
HW ind	i i i	nw 889	6	wd 12%	NW 40%		wd 60%		50.914, p < 0.001
ANT spp		sh 67%		ig 33%		sh 83%		10 17%	7.837, p = 0.005
ANT ind		sh 82%		lg 18%	sh 41%		lg 59%		36.08, p < 0.001
CES spp		\$ 67%		 33%		\$ 77%		 23%	2.48, p = 0.115
CES ind	\$ 23%		 77%		s 33%		1 67%		2.48, p = 0.115
MU spp	rgd 17%	Г I Бі	od 3%	f gd 17%	rgd 8%	r.pd 77%		f gd 15%	4.211, p = 0.122
MU ind	rgd 6%) r	pd 38%	f gd 6%	r gd 10%	r p 831	1 6	fgd 7%	1.223, p = 0.542
Fore-LTL spp	sh 17%		lg 83%		sh 31%		lg 69%		5.373, p = 0.02
Fore-LTL ind	sh 6%		lg 94%		sh 19%		lg 81%		7.725, p = 0.005
MTL spp	sh 33%		lg 67%		sh 24%		lg 76%		1.987, p = 0.158
MTL ind	sh 18%		lg 62%		, j	sh 57%		lg 13%	49.125, p < 0.001
Hind-LTL spp	sh 17%		lg 83%		sh 23%		lg 77%		1.125, p = 0.289
Hind-LTL ind	sh 6%		lg 94%		sh 10%	1	9 0%		1.087, p = 0.297
DC spp	lo 5	0W 60%	h	igh i0%		low 67%	h	igh I3%	5.952, p = 0.014
DC ind	low 18%		high 82%		low 33%		high 67%		5.923, p = 0.015
C	% 209	6 40%	60%	80% 0	0% 20%	40%	60% 80	0% 10	0%

714

Fig. 2 Distribution of carabid beetle functional response traits among El Niño and non-El Niño periods in Armero, Colombia. Abbreviations are explained in Supplementary information 2. χ^2 and p values are presented that test for differences in the distribution of attributes within each trait between the two climatic periods. spp = species, ind = individuals.

Table 1 Range of values of functional response traits measured on the carabid beetle species collected. See Supplementary information 2 for

720 more details.

Trait	Trait linked to	Classification	Abbreviation	Range
Body size	Desiccation resistance	Small	S	4-12 mm
		Medium	m	15-16 mm
		Large	1	23-50 mm
Head width/Body size	Daily activity time (nocturnal, diurnal)	Narrow	nw	0.15-0.22
		Wide	wd	0.27-0.29
Antenna length/Body size	Daily activity time (nocturnal, diurnal)	Short	sh	0.28-0.47
		Long	lg	0.58-0.65
Compound eye surface area/Body size	Daily activity time (nocturnal, diurnal)	Small	S	0.01-0.05
		Large	1	0.08-0.13
Prothorax width/Abdomen width	Microhabitat use (burrowing habit and	Poor digger	pd	0.64-0.80
	capacity to shelter in confined habitats)	Good digger	gd	0.87-1.20
Prothorax depth/Abdomen depth		Poor digger	pd	0.78-0.94
		Good digger	gd	0.97-1.32
Profemur length/Body size	Microhabitat use (fast runner, slow	Short	sh	0.14-0.17
	runner, fossorial)	Long	lg	0.18-0.23
Protibia Length/Body size		Short	sh	0.12-0.15
		Long	lg	0.16-0.20
Foreleg total length/Body size		Short	sh	0.33-0.41
		Long	lg	0.42-0.57
Metatrochanter length/Body size	Microhabitat use (burrowing habit and capacity to shalter in confined habitats)	Short	sh	0.06-0.08
	capacity to sheller in commed habitats)	Long	lg	0.09-0.13
Metafemur length/Body size	Microhabitat use (fast runner, slow	Short	sh	0.14-0.22
	runner, rossorial)	Long	lg	0.23-0.36
Metafemur width/Body size		Slender	sl	0.04-0.06
		Wide	wd	0.07-0.08
Metatibia/Body size		Short	sh	0.14-0.21

	Long	lg	0.59-1.02
Hind leg total length/Body size	Short	sh	0.40-0.57
	Long	lg	0.22-0.33

722 Table 2 Trait characterization of carabid beetles collected in Armero, Colombia during El Niño and non-El Niño periods. Abbreviations are

723 explained in detail in Supplementary information 2.

Species	BS	AP	HW	ANT	CES	MU	Pro- FL	Pro- TL	Fore- LTL	MTL	Meta- FL	Meta- FW	Meta- TL	Hind- LTL	DC	BC	LC
Apenes coriacea (Chevrolat, 1863)	S	n	nw	unk	S	r pd	sh	sh	lg	lg	lg	sl	sh	lg	low	lh	pl
Apenes morio (Dejean, 1825)	s	n	nw	sh	S	r pd	sh	sh	sh	lg	lg	sl	sh	lg	high	dk	pl
Apenes prasinus Ball & Shpeley, 1992	S	n	nw	sh	s	r pd	lg	lg	lg	lg	lg	wd	lg	lg	low	mt	dk
Apenes sp.	s	n	nw	sh	S	r pd	lg	lg	lg	lg	lg	wd	lg	lg	low	dk	pl
Aspidoglossa crenata (Dejean, 1825)	s	n	nw	sh	S	f gd	sh	sh	sh	lg	sh	sl	sh	sh	high	dk	dk
Athrostictus paganus (Dejean, 1831)	S	n	nw	sh	S	r gd	sh	sh	lg	lg	lg	sl	lg	lg	low	dk	pl
Barysomus hoepfneri Dejean, 1829	s	n	wd	sh	S	r pd	lg	sh	lg	lg	sh	wd	lg	lg	low	dk	pl
Calosoma alternans (Fabricius, 1792)	1	i	nw	sh	1	r pd	lg	lg	lg	lg	lg	wd	lg	lg	high	dk	dk
Camptodontus sp.	s	n	nw	sh	S	f gd	sh	sh	sh	sh	sh	sl	sh	sh	unk	dk	dk
<i>Clivina</i> sp.	S	n	nw	sh	S	f gd	sh	sh	sh	sh	sh	sl	sh	sh	high	dk	dk
Enceladus gigas Bonelli, 1813	1	unk	nw	sh	1	r gd	sh	sh	sh	sh	sh	sl	sh	lg	low	dk	dk
Galerita sp.	m	n	nw	lg	S	r pd	lg	lg	lg	lg	lg	sl	lg	lg	low	dk	dk
Megacephala affinis Dejean, 1825	m	i	wd	lg	1	r pd	lg	lg	lg	sh	lg	sl	lg	lg	high	mt	pl
Stolonis interceptus Chaudoir, 1873	S	n	nw	sh	S	r pd	lg	lg	lg	lg	lg	sl	sh	sh	low	dk	pl
Tetragonoderus sp.	s	n	nw	sh	s	r pd	lg	lg	lg	lg	lg	wd	lg	lg	low	dk	dk

 $\frac{Tetragonoderus \text{ sp.}}{BS} = \text{body size, } \mathbf{AP} = \text{daily activity period, } \mathbf{HW} = \text{head width, } \mathbf{ANT} = \text{antenna length, } \mathbf{CES} = \text{compound eye surface area, } \mathbf{MU} = \text{microhabitat use, } \mathbf{Pro-FL} = \text{pro-femur length, } \mathbf{Pro-TL} = \text{pro-femur length, } \mathbf{P$

tibia length, Fore-LTL = foreleg total length, MTL = metatrochanter length, Meta-FL = meta-femur length, Meta-FW = meta-femur width, Meta-TL = meta-tibia length, Hind-LTL = $\frac{726}{100}$

hindleg total length, DC = dispersal capacity, BC = body colour, LC = leg colour.

727 **Table 3** Number of individuals of all carabid beetle species collected in Armero, Colombia, during El Niño and non-El Niño periods. The season

column represents the season during which a species was collected; w = wet, d = dry; capital letters represent the season with the most abundant

729 catch.

	EL	Niño	Non-El Niño				
Species	Total	Season	Total	Season			
Apenes coriacea			1	W			
Apenes morio			1	w			
Apenes prasinus	1	W	1	d			
Apenes sp.			1	d			
Aspidoglossa crenata			3	dW			
Athrostictus paganus	1	W					
Barysomus hoepfneri			2	dw			
Calosoma alternans	11	W	1	w			
Camptodontus sp.			1	w			
Clivina sp.	1	W					
Enceladus gigas			5	dW			
Galerita sp.	1	d	1	w			
Megacephala affinis	2	dw	29	dW			
Meotachys sp.			1	d			
Stolonis interceptus			1	d			
Tetragonoderus sp.			5	Dw			
Total number of individuals	17		53				
Total number of species	6		14				

731 Supplementary information 1 Air humidity and temperature measured in Armero, Colombia during the dry and wet seasons of the non-El Niño

and El Niño periods.

		Non-E	l Niño		El Niño							
	Dry	v season	Wet	t season	Dry	season	Wet	t season				
Habitat type	Air humidity (%)	Air temperature (°C)	Air humidity (%)	Air temperature (°C)	Air humidity (%)	Air temperature (°C)	Air humidity (%)	Air temperature (°C)				
Forest 1	65	28.4	52	30.6	35	48.2	91	28.2				
Forest 2	77	27.3	72	25.5	46	38.6	91	27.9				
Forest 3	57	30.8	69	28.6	33	49.5	68	33.2				
Forest 4	78	27.4	79	25.7	42	43.2	51	38.5				
Forest 5	69	28.7	70	28.1	29	40.6	61	34.8				
Early succession 1	77	27.8	79	26.1	43	41.3	58	35.8				
Early succession 2	63	30.7	62	31.9	37	45.7	52	37.9				
Early succession 3	84	31.7	63	31.9	29	46.7	45	40.2				
Early succession 4	79	27.3	63	32.4	33	43.3	47	39.3				
Pasture 1	72	31.1	83	27.2	39	42.8	44	41.6				
Pasture 2	62	36.5	72	33.3	29	53.5	62	35.2				
Pasture 3	71	30.6	61	39.4	40	45.5	69	33.7				
Mean	71.17	29.86	68.75	30.06	36.25	44.91	61.58	35.53				

Supplementary information 2 Functional response traits to desiccation resistance (and their definitions) measured on carabid beetle species

collected in Armero, Colombia, during El Niño and non-El Niño periods.

Trait	Abbreviation	Criteria to measure	Trait linked to	Author
Body size	BS	From the base of the mandibles to the tip of the abdomen	Desiccation resistance	Schoener and Janzen 1968
		s = small (4-12 mm)		Le Lagadec et al. 1998
		m = medium (15-16 mm)		Chown and Klok 2003
		l = large (23-50 mm)		
Daily activity period	AP	d = diurnal	Activity time	Bauer and Kredler 1993
		n = nocturnal		
		i = intermediate (both d and n)		
Head width	HW	Maximum width, including compound eyes	Activity time	Bauer and Kredler 1993
		nw = narrow (HW/BS: 0.15-0.22)		
		wd = wide (HW/BS: 0.27-0.29)		
Antenna length	ANT	From the base of the first antennomere until the apex	Activity time	Bauer and Kredler 1993
		sh = short (ANT/BS: 0.28-0.47)		
		lg = long (ANT/BS: 0.58-0.65)		
Compound eye surface area	CES	Longest axis (long, width): $A = \pi LW/4$	Activity time	Bauer et al. 1998
		s = small (CES/BS: 0.01-0.05)		Talarico et al. 2018
		l = large (CES/BS: 0.08-0.13)		
Microhabitat use	MU	r = runner	Microhabitat use	Forsythe 1981, 1987
		f = fossorial		
Prothorax width	PW	Maximum width between each lateral margin	Microhabitat use	Forsythe 1987
Prothorax depth	PD	Maximum depth between upper and lower margin		
Abdomen width	ABW	Maximum width between each lateral margin	Microhabitat use	Forsythe 1987
Abdomen depth	ABD	Maximum depth between upper and lower margin		
Femur length (pro-meta)	FL	Length from the base to the apex	Microhabitat use	Forsythe 1981, 1987
Femur width (pro-meta)	FW	Maximum width between each lateral margin		
Tibia length (pro-meta)	TL	Length from apex margin of femur to base of tarsus		

Tarsus length (pro-meta)	TSL	Length from apex margin of tibiae to claw		
Metatrochanter length	MTL	Length from base to apex		
Fore leg total length	Fore-LTL	Sum of each part of the fore leg		
Hind leg total length	Hind-LTL	Sum of each part of the hind leg		
Functional hind wings	FHW	m = Macropterous: hind wings always fully developed, longer than elytra	Potential ability to escape	Venn 2016
		b = Brachypterous: hind wings always shorter than elytra	bad conditions	
		a = Apterous: without hind wings		
Flight muscles	FM	1 = Developed	Potential ability to escape	Desender 2000
		0 = Not developed	bad conditions	
Dispersal capacity	DC	high = Functional hind wing and flight muscles developed	Potential ability to escape	Desender 2000
		low = Functional hind wing or not and flight muscles not developed	bad conditions	Venn 2016
Body colour	BC	lh = mostly light	Thermoregulation	Schultz 1986
		dk = mostly dark		Hadley et al. 1988, 1992
		mt = mostly metallic		Schweiger and Beierkuhnlein 2016
Leg colour	LC	pl = Pale	Thermoregulation	Schultz 1986
		dk = Dark		Hadley et al. 1988, 1992
				Schweiger and Beierkuhnlein 2016

737 **Supplementary information 3** Means (SD) of the functional response traits measured for carabid beetle species collected in Armero, Colombia

during El Niño and non-El Niño periods. All measures are in mm. n = number of individuals measured. unk = unknown, i.e., the trait could not

be measured. Abbreviations are explained in Supplementary information 2.

Species	n	BS	HW	ANT	CES	PW	PD	ABW	ABD	Pro- FL	Pro- FW	Pro- TL	Pro- TSL	Fore- LTL	MTL	Meta- FL	Meta- FW	Meta- TL	Meta- TSL	Hind- LTL
Apenes coriacea	1	11.69	2.01	unk	0.45	2.56	1.54	3.56	1.38	1.91	0.63	1.78	1.68	5.36	1.16	2.67	0.69	2.29	2.34	7.29
Apenes morio	2	8.85	1.67 (0.17)	2.73	0.27 (0.04)	2.04 (0.16)	1.21 (0.11)	3.14 (0.43)	1.07 (0.05)	1.61 (0.07)	0.47 (0.05)	1.2 (0.13)	0.83	3.34	0.82 (0.04)	1.99 (0.05)	0.55 (0.05)	1.71 (0.26)	1.37 (0.09)	5.07 (0.22)
Apenes prasinus	6	10.94 (0.52)	2.20 (0.12)	4.05 (0.11)	0.39 (0.04)	3.08 (0.15)	1.51 (0.06)	4 (0.22)	1.27 (0.13)	2.04 (0.13)	0.7 (0.04)	1.76 (0.13)	1.31 (0.07)	5.12 (0.3)	1.32 (0.11)	2.96 (0.08)	0.74 (0.03)	2.5 (0.12)	2.33 (0.13)	7.78 (0.18)
Apenes sp.	2	9.21 (1.34)	1.75 (0.3)	3.93 (0.43)	0.28 (0.07)	2.08 (0.39)	1.12 (0.01)	2.93 (0.35)	1.21 (0.13)	1.65 (0.35)	0.58 (0.08)	1.6 (0.34)	1.26 (0.23)	3.96 (1.69)	1.05 (0.21)	2.37 (0.39)	0.61 (0.13)	2.22 (0.52)	2.2 (0.34)	6.78 (1.24)
Aspidoglossa crenata	3	7.12 (0.36)	1.29 (0.05)	2.41 (0.02)	0.18 (0)	1.9 (0.07)	1.15 (0.13)	2.19 (0.09)	0.87 (0.03)	1.21 (0.05)	0.55 (0.04)	1.07 (0.05)	0.67 (0.08)	2.94 (0.16)	0.71 (0.02)	1.53 (0.03)	0.28 (0.02)	1.32 (0.05)	1.17 (0.06)	4.01 (0.07)
Athrostictus paganus	1	9.08	1.88	2.93	0.30	2.81	0.94	2.91	0.98	1.53	0.54	1.22	1.04	3.79	1.19	2.09	0.57	2.02	1.92	6.02
Barysomus hoepfneri	5	10.21 (0.68)	2.95 (0.08)	3.26 (0.2)	0.48 (0.03)	4.16	1.43 (0.42)	3.48 (0.16)	1.67 (0.27)	1.81 (0.09)	0.68 (0.02)	1.51 (0.06)	1.24 (0.06)	4.57 (0.19)	1.22 (0.08)	2.21 (0.14)	0.74 (0.02)	2.67 (0.98)	1.86 (0.1)	6.38 (0.07)
Calosoma alternans	10	23.65 (1.37)	4.61 (0.25)	11.17 (1.09)	1.86 (0.22)	6.94 (0.52)	5.02 (0.81)	9.07 (0.57)	4.08 (0.65)	4.88 (0.45)	1.62 (0.24)	4.52 (0.39)	3.95 (0.31)	13.35 (0.95)	2.31 (0.37)	6.15 (0.38)	1.63 (0.17)	7.08 (0.51)	5.83 (0.71)	19.06 (1.44)
Camptodontus sp.	1	10.13	2.06	2.82	0.25	2.69	1.41	2.67	1.29	1.41	0.71	1.44	1.12	3.97	0.61	1.59	0.49	1.62	1.39	4.60
<i>Clivina</i> sp.	3	8.57 (0.05)	1.45 (0.06)	2.39 (0.03)	0.11 (0.01)	2.07 (0.18)	1.28 (0.06)	1.96 (0.06)	1.05 (0.02)	1.22 (0.11)	0.61 (0.06)	1.05 (0.03)	0.85 (0.11)	2.82 (0.43)	0.54 (0.04)	1.24 (0.11)	0.39 (0.03)	1.23 (0.1)	0.94 (0.07)	3.4 (0.27)
Enceladus gigas	9	48.48 (4.35)	10.15 (0.49)	18.62 (1.69)	4.47 (0.26)	12.16 (0.73)	5.77 (0.56)	11.62 (0.81)	5.08 (0.52)	6.37 (0.38)	2.49 (0.15)	6.45 (0.29)	6.34 (0.86)	15.28 (1.16)	3.86 (0.2)	9.72 (0.39)	2.92 (0.21)	10.31 (0.6)	9.81 (0.33)	29.99 (1.02)

<i>Galerita</i> sp.	7	15.38 (0.22)	2.38 (0.03)	9.66 (0.5)	0.68 (0.05)	2.69 (0.06)	2.38 (0.2)	4.19 (0.31)	2.3 (0.19)	3.56 (0.13)	0.95 (0.06)	3.05 (0.16)	2.48 (0.17)	8.73 (0.8)	1.55 (0.07)	5.52 (0.26)	0.81 (0.07)	5.06 (0.28)	4.37 (0.24)	14.97 (0.47)
Megacephala affinis	10	15.91 (1.59)	4.27 (0.28)	10.19 (0.83)	2.05 (0.34)	3.94 (0.28)	1.89 (0.27)	4.4 (0.33)	2.46 (0.37)	3.25 (0.18)	0.97 (0.06)	2.67 (0.17)	2.93 (0.37)	9.04 (0.43)	1.32 (0.15)	5.05 (0.31)	0.84 (0.08)	5.21 (0.29)	5.64 (0.46)	15.9 (0.96)
Stolonis interceptus	1	6.79	1.21	3.08	0.15	1.69	0.79	2.13	0.93	1.32	0.42	1.13	0.70	3.16	0.74	1.63	0.44	1.18	1.07	3.88
Tetragonoderus sp.	6	4.22 (0.18)	0.87 (0.04)	1.6 (0.3)	0.09 (0)	1.17 (0.04)	0.68 (0.06)	1.49 (0.06)	0.67 (0.08)	0.78 (0.06)	0.26 (0.03)	0.67 (0.08)	0.52 (0.07)	1.97 (0.12)	0.56 (0.03)	1.11 (0.06)	0.32 (0.01)	1.04 (0.05)	1.1 (0.08)	3.23 (0.19)

741 Supplementary information 4 Mean (SD) functional response trait ratios for carabid beetle species collected in Armero, Colombia during El

742 Niño and non-El Niño periods. All measures are in mm. n = number of individuals measured. unk = unknown, which means that the trait could

not be measured. Abbreviations are explained in Supplementary information 2.

Species	n	HW/BS	ANT/ BS	CES/BS	PW/ ABW	PD/ ABD	Pro- FL/BS	Pro- FW/BS	Pro- TL/BS	Pro- TSL/BS	Fore- LTL/BS	MTL/ BS	Meta- FL/BS	Meta- FW/BS	Meta- TL/BS	Meta- TSL/BS	Hind- LTL/BS
Apenes coriacea	1	0.17	unk	0.04	0.72	1.11	0.16	0.05	0.15	0.14	0.46	0.10	0.23	0.06	0.20	0.20	0.62
Apenes morio	2	0.19 (0.02)	0.31	0.03 (0)	0.65 (0.04)	1.13 (0.05)	0.16 (0.01)	0.05 (0.01)	0.14 (0.01)	0.09	0.38	0.09 (0.01)	0.23 (0.01)	0.06 (0.01)	0.21 (0.03)	0.16 (0.01)	0.59 (0.02)
Apenes prasinus	6	0.20 (0.01)	0.36 (0.02)	0.04 (0)	0.78 (0.03)	1.22 (0.15)	0.19 (0.01)	0.06 (0)	0.16 (0.01)	0.12 (0)	0.47 (0.02)	0.12 (0.01)	0.27 (0.01)	0.07 (0)	0.23 (0.01)	0.21 (0.02)	0.71 (0.04)
Apenes sp.	2	0.19 (0.01)	0.43 (0.02)	0.03 (0)	0.71 (0.05)	0.94 (0.11)	0.18 (0.01)	0.06 (0)	0.17 (0.01)	0.14 (0)	0.42 (0.12)	0.11 (0.01)	0.26 (0.01)	0.07 (0.01)	0.24 (0.02)	0.24 (0)	0.73 (0.03)
Aspidoglossa crenata	3	0.18 (0)	0.34 (0.02)	0.02 (0)	0.87 (0.07)	1.32 (0.10)	0.17 (0.01)	0.08 (0)	0.15 (0.01)	0.09 (0.01)	0.41 (0.03)	0.1 (0)	0.22 (0.01)	0.04 (0)	0.19 (0)	0.16 (0.02)	0.57 (0.02)
Athrostictus paganus	1	0.21	0.32	0.03	0.96	0.97	0.17	0.06	0.13	0.11	0.42	0.13	0.23	0.06	0.22	0.21	0.66
Barysomus hoepfneri	5	0.29 (0.02)	0.31 (0.03)	0.05 (0)	1.2 (0.09)	0.84 (0.16)	0.18 (0.01)	0.07 (0)	0.15 (0.01)	0.12 (0.01)	0.45 (0.03)	0.12 (0.01)	0.22 (0.02)	0.07 (0)	0.26 (0.09)	0.18 (0.02)	0.63 (0.05)
Calosoma alternans	10	0.2 (0.01)	0.47 (0.03)	0.08 (0.01)	0.77 (0.06)	1.26 (0.10)	0.21 (0.02)	0.07 (0.01)	0.19 (0.01)	0.17 (0.01)	0.57 (0.03)	0.1 (0.01)	0.26 (0.01)	0.07 (0)	0.3 (0.01)	0.25 (0.02)	0.81 (0.03)
Camptodontus sp.	1	0.20	0.28	0.02	1.01	1.09	0.14	0.07	0.14	0.11	0.39	0.06	0.16	0.05	0.16	0.14	0.45
<i>Clivina</i> sp.	3	0.17 (0.01)	0.28 (0)	0.01 (0)	1.11 (0.04)	1.24 (0.10)	0.14 (0.01)	0.07 (0.01)	0.12 (0)	0.1 (0.01)	0.33 (0.05)	0.06 (0)	0.14 (0.01)	0.05 (0)	0.14 (0.01)	0.36 (0.43)	0.4 (0.03)
Enceladus gigas	9	0.21 (0.02)	0.38 (0.03)	0.09 (0.01)	1.04 (0.05)	1.12 (0.08)	0.13 (0.01)	0.05 (0)	0.13 (0.01)	0.13 (0.02)	0.32 (0.03)	0.08 (0.01)	0.2 (0.01)	0.06 (0)	0.21 (0.02)	0.2 (0.02)	0.61 (0.05)
<i>Galerita</i> sp.	7	0.15 (0)	0.62 (0.02)	0.04 (0)	0.64 (0.06)	1.01 (0.06)	0.23 (0.01)	0.06 (0)	0.2 (0.01)	0.16 (0.01)	0.57 (0.06)	0.1 (0.01)	0.36 (0.02)	0.05 (0)	0.33 (0.02)	0.29 (0.02)	0.98 (0.03)
Megacephala affinis	10	0.27 (0.02)	0.65 (0.08)	0.13 (0.01)	0.9 (0.04)	0.78 (0.11)	0.2 (0.02)	0.06 (0)	0.17 (0.01)	0.18 (0.02)	0.55 (0.05)	0.08 (0.01)	0.32 (0.03)	0.05 (0)	0.33 (0.02)	0.36 (0.03)	1.02 (0.07)
Stolonis interceptus	1	0.18	0.45	0.02	0.79	0.85	0.19	0.06	0.17	0.10	0.47	0.11	0.24	0.06	0.17	0.16	0.57
Tetragonoderus sp.	6	0.22 (0.01)	0.38 (0.06)	0.02 (0)	0.80 (0.05)	1.06 (0.13)	0.19 (0.02)	0.06 (0.01)	0.16 (0.02)	0.12 (0.02)	0.46 (0.03)	0.13 (0.01)	0.27 (0.01)	0.08 (0)	0.25 (0.26)	0.26 (0.02)	0.77 (0.05)